
1NPRG054 High performance software development - 2015/2016 David Bednárek

Semi-automatic vectorization by compilers

 Compilers can vectorize loops
 Unroll the loop by K iterations

 Perform the unrolled K iterations in parallel – by vector instructions

 ... but only if some conditions are met

Semi-automatic vectorization by compilers

2NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
for (; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 The loop control variable and the condition must be predictable
 Instead of checking the condition for every i, a modified condition is tested for

every K-th i

 Compilers often require countable loops

 The number of iterations must be known (at runtime) before entering the loop

 Compilers have a built-in list of countable loop patterns

 The source code must match one of these patterns

Semi-automatic vectorization by compilers

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
for (; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 There shall be no loop-carried dependence
 An iteration must not depend on the result of previous iterations, e.g.:

 Via a variable

 Via array positions overlapped by index arithmetics

 Via overlapping arrays (aliasing)

Semi-automatic vectorization by compilers

4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
s = s + a[i];

}

for (i=0; i < N; ++i)
{
a[i+1] = a[i] + 1;

}

a = b + 1;

for (i=0; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 Compilers can solve possible
loop-carried dependences
 Test overlapping arrays before

entering the loop

 Additional small overhead

Semi-automatic vectorization by compilers

5NPRG054 High Performance Software Development- 2016/2017 David Bednárek

i=0;
if ((a<=b || a>b+3)

&& (a<=c || a>c+3))
{

for (; i + 3 < N; i += 4)
{
_mm_storeu_ps(a+i,

_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

Semi-automatic vectorization by compilers

6NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 What a loop may do to be useful...
 Find something and break early

 Unpredictable condition

 Accumulate some value in a variable

 Loop-carried dependence via a variable

 Generate an output array

 It might overlap an input array – potential loop-carried dependence

 In C/C++, almost no loop can be vectorized as is
 In Fortran, there is no pointer arithmetics – less danger of aliasing

 The vectorized code can not be strictly equivalent to the original

 Order of operations must be changed

 The programmer must help the compiler somehow

 Often using a pragma that overrides the conservative approach of the compiler

 The programmer is now responsible for correctness of the vectorization

 The programmer ensures the absence of aliasing

 Vector instructions do not support branching
 No nested loops allowed

 If-then-else allowed only if it can be replaced by masking

 Both branches are executed for every iteration

 The result of one branch is masked, i.e. forgotten

 Like a conditional expression without short-circuit evaluation

 If one of the branches is significantly larger, the code may execute too many unused
computations

Semi-automatic vectorization by compilers

7NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
if (a[i] < b[i])
b[i] = b[i] - a[i];

else
a[i] = a[i] – b[i];

}

for (i=0; i < N; ++i)
{
c = a[i] < b[i];
x = b[i] - a[i];
y = a[i] – b[i];
b[i] = c ? x : b[i];
a[i] = c ? a[i] : y;

}

Note:
• This code is not strictly equivalent in

parallel environment
• But the same is true for any vectorization

due to reordering of memory accesses
• Non-sequentially-equivalent memory

models defined in modern parallel
programming languages allow to ignore
the problem

 Non-contiguous memory access is slow or impossible
 AVX2 supports gather

a[i] = b[c[i]]

 AVX-512 supports scatter
a[b[i]] = c[i]

 Scatter/gather is significantly slower than continuous load/store
 However faster than scalar memory access

 Scatter is guaranteed to perform writes in the order of increasing lane index i
 Applies to overlapping write positions. Non-overlapping positions may be written in any order.

 Compiler support is only experimental

Semi-automatic vectorization by compilers

8NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[b[i]] = c[i];

}

for (i=0; i + 15 < N; i += 16)
{
_mm512_i32scatter_ps(
a,
_mm512_loadu_epi32(b+i),
_mm512_loadu_ps(c+i),
4);

}
for (; i < N; ++i)
{
a[b[i]] = c[i];

}

 Example: Histogram creation

 The vectorized code is not equivalent
 If an index j is present more than once in the vector bb, the result value is incremented only

once

 The fact that scatter operates in a guaranteed order does not help

 Loop-carried dependence in the original code, between writes and subsequent reads from
the same a[j]

 The compiler shall never ignore this dependence

 Remedy: Explicitly check for the repeated indexes using the AVX512CD extension

Semi-automatic vectorization by compilers

9NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
++a[b[i]];

}

auto ones = _mm512_set1_epi32(1);
for (i=0; i + 15 < N; i += 16)
{

auto bb = _mm512_loadu_epi32(b+i);
auto aa = _mm512_i32gather_epi32(a, bb, 4);
auto aa1 = _mm512_add_epi32(aa, ones);
_mm512_i32scatter_ps(a, bb, aa1, 4);

}
for (; i < N; ++i)
{
++a[b[i]];

}

• *conflict*
instruction
(AVX512)
• compares all pairs

of lanes for equality

• triangular matrix
returned as i bits in
lane i

• bit j in lane i set if
j < i && a[i]==a[j]

• conflict handling
• detect conflicts (cc)

• do the required
action for lanes
having no conflict
bit set (m)

• clear the lowermost
conflict bits (these
are at the positions
just processed)

• repeat if some
conflict bits remain
(cm)

auto ones = _mm512_set1_epi32(1);
for (i=0; i + 15 < N; i += 16)
{

auto bb = _mm512_loadu_epi32(b+i);
// compute conflicts
auto cc = _mm512_conflict_epi32(bb);
auto cm = _mm512_test_epi32_mask(cc, cc);
auto m = _knot_mask16(cm);
for (;;) {

// do original action masked by m (where necessary)
auto aa = _mm512_mask_i32gather_epi32(m, a, bb, 4);
auto aa1 = _mm512_add_epi32(aa, ones);
_mm512_mask_i32scatter_ps(m, a, bb, aa1, 4);
// stop if there were no conflicts
auto z = _kortestz_mask16_u8(cm,cm);
if (z) break;
// clear lowermost ones in cc (cc = cc & (cc-1))
auto cc1 = _mm512_sub_epi32(cc, ones);
cc = _mm512_and_epi32(cc, cc1);
// setup new masks
auto cm1 = _mm512_test_epi32_mask(cc, cc);
m = _kxor_mask16(cm1, cm);
cm = cm1;

};
}
for (; i < N; ++i) { ++a[b[i]]; }

Semi-automatic vectorization by compilers

10NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Compiler does not know the
alignment of pointers
 It must emit slow unaligned

loads/stores

 It may generate tests to check
whether all pointers are aligned

 Overhead introduced into the code

 The situation improved since AVX

 Non-aligned load/stores do not
cause faults, only longer latency

 The compilers may produce
optimistic code without test for
alignment

 Applies also for SSE instructions
when encoded in VEX encoding
(available on AVX-aware CPUs)

 “-mavx” makes SSE faster!

Semi-automatic vectorization by compilers

11NPRG054 High Performance Software Development- 2016/2017 David Bednárek

ar = (uintptr_t)a % 16;
br = (uintptr_t)b % 16;
cr = (uintptr_t)c % 16;

if (ar == br && ar == cr)
{

for (; i < (16 – ar) % 16 / 4; ++i)
{

a[i] = b[i] + c[i];
}
for (; i + 3 < N; i += 4)
{

_mm_store_ps(a+i,
_mm_add_ps(

_mm_load_ps(b+i),
_mm_load_ps(c+i)));

}
}
else
for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}

for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

Semi-automatic vectorization by compilers

12NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Placed before the loop to be vectorized

#pragma simd

#pragma vector always

#pragma clang loop vectorize(enable)

 Override compiler's decision that vectorizing is possible but not advantageous

 Often issues warning/error if vectorization failed

#pragma novector

 Disable vectorization

#pragma loop count(1000)

 Override compiler's estimation of number of iterations

Semi-automatic vectorization by compilers

13NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Placed before the loop to be vectorized

#pragma ivdep

#pragma GCC ivdep

 Tell the compiler that there are no unprovable loop-carried dependences (via
aliasing)
 Compiler still checks for provable loop-carried dependences (via scalars or index arithmetics)

restrict

 [C99] Declare that a pointer argument is not aliased to any other pointer with the
keyword

#pragma vector aligned

 Tell the compiler that pointers are always aligned
_declspec(align(16))

__attribute__((aligned(16)))

 Enforce alignment of variables, assert alignment of pointers

14NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Reduction operators

#pragma simd reduction(+:s)

for (i=0; i < N; ++i)

{

s = s + a[i];

}

