Simple mathematical model of cache behavior

Mathematical model of cache behavior

- Simple mathematical model

- Input:
- A run of a (single-threaded) procedure with particular data
- Often, a generalization to any run with similarly-sized data is valid
- C = Cache size
- Output: The total number of cache misses during the run
- Estimation of the required main-memory throughput
- Does not estimate latency effects
- A statistic over the total run time - cannot identify bottlenecks
- Start/stop effects: Assume the procedure runs in an infinite loop
- The initial set of addresses present in the cache equals to the final set
- Assumptions
- All memory accesses of the same size
- Cache line size is equal to the access size (i.e., spatial locality has no effect)
- Fully associative cache
- Perfect LRU replacement strategy
- Many statistical details are ignored, the results are only approximate

Mathematical model of cache behavior

- Notation:
- $m\left(t_{1}, t_{2}\right)=$ the number of different addresses accessed inside $\left(t_{1}, t_{2}\right)$
- Time points t_{1}, t_{2} measured in arbitrary units; only one memory access at a time
- Note: m satisfies triangle inequality - it is a distance measure on the time axis
- Perfect LRU replacement strategy
- The oldest entry in the cache is evicted
- Equivalent formulation:
- If t_{1}, t_{2} are adjacent accesses to the same address $a . .$.
- i.e. there is no access to a inside $\left(t_{1}, t_{2}\right)$
- ... then there is a cache miss at t_{2} iff $m\left(t_{1}, t_{2}\right) \geq C$
- Proof:
- In any moment $t \in\left(t_{1}, t_{2}\right)$:
- The cache entries accessed inside $\left(t_{1}, t\right)$ are younger than a
- The entries for all the other addresses are older than a
- a will be evicted at a time $t \in\left(t_{1}, t_{2}\right)$ such that
- there is an access at time t to an address not accessed inside (t_{1}, t)
- $1+m\left(t_{1}, t\right)=C$, i.e. the cache contains exactly a and the addresses accessed inside $\left(t_{1}, t\right)$
- If $m\left(t_{1}, t_{2}\right)<C$ then there is no such eviction of a

Mathematical model of cache behavior

- Notation:

- $A=$ the set of addresses accessed by the procedure
- $T=$ the running time of the procedure
- $m(w)=$ the average value of $m(t, t+w)$ across all $t \in[0, T)$
- i.e., how many addresses are accessed during a time window of size w
- well-defined due to the assumed infinite cycle over the measured procedure
- $m(w)$ is non-decreasing and concave
- for $w \geq T, m(w)=|A|$
- The $m(w)$ function is a mathematical measure of temporal locality
- Lower values indicate better temporal locality

Example

- The $m(w)$ function for $8^{*} 8^{*} 8$ matrix multiplication
- $T=8 * 8 * 8=512 ;|A|=3 * 8 * 8=192$
- Equidistant: every address accessed every 64 iterations
- Not really exists as a matrix-multiplication algorithm
- Equidistant is always the worst algorithm wrt. cache
- Random: iterations randomly permuted
- Expectably worse than all the algorithms in use
- Naive: three nested loops
- Recursive: decomposed via 8 4*4*4 into 64 2*2*2 multiplications

Estimating m(w)

- $m(w)$ for an equidistant algorithm
- For every address $a \in A$, assume periodic access every d_{a} time units
- Let $H_{a}(w)=1$ if the address a is accessed during a time window of size w
- $H_{a}(w)=0$ otherwise
- This is a random variable depending on the placement of the window
- The expected value of $H_{a}(w)$ is:
- $\mathbf{E}\left(H_{a}(w)\right)=\min \left(\frac{w}{d_{a}}, 1\right)$
- Let $N(w)=\sum_{a \in A} H_{a}(w)$, i.e. the number of different addresses accessed
- $m(w)$ is just the average of $N(w)$ across all window placements
- $m(w)=\mathbf{E}(N(w))=\sum_{a \in A} \mathbf{E}\left(H_{a}(w)\right)=\sum_{a \in A} \min \left(\frac{w}{d_{a}}, 1\right)$
- $m(w)$ in general
- The intervals between adjacent accesses to the same address may vary
- The d_{a} is, in general, a random variable dependent on window placement
- The correct general formula for the expected value of $H_{a}(w)$ is:
- $\mathbf{E}\left(H_{a}(w)\right)=\frac{\mathbf{E}\left(\min \left(w, d_{a}\right)\right)}{\mathbf{E}\left(d_{a}\right)}$
- Based on the fact that wide d_{a} is encountered more frequently
- $m(w)=\mathbf{E}(N(w))=\sum_{a \in A} \mathbf{E}\left(H_{a}(w)\right)=\sum_{a \in A} \frac{\mathbf{E}\left(\min \left(w, d_{a}\right)\right)}{\mathbf{E}\left(d_{a}\right)}$
- Note: If the random variables $H_{a}(w)$ are independent for different $a \in A$
- This is not a realistic assumption for most algorithms, but it still works here
- Then, for large $|A|, N(w)$ can be approximated by a normal distribution (by CLT)
- The variance will be relatively low, $\sigma^{2} \leq|A| / 4$, i.e. the std. dev. $\sigma \leq \sqrt{|A|} / 2$
- This observation will soon be useful...

- Estimating number of cache misses

- C - the size of the cache
- For an access to an address $b \in A$
- assuming the previous access is at the distance d_{b}
- the address b will be evicted and thus a cache miss will occur if $N\left(d_{b}\right) \geq C$
- $N\left(d_{b}\right)$ is a random variable dependent on the position of the access
- However, due to the narrow variance of $N(w)$, the formula $N\left(d_{b}\right) \geq C$...
- ... may be simplified to $m\left(d_{b}\right) \geq C$, which is still random due to d_{b}
- The total frequency of cache misses (wrt. unit of time) is then estimated as
- $X(C)=\sum_{b \in A} \frac{\mathbf{P}\left(m\left(d_{b}\right) \geq C\right)}{\mathbf{E}\left(d_{b}\right)}$
- the $\mathbf{E}\left(d_{b}\right)$ factor accounts for the frequency of memory accesses to b

Estimating the frequency of cache misses

- Computing $X(C)$ from $m(w)$
- Trick: Compute the derivative of $m(w)$:
- $\frac{\partial}{\partial w} m(w)=\sum_{a \in A} \frac{\frac{\partial}{\partial w} \mathbf{E}\left(\min \left(w, d_{a}\right)\right)}{\mathbf{E}\left(d_{a}\right)}=\sum_{a \in A} \frac{\mathbf{P}\left(w \leq d_{a}\right)}{\mathbf{E}\left(d_{a}\right)}$
- $m\left(d_{b}\right)$ is increasing (except when equal to $|A|$)
- therefore $w \leq d_{a}$ is equivalent to $m(w) \leq m\left(d_{a}\right)$
- Combined:
- $\frac{\partial}{\partial w} m(w)=\sum_{a \in A} \frac{\mathbf{P}\left(m(w) \leq m\left(d_{a}\right)\right)}{\mathbf{E}\left(d_{a}\right)}$
- This is similar to the definition of $X(C)$:
- $X(C)=\sum_{b \in A} \frac{\mathbf{P}\left(m\left(d_{b}\right) \geq C\right)}{\mathbf{E}\left(d_{b}\right)}$
- with the substitution $C=m(w)$
- Finally:
- $X(C)=\frac{\partial m(w)}{\partial w}\left(m^{-1}(C)\right)$
- This is only an approximative formula
- not applicable for small $C \ll \sqrt{|A|}$

Frequency of cache misses

- Frequency of cache misses
- $X(C)=\frac{\partial m(w)}{\partial w}\left(m^{-1}(C)\right)$
- Example 8*8*8 matrix multiplication
- For a L1 cache of size 32 (matrix elements), the recursive algorithm is better
- For a L2 cache of size 96, the naive algorithm is better
- The derivative is important, not the time-axis position

Frequency of cache misses

- Two approaches to cache-miss optimization
- Cache-aware
- Make a turn in $m(w)$ every time it approaches a cache-level size
- The new derivative will be kept until approaching the next level
- Manipulating $m(w)$ while keeping the algorithm working may be hard or impossible
- Cache-oblivious
- Keep the $m(w)$ curve smoothly turning throughout the whole domain
- For recursive algorithms, the curve is often almost independent of T and $|A|$

Frequency of cache misses

- So far, we assumed algorithm execution for particular input data
- If we run the algorithm with different data of the same size
- For many problems, $m(w)$ depends only on the size of data
- Matrix multiplication and other numerical problems
- In general, $m(w)$ may significantly vary depending on the data
- E.g., search algorithms depend on statistical distribution of keys
- If we run the algorithm with significantly different data size $|A|$
- The $m(w)$ curve always converges to $|A|$
- For recursive algorithms, the curve beginnings for different $|A|$ will be similar

