
1NPRG041 Programming in C++ - 2023/2024 David Bednárek

Values vs. references

• How does this work in your preferred language?
x = create_beast(100);
print(x.health); // 100
y = x; // does it create a copy or share a reference?
y.damage_yourself(50); // y.health -= 50;
print(x.health); // 100 if copy, 50 if shared

Value vs. reference types

2NPRG041 Programming in C++ - 2019/2020 David Bednárek

100

Beast

x

100 50

Beast

y

100 50

Beast

x

ydamage_yourself()

damage_yourself()

• Note: The distinction is irrelevant for immutable types

• In many languages (not in C++), strings are immutable

x = "Hell";
y = x; // is it a copy, deep copy, or shared reference?
// y.append("o"); we cannot tell because we cannot modify y in place
y = y.append("o"); // we only have this interface, returning a new object

• Boxed primitive types (e.g. Integer in java) are usually immutable reference types

• High-level languages always work with objects – numbers are immutable objects there

z = z + 1 // creates a new object (of type int) in python

Immutable types

3NPRG041 Programming in C++ - 2019/2020 David Bednárek

Hellx

y

Hell

x

y

Hellx

y Hell

Hello Hello Hello

append() append()

append()

returns returns
returns

assignment
assignment

assignment

HellHello

• In C++, std::string is mutable
std::string x, y;
x = "Hell";
y = x; // this always copies the characters
y.append("o"); // this call modifies y but not x

• y.append() calls a method on the variable y (not on some distant object)

• this call (logically) modifies y

• (in some implementations) small strings may be located inside the std::string object

• (larger) strings are stored in a dynamically allocated block owned by the std::string object

• if the appended chars can fit inside the block, they are just appended

• otherwise, a larger block is allocated, characters copied, old block deallocated

std::string in C++

4NPRG041 Programming in C++ - 2019/2020 David Bednárek

x

y

Hellx

y Hellappend()

append()

Hell

Hell

Hello

append()

HellHello

Hell

Hello

x

y

Value vs. reference types

• How does this work in various languages?
x = create_beast(100);
print(x.health); // 100
y = x; // does it create a copy or shared reference?
y.damage_yourself(50);
print(x.health); // 100 if copy, 50 if shared

• Modern languages are reference-based

• At least when working with classes and objects

• Modifying y will also modify x

• Garbage collector takes care of recycling the memory

• Archaic languages sometimes give the programmer a choice

• The behavior depends on the type of x,y ...

• ... if x,y are “structures”, assignment copies their contents

• Records in Pascal, structs in C#, structs/classes in C++

• ... if x,y are pointers, assignment produces two pointers to the same object

• Which pointer is now responsible for deallocating the object?

• Usually, different syntax is required when accessing members via pointers:
x^.health (* Pascal *)
(*x).health or x->health /* C/C++ */

5

NPRG041
Programmin

g in C++ -
2019/2020

David

• When variable is the object
Beast x, y;

• What are the values now?

• Defined by the default constructor
Beast::Beast()

x = create_beast(100);
print(x.health); // 100

• Assignment copies x over the
previous value of y

y = x;
y.damage_yourself(50);
print(x.health); // 100

• Who will kill the Beasts?

• The compiler takes care

• When variable is a pointer

• Raw (C) pointers
Beast * x, * y;

• Undefined values now!

• C++11 smart pointers
std::shared_ptr< Beast> x, y;

• Initialized as null pointers

• Different syntax of member
access!

x = create_beast(100);
print(x->health); // 100

• Assignment creates a second link
to the same object

y = x;
y->damage_yourself(50);
print(x->health); // 50

• Who will kill the Beast?

• Raw (C) pointers:
delete x; // or y, but not both!

• shared_ptr takes care by counting
references (run-time cost!)

Value vs. pointer types in C++

6

NPRG041
Programmin

g in C++ -
2019/2020

David

• When variable is a reference
Beast & x = some_beast(100);
Beast & y2 = some_beast(200);

• References must be initialized!

• After initialization, references behave
as if they were the objects

• Assignment copies the object!
y2 = x;

• The effect of assignment is
consistent with the syntax of
member access

print(y2.health); // 100
y2.damage_yourself(50);
print(x.health); // 100

• Who will kill the Beasts?
• Someone else must own the Beasts

• some_beast() only makes it
accessible by returning a reference

• It must not kill while the references
are alive

• That's why the name is not "create"

• When variable is a pointer
Beast * x, * y2; // either raw ...
std::shared_ptr< Beast> x, y2;//or smart
x = create_beast(100);
y2 = create_beast(200);

• For copying contents, * is needed
*y2 = *x;

• Member access requires ->
print(y2->health); // 100
y->damage_yourself(50);
print(x->health); // 100

• Who will kill the Beasts?
• Depends on the semantics of

create_beast()

• If it gives away ownership, the
pointers will be responsible

• difficult with raw (C) pointers

• shared_ptr takes care

• Otherwise, the creator must keep
the object (or a pointer) and take
care

• It must not kill while the raw
pointers are alive

Reference vs. pointer types in C++

7

NPRG041
Programmin

g in C++ -
2019/2020

David

• When variable is the object
Beast x, y;

• What are the values now?
• Defined by the default constructor

Beast::Beast()

x = create_beast(100);
print(x.health); // 100

• Assignment copies the object
y = x;
y.damage_yourself(50);
print(x.health); // 100

• Who will kill the Beasts?
• The compiler takes care

• When variable is a reference
• References must be initialized!

// Beast & x, & y;
Beast & x = some_beast(100);

• Initialization ensures that the
reference points to something

• The programmer can see that it is
an initialization of a reference

• References cannot be redirected

• References act as the objects
print(x.health); // 100

• Assignment copies the object
Beast & y2 = some_beast(200);
y2 = x; // copy of contents
print(y2.health); // 100

• For references, initialization is
different from assignment

Beast & y = x; // shared reference
y.damage_yourself(50);
print(x.health); // 50

• Who will kill the Beast?
• The references cannot kill!

// delete &x;
• Someone else must own the Beast
• some_beast() only makes it

accessible by returning a reference

Value vs. reference types in C++

8

NPRG041
Programmin

g in C++ -
2019/2020

David

Value vs. reference types in C++

• Variable may be an object with complex behavior

• The object may contain a pointer to another object
BeastWrapper x, y;
x = create_beast(100);
print(x.health); // 100

• Assignment does what the author of the class wanted

• defined by BeastWrapper::operator=
y = x; // ???
y.damage_yourself(50);
print(x.health); // ???

• C/C++ programmers expect consistent behavior:

• if members are accessed using '.', assignment shall copy contents
y = x; // copy contents
y.damage_yourself(50);
print(x.health); // 100

• if members are accessed using '->', assignment shall share object
y = x; // copy link
y->damage_yourself(50);
print(x->health); // 50

• Who will kill the Beast?

• The destructor BeastWrapper::~BeastWrapper

9

NPRG041
Programmin

g in C++ -
2019/2020

David

Value vs. reference types in C++

• Variable may be an object with complex behavior

• C/C++ programmers expect consistent behavior:

• if members are accessed using '.', assignment shall copy contents
y = x; // copy contents
y.damage_yourself(50);
print(x.health); // 100

• if members are accessed using '->', assignment shall share object
y = x; // copy link
y->damage_yourself(50);
print(x->health); // 50

• If a class assigns by sharing references, it shall signalize it

• Name the class like “BeastPointer” (e.g. std::shared_ptr)

• Use -> for member access (define BeastPointer::operator->)

• If a class ...

• ... assigns by deep-copying the contents, or ...

• ... the represented object is immutable, or ...

• ... if it does copy-on-write ...

• ... then it behaves like a value, therefore

• Pretend that the class contains all the data (like containers do)

• Name the class like "Beast", not "BeastWrapper"

• Use . for member access (by implementing all the methods in the object)

10

NPRG041
Programmin

g in C++ -
2019/2020

David

Value vs. reference types in C++

• If a class ...

• ... assigns by deep-copying the contents, or ...

• ... the represented object is immutable, or ...

• ... if it does copy-on-write ...

• ... then it behaves like a value, therefore

• Pretend that the class contains all the data (like containers do)

• Name the class like "Beast", not "BeastWrapper"

• Use . for member access (by implementing all the methods in the object)

• Example: std::vector<std::string>

11

NPRG041
Programmin

g in C++ -
2019/2020

David

SOME ARG

S

x

O M E A R G

h
ea

p

x

containers and strings
pretend that they
contain the data

actually, the data reside
elsewhere – in dynamically
allocated blocks

Value vs. reference types in C++

• Example: std::vector<std::string>

• The value-like behavior is implemented in these functions:
string::string(const string &) // copy-constructor
string & string::operator=(const string &) // copy-assignment
string::~string() // destructor

• The copy methods of string and containers perform allocation and deep copying
• If they were not implemented explicitly, their behavior would be shallow copying of the pointers

• The destructor performs deallocation

• Implementing these methods is now considered an advanced technique
• It can be avoided in most cases (e.g. by using containers as elements)

• Details later

12

NPRG041
Programmin

g in C++ -
2019/2020

David

SOME ARG

S

x

O M E A R G

h
e

ap

x

containers and strings
pretend that they
contain the data

actually, the data reside
elsewhere – in dynamically
allocated blocks

	Slide 1: Values vs. references
	Slide 2: Value vs. reference types
	Slide 3: Immutable types
	Slide 4: std::string in C++
	Slide 5: Value vs. reference types
	Slide 6: Value vs. pointer types in C++
	Slide 7: Reference vs. pointer types in C++
	Slide 8: Value vs. reference types in C++
	Slide 9: Value vs. reference types in C++
	Slide 10: Value vs. reference types in C++
	Slide 11: Value vs. reference types in C++
	Slide 12: Value vs. reference types in C++

