
1NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Optimization of nested loops

2

Dependency analysis

Dependency
▪ The need to execute one instruction after another

▪ Associated with a latency = the minimal time difference between the instructions

▪ Partial ordering of instructions

 Data dependency – passing a value through a (temporary) variable

▪ Write-Read

 Anti-dependency – no value passed but protecting the effect

▪ Read-Write

▪ Write-Write

 Control dependency

▪ Condition-Operation: Waiting to confirm that the operation is requested

▪ For operations that cannot be undone – writing memory, possible faults, ...

Usually analyzed over a loop

NPRG054 High Performance Software Development- 2016/2017 David Bednárek

char chksum(
char * rp, int ri)

{

char rs = 0;

while (ri > 0)

{

char r1 = *rp++;

rs ^= r1;

--ri;

}

return rs;

}

•Dependencies
• inside an

iteration

• across iterations
•Cyclic graph

Example

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

cmp ri,0

jgt

mov r1,[rp]

inc rp

dec ri xor rs,r1

4

2

1 0

2

2

2

1 0

1

0

2

for J := 1 to M do

for K := 1 to N do

C[J] := C[J] + A[J]*B[J,K]

for J := 1 to M do

begin

S := C[J]

for K := 1 to N do

S := S + A[J]*B[J,K]

C[J] := S

end

for K := 1 to N do

for J := 1 to M do

C[J] := C[J] + A[J]*B[J,K]

 Critical dependency cycle
 The cycle with the greatest latency

▪ Alternating reading and writing of the
same element C[J]

 An inner loop iteration can never be
faster than the latency of the read
operation

▪ The latency of writes is usually 0

 Transformation to a local variable
placed in a register

▪ Note: this is not an equivalent
transformation if C and A may be aliased

 Improves latency but does not remove
the critical dependency cycle

 Loop reversal
▪ Not equivalent in the presence of aliasing

 Removes the dependency cycle
completely

▪ It is now present in the outer loop

Example – vector-by-matrix multiplication

4NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Loop reversal

5

 The original pass through the iteration space
▪ Iteration space = possible combinations of control-variable values

▪ Most neighbors are dependent

K

J

NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Loop reversal

6

 The order after the loop reversal

▪ Most neighbors are independent

K

J

NPRG054 High Performance Software Development- 2020/2021 David Bednárek

for (i = 0; i < N; ++ i)

bsearch(a, M, b[i]);

void bsearch(a, M, x)

{

while (/*...*/)

{

if (a[j] > x)

j = /*...*/;

else

j = /*...*/;

}

}

bsearch_many(a, M, b, N);

void bsearch_many(a, M, b, N)

{

while (/*???*/)

for (i = 0; i < N; ++ i)

{

if (a[j[i]] > b[i])

j[i] = /*...*/;

else

j[i] = /*...*/;

}

}

“Parallel” bsearch

7NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Loop skewing

A more general example

for J:=1 to N do

for K:=N-J to P do

A[J,K]:=A[J-1,K]+A[J,K-1]

8

K

J

NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Loop skewing

 Polyhedral compilation (generalized Loop skewing)

for J:=1 to N do

for K:=N-J to P do

A[J,K]:=A[J-1,K]+A[J,K-1]

 A loop nest is qualified for polyhedral optimization, if:
 The borders of iteration space are linear inequality constraints on control variables

▪ Control variables are normalized to have step = +1

 All memory accesses are indexed by linear combinations of control variables
▪ If the same array is accessed more than once, the multiplicative constants must be identical

 Determining cross-iteration dependencies
 Each write-read, read-write, or write-write pair for the same array must be examined

▪ The difference of indices determines the cases of dependency

▪ A[J1,K1] === A[J2-1,K2] implies <J2,K2> - <J1,K1> = <1, 0>

▪ The vector <1, 0> indicates the direction of the dependency in the iteration space

▪ The other pair A[J1,K1] === A[J2,K2-1] in this example produces <0, 1>

▪ The vectors are always oriented so that their leftmost nonzero element is positive
▪ Because the orientation of the dependency is determined by the original order of iterations

▪ The convex hull of dependency vectors determines transitively dependent iterations

 Optimizing for fine-grained parallelization (vectorization, ILP)
 In the innermost loop, use an iteration direction outside the convex hull of dependencies

▪ May require a linear combination of the original control variables

▪ It requires the transformation of iteration boundaries (for-loop boundary expressions)
▪ More complex cases: Divide the iteration space into simpler geometrical shapes

9

Loop skewing

A more general example

 for J:=1 to N do

 for K:=N-J to P do

 A[J,K]:=A[J-1,K]+A[J,K-1]

 10

K

J

NPRG054 High Performance Software Development- 2020/2021 David Bednárek

