Semi-automatic vectorization by compilers

NPRGO054 High performance software development - 2015/2016 David Bednarek 1

Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) for (i=0; i + 3 < N; 1 += 4) for (i=0; i + 3 < N; i += 4)
{ { {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i]; _mm_storeu_ps(a+i,
} a[i+1] = b[i+1] + c[i+1]; _mm_add_ps(
a[i+2] = b[i+2] + c[i+2]; _mm_loadu ps(b+i),
a[i+3] = b[i+3] + c[i+3]; _mm_loadu ps(c+i)));
} }
for (; i < N; ++i) for (; 1 < N; ++i)
{ {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i];
} }

» Compilers can vectorize loops
» Unroll the loop by K iterations
» Perform the unrolled K iterations in parallel — by vector instructions

» ... but only if some conditions are met

NPRGO054 High Performance Software Development-2016/2017 David Bednarek p)

Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++1i) for (i=0; i + 3 < N; 1 += 4) for (i=0; i + 3 < N; 1 += 4)
{ { {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i]; _mm_storeu_ps(a+i,
} a[i+1] = b[i+1] + c[i+1]; _mm_add_ps(
a[i+2] = b[i+2] + c[i+2]; _mm_loadu ps(b+i),
a[i+3] = b[i+3] + c[i+3]; _mm_loadu ps(c+i)));
} }
for (; i < N; ++i) for (; 1 < N; ++i)
{ {
a[i] = b[i] + c[i]; a[i] = b[i] + c[i];
} }

» The loop control variable and the condition must be predictable

» Instead of checking the condition for every i, a modified condition is tested for
every K-th i

» Compilers often require countable loops

» The number of iterations must be known (at runtime) before entering the loop
» Compilers have a built-in list of countable loop patterns

= The source code must match one of these patterns

NPRGO054 High Performance Software Development-2016/2017 David Bednarek 3

Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) for (i=0; i < N; ++i) a=b+ 1;
{ {
s = s + a[i]; a[i+1] = a[i] + 1; for (i=0; i < Nj; ++i)
} } {
a[i] = b[i] + c[i];
}

» There shall be no loop-carried dependence
» An iteration must not depend on the result of previous iterations, e.g.:

= Via a variable
= Via array positions overlapped by index arithmetics

= Via overlapping arrays (aliasing)

NPRGO054 High Performance Software Development-2016/2017 David Bednarek 4

Semi-automatic vectorization by compilers

» Compilers can solve possible i=0;
_ if ((a<=b || a>b+3)
loop-carried dependences o (e [a>cs3))
» Test overlapping arrays before ‘E°" Gi+3 <N 1+=4)
entering the loop _mm_storeu_ps (a+i,
_mm_add_ps(
= Additional small overhead _mm_loadu_ps (b+i),
_mm_loadu_ps(c+i)));
}
}
for (5 1 < Nj; ++i)
{
a[i] = b[i] + c[i];
}

NPRGO054 High Performance Software Development-2016/2017 David Bednarek)

Semi-automatic vectorization by compilers

» What a loop may do to be useful...
» Find something and break early
= Unpredictable condition
» Accumulate some value in a variable
= Loop-carried dependence via a variable
» Generate an output array

= |t might overlap an input array — potential loop-carried dependence

» In C/C++, almost no loop can be vectorized as is
= |In Fortran, there is no pointer arithmetics — less danger of aliasing
» The vectorized code can not be strictly equivalent to the original
= Order of operations must be changed
» The programmer must help the compiler somehow
= Often using a pragma that overrides the conservative approach of the compiler

= The programmer is now responsible for correctness of the vectorization
= The programmer ensures the absence of aliasing

NPRGO054 High Performance Software Development-2016/2017 David Bednarek 6

Semi-automatic vectorization by compilers

for (i=0; i < N; ++1i) for (i=0; i < N; ++i) Note:
{ { * This code is not strictly equivalent in
if (a[i] < b[i]) c = a[i] < b[i]; parallel environment
b[i] = b[i] - a[i]; x = b[i] - a[i]; * Butthe same is true for any vectorization
else y = a[i] - b[i]; due to reordering of memory accesses
a[i] = a[i] - b[i]; b[i] = c ? x : b[i]; * Non-sequentially-equivalent memory
} al[i] = c ? a[i] : vy, models defined in modern parallel
} programming languages allow to ignore
the problem

» Vector instructions do not support branching

» No nested loops allowed
» If-then-else allowed only if it can be replaced by masking
= Both branches are executed for every iteration

= The result of one branch is masked, i.e. forgotten
= Like a conditional expression without short-circuit evaluation

= |If one of the branches is significantly larger, the code may execute too many unused
computations

ﬂ

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) for (i=0; i + 15 < N; i += 16)
{ {

a[b[i]] = c[1i]; _mm512 i32scatter_ps(
} a,

_mm512 loadu_epi32(b+i),
~mm512 loadu_ps(c+i),

4);
}
for (; 1 < N; ++1i)
{
a[b[1]] = c[i];
}

» Non-contiguous memory access is slow or impossible
» AVX2 supports gather
a[i] = b[c[i]]
» AVX-512 supports scatter
a[b[i]] = c[i]
» Scatter/gather is significantly slower than continuous load/store
= However faster than scalar memory access
» Scatter is guaranteed to perform writes in the order of increasing lane index i
= Applies to overlapping write positions. Non-overlapping positions may be written in any order.
» Compiler support is only experimental

NPRGO054 High Performance Software Development-2016/2017 David Bednarek 8

Semi-automatic vectorization by compilers

for (i=0; i < Nj; ++i) auto ones = _mm512 setl epi32(1);
{ for (i=0; i + 15 < N; i += 16)
++a[b[1]]; {
} auto bb = mm512 loadu epi32(b+i);
auto aa = _mm512 i32gather_epi32(a, bb, 4);

auto aal = mm512 add_epi32(aa, ones);
_mm512 i32scatter_ps(a, bb, aal, 4);

}
for (; 1 < N; ++1i)
{
++a[b[i]];
}

» Example: Histogram creation

» The vectorized code is not equivalent

» Ifanindex jis present more than once in the vector bb, the result value is incremented only
once

= The fact that scatter operates in a guaranteed order does not help

» Loop-carried dependence in the original code, between writes and subsequent reads from
the same alj]

= The compiler shall never ignore this dependence

» Remedy: Explicitly check for the repeated indexes using the AVX512CD extension

NPRGO054 High Performance Software Development-2016/2017 David Bednarek 9

Semi-automatic vectorization by compilers

auto ones = _mm512_setl_epi32(1);
for (i=0; i + 15 < N; i += 16)

{

}

auto bb = _mm512_loadu_epi32(b+i);
// compute conflicts
auto cc = _mm512_conflict_epi32(bb);

auto cm = _mm512_test_epi32_mask(cc, cc);
auto m = _knot_mask1l6(cm);
for (55) {

}s

// do original action masked by m (where necessary)
auto aa = _mm512_mask_i32gather_epi32(m, a, bb, 4);
auto aal = _mm512_add_epi32(aa, ones);

_mm512 mask_i32scatter_ps(m, a, bb, aal, 4);

// stop if there were no conflicts

auto z = _kortestz_mask16_u8(cm,cm);

if (z) break;

// clear lowermost ones in cc (cc = cc & (cc-1))
auto ccl = mm512_sub_epi32(cc, ones);

cc = _mm512_and_epi32(cc, ccl);

// setup new masks

auto cml1 = mm512_test_epi32 mask(cc, cc);
m = _kxor_maskl6(cml, cm);
cm = cml;

for (; i < N; ++i) { ++a[b[i]]; }

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

*conflict™
instruction
(AVX512)

compares all pairs
of lanes for equality

triangular matrix
returned as i bits in
lane i

bit j in lane i set if
j <i&& ali]==alj]

conflict handling

detect conflicts (cc)

do the required
action for lanes
having no conflict
bit set (m)

clear the lowermost
conflict bits (these
are at the positions
just processed)

repeat if some
conflict bits remain
(cm)

Semi-automatic vectorization by compilers

» Compiler does not know the
alignment of pointers

» It must emit slow unaligned
loads/stores

» It may generate tests to check
whether all pointers are aligned

= QOverhead introduced into the code

» The situation improved since AVX

= Non-aligned load/stores do not
cause faults, only longer latency

= The compilers may produce
optimistic code without test for
alignment

= Applies also for SSE instructions
when encoded in VEX encoding
(available on AVX-aware CPUs)

= “-mavx” makes SSE faster!

ar
br
cr

(uintptr_t)a % 16;
(uintptr_t)b % 16;
(uintptr_t)c % 16;

if (ar == br & & ar == cr)
{
for (; 1 < (16 - ar) % 16 / 4; ++1i)
{
a[i]
¥
for (; 1+ 3 < N; i +=4)
{
_mm_store_ps(a+i,
~mm_add_ps(
_mm_load ps(b+i),
~mm_load ps(c+i)));

b[i] + c[i];

}
}

else
for (i=0; i + 3 < N; i += 4)
{
_mm_storeu_ps(a+i,
_mm_add_ps(
_mm_loadu_ps(b+i),
_mm_loadu _ps(c+i)));

}

for (; i < N; ++i)
{

a[i] = b[i] + c[i];
}

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

Semi-automatic vectorization by compilers

» C/C++ vectorization pragmas

» Placed before the loop to be vectorized

#pragma simd
#pragma vector always

#pragma clang loop vectorize(enable)

= Override compiler's decision that vectorizing is possible but not advantageous
» Often issues warning/error if vectorization failed

#pragma novector

= Disable vectorization

#pragma loop count(1000)

= Override compiler's estimation of number of iterations

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

Semi-automatic vectorization by compilers

» C/C++ vectorization pragmas
» Placed before the loop to be vectorized

#pragma ivdep
#pragma GCC ivdep

= Tell the compiler that there are no unprovable loop-carried dependences (via
aliasing)
= Compiler still checks for provable loop-carried dependences (via scalars or index arithmetics)
restrict

= [C99] Declare that a pointer argument is not aliased to any other pointer with the
keyword

#pragma vector aligned

= Tell the compiler that pointers are always aligned
_declspec(align(16))

__attribute__((aligned(16)))

= Enforce alignment of variables, assert alignment of pointers

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

» C/C++ vectorization pragmas

» Reduction operators

#pragma simd reduction(+:s)
for (i=0; i < N; ++i)
{

s =s + a[i];

NPRGO054 High Performance Software Development-2016/2017 David Bednarek

