
Traits, policies, functors, tags

Traits, policies, tags, etc.

 Traits
▪ Class/struct template not designed to be instantiated into objects; contents limited to:

▪ type definitions (via typedef/using or nested struct/class)
▪ constants (via static constexpr)
▪ static functions

▪ Used as a compile-time function which assigns types/constants/run-time functions to template
arguments

 Policy class
▪ Non-template class/struct, usually not instantiated

▪ Compile-time equivalent of objects, containing types/constants/run-time functions

▪ Passed as template argument to customize the behavior of the template

 Functor
▪ Class/struct containing non-static function named operator()

▪ Usually passed as run-time argument to function templates

▪ Functor acts as a function, created by packing a function body together with some data stored or
referenced in the body (closure)

 Tag class
▪ Empty class/struct

▪ Passed as run-time argument to function templates

▪ Used to carry a compile-time information by their types themselves
▪ Classes/structs are distinguished by their name, not by contents

Policy class

 Policy class
▪ Non-template class/struct, usually not instantiated

▪ Compile-time equivalent of objects, containing types/constants/run-time functions

▪ Passed as template argument to customize the behavior of the template
template< typename P> class container { public:

container(std::size_t n) { m_ = P::alloc(n); /*...*/ }

private:

typename P::pointer m_;

};

struct my_policy {

using pointer = void*;

static pointer alloc(std::size_t s) { /*...*/ }

};

container< my_policy> k;

 Motivation:
▪ Policy class allows to pass several types/constants/functions as one argument

▪ Policy class is the only way to pass a function as a template argument
▪ Policy classes are distinguished by name, not by contents

▪ This could be an advantage or a disadvantage, depending on context

Policy classes

4NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Policy class works as a set of parameters for generic code

 Types (defined by typedef/using or nested classes/enums)

 Constants (defined by static constexpr)

 Functions (defined as static)

 The use of policy class instead of individual arguments...
 ...makes instantiated template names shorter

 ...avoids order-related mistakes

 This is the only way how functions may become parameters of a template

 In simple cases, policy classes are not instantiated into objects
 Some policy-class tricks would not work well when instantiated

Instantiated policy classes

5NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Some policy classes may be used as objects
 Such objects carry run-time options to policies; policy functions are not static

template< typename P> class container { public:

container(std::size_t n, const P & p) : p_(p) { m_ = p_.alloc(n); /*...*/ }

private:

P p_; // the template usually contains a policy-object

typename P::pointer m_; // compile-time properties extracted from policy-class

};

class my_policy {

public:

using pointer = void*;

pointer alloc(std::size_t s) { /*...*/ }

my_policy(heap * h) : my_heap_(h) {}

private:

heap * my_heap_;

};

my_policy mp(/*...*/);

container< my_policy> k(mp);

 Functors are special cases of instantiated policy classes
 no type members, only one member function named operator()

Functors

 Functor

▪ Class/struct containing non-static function named operator()

▪ Usually non-template, but template cases exists (std::less<T>)

▪ Since C++11, mostly created by the compiler as a result of a lambda expression

▪ Usually passed as run-time argument to function templates

▪ Example: std::sort receives a functor representing a comparison function

▪ For class templates, a functor becomes both a template argument to the class and a
value argument to its constructor

▪ Example: std::map receives a functor representing a comparison function

▪ Functor acts as a function, created by packing a function body together with some
data referenced in the body (closure)

▪ Functionality (i.e. the function implementation) selected at compile-time by template
instantiation mechanism

▪ Functionality parameterized at run-time by the data members of the functor object

▪ If there is no data member in the functor, the functionality is equivalent to a non-
instantiated policy class containing a static function

▪ However, the functor must be instantiated and passed as an object since operator() cannot
be static

Instantiated policy classes vs. object oriented programming

7NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Effect similar to instantiated policy classes can be implemented using OOP
▪ The "policy" must have an explicit interface with virtual functions

class abstract_allocator { public: virtual void * alloc(std::size_t) = 0; /*...*/ };

▪ There is no compile-time argument; a pointer to the abstract class is passed at runtime

class container { public:

container(std::size_t n, abstract_allocator * p) : p_(p) { m_ = p_->alloc(n); /*...*/ }

private:

abstract_allocator * p_;// instead of a policy-object, there is a pointer to an abstract class

void * m_; // types can't be extracted by OOP means

};

▪ A concrete "policy" must inherit the interface; the functions are now virtual

class my_allocator : public abstract_allocator {

public:

virtual void * alloc(std::size_t s) override { /*...*/ }

my_policy(heap * h) : my_heap_(h) {}

private:

heap * my_heap_;

};

my_allocator ma(/*...*/);

container k(& ma); // because OOP requires pointers, ownership of the "policy-object" must be solved somehow

 OOP is a runtime mechanism – significantly slower than policy classes
 in addition, it cannot supply compile-time configuration (types, constants)

Static vs. dynamic polymorphism

8NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Polymorphism = ability to customize behavior of existing code

 Static/compile-time polymorphism
 Behavior customized by compile-time (template) arguments

 There may be a run-time component – policy-objects/functors

 Customization: The generic code calls non-virtual member functions of a class passed as template argument

▪ The run-time data are used inside these functions

 Duck typing: These functions may have any signature compatible with the call

▪ They can be templated themselves

 The compiler compiles the generic code when the template is instantiated with specific policy-object/functor
type

▪ The compiler knows exactly which function is invoked at the point of customization

▪ Function integration (aka. inlining) or inter-procedural optimization possible

 Dynamic/run-time polymorphism
 Behavior customized by run-time arguments (and run-time type information contained inside objects)

 Customization: The universal code calls virtual member functions via a pointer/reference to an abstract class
passed as run-time argument

 Strong typing: The virtual functions must have exactly the signature defined by the abstract class

▪ Virtual functions can not be templates

 The universal code is not a template – compiled only once

▪ There is an indirect virtual-function call at the customization point

▪ No optimization possible for the compiler

 Slower than static/compile-time polymorphism

▪ However, the binary code is smaller – relevant in embedded applications etc.

 Required when behavior must be switched at run time

▪ Polymorphic containers, GUI systems, middleware, ...

Static vs. dynamic polymorphism

9NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Prefer static/compile-time polymorphism whenever possible

 Use dynamic/run-time polymorphism only when needed
▪ Polymorphic containers, GUI systems, middleware, ...

 Example: Functors are a case of static polymorphism
 Functors/lambdas will become arguments of templated functions

 It is impossible to directly mix different lambdas in one expression/container
cond ? [](int & x){ ++x; } : [](int & x){ --x; } // ERROR

k[0] = [](int & x){ ++x; }; k[1] = [](int & x){ --x; }; // ERROR

▪ These cases may be solved using std::function
std::vector< std::function<void(int)>> k;

k[0] = [](int & x){ ++x; }; k[1] = [](int & x){ --x; }; // OK

 std::function is implemented using dynamic polymorphism
▪ An internal virtual function has a templated implementation

▪ Instantiation triggered by the conversion operator of std::function

▪ The outer interface of std::function is again a functor
▪ std::function acts as a dynamic polymorphism between two static-polymorphism interfaces

Etymology

10NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Trait [FR]
▪ From latin tractus

 Action of firing a projectile

▪ Le javelot est une arme de trait. [The javelin is a thrown weapon.]

 Traction

▪ Animaux de trait. [Draft animals.]

 Line drawn in one movement

▪ Un trait noir. [A black line.]

 Characteristic facial lines

▪ Elle a de jolis traits. [She has pretty curves.]

 Characteristic of a person, a thing

▪ Traits saillants d’une rencontre. [Highlights of a meeting.]

 The term “trait” is used in psychology and evolutional biology
▪ The set of psychological/evolutional properties of an individual is termed “traits”

 From there, it was acquired in programming, almost always as “traits”:

▪ The set of compile-time properties of a programming language item (usually a type)

https://fr.wiktionary.org/wiki/tractus#la

Traits

 Traits
▪ Class/struct template not designed to be instantiated into objects; contents limited

to:
▪ type definitions (via typedef/using or nested struct/class)

▪ constants (via static constexpr)

▪ static functions

▪ Used as a compile-time function which assigns types/constants/run-time functions to
template arguments

▪ Most frequently declared with one type argument
▪ Used to retrieve information related to the type

▪ Example: std::numeric_limits<T> contains constants and functions describing the properties
of a numeric type T

 Conventions and syntactic sugar
▪ When a traits class contains just one type, the type is named “type”

▪ C++11: Usually made accessible directly via template using declaration named “..._t”

template< typename T> using some_traits_t = typename some_traits< T>::type;

▪ When a traits class contains just one constant, the constant is named “value”
▪ C++14: Usually made accessible directly via template variable named “..._v”

template< typename T> inline constexpr some_type some_traits_v = some_traits< T>::value;

Traits - example

 Traits are useful when implementing a template acting on unknown type
▪ std::numeric_limits<T>::lowest() returns the minimal (finite) value of a numeric type

template< typename T> T vector_max(const std::vector<T> & v) {

T m = std::numeric_limits<T>::lowest();

for (auto && a : v)

m = std::max(m, a);

return m;

}

▪ This example has too narrow interface – a better version uses iterators:

▪ Another traits class required to determine the element type:
template< typename IT>

std::iterator_traits<IT>::value_type range_max(IT b, IT e) {

using T = std::iterator_traits<IT>::value_type;

T m = std::numeric_limits<T>::lowest();

for (; b != e; ++b)

m = std::max(m, *b);

return m;

}

std::iterator_traits

▪ Container-manipulation functions usually use iterators in their interface

▪ Such functions need to know some properties of the underlying containers

 If IT is an iterator type, std::iterator_traits<IT> contains the following types:

▪ difference_type – a signed type large enough to hold distances between iterators

▪ usually std::ptrdiff_t

▪ value_type – the type of an element pointed to by the iterator

▪ reference – a type acting as a reference to an element

▪ this is the type actually returned by operator* of the iterator

▪ usually value_type& or const value_type&

▪ it may be a class simulating a reference (e.g. for vector<bool>)

▪ pointer – a type acting as a pointer to an element

▪ value_type*, const value_type*, or a class simulating a pointer

▪ iterator_category – one of predefined tags describing the category of the iterator

▪ std::input_iterator_tag, std::output_iterator_tag, std::forward_iterator_tag,
std::bidirectional_iterator_tag, or std::random_access_iterator_tag

▪ shall be used via template specialization or using std::is_same_v

 These properties can also be determined using C++20 concepts

▪ new versions of algorithms in std::ranges do not rely on std::iterator_traits

std::iterator_traits

▪ Implemented in standard library as
template< typename IT> struct iterator_traits {

using difference_type = typename IT::difference_type;

using value_type = typename IT::value_type;

using reference = typename IT::reference;

using pointer = typename IT::pointer;

using iterator_category = typename IT::iterator_category;

};

▪ Any class intended to act as an iterator must define the five types referenced above

▪ The five types shall be accessed only indirectly through std::iterator_traits

▪ Not required if the iterators are passed only to modern concept-aware generic code

▪ Since raw pointers may act as iterators, there is a partial specialization:
template< typename T> struct iterator_traits<T*> {

using difference_type = std::ptrdiff_t;

using value_type = std::remove_cv_t<T>;

using reference = T&;

using pointer = T*;

using iterator_category = std::random_access_iterator_tag;

};

▪ std::remove_cv_t<T> removes any const/volatile modifiers from T

std::is_reference_v

 Traits returning constants, e.g. std::is_reference_v<T>

▪ Based on the traits template std::is_reference<T>

▪ general template
template< typename T> struct is_reference<T> : std::false_type {};

▪ partial specializations have higher priority

template< typename T> struct is_reference<T&> : std::true_type {};

template< typename T> struct is_reference<T&&> : std::true_type {};

▪ Uses two type aliases (logically acting as policy classes):

using false_type = std::integral_constant<bool, false>;

using true_type = std::integral_constant<bool, true>;

▪ These are aliases of a particular case of a more general auxiliary class:

template< typename U, U v> struct integral_constant {

static constexpr U value = v;

// ... there are more members here ... explanation later

};

▪ The result is represented by a static constexpr member named “value” by convention

▪ For convenience, the result may be accessed using the global variable alias:
template< typename T> inline constexpr is_reference_v = is_reference<T>::value;

Tag class

 Tag class
▪ Empty class/struct

▪ A tag class acts like a compile-time enumeration constant

▪ Unlike an enum type, the set of tag classes may be independently extended

▪ It is limited to compile-time, therefore there is no need to assign unique numbering

 Two use cases

▪ Tag classes are used as type arguments to templates or member types of a class

▪ Example: the tags used for iterator_category

▪ In this case, a tag class is never instantiated into object, it is also usually empty

▪ Tag classes are used as parameters of a function

▪ The tag class is instantiated into an empty runtime object
(usually optimized out by the compiler)

▪ This allows to distinguish between different functions of the same name (e.g. constructors)

 In advanced cases, tag classes are templates

▪ They are used to carry the “values” of their template arguments

Tag arguments

 Distinguishing constructors
▪ Another use-case for value-less function arguments

▪ All constructors have the same name
▪ the name cannot be used to specify the required behavior

▪ Example: std::optional<T> can store T or nothing
using string_opt = std::optional< std::string>;

string_opt x; // initialized as nothing

assert(!x.has_value());

string_opt y(std::in_place); // initialized as std::string()

assert(y.has_value() && (*y).empty());

string_opt z(std::in_place, “Hello”); // initialized as std::string(“Hello”)

assert(z.has_value() && *z == “Hello”);

▪ Implementation:
struct in_place_t {}; // a tag class

inline constexpr in_place_t in_place; // an empty variable of tag type

template< typename T> class optional { public:

optional(); // initialize as nothing

template< typename... L>

optional(in_place_t, L &&... l); // initialize by constructing T from the arguments l

};

template< typename P>

class Value {

double v;

// ...

};

struct mass {};

struct energy {};

Value< mass> m;

Value< energy> e;

e = m; // error

 Type non-equivalence

▪ Two classes/structs/unions/enums
are always considered different

▪ even if they have the same contents

▪ Two instances of the same
template are considered different if
their parameters are different

▪ It also works with empty classes

▪ Called tag classes

 Usage:

▪ To distinguish types which
represent different things using the
same implementation

▪ Physical units

▪ Indexes to different arrays

▪ Similar effect to enum class

Employing type non-equivalence with tag classes

	Slide 1: Traits, policies, functors, tags
	Slide 2: Traits, policies, tags, etc.
	Slide 3: Policy class
	Slide 4: Policy classes
	Slide 5: Instantiated policy classes
	Slide 6: Functors
	Slide 7: Instantiated policy classes vs. object oriented programming
	Slide 8: Static vs. dynamic polymorphism
	Slide 9: Static vs. dynamic polymorphism
	Slide 10: Etymology
	Slide 11: Traits
	Slide 12: Traits - example
	Slide 13: std::iterator_traits
	Slide 14: std::iterator_traits
	Slide 15: std::is_reference_v
	Slide 16: Tag class
	Slide 17: Tag arguments
	Slide 18: Employing type non-equivalence with tag classes

