
Programming in C++
David Bednárek

2022/2023

2NPRG041 Programming in C++ - 2021/2022 David Bednárek

History and Literature

templates

exceptions
1991

classes

messages

classes

virtual

methods

function

prototypes

STL
=

containers
+

algorithmsalloca

variable-sized arrays

Ancient history of C and C++

B
(Bell Labs. 1969)

BCPL
(Cambridge 1966)

C with classes
(Stroustrup, Bell Labs 1979)

The C++ programming language
(1st edition - Stroustrup 1985)

C++98
(ISO/IEC 14882 1998)

C
(Bell Labs. 1971)

The C programming language
(Kernigan & Ritchie 1978)

Objective-C
(Cox & Love 1981)

Object-Oriented Programing
(Cox 1986)

ANSI C
(ANSI X3J11 1989)

C99
(ISO/IEC 9899 1999)

almost superset

inspired

superset

significant change

Java
(Sun 1995)

Linux
1991

Unix
1973

Windows NT
1993

OS-X
2000

MacOS
1984

Simula
(1967)

gcc
1987

MSVC
1993

language

book
=

de-facto
standard standard OS

notable
compiler

Turbo C IDE
1987

PC-DOS
1981

Watcom C
1988

SW

DOOM

1993

modules

concepts

ranges

coroutines

fold-expressions

deduction guides

optional, variant

filesystem

make_unique

variable templates

import std;

mdspan

auto

range-for

move-semantics

smart pointers

type templates

variadic templates

lambda

parallelism

parallelism

Modern history of C++ and related languages

C++98
(ISO/IEC 14882 1998)

C++03
(2003)

C++0x = C++11
(2011)

C++14
(2014)

Objective-C
(Cox & Love 1981)

Objective-C 2.0
(Apple 2006)

Objective-C++
(Apple 2010)

C11
(2011)

C99
(ISO/IEC 9899 1999)

C#
(Microsoft 2002)

C++/CLI
(Microsoft 2005)

C++17
(2017)

C++20
(2020)

C18
(2018)

C++23
(2023)

clang
2007

language

very important standard

compiler

extinct language

important standard

defect-correcting standard

Books

• http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

• Be sure that you have (at least) the C++11 versions of the books

• Introduction to programming (using C++)

• Stanley B. Lippman, Josée Lajoie, Barbara E. Moo: C++ Primer (5th Edition)

• Addison-Wesley 2012 (976 pages)

• Bjarne Stroustrup: Programming: Principles and Practice Using C++ (2nd Edition)

• Addison-Wesley 2014 (1312 pages)

• Introduction to C++

• Bjarne Stroustrup: A Tour of C++ (2nd Edition)

• Addison-Wesley 2018 (256 pages)

• Reference

• Bjarne Stroustrup: The C++ Programming Language - 4th Edition

• Addison-Wesley 2013

• Nicolai M. Josuttis: The C++ Standard Library: A Tutorial and Reference (2nd
Edition)

• Addison-Wesley 2012

http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Books

• http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

• Be sure that you have the C++11 versions of the books

• Best practices

• Scott Meyers: Effective Modern C++

• O'Reilly 2014 (334 pages)

• Advanced [not in this course]

• David Vandevoorde, Nicolai M. Josuttis, Douglas Gregor:
C++ Templates: The Complete Guide (2nd Edition)

• Addison-Wesley 2017 (832 pages)

• Anthony Williams: C++ Concurrency in Action: Practical Multithreading

• Manning Publications 2012 (528 pages)

• On-line materials

• Bjarne Stroustrup, Herb Sutter: C++ Core Guidelines

• github.com/isocpp/CppCoreGuidelines

• Nate Kohl et al.: C++ reference [C++98, C++03, C++11, C++14, C++17, C++20]

• cppreference.com

http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://github.com/isocpp/CppCoreGuidelines
~$nprg041-20181.en.pptx

7NPRG041 Programming in C++ - 2021/2022 David Bednárek

The C++ Programming Language

C++

• C/C++ can live alone

• No need for an interpreter or JIT compiler at run-time

• Run-time support library contains only the parts really required

• Restricted environments may run with less-than-standard support

• Dynamic allocation and/or exceptions may be stripped off

• Code may work with no run-time support at all

• Compilers allow injection of system/other instructions within C/C++ code

• Inline assembler or intrinsic functions

• Code may be mixed with/imported to other languages

• There is no other major language capable of this

• All current major OS kernels are implemented in C

• C was designed for this role as part of the second implementation of Unix

• C++ would be safer but it did not exist

• Almost all run-time libraries of other languages are implemented in C/C++

• If C/C++ dies, all the other languages will die too

NPRG041 Programming in C++ - 2021/2022 David Bednárek 8

C++

• C/C++ is fast

• Only FORTRAN can currently match C/C++

• C++ is exactly as fast as C

• But programming practices in C++ often trade speed for safety

• Why?

• The effort spent by FORTRAN/C/C++ compiler teams on optimization

• 40 years of development

• Strongly typed language with minimum high-level features

• No garbage-collection, reflexion, introspection, …

• The language does not enforce any particular programming paradigm

• C++ is not necessarily object-oriented

• The programmer controls the placement and lifetime of objects

• If necessary, the code may be almost as low-level as assembly language

• High-Performance Computing (HPC) is done in FORTRAN and C/C++

• python/R/matlab may also work in HPC well…

• …but only if most work is done inside library functions (implemented in C)

NPRG041 Programming in C++ - 2021/2022 David Bednárek 9

10NPRG041 Programming in C++ - 2021/2022 David Bednárek

Major features specific for C++
(compared to other modern languages)

Major distinguishing features of C++ (for beginners)

• Archaic text-based system for publishing module interfaces
• Will be (gradually) replaced by true modules defined in C++20

• All major compilers (as of 2023) implement the modules in the language

• The standard library implementations are not yet ready for the module interface

• No 100%-reliable protections
• Programmer’s mistakes may result in uncontrolled crashes

• Hard crashes (invalid memory accesses) cannot be caught as exceptions
• Some compilers can do it in some cases

• Preference for value types
• Similar to old languages, unlike any modern (imperative) language

• Objects are often manipulated by copying/moving instead of sharing references
to them

• No implicit requirement for dynamic allocation

• No garbage collector
• Approximated by smart pointers since C++11

• Safety still dependent on programmer's discipline

11

NPRG041
Programmin

g in C++ -
2021/2022

David

Major distinguishing features of C++ (for beginners)

• C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do it blows your whole leg off.

• Bjarne Stroustrup, creator of C++

12

NPRG041
Programmin

g in C++ -
2021/2022

David

Major distinguishing features of C++ (for beginners)

java/C#/...

void f(/*...*/)
{
 T v = new T(/*...*/);
 // v is a reference

 do_it(v);
 // the reference is passed
}

• Do we really need dynamic allocation
here?

• Probably not, but...

• ... what if do_it stores a copy of the
reference somewhere

• Programmers don't care
• The language enforces the use of

new

• Advanced compilers (escape
analysis) may sometimes detect that
dynamic allocation is not needed

• The code is then converted into an
equivalent of the C++ value style

modern C++
• Value-based approach

void f(/*...*/)
{
 T v(/*...*/);
 // v is the object

 do_it(v);
 // usually passed by reference
}

• do_it shall not store the reference to
v anywhere

• if it does, the program will probably
crash later

• see "Shooting in one's foot"

• C++ conventions include this:
• If an object is passed by reference

to a function, the function must stop
using the reference upon its exit

• technically, do_it can store the
reference (e.g. in a static variable),
but it requires ugly code

NPRG041 Programming in C++ - 2021/2022 David Bednárek 13

Major distinguishing features of C++ (for beginners)

java/C#/...

void f(/*...*/)
{
 T v = new T(/*...*/);
 // v is a reference

 do_it(v);
 // the reference is passed
}

• Do we really need dynamic allocation
here?

• Probably not, but...

• ... what if do_it stores a copy of the
reference somewhere

• Programmers don't care
• The language enforces the use of

new

• Advanced compilers (escape
analysis) may sometimes detect that
dynamic allocation is not needed

• The code is then converted into an
equivalent of the C++ value style

modern C++
• Smart pointers

void f(/*...*/)
{
 auto v =
 std::make_unique<T>(/*...*/);
 // v is a smart pointer

 do_it(std::move(v));
 // ownership of the object
 // transferred to do_it
}

• If we really need to store a reference
to v forever

• Dynamic allocation required

• Wrapped into smart-pointers

• Passing smart pointers around often
requires special syntax

• It acts as a warning to readers

• It is far more complex than java etc.

NPRG041 Programming in C++ - 2021/2022 David Bednárek 14

Major distinguishing features of C++ (for beginners)

Value-based approach
• Suitable function declaration

void do_it(T & p);
• or

void do_it(const T & p);

• Usage
void f(/*...*/)
{
 T v(/*...*/);
 // v is the object

 do_it(v);
 // usually passed by reference
}

• C++ conventions include this:
• If an object is passed by reference

to a function, the function must stop
using the reference upon its exit

• This is NOT enforced by the
language itself

• technically, do_it can store the
reference (e.g. in a static variable),
but it requires unusual code

T * g = nullptr;
void do_it(T & p) { g = &p; }

Smart pointers
• Suitable function declaration

void do_it(std::unique_ptr<T> p);
• or

void do_it(std::unique_ptr<T> && p);

• Usage
void f(/*...*/)
{
 auto v =
 std::make_unique<T>(/*...*/);
 // v is a smart pointer

 do_it(std::move(v));
 // ownership of the object
 // transferred to do_it
}

• Passing smart pointers around often
requires special syntax

• std::move(v), &*v, etc.
• It acts as a warning to readers

• There are other smart pointers
• std::shared_ptr<T>

• There are observer pointers
• T *
• const T *

NPRG041 Programming in C++ - 2021/2022 David Bednárek 15

Major distinguishing features of C++ (for beginners)

java/C#/...

• Programmers don't care
about the lifetime of objects

• The have no choice anyway

• Advanced compilers may optimize

• Shouldn't a programmer have an
idea of what will happen to their
object?

modern C++

• Programmers must think
about the lifetime of objects

• It kills beginners

• It helps in large projects

• You have to select from a variety
of pointer/reference types

• You sometimes have to use some
operators when passing
pointer/references around

• This acts as a documentation!

• If you adhere to conventions

• Details later…

NPRG041 Programming in C++ - 2021/2022 David Bednárek 16

Major distinguishing features of C++ (for advanced programmers)

• User-defined operators

• Pack sophisticated technologies into symbolic interfaces

• C and the standard library of C++ define widely-used conventions

• Extremely strong generic-programming mechanisms

• Turing-complete compile-time computing environment for meta-programming

• No run-time component – zero runtime cost of being generic

• C++ is now more complex than any other general programming language
ever created

17

NPRG041
Programmin

g in C++ -
2021/2022

David

18NPRG041 Programming in C++ - 2021/2022 David Bednárek

Programming languages and compilers

• Compilers produce binary packages from source code

• These packages are also read by the compiler when referenced

• All languages created after 1990 use something like import/require clauses

• But not in C/C++ before C++20

• C++20 has modules and module interfaces, more complex than in java

Compilation in modern languages

19NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.java

module a;

b.java

module b;
requires a;

javac

javac

a.class

b.class

JRE

• Why not in C/C++? There are disadvantages:

• When anything inside a.java changes, new timestamp of a.class induces
recompilation of b.java

• Even if the change is not in the public interface

• How do you handle cyclic references?

Compilation in modern languages

20NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.java

module a;

b.java

module b;
requires a;

javac

javac

a.class

b.class

interface

implementation

interface

implementation

interface

implementation

interface

implementation

• In C, the situation was simple

• Interface = function headers in „header files“

• Typically small

• Implementation = function bodies in “C files”

• Change of a.c does not require recompilation of b.c

Compilation in C

21NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.c

#include “a.h”

b.c

#include “a.h”

cc

cc

a.o

b.o

implementation

implementation implementation

implementation

a.h

• In modern C++, the separate compilation is no longer an advantage

• Interface (classes etc.) is often larger than implementation (function bodies)

• Changes often affect the interface, not (only) the body

• The purely textual behavior of #include is anachronism

Compilation in C++ (before C++20 modules)

22NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.cpp

#include “a.hpp”

b.cpp

#include “a.hpp”

cc++

cc++

a.o

b.o

implementation

implementation implementation

implementation

a.hpp

• Implementation of generic functions (templates) must be visible where
called

• Explanation later…

• Generic code often comprises of header files only

Compilation of generic code in C++ (before C++20 modules)

23NPRG041 Programming in C++ - 2021/2022 David Bednárek

b.cpp

#include “a.hpp”

cc++ b.o
implementation implementation

a.hpp

• Object files (.o, .obj) contain binary code of target platform

• They are incomplete – not executable yet

• Linker/loader merges them together with library code

• Static/dynamic libraries. Details later…

Compilation in C++ (before C++20 modules)

24NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.cpp

#include “a.hpp”

b.cpp

#include “a.hpp”

cc++

cc++

a.o

b.o

a.hpp linker loader
Execu-
table

lib1.a lib2.so

Operating
system

Compiler
suite

• The (contents of) a .o [unix] or .obj [windows] file is called a module

• also applied to the corresponding .c or .cpp file

• one module = one independent run of the compiler

• if more .cpp files specified at compiler command-line, they are still independent

• This is related but not the same meaning as in C++20 modules

Compilation in C++ (before C++20 modules)

25NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.cpp

#include “a.hpp”

b.cpp

#include “a.hpp”

cc++

cc++

a.o

b.o

a.hpp linker loader
Execu-
table

lib1.a lib2.so

Operating
system

Compiler
suite

• Problems
• The files can no longer be compiled in arbitrary order

• New build system required
• Module interface files must be compiled before module implementation files

• The suffix .ixx of module interface files is Microsoft-specific solution of this problem

• There may be dependences between different module interface files

Compilation with C++20 modules (preview)

26NPRG041 Programming in C++ - 2021/2022 David Bednárek

a.cpp
module a;
/*implementation*/

b.cpp
module b;
import a;

cc++

cc++

a.o

b.o

a.ixx
export module a;
/*interface*/

cc++ a.???

	Slide 1: Programming in C++
	Slide 2: History and Literature
	Slide 3: Ancient history of C and C++
	Slide 4: Modern history of C++ and related languages
	Slide 5: Books
	Slide 6: Books
	Slide 7: The C++ Programming Language
	Slide 8: C++
	Slide 9: C++
	Slide 10: Major features specific for C++ (compared to other modern languages)
	Slide 11: Major distinguishing features of C++ (for beginners)
	Slide 12: Major distinguishing features of C++ (for beginners)
	Slide 13: Major distinguishing features of C++ (for beginners)
	Slide 14: Major distinguishing features of C++ (for beginners)
	Slide 15: Major distinguishing features of C++ (for beginners)
	Slide 16: Major distinguishing features of C++ (for beginners)
	Slide 17: Major distinguishing features of C++ (for advanced programmers)
	Slide 18: Programming languages and compilers
	Slide 19: Compilation in modern languages
	Slide 20: Compilation in modern languages
	Slide 21: Compilation in C
	Slide 22: Compilation in C++ (before C++20 modules)
	Slide 23: Compilation of generic code in C++ (before C++20 modules)
	Slide 24: Compilation in C++ (before C++20 modules)
	Slide 25: Compilation in C++ (before C++20 modules)
	Slide 26: Compilation with C++20 modules (preview)

