
Class

1NPRG041 Programming in C++ - 2019/2020 David Bednárek

Class

class X {
/*...*/

};

• Class in C++ is an extremely powerful construct
• Other languages often have several less powerful constructs (class+interface)

• Requires caution and conventions

• Three degrees of usage

• Non-instantiated class - a pack of declarations (used in generic programming)

• Class with data members

• Class with inheritance and virtual functions (object-oriented programming)

• Only these classes carry their type information at runtime

• class = struct

• struct members are by default public

• by convention used for simple or non-instantiated classes

• class members are by default private

• by convention used for large classes and OOP

Non-instantiated class Classes with inheritance

class X {
public:
typedef int t;
static constexpr
int c = 1;

static int f(int p)
{ return p + 1; }

};

class U {
public:
virtual ~U() {}
void f()
{ f_(); }

private:
virtual void f_() = 0;

};

class V : public U {
public:
V() : m_(0) {}

private:
int m_;
virtual void f_()
{ ++ m_; }

};

Three degrees of classes

3NPRG041 Programming in C++ - 2019/2020 David Bednárek

class Y {
public:
Y()
: m_(0)

{}
int get_m() const
{ return m_; }
void set_m(int m)
{ m_ = m; }

private:
int m_;

};

Class with data members

Type and static members of classes

class X {
public:
class N { /*...*/ };
typedef unsigned long t;
using t2 = unsigned long;
static constexpr t c = 1;
static t f(t p)
{ return p + v_; }

private:
static t v_; // decl. of X::v_

};

X::t X::v_ = X::c; // def. of X::v_

void f2()
{
X::t a = 1;
a = X::f(a);

}

• Type and static members...

• Nested class definitions

• typedef/using definitions

• static member constants

• static member functions

• static member variables

• ... are not bound to any class
instance (object)

• Equivalent to global
types/variables/functions

• But referenced using qualified
names (prefix X::)

• Encapsulation in a class avoids
name clashes

• But namespaces do it better

• Some members may be private

• Class may be passed to a template

4

NPRG041
Programmin

g in C++ -
2019/2020

David

Uninstantiated classes vs. namespaces

Uninstantiated class
• Class definitions are intended for objects

• Static members must be explicitly
marked

• Class members may be
public/protected/private

class X {
public:

class N { /*...*/ };
typedef unsigned long t;
static constexpr t c = 1;
static t f(N p);

private:
static t v; // decl. of X::v

};

• Class must be defined in one piece
• Except of definitions placed outside

X::t X::v = X::c; // def. of X::v
X::t X::f(N p) { return p.m + v; }

• Access to members requires qualified
names

void f2()
{

X::N a;
auto b = X::f(a);

}

• A class may become a template argument
• This is the (only) reason for

uninstantiated classes
using my_class = some_generic_class< X>;

Namespace
• Namespace members are always

static
• No objects can be made from

namespaces

• Functions/variables are not
automatically inline/extern

namespace X {
class N { /*...*/ };
typedef unsigned long t;
constexpr t c = 1;
extern t v; // decl. of X::v

};

• Namespace may be reopened and
member declarations added

• Namespace may be split into
several header files

namespace X {
inline t f(N p) { return p.m + v; }

};

• Definitions of previously declared
namespace members may be
outside

X::t X::v = X::c; // def. of X::v

5

NPRG041
Programmin

g in C++ -
2019/2020

David

• Namespace members are always
static

• No objects can be made from
namespaces

• Functions/variables are not
automatically inline/extern

namespace X {
class N { /*...*/ };
typedef unsigned long t;
constexpr t c = 1;
extern t v; // decl. of X::v

};

• Namespace may be reopened and
member declarations added

• Namespace may be split into
several header files

namespace X {
inline t f(N p) { return p.m + v; }

};

• Definitions of previously declared
namespace members may be
outside

X::t X::v = X::c; // def. of X::v

void f2()
{
X::N a;

• Functions in namespaces are
visible by argument-dependent
lookup

auto b = f(a);

• calls X::f because the class type
of a is a member of X

• Namespace members can be
made directly visible

using X::t;
t b = 2;
using namespace X;
b = c;

}

Namespaces

6

NPRG041
Programmin

g in C++ -
2019/2020

David

Class with data members

class Y {
public:
Y()
: m_(0)

{}
int get_m() const
{ return m_; }
void set_m(int m)
{ m_ = m; }

private:
int m_;

};

• Class (i.e. type) may be
instantiated (into objects)
• Using a variable of class type

Y v1;

• This is NOT a reference!

• Dynamically allocated
• Held by a (smart) pointer

auto p = std::make_unique< Y>();
auto q = std::make_shared< Y>();

• Element of a larger type
typedef std::array< Y, 5> A;
class C1 { public: Y v; };
class C2 : public Y {};

• Embedded into the larger type

• NO explicit instantiation by new!

• Membership (C1::v) and
inheritance (C2) are fairly similar

• The same physical layout

• Inheritance may have unintended
consequences

• Use inheritance only when you
need to override virtual functions

7

NPRG041
Programmin

g in C++ -
2019/2020

David

class Y {
public:
Y()
: m_(0)

{}
int get_m() const
{ return m_; }
void set_m(int m)
{ m_ = m; }

private:
int m_;

};

• Class (i.e. type) may be
instantiated (into objects)

Y v1;
auto p = std::make_unique< Y>();

• Non-static data members
constitute the object

• Non-static member functions are
invoked on the object

• Object must be specified when
referring to non-static members

v1.get_m()
p->set_m(0)

• References from outside may be
prohibited by "private"/"protected"

v1.m_ // error

• Only "const" methods may be
called on const objects

const Y * pp = p.get();
pp->set_m(0) // error

Class with data members

8

NPRG041
Programmin

g in C++ -
2019/2020

David

9NPRG041 Programming in C++ - 2019/2020 David Bednárek

Inheritance and virtual functions

Inheritance

class Base { public:
virtual ~Base() noexcept {}
virtual void f() { /* ... */ }

};
class Derived final : public Base {
virtual void f() override { /* ... */ }

};

• Derived class

• Contains all types, data elements and functions of Base

• Because of this, a pointer/reference to Derived may be silently converted to a
pointer/reference to Base

• The opposite conversion is available as explicit cast

• New types/data/functions may be added

• Hiding old names by new names is not wise, except for virtual functions

• Functions declared as virtual in Base may change their behavior by
reimplementation in Derived

• private virtual functions may be overridden too

• override – verify existence of this virtual function in (some of) the base classes

• Virtual destructor needed in Base to ensure proper delete

• final – disable derivation from this class

Classes in inheritance

• Abstract class

• Definition in C++: A class that contains some pure virtual functions
virtual void f() = 0;

• Such class is incomplete and cannot be instantiated alone

• General definition: A class that will not be instantiated alone (even if it could)

• Defines the interface which will be implemented by the derived classes

• Concrete class

• A class that will be instantiated as an object

• Implements the interface required by its base class

Virtual functions

class Base { public:
virtual ~Base() noexcept {}
virtual void f() { /* ... */ }

};
class Derived : public Base { public:
virtual void f() { /* ... */ }

};

• Virtual function call works only in the presence of pointers or references
std::unique_ptr<Base> p = std::make_unique< Derived>();// automatic conversion
p->f(); // calls Derived::f although p is pointer to Base

• Without pointers/references, having functions virtual has no sense
Derived d;
d.f(); // calls Derived::f even for non-virtual f

Base b = d; // slicing = copying a part of an object
b.f(); // calls Base::f even for virtual f

• Slicing is specific to C++

• Often prohibited due to Base being abstract

Dynamic cast

dynamic_cast<T>(e)

• Base-to-derived pointer/reference conversions

• Runtime checks included – requires type information in the e object

• At least one virtual function required in the type of e

• If the dynamic type of e is not T (or derived from T)...

• Pointers: Returns nullptr

• References: Throws std::bad_cast

class Base { public:
virtual ~Base(); /* base class must have at least one virtual function */

};
class X : public Base { /* ... */
};
class Y : public Base { /* ... */
};

Base * p = /* ... */;
X * xp = dynamic_cast< X *>(p);
if (xp) { /* ... */ }
Y * yp = dynamic_cast< Y *>(p);
if (yp) { /* ... */ }

class Base {
public:
virtual ~Base() noexcept {}

};

class Derived : public Base {
public:
virtual ~Derived() noexcept {/**/}

};

• Old-style

Base * p = new Derived;
delete p;

• Modern-style

{
std::unique_ptr<Base> p =
std::make_unique< Derived>();

}

• Language rule:

• If an object is destroyed using a
pointer to a base class, the base
class must have a virtual
destructor

• This triggers the more complex
implementation of delete:

• Correctly destruct the complete
object

• Correctly determine the memory
block

• Recommendation:

• Every abstract class shall have a
virtual destructor

• Cost is negligible because other
virtual functions are present

• A pointer to the abstract class will
likely be used for destruction

Inheritance and the destructor

C

Single non-virtual inheritance - example

class S
{ public:

virtual ~S() = default;
virtual void seek(int) = 0;

};

class R
: public S
{ public:

virtual int read() = 0;
};

class C
: public R
{

virtual void seek(int) {/**/}
virtual int read() {/**/}
std::istream d_;

};

auto p = std::make_unique<C>();
std::unique_ptr<R> r = move(p);
S* s = &*r;
r.reset(); // C::~C()

S-in-R
seek

R
read

R
SS

S
seek

S-in-C
C::seek

R-in-C
C::read

R
S d_

C

p
r

s

Multiple non-virtual inheritance - example

class S
{ public:

virtual ~S() = default;
virtual void seek(int) = 0;

};

class R
: public S
{ public:

virtual int read() = 0;
};

class W
: public S
{ public:

virtual void write(int) = 0;
};

class M
: public R,
public W

{
virtual void seek(int) {/**/}
// ERROR: which seek?

};

S-in-R
seek

R
read

R
S

S-in-W
seek

W
write

M

M

W
SS

S
seek

S-in-M
seek

R-in-M
read

R
S

S-in-M
seek

W-in-M
write

W
S

Virtual inheritance - example

class S
{ public:

virtual ~S() = default;
virtual void seek(int) = 0;

};

class R
: public virtual S
{ public:

virtual int read() = 0;
};

class W
: public virtual S
{ public:

virtual void write(int) = 0;
};

class M
: public virtual R,
public virtual W

{};

void copy(W &, R &);
void sort(M &);

S-in-R
seek

R
read
off-RS

SR

off-RS

S-in-W
seek

W
write
off-WS

SW

off-WS

M
off-MR
off-MW
off-MS

R-in-M
read
off-RS

S-in-M
seek

W-in-M
write
off-WS

M R

off-RS

SW

off-WSoff-MR

off-MW

Inheritance

• Inheritance mechanisms in C++ are very strong

• Often misused

• Inheritance shall be used only in these cases

• IS-A hiearachy

• Eagle IS A Bird

• Square-Rectangle-Polygon-Drawable-Object

• Interface-implementation

• Readable-InputFile

• Writable-OutputFile

• (Readable+Writable)-IOFile

Inheritance

• ISA hierarchy

• C++: Single non-virtual public inheritance
class Derived : public Base

• Abstract classes may contain data (although usually do not)

• Interface-implementation

• C++: Multiple virtual public inheritance
class Derived : virtual public Base1,

virtual public Base2

• virtual inheritance merges copies of a base class multiply included via diamond patterns

• Abstract classes usually contain no data

• Interfaces are (typically) not used to own (destroy) the object

• Often combined
class Derived : public Base,

virtual public Interface1,
virtual public Interface2

Misuse of inheritance

• Misuse of inheritance - #1

class Real { public: double Re; };
class Complex : public Real { public: double Im; };

• Leads to slicing:

double abs(const Real & p) { return p.Re > 0 ? p.Re : - p.Re; }

Complex x;
double a = abs(x); // it CAN be compiled - but it should not

• Reference to the derived class may be assigned to a reference to the base class

• Complex => Complex & => Real & => const Real &

Misuse of inheritance

• Misuse of inheritance - #2

class Complex { public: double Re, Im; };
class Real : public Complex { public: Real(double r); };

• Mistake: Objects in C++ are not mathematical objects

void set_to_i(Complex & p) { p.Re = 0; p.Im = 1; }

Real x;
set_to_i(x); // it CAN be compiled - but it should not

• Real => Real & => Complex &

Classes without inheritance Classes with inheritance
• No virtual functions

• No visible pointers usually required
• When multiple objects exist

• Allocated usually via containers
std::vector< MyClass> k;

• When standalone
MyClass c;

• If ownership must be transferred,
moving may be used

std::vector< MyClass> k2 = move(k);
MyClass c2 = std::move(c);

• Move required
• For insertion into containers

• For transfer of ownership

• Copy often required too

• Individual allocation required only if
• ownership must be transferred

• and observers are required
auto p = std::make_unique< MyClass>();
MyClass * observer = p.get();
auto p2 = move(p);

• Concrete classes of different size
and layout

• Usually mixed in a data structure

• Cannot be allocated in a common
block

• Individual dynamic allocation

• Common base class

• Serves as a unified handle for
different concrete classes

• Pointers required

std::vector<std::unique_ptr<Base>> k;

• Virtual destructor required

• Copy/move not
required/supported

• Pointers are copied/moved
instead

• Objects often have identity

Two worlds of classes in C++

Conversions

Special member functions

• Conversion constructors
class T {
T(U x);

};

• Generalized copy constructor

• Defines conversion from U to T

• If conversion effect is not desired, all one-argument constructors must be "explicit":
explicit T(U v);

• Conversion operators
class T {
operator U() const;

};

• Defines conversion from T to U

• Returns U by value (using copy-constructor of U, if U is a class)

• U may be a reference like V& if life-time considerations allow

• Compilers will never use more than one user-defined conversion in a chain

• The user-defined conversion may be combined with several built-in conversions

Type cast

• Various syntax styles

• C-style cast
(T)e

• Inherited from C

• Function-style cast
T(e)

• Equivalent to (T)e

• T must be single type identifier or single keyword

• Type conversion operators

• Differentiated by intent (strength and associated danger) of cast:
const_cast<T>(e)
static_cast<T>(e)
reinterpret_cast<T>(e)

• New - run-time assisted cast:
dynamic_cast<T>(e)

Const cast

const_cast<T>(e)

• Suppressing const flags of pointers/references

• const U & => U &

• const U * => U *

• It allows violation of const-ness

• In most cases, mutable is a better solution

• Example: Counting references to a logically constant object
class Data {
public:
void register_pointer() const
{ references++; }

private:
/* ... data ... */
mutable int references;

};

Static cast

static_cast<T>(e)

• All implicit conversions
• Explicit cast used to enforce the conversion in ambiguous situations

• Loss-less and lossy number conversions (e.g. int <=> double)

• Adding const/volatile modifiers to pointers/references

• Pointer to void*

• Derived-to-base pointer/reference conversions

• Invoke any constructor of T capable to accept e

• Including copy/move-constructors and explicit constructors

• Invoke a conversion operator T()

• Some explicit conversions

• Anything to void, i.e. discarding the value (e.g. in a conditional expression)

• Base-to-derived pointer/reference conversions

• No runtime checks, it may produce invalid pointers – use dynamic_cast to check

• Integer to an enumeration

• May produce undefined results if not mappable

• void* to any pointer

• No runtime checks possible (even if the object contain type information)

Reinterpret cast

reinterpret_cast<T>(e)

• Implementation-dependent conversions

• Pointer to integer

• Integer to pointer

• Any function-pointer to any function-pointer

• Any data-pointer to any other data-pointer

• No address correction even if pointers are related by inheritance

• Any reference to any other reference

• Mostly used to read/write binary files/packets/...
void put_double(std::ostream & o, const double & d)
{
o.write(reinterpret_cast< char *>(& d), sizeof(double));

}

• The file contents is implementation-dependent – not portable

