
1NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Simple mathematical model of cache behavior

Mathematical model of cache behavior

2NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Simple mathematical model

 Input:

▪ A run of a (single-threaded) procedure with particular data

▪ Often, a generalization to any run with similarly-sized data is valid

▪ C = Cache size

 Output: The total number of cache misses during the run

▪ Estimation of the required main-memory throughput

▪ Does not estimate latency effects

▪ A statistic over the total run time – cannot identify bottlenecks

▪ Start/stop effects: Assume the procedure runs in an infinite loop

▪ The initial set of addresses present in the cache equals to the final set

 Assumptions

▪ All memory accesses of the same size

▪ Cache line size is equal to the access size (i.e., spatial locality has no effect)

▪ Fully associative cache

▪ Perfect LRU replacement strategy

 Many statistical details are ignored, the results are only approximate

Mathematical model of cache behavior

3NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Notation:
 𝑚 𝑡1, 𝑡2 = the number of different addresses accessed inside (𝑡1, 𝑡2)

▪ Time points 𝑡1, 𝑡2 measured in arbitrary units; only one memory access at a time

▪ Note: 𝑚 satisfies triangle inequality – it is a distance measure on the time axis

 Perfect LRU replacement strategy
 The oldest entry in the cache is evicted

 Equivalent formulation:
 If 𝑡1, 𝑡2 are adjacent accesses to the same address a...

▪ i.e. there is no access to a inside (𝑡1, 𝑡2)

 ... then there is a cache miss at 𝑡2 iff 𝑚 𝑡1, 𝑡2 ≥ 𝐶

 Proof:

▪ In any moment 𝑡 ∈ (𝑡1, 𝑡2):
▪ The cache entries accessed inside (𝑡1, 𝑡) are younger than a

▪ The entries for all the other addresses are older than a

▪ a will be evicted at a time 𝑡 ∈ (𝑡1, 𝑡2) such that
▪ there is an access at time 𝑡 to an address not accessed inside (𝑡1, 𝑡)

▪ 1 +𝑚 𝑡1, 𝑡 = 𝐶, i.e. the cache contains exactly a and the addresses accessed inside (𝑡1, 𝑡)

▪ If 𝑚 𝑡1, 𝑡2 < 𝐶 then there is no such eviction of a

Mathematical model of cache behavior

4NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Notation:

 𝐴 = the set of addresses accessed by the procedure

 𝑇 = the running time of the procedure

 𝑚 𝑤 = the average value of 𝑚 𝑡, 𝑡 + 𝑤 across all 𝑡 ∈ [0, 𝑇)

▪ i.e., how many addresses are accessed during a time window of size 𝑤

▪ well-defined due to the assumed infinite cycle over the measured procedure

▪ 𝑚(𝑤) is non-decreasing and concave

▪ for 𝑤 ≥ 𝑇, 𝑚 𝑤 = |𝐴|

 The 𝑚(𝑤) function is a mathematical measure of temporal locality
 Lower values indicate better temporal locality

 The 𝑚(𝑤) function for 8*8*8 matrix multiplication
 𝑇 = 8 ∗ 8 ∗ 8 = 512; 𝐴 = 3 ∗ 8 ∗ 8 = 192
 Equidistant: every address accessed every 64 iterations

▪ Not really exists as a matrix-multiplication algorithm

▪ Equidistant is always the worst algorithm wrt. cache

 Random: iterations randomly permuted
▪ Expectably worse than all the algorithms in use

 Naive: three nested loops
 Recursive: decomposed via 8 4*4*4 into 64 2*2*2 multiplications

Example

5NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

equidistant random naive recursive

Estimating m(w)

6NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 𝑚 𝑤 for an equidistant algorithm
 For every address 𝑎 ∈ 𝐴, assume periodic access every 𝑑𝑎 time units

 Let 𝐻𝑎 𝑤 = 1 if the address 𝑎 is accessed during a time window of size 𝑤

▪ 𝐻𝑎 𝑤 = 0 otherwise

▪ This is a random variable depending on the placement of the window

 The expected value of 𝐻𝑎 𝑤 is:

▪ 𝐄 𝐻𝑎 𝑤 = min
𝑤

𝑑𝑎
, 1

 Let 𝑁 𝑤 = σ𝑎∈𝐴𝐻𝑎 𝑤 , i.e. the number of different addresses accessed

 𝑚(𝑤) is just the average of 𝑁 𝑤 across all window placements

▪ 𝑚(𝑤) = 𝐄 𝑁 𝑤 = σ𝑎∈𝐴𝐄(𝐻𝑎 𝑤) = σ𝑎∈𝐴min
𝑤

𝑑𝑎
, 1

Estimating m(w)

7NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 𝑚 𝑤 in general
 The intervals between adjacent accesses to the same address may vary

 The 𝑑𝑎 is, in general, a random variable dependent on window placement

 The correct general formula for the expected value of 𝐻𝑎 𝑤 is:

▪ 𝐄 𝐻𝑎 𝑤 =
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)

▪ Based on the fact that wide 𝑑𝑎 is encountered more frequently

▪ 𝑚(𝑤) = 𝐄 𝑁 𝑤 = σ𝑎∈𝐴𝐄(𝐻𝑎 𝑤) = σ𝑎∈𝐴
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)

 Note: If the random variables 𝐻𝑎 𝑤 are independent for different 𝑎 ∈ 𝐴

▪ This is not a realistic assumption for most algorithms, but it still works here

▪ Then, for large 𝐴 , 𝑁 𝑤 can be approximated by a normal distribution (by CLT)

▪ The variance will be relatively low, 𝜎2 ≤ |𝐴|/4, i.e. the std. dev. 𝜎 ≤ 𝐴 /2

▪ This observation will soon be useful...

Estimating the frequency of cache misses

8NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Estimating number of cache misses

 𝐶 – the size of the cache

 For an access to an address 𝑏 ∈ 𝐴

▪ assuming the previous access is at the distance 𝑑𝑏

▪ the address 𝑏 will be evicted and thus a cache miss will occur if 𝑁 𝑑𝑏 ≥ 𝐶

▪ 𝑁 𝑑𝑏 is a random variable dependent on the position of the access

▪ However, due to the narrow variance of 𝑁 𝑤 , the formula 𝑁 𝑑𝑏 ≥ 𝐶...

▪ ... may be simplified to 𝑚 𝑑𝑏 ≥ 𝐶, which is still random due to 𝑑𝑏

 The total frequency of cache misses (wrt. unit of time) is then estimated as

▪ 𝑋(𝐶) = σ𝑏∈𝐴
𝐏(𝑚 𝑑𝑏 ≥𝐶)

𝐄(𝑑𝑏)

▪ the 𝐄(𝑑𝑏) factor accounts for the frequency of memory accesses to 𝑏

Estimating the frequency of cache misses

9NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Computing 𝑋(𝐶) from 𝑚(𝑤)
 Trick: Compute the derivative of 𝑚 𝑤 :

▪

𝜕

𝜕𝑤
𝑚(𝑤) = σ𝑎∈𝐴

𝜕

𝜕𝑤
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)
= σ𝑎∈𝐴

𝐏(𝑤≤𝑑𝑎)

𝐄(𝑑𝑎)

 𝑚 𝑑𝑏 is increasing (except when equal to 𝐴)

▪ therefore 𝑤 ≤ 𝑑𝑎 is equivalent to 𝑚 𝑤 ≤ 𝑚 𝑑𝑎

 Combined:

▪

𝜕

𝜕𝑤
𝑚(𝑤) = σ𝑎∈𝐴

𝐏(𝑚 𝑤 ≤𝑚 𝑑𝑎)

𝐄(𝑑𝑎)

 This is similar to the definition of 𝑋(𝐶):

▪ 𝑋(𝐶) = σ𝑏∈𝐴
𝐏(𝑚 𝑑𝑏 ≥𝐶)

𝐄(𝑑𝑏)

▪ with the substitution 𝐶 = 𝑚 𝑤

 Finally:

▪ 𝑋(𝐶) =
𝜕𝑚 𝑤

𝜕𝑤
(𝑚−1(𝐶))

▪ This is only an approximative formula

▪ not applicable for small 𝐶 ≪ 𝐴

 Frequency of cache misses

 𝑋(𝐶) =
𝜕𝑚 𝑤

𝜕𝑤
(𝑚−1(𝐶))

 Example 8*8*8 matrix multiplication

▪ For a L1 cache of size 32 (matrix elements), the recursive algorithm is better

▪ For a L2 cache of size 96, the naive algorithm is better

▪ The derivative is important, not the time-axis position

Frequency of cache misses

10NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

L1 L2 naive recursive

 Two approaches to cache-miss optimization

 Cache-aware

▪ Make a turn in 𝑚 𝑤 every time it approaches a cache-level size

▪ The new derivative will be kept until approaching the next level

▪ Manipulating 𝑚 𝑤 while keeping the algorithm working may be hard or impossible

 Cache-oblivious

▪ Keep the 𝑚 𝑤 curve smoothly turning throughout the whole domain

▪ For recursive algorithms, the curve is often almost independent of 𝑇 and 𝐴

Frequency of cache misses

11NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

L1 L2 naive recursive

 So far, we assumed algorithm execution for particular input data
 If we run the algorithm with different data of the same size

▪ For many problems, 𝑚 𝑤 depends only on the size of data
▪ Matrix multiplication and other numerical problems

▪ In general, 𝑚 𝑤 may significantly vary depending on the data
▪ E.g., search algorithms depend on statistical distribution of keys

 If we run the algorithm with significantly different data size 𝐴

▪ The 𝑚 𝑤 curve always converges to 𝐴

▪ For recursive algorithms, the curve beginnings for different 𝐴 will be similar

Frequency of cache misses

12NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

naive 8*8*8 recursive 8*8*8 naive 16*16*16 recursive 16*16*16

