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Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) for (i=0; i + 3 < N; 1 += 4) for (i=0; i + 3 < N; i += 4)
{ { {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i]; _mm_storeu_ps(a+i,
} a[i+1] = b[i+1] + c[i+1]; _mm_add_ps(
a[i+2] = b[i+2] + c[i+2]; _mm_loadu ps(b+i),
a[i+3] = b[i+3] + c[i+3]; _mm_loadu ps(c+i)));
} }
for (; i < N; ++i) for (; 1 < N; ++i)
{ {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i];
} }

» Compilers can vectorize loops
» Unroll the loop by K iterations
» Perform the unrolled K iterations in parallel — by vector instructions

» ... but only if some conditions are met
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» The loop control variable and the condition must be predictable

» Instead of checking the condition for every i, a modified condition is tested for
every K-th i

» Compilers often require countable loops

» The number of iterations must be known (at runtime) before entering the loop
» Compilers have a built-in list of countable loop patterns

= The source code must match one of these patterns
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Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) for (i=0; i < N; ++i) a=b+ 1;
{ {
s = s + a[i]; a[i+1] = a[i] + 1; for (i=0; i < Nj; ++i)
} } {
a[i] = b[i] + c[i];
}

» There shall be no loop-carried dependence
» An iteration must not depend on the result of previous iterations, e.g.:

= Via a variable
= Via array positions overlapped by index arithmetics

= Via overlapping arrays (aliasing)
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» Compilers can solve possible i=0;
_ if ( (a<=b || a>b+3)
loop-carried dependences o (e [ a>cs3) )
» Test overlapping arrays before ‘E°" Gi+3 <N 1+=4)
entering the loop _mm_storeu_ps (a+i,
_mm_add_ps(
= Additional small overhead _mm_loadu_ps (b+i),
_mm_loadu_ps(c+i)));
}
}
for (5 1 < Nj; ++i)
{
a[i] = b[i] + c[i];
}
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Semi-automatic vectorization by compilers

» What a loop may do to be useful...
» Find something and break early
= Unpredictable condition
» Accumulate some value in a variable
= Loop-carried dependence via a variable
» Generate an output array

= |t might overlap an input array — potential loop-carried dependence

» In C/C++, almost no loop can be vectorized as is
= |In Fortran, there is no pointer arithmetics — less danger of aliasing
» The vectorized code can not be strictly equivalent to the original
= Order of operations must be changed
» The programmer must help the compiler somehow
= Often using a pragma that overrides the conservative approach of the compiler

= The programmer is now responsible for correctness of the vectorization
= The programmer ensures the absence of aliasing
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for (i=0; i < N; ++1i) for (i=0; i < N; ++i) Note:
{ { * This code is not strictly equivalent in
if ( a[i] < b[i] ) c = a[i] < b[i]; parallel environment
b[i] = b[i] - a[i]; x = b[i] - a[i]; * Butthe same is true for any vectorization
else y = a[i] - b[i]; due to reordering of memory accesses
a[i] = a[i] - b[i]; b[i] = c ? x : b[i]; * Non-sequentially-equivalent memory
} al[i] = c ? a[i] : vy, models defined in modern parallel
} programming languages allow to ignore
the problem

» Vector instructions do not support branching

» No nested loops allowed
» If-then-else allowed only if it can be replaced by masking
= Both branches are executed for every iteration

= The result of one branch is masked, i.e. forgotten
= Like a conditional expression without short-circuit evaluation

= |If one of the branches is significantly larger, the code may execute too many unused
computations

ﬂ
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for (i=0; i < Nj; ++i) for (i=0; i + 15 < N; i += 16)
{ {

a[ b[ i]] = c[ 1i]; _mm512 i32scatter_ps(
} a,

_mm512 loadu_epi32(b+i),
~mm512 loadu_ps(c+i),

4);
}
for (; 1 < N; ++1i)
{
a[ b[ 1]] = c[ i];
}

» Non-contiguous memory access is slow or impossible
» AVX2 supports gather
a[i] = b[c[i]]
» AVX-512 supports scatter
a[b[i]] = c[i]
» Scatter/gather is significantly slower than continuous load/store
= However faster than scalar memory access
» Scatter is guaranteed to perform writes in the order of increasing lane index i
= Applies to overlapping write positions. Non-overlapping positions may be written in any order.
» Compiler support is only experimental
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for (i=0; i < Nj; ++i) auto ones = _mm512 setl epi32(1);
{ for (i=0; i + 15 < N; i += 16)
++a[ b[ 1]]; {
} auto bb = mm512 loadu epi32(b+i);
auto aa = _mm512 i32gather_epi32( a, bb, 4);

auto aal = mm512 add_epi32( aa, ones);
_mm512 i32scatter_ps( a, bb, aal, 4);

}
for (; 1 < N; ++1i)
{
++a[ b[ i]];
}

» Example: Histogram creation

» The vectorized code is not equivalent

» Ifanindex jis present more than once in the vector bb, the result value is incremented only
once

= The fact that scatter operates in a guaranteed order does not help

» Loop-carried dependence in the original code, between writes and subsequent reads from
the same alj]

= The compiler shall never ignore this dependence

» Remedy: Explicitly check for the repeated indexes using the AVX512CD extension
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auto ones = _mm512_setl_epi32(1);
for (i=0; i + 15 < N; i += 16)

{

}

auto bb = _mm512_loadu_epi32(b+i);
// compute conflicts
auto cc = _mm512_conflict_epi32(bb);

auto cm = _mm512_test_epi32_mask(cc, cc);
auto m = _knot_mask1l6(cm);
for (55) {

}s

// do original action masked by m (where necessary)
auto aa = _mm512_mask_i32gather_epi32( m, a, bb, 4);
auto aal = _mm512_add_epi32( aa, ones);

_mm512 mask_i32scatter_ps( m, a, bb, aal, 4);

// stop if there were no conflicts

auto z = _kortestz_mask16_u8(cm,cm);

if (z) break;

// clear lowermost ones in cc (cc = cc & (cc-1))
auto ccl = mm512_sub_epi32(cc, ones);

cc = _mm512_and_epi32(cc, ccl);

// setup new masks

auto cml1 = mm512_test_epi32 mask(cc, cc);
m = _kxor_maskl6(cml, cm);
cm = cml;

for (; i < N; ++i) { ++a[ b[ i]]; }
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» Compiler does not know the
alignment of pointers

» It must emit slow unaligned
loads/stores

» It may generate tests to check
whether all pointers are aligned

= QOverhead introduced into the code

» The situation improved since AVX

= Non-aligned load/stores do not
cause faults, only longer latency

= The compilers may produce
optimistic code without test for
alignment

= Applies also for SSE instructions
when encoded in VEX encoding
(available on AVX-aware CPUs)

= “-mavx” makes SSE faster!

ar
br
cr

(uintptr_t)a % 16;
(uintptr_t)b % 16;
(uintptr_t)c % 16;

if ( ar == br & & ar == cr )
{
for (; 1 < (16 - ar) % 16 / 4; ++1i)
{
a[i]
¥
for (; 1+ 3 < N; i +=4)
{
_mm_store_ps(a+i,
~mm_add_ps(
_mm_load ps(b+i),
~mm_load ps(c+i)));

b[i] + c[i];

}
}

else
for (i=0; i + 3 < N; i += 4)
{
_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu _ps(c+i)));

}

for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}
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» C/C++ vectorization pragmas

» Placed before the loop to be vectorized

#pragma simd
#pragma vector always

#pragma clang loop vectorize(enable)

= Override compiler's decision that vectorizing is possible but not advantageous
» Often issues warning/error if vectorization failed

#pragma novector

= Disable vectorization

#pragma loop count(1000)

= Override compiler's estimation of number of iterations
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» C/C++ vectorization pragmas
» Placed before the loop to be vectorized

#pragma ivdep
#pragma GCC ivdep

= Tell the compiler that there are no unprovable loop-carried dependences (via
aliasing)
= Compiler still checks for provable loop-carried dependences (via scalars or index arithmetics)
restrict

= [C99] Declare that a pointer argument is not aliased to any other pointer with the
keyword

#pragma vector aligned

= Tell the compiler that pointers are always aligned
_declspec(align(16))

__attribute__((aligned(16)))

= Enforce alignment of variables, assert alignment of pointers
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» C/C++ vectorization pragmas

» Reduction operators

#pragma simd reduction(+:s)
for (i=0; i < N; ++i)
{

s =s + a[i];
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