Simple mathematical model of cache behavior

Mathematical model of cache behavior

- Simple mathematical model
 - Input:
 - A run of a (single-threaded) procedure with particular data
 - Often, a generalization to any run with similarly-sized data is valid
 - C = Cache size
 - Output: The total number of cache misses during the run
 - Estimation of the required main-memory throughput
 - Does not estimate latency effects
 - A statistic over the total run time cannot identify bottlenecks
 - Start/stop effects: Assume the procedure runs in an infinite loop
 - The initial set of addresses present in the cache equals to the final set
 - Assumptions
 - All memory accesses of the same size
 - Cache line size is equal to the access size (i.e., spatial locality has no effect)
 - Fully associative cache
 - Perfect LRU replacement strategy
 - Many statistical details are ignored, the results are only approximate

Mathematical model of cache behavior

Notation:

- $m(t_1, t_2)$ = the number of different addresses accessed inside (t_1, t_2)
 - Time points t_1, t_2 measured in arbitrary units; only one memory access at a time
 - Note: *m* satisfies triangle inequality it is a distance measure on the time axis
- Perfect LRU replacement strategy
 - The oldest entry in the cache is evicted
- Equivalent formulation:
 - ▶ If t_1 , t_2 are adjacent accesses to the same address *a*...
 - i.e. there is no access to *a* inside (*t*₁, *t*₂)
 - ... then there is a cache miss at t_2 iff $m(t_1, t_2) \ge C$
 - Proof:
 - In any moment $t \in (t_1, t_2)$:
 - The cache entries accessed inside (t_1, t) are younger than a
 - The entries for all the other addresses are older than *a*
 - *a* will be evicted at a time $t \in (t_1, t_2)$ such that
 - there is an access at time t to an address not accessed inside (t₁, t)
 - $1 + m(t_1, t) = C$, i.e. the cache contains exactly *a* and the addresses accessed inside (t_1, t)
 - If $m(t_1, t_2) < C$ then there is no such eviction of a

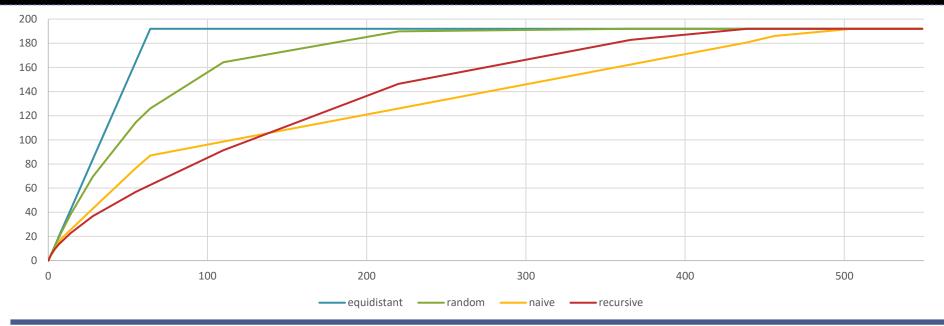
Notation:

- A = the set of addresses accessed by the procedure
- T = the running time of the procedure
- m(w) = the average value of m(t, t + w) across all $t \in [0, T)$
 - i.e., how many addresses are accessed during a time window of size w
 - well-defined due to the assumed infinite cycle over the measured procedure
 - *m*(*w*) is non-decreasing and concave
 - for $w \ge T$, m(w) = |A|

• The m(w) function is a mathematical measure of temporal locality

Lower values indicate better temporal locality

Example



- The m(w) function for 8*8*8 matrix multiplication
 - T = 8 * 8 * 8 = 512; |A| = 3 * 8 * 8 = 192
 - Equidistant: every address accessed every 64 iterations
 - Not really exists as a matrix-multiplication algorithm
 - Equidistant is always the worst algorithm wrt. cache
 - Random: iterations randomly permuted
 - Expectably worse than all the algorithms in use
 - Naive: three nested loops
 - Recursive: decomposed via 8 4*4*4 into 64 2*2*2 multiplications

m(w) for an equidistant algorithm

- For every address $a \in A$, assume periodic access every d_a time units
- Let $H_a(w) = 1$ if the address *a* is accessed during a time window of size *w*
 - $H_a(w) = 0$ otherwise
 - This is a random variable depending on the placement of the window
- The expected value of $H_a(w)$ is:
 - $\mathbf{E}(H_a(w)) = \min\left(\frac{w}{d_a}, 1\right)$
- Let $N(w) = \sum_{a \in A} H_a(w)$, i.e. the number of different addresses accessed
- m(w) is just the average of N(w) across all window placements
 - $m(w) = \mathbf{E}(N(w)) = \sum_{a \in A} \mathbf{E}(H_a(w)) = \sum_{a \in A} \min\left(\frac{w}{d_a}, 1\right)$

▶ *m*(*w*) in general

- The intervals between adjacent accesses to the same address may vary
- The d_a is, in general, a random variable dependent on window placement
- The correct general formula for the expected value of $H_a(w)$ is:
 - $\mathbf{E}(H_a(w)) = \frac{\mathbf{E}(\min(w,d_a))}{\mathbf{E}(d_a)}$
 - Based on the fact that wide d_a is encountered more frequently

•
$$m(w) = \mathbf{E}(N(w)) = \sum_{a \in A} \mathbf{E}(H_a(w)) = \sum_{a \in A} \frac{\mathbf{E}(\min(w, d_a))}{\mathbf{E}(d_a)}$$

- Note: If the random variables $H_a(w)$ are independent for different $a \in A$
 - This is not a realistic assumption for most algorithms, but it still works here
 - Then, for large |A|, N(w) can be approximated by a normal distribution (by CLT)
 - The variance will be relatively low, $\sigma^2 \le |A|/4$, i.e. the std. dev. $\sigma \le \sqrt{|A|}/2$
 - This observation will soon be useful...

Estimating the frequency of cache misses

Estimating number of cache misses

- ► C the size of the cache
- For an access to an address $b \in A$
 - assuming the previous access is at the distance d_b
 - the address b will be evicted and thus a cache miss will occur if $N(d_b) \ge C$
 - $N(d_b)$ is a random variable dependent on the position of the access
 - However, due to the narrow variance of N(w), the formula $N(d_b) \ge C$...
 - ... may be simplified to $m(d_b) \ge C$, which is still random due to d_b
- > The total frequency of cache misses (wrt. unit of time) is then estimated as

•
$$X(C) = \sum_{b \in A} \frac{\mathbf{P}(m(d_b) \ge C)}{\mathbf{E}(d_b)}$$

• the $\mathbf{E}(d_b)$ factor accounts for the frequency of memory accesses to b

Estimating the frequency of cache misses

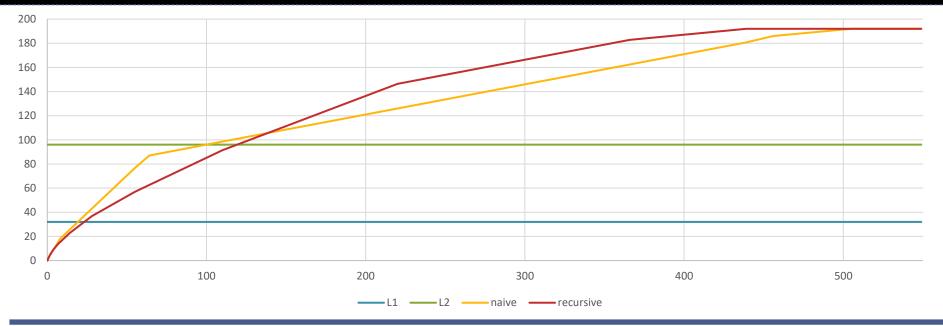
Computing X(C) from m(w)

• Trick: Compute the derivative of m(w):

•
$$\frac{\partial}{\partial w}m(w) = \sum_{a \in A} \frac{\frac{\partial}{\partial w} \mathbf{E}(\min(w, d_a))}{\mathbf{E}(d_a)} = \sum_{a \in A} \frac{\mathbf{P}(w \le d_a)}{\mathbf{E}(d_a)}$$

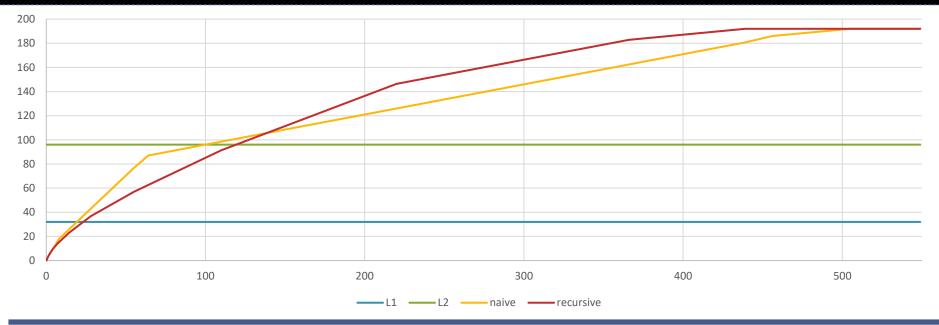
- $m(d_b)$ is increasing (except when equal to |A|)
 - therefore $w \le d_a$ is equivalent to $m(w) \le m(d_a)$
- Combined:
 - $\frac{\partial}{\partial w}m(w) = \sum_{a \in A} \frac{\mathbf{P}(m(w) \le m(d_a))}{\mathbf{E}(d_a)}$
- This is similar to the definition of *X*(*C*):
 - $X(C) = \sum_{b \in A} \frac{\mathbf{P}(m(d_b) \ge C)}{\mathbf{E}(d_b)}$
 - with the substitution C = m(w)
- ► Finally:
 - $X(C) = \frac{\partial m(w)}{\partial w}(m^{-1}(C))$
 - This is only an approximative formula
 - not applicable for small $C \ll \sqrt{|A|}$

Frequency of cache misses



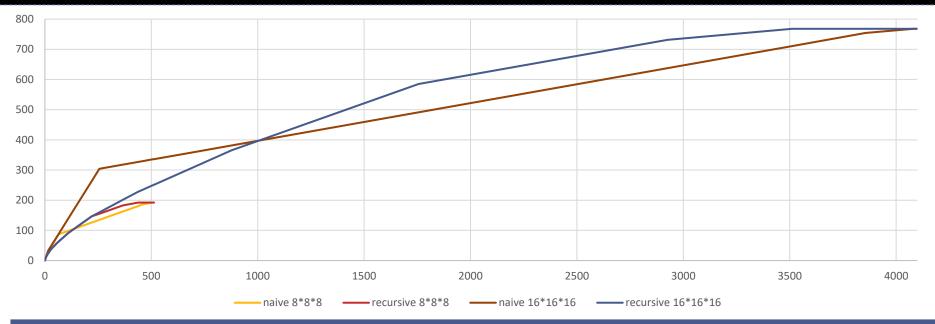
- Frequency of cache misses
 - $X(C) = \frac{\partial m(w)}{\partial w} (m^{-1}(C))$
 - Example 8*8*8 matrix multiplication
 - For a L1 cache of size 32 (matrix elements), the recursive algorithm is better
 - For a L2 cache of size 96, the naive algorithm is better
 - The derivative is important, not the time-axis position

Frequency of cache misses



- Two approaches to cache-miss optimization
 - Cache-aware
 - Make a turn in m(w) every time it approaches a cache-level size
 - The new derivative will be kept until approaching the next level
 - Manipulating m(w) while keeping the algorithm working may be hard or impossible
 - Cache-oblivious
 - Keep the m(w) curve smoothly turning throughout the whole domain
 - For recursive algorithms, the curve is often almost independent of T and |A|

Frequency of cache misses



So far, we assumed algorithm execution for particular input data

- If we run the algorithm with different data of the same size
 - For many problems, m(w) depends only on the size of data
 - Matrix multiplication and other numerical problems
 - In general, m(w) may significantly vary depending on the data
 - E.g., search algorithms depend on statistical distribution of keys
- If we run the algorithm with significantly different data size |A|
 - The m(w) curve always converges to |A|
 - For recursive algorithms, the curve beginnings for different |A| will be similar