
1NPRG054 High performance software development - 2015/2016 David Bednárek

Semi-automatic vectorization by compilers

 Compilers can vectorize loops
 Unroll the loop by K iterations

 Perform the unrolled K iterations in parallel – by vector instructions

 ... but only if some conditions are met

Semi-automatic vectorization by compilers

2NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
for (; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 The loop control variable and the condition must be predictable
 Instead of checking the condition for every i, a modified condition is tested for

every K-th i

 Compilers often require countable loops

 The number of iterations must be known (at runtime) before entering the loop

 Compilers have a built-in list of countable loop patterns

 The source code must match one of these patterns

Semi-automatic vectorization by compilers

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{
a[i] = b[i] + c[i];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}
for (; i < N; ++i)
{
a[i] = b[i] + c[i];

}

for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 There shall be no loop-carried dependence
 An iteration must not depend on the result of previous iterations, e.g.:

 Via a variable

 Via array positions overlapped by index arithmetics

 Via overlapping arrays (aliasing)

Semi-automatic vectorization by compilers

4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
s = s + a[i];

}

for (i=0; i < N; ++i)
{
a[i+1] = a[i] + 1;

}

a = b + 1;

for (i=0; i < N; ++i)
{

a[i] = b[i] + c[i];
}

 Compilers can solve possible
loop-carried dependences
 Test overlapping arrays before

entering the loop

 Additional small overhead

Semi-automatic vectorization by compilers

5NPRG054 High Performance Software Development- 2016/2017 David Bednárek

i=0;
if ((a<=b || a>b+3)

&& (a<=c || a>c+3))
{

for (; i + 3 < N; i += 4)
{
_mm_storeu_ps(a+i,

_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}
}
for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

Semi-automatic vectorization by compilers

6NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 What a loop may do to be useful...
 Find something and break early

 Unpredictable condition

 Accumulate some value in a variable

 Loop-carried dependence via a variable

 Generate an output array

 It might overlap an input array – potential loop-carried dependence

 In C/C++, almost no loop can be vectorized as is
 In Fortran, there is no pointer arithmetics – less danger of aliasing

 The vectorized code can not be strictly equivalent to the original

 Order of operations must be changed

 The programmer must help the compiler somehow

 Often using a pragma that overrides the conservative approach of the compiler

 The programmer is now responsible for correctness of the vectorization

 The programmer ensures the absence of aliasing

 Vector instructions do not support branching
 No nested loops allowed

 If-then-else allowed only if it can be replaced by masking

 Both branches are executed for every iteration

 The result of one branch is masked, i.e. forgotten

 Like a conditional expression without short-circuit evaluation

 If one of the branches is significantly larger, the code may execute too many unused
computations

Semi-automatic vectorization by compilers

7NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
if (a[i] < b[i])
b[i] = b[i] - a[i];

else
a[i] = a[i] – b[i];

}

for (i=0; i < N; ++i)
{
c = a[i] < b[i];
x = b[i] - a[i];
y = a[i] – b[i];
b[i] = c ? x : b[i];
a[i] = c ? a[i] : y;

}

Note:
• This code is not strictly equivalent in

parallel environment
• But the same is true for any vectorization

due to reordering of memory accesses
• Non-sequentially-equivalent memory

models defined in modern parallel
programming languages allow to ignore
the problem

 Non-contiguous memory access is slow or impossible
 AVX2 supports gather

a[i] = b[c[i]]

 AVX-512 supports scatter
a[b[i]] = c[i]

 Scatter/gather is significantly slower than continuous load/store
 However faster than scalar memory access

 Scatter is guaranteed to perform writes in the order of increasing lane index i
 Applies to overlapping write positions. Non-overlapping positions may be written in any order.

 Compiler support is only experimental

Semi-automatic vectorization by compilers

8NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
a[b[i]] = c[i];

}

for (i=0; i + 15 < N; i += 16)
{
_mm512_i32scatter_ps(
a,
_mm512_loadu_epi32(b+i),
_mm512_loadu_ps(c+i),
4);

}
for (; i < N; ++i)
{
a[b[i]] = c[i];

}

 Example: Histogram creation

 The vectorized code is not equivalent
 If an index j is present more than once in the vector bb, the result value is incremented only

once

 The fact that scatter operates in a guaranteed order does not help

 Loop-carried dependence in the original code, between writes and subsequent reads from
the same a[j]

 The compiler shall never ignore this dependence

 Remedy: Explicitly check for the repeated indexes using the AVX512CD extension

Semi-automatic vectorization by compilers

9NPRG054 High Performance Software Development- 2016/2017 David Bednárek

for (i=0; i < N; ++i)
{
++a[b[i]];

}

auto ones = _mm512_set1_epi32(1);
for (i=0; i + 15 < N; i += 16)
{

auto bb = _mm512_loadu_epi32(b+i);
auto aa = _mm512_i32gather_epi32(a, bb, 4);
auto aa1 = _mm512_add_epi32(aa, ones);
_mm512_i32scatter_ps(a, bb, aa1, 4);

}
for (; i < N; ++i)
{
++a[b[i]];

}

• *conflict*
instruction
(AVX512)
• compares all pairs

of lanes for equality

• triangular matrix
returned as i bits in
lane i

• bit j in lane i set if
j < i && a[i]==a[j]

• conflict handling
• detect conflicts (cc)

• do the required
action for lanes
having no conflict
bit set (m)

• clear the lowermost
conflict bits (these
are at the positions
just processed)

• repeat if some
conflict bits remain
(cm)

auto ones = _mm512_set1_epi32(1);
for (i=0; i + 15 < N; i += 16)
{

auto bb = _mm512_loadu_epi32(b+i);
// compute conflicts
auto cc = _mm512_conflict_epi32(bb);
auto cm = _mm512_test_epi32_mask(cc, cc);
auto m = _knot_mask16(cm);
for (;;) {

// do original action masked by m (where necessary)
auto aa = _mm512_mask_i32gather_epi32(m, a, bb, 4);
auto aa1 = _mm512_add_epi32(aa, ones);
_mm512_mask_i32scatter_ps(m, a, bb, aa1, 4);
// stop if there were no conflicts
auto z = _kortestz_mask16_u8(cm,cm);
if (z) break;
// clear lowermost ones in cc (cc = cc & (cc-1))
auto cc1 = _mm512_sub_epi32(cc, ones);
cc = _mm512_and_epi32(cc, cc1);
// setup new masks
auto cm1 = _mm512_test_epi32_mask(cc, cc);
m = _kxor_mask16(cm1, cm);
cm = cm1;

};
}
for (; i < N; ++i) { ++a[b[i]]; }

Semi-automatic vectorization by compilers

10NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Compiler does not know the
alignment of pointers
 It must emit slow unaligned

loads/stores

 It may generate tests to check
whether all pointers are aligned

 Overhead introduced into the code

 The situation improved since AVX

 Non-aligned load/stores do not
cause faults, only longer latency

 The compilers may produce
optimistic code without test for
alignment

 Applies also for SSE instructions
when encoded in VEX encoding
(available on AVX-aware CPUs)

 “-mavx” makes SSE faster!

Semi-automatic vectorization by compilers

11NPRG054 High Performance Software Development- 2016/2017 David Bednárek

ar = (uintptr_t)a % 16;
br = (uintptr_t)b % 16;
cr = (uintptr_t)c % 16;

if (ar == br && ar == cr)
{

for (; i < (16 – ar) % 16 / 4; ++i)
{

a[i] = b[i] + c[i];
}
for (; i + 3 < N; i += 4)
{

_mm_store_ps(a+i,
_mm_add_ps(

_mm_load_ps(b+i),
_mm_load_ps(c+i)));

}
}
else
for (i=0; i + 3 < N; i += 4)
{

_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu_ps(c+i)));

}

for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

Semi-automatic vectorization by compilers

12NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Placed before the loop to be vectorized

#pragma simd

#pragma vector always

#pragma clang loop vectorize(enable)

 Override compiler's decision that vectorizing is possible but not advantageous

 Often issues warning/error if vectorization failed

#pragma novector

 Disable vectorization

#pragma loop count(1000)

 Override compiler's estimation of number of iterations

Semi-automatic vectorization by compilers

13NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Placed before the loop to be vectorized

#pragma ivdep

#pragma GCC ivdep

 Tell the compiler that there are no unprovable loop-carried dependences (via
aliasing)
 Compiler still checks for provable loop-carried dependences (via scalars or index arithmetics)

restrict

 [C99] Declare that a pointer argument is not aliased to any other pointer with the
keyword

#pragma vector aligned

 Tell the compiler that pointers are always aligned
_declspec(align(16))

__attribute__((aligned(16)))

 Enforce alignment of variables, assert alignment of pointers

14NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C/C++ vectorization pragmas
 Reduction operators

#pragma simd reduction(+:s)

for (i=0; i < N; ++i)

{

s = s + a[i];

}

