
1NPRG054 High performance software development - 2015/2016 David Bednárek

SIMD

SIMD

2NPRG054 High performance software development - 2015/2016 David Bednárek

 SIMD = Single Instruction Multiple Data

 Hardware support
 Vector registers

▪ wide registers (64-512 bits), interpretation depends on instructions used

▪ in some architectures, (lower) parts of wide registers act as smaller vector (or even
scalar) registers (backward compatibility)

 Vector instructions
▪ act on vector registers similarly to normal instructions acting on scalar registers

▪ what humans call vectors, hardware sees as scalars

▪ logically, each vector instruction performs N mathematical operations at once
▪ In most cases, the N lanes act independently

▪ physically, the N operations may be executed:
▪ all in the same moment, using N hardware units

▪ in a pipeline, using single hardware unit (usually divided into stages)

▪ combined, feeding N/K batches into K hardware units

▪ scalability: different hardware may use different K for the same instruction

▪ different instructions use different vector elements (double, float, int64,...,int8)
▪ instructions have different N (therefore K)

▪ the same hardware (e.g. an adder) is reconfigured into different K’s (e.g. by cutting carry)

Different processing strategies

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

N=8, K=4 N=8, K=8

ti
m

e

Example: Older
implementations
of AVX

Problem: Cross-lane
instructions (e.g. shuffles)
cannot pass data between the
two halves

Example: Newer implementations of AVX
using either a 256-bits wide pipeline or
two 128-bit pipelines synchronously

The problem remains visible
in the AVX instruction set

Different lane width

4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

N=8, K=4 N=8, K=8

ti
m

e

Example: Single-precision FP in AVX
8*32 = 256 bits

Example: Double-precision FP in AVX
4*64 = 256 bits

N=4, K=2 N=4, K=4

SIMD

5NPRG054 High performance software development - 2015/2016 David Bednárek

 Hardware support

 Vector registers

 Vector instructions

 Memory transfers

▪ in most cases, vector registers must be read/written from/to contiguous blocks of
memory

▪ existence of vector instructions requires widening of internal data paths in CPU

▪ similarly to arithmetics, one vector may be transferred either at once or as a series of
smaller batches (since ultra-wide data paths are expensive)

▪ the batches (usually) originate in the same cache line – only one cache lookup needed

▪ even if the data paths were not wider than a scalar, vector transfers would be faster

▪ there are soft or hard requirements for alignment

▪ Align to data path width (16/32 bytes in current Intel/AMD CPUs)

▪ Do not cross cache line boundaries (64 bytes in all current Intel/AMD CPUs)

SIMD

6NPRG054 High performance software development - 2015/2016 David Bednárek

 Software support

 Automatic vectorization by compilers

▪ The transformation is often non-equivalent wrt. strict language rules

▪ Explicit permission from the programmer is needed (pragma)

▪ Advanced transformation methods now called “polyhedral compilation” (e.g.
Polly/LLVM)

 Vectorized library code

▪ Operations on arrays/matrices implemented using vector instructions

 Explicit use of vector datatypes and instructions

▪ Make use of all instructions available, including peculiarities

▪ In assembly languages – error prone and often worse than product of compilers

▪ In higher languages – using intrinsic functions

▪ Compilers take care of register allocation, addressing, type safety, etc.

 Handling alignment requirements

▪ All parts (programmers, compilers, libraries) must cooperate to make data properly
aligned

SIMD in Intel/AMD x64

7NPRG054 High performance software development - 2015/2016 David Bednárek

 SIMD support in Intel/AMD CPUs
 MMX (Intel 1997)

▪ 64 bits, 8 registers (MM0..7), shared with scalar floating-point unit (x87)

▪ only integer operations (8/16/32-bit), targeted at audio processing

▪ AMD 3DNow added some 32-bit floating point support

 SSE (Intel 1999)
▪ 128 bits, 8 registers (XMM0..7), only 32-bit floating point supported

 SSE2-SSE4 (Intel 2001-2007)
▪ 64-bit floating-point and 8/16/32/64-bit integer arithmetics for 128-bit vectors

 x64 (AMD 2003)
▪ additional 8 registers (XMM8..15) available in 64-bit mode

 AVX (Intel/AMD 2011)
▪ 256 bits, 16 registers (YMM0..15) (only YMM0..7 accessible in 32-bit mode)

▪ floating point (32/64-bit) operations only

▪ three-operand instruction format

 AVX2 (Intel 2013)
▪ integer arithmetics (8/16/32/64-bits) extended to 256-bit vectors

▪ gather/maskstore instructions

SIMD in Intel/AMD x64

8NPRG054 High performance software development - 2015/2016 David Bednárek

 SIMD support in Intel/AMD CPUs
 AVX (Intel/AMD 2011)

▪ 256 bits, 16 registers (YMM0..15) (only YMM0..7 accessible in 32-bit mode)

▪ floating point (32/64-bit) operations only

▪ three-operand instruction format

 AVX2 (Intel 2013)
▪ integer arithmetics (8/16/32/64-bits) extended to 256-bit vectors

▪ gather/maskstore instructions

 IMCI (Intel 2012)
▪ in Intel Knights Corner architecture (aka. MIC aka. Xeon Phi)

▪ 512 bits, 32 registers (ZMM0..31)

▪ gather/scatter instructions

▪ mask registers

 AVX512 (Intel 2016)
▪ in Intel Knights Landing (aka. MIC 2 aka. Xeon Phi second generation)

▪ in Intel Skylake Purley (2017), Cannonlake (2018)

▪ most instructions equivalent to IMCI (but different binary encoding)

SIMD

9NPRG054 High performance software development - 2015/2016 David Bednárek

 Advantages of SIMD

 Greater arithmetic throughput

▪ double-precision multiply on Skylake: 2*4 operations per clock cycle (vs. 2 scalar)

▪ fused multiply-add (FMA): 2*4 muls + 2*4 adds per clock

▪ 32-bit integer addition on Skylake: 3*8 operations per clock (vs. 4 scalar)

 Greater memory throughput

▪ Only vector instructions can use the full 256-bit width of CPU-L1 bus

▪ Vector throughput: 64B loads + 32B stores per clock

▪ Scalar double-precision throughput: 16B loads + 8B stores

 Greater register file

▪ scalar x64 integer: 16*64bit = 128 bytes

▪ scalar extended-double-precision: 8*80bit = 80 bytes

▪ AVX2: 16*256bit = 512 bytes

▪ AVX512: 32*512bit = 2048 bytes

▪ for comparison: Xeon Phi L1 Cache = 64 KB shared by 4 threads = 16 KB per thread

10NPRG054 High performance software development - 2015/2016 David Bednárek

Vector data types and registers (MMX/SSE/AVX/AVX512)

Integer registers – 8 bit CPU

11NPRG054 High Performance Software Development- 2016/2017 David Bednárek

FLAGS

PC

1974
Intel 8080
12 B of registers
64 KB addressable memory

A
HL
BC
DE

SP

Integer registers – 8 bit CPU

12NPRG054 High Performance Software Development- 2016/2017 David Bednárek

FLAGS

PC

1976
Zilog Z80
16 B of (app) registers
64 KB addressable memory

A
HL
BC
DE

SP

IX
IY

Integer registers – 16 bit mode

13NPRG054 High Performance Software Development- 2016/2017 David Bednárek

AX
BX
CX
DX
SI
DI
BP
SP

FLAGS

IP

1978
Intel 8086
20 B of (app) registers
1 MB addressable memory

Integer and FPU registers – 16 bit mode

14NPRG054 High Performance Software Development- 2016/2017 David Bednárek

ST

ST

AX
BX
CX
DX
SI
DI
BP
SP

FLAGS

IP

1980
Intel 8086+8087
100 B of (app) registers
1 MB addressable memory

8 80-bit FP
registers in
co-processor
chip (8087)

Integer and FPU registers – 32 bit mode

15NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left

ST

ST

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

EFLAGS

EIP

1985
Intel 80386+80387
120 B of app registers
4 GB addressable memory

Integer and FPU registers – 32 bit mode

16NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left

ST

ST

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

EFLAGS

EIP

1989
Intel 80486
120 B of app registers
4 GB addressable memory

The FPU is
now on the
same chip

Scalar and vector registers (MMX) – 32 bit mode

17NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

ST

ST

MM0

MM7

64-bit MMX
registers were
carved from
the 80-bit FP
registers (x87)

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

EFLAGS

EIP

1997
Intel Pentium MMX
120 B of app registers
4 GB addressable memory

Scalar and vector registers (MMX/SSE) – 32 bit mode

18NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

XMM0

XMM7

ST

ST

MM0

MM7

64-bit MMX
registers were
carved from
the 80-bit FP
registers (x87)

EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP

EFLAGS

EIP

1999
Intel Pentium III
248 B of app registers
4 GB addressable memory

Scalar and vector registers (MMX/SSE) – 64 bit mode

19NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

XMM0

XMM7
XMM8

XMM15

ST

ST

MM0

MM7

64-bit MMX
registers were
carved from
the 80-bit FP
registers (x87)

RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP

R8
R9

R10
R11
R12
R13
R14
R15

XMM/YMM8-15
and R8-15
available only in
the 64-bit
execution mode

RFLAGS

RIP

2003
AMD Opteron
480 B of app registers
1 TB addressable memory

ZMM0

ZMM31

Scalar and vector registers (IMCI)

20NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP

R8
R9

R10
R11
R12
R13
R14
R15

RFLAGS

RIP

2010
Intel Xeon Phi
Knights Corner
2272 B of app
registers
per thread

The first
Knights Corner
CPUs were
derived from a
Pentium core
converted to 64
bits and had no
support for SSE
or MMX

ST

ST

Scalar and vector registers (MMX/SSE/AVX)

21NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

YMM0

YMM7
YMM8

YMM15

XMM0

XMM7
XMM8

XMM15

ST

ST

MM0

MM7

RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP

R8
R9

R10
R11
R12
R13
R14
R15

XMM/YMM8-15
and R8-15
available only in
the 64-bit
execution mode

RFLAGS

RIP

2011
Intel Sandy Bridge
736 B of app registers per thread
1 TB addressable memory

ZMM0

ZMM7
ZMM8

ZMM15
ZMM16

ZMM31

YMM0

YMM7
YMM8

YMM15
YMM16

YMM31

Scalar and vector registers (MMX/SSE/AVX/AVX512)

22NPRG054 High Performance Software Development- 2016/2017 David Bednárek

this picture is shown
with MSB on the left
(lane 0 on the right)

XMM0

XMM7
XMM8

XMM15
XMM16

XMM31

ST

ST

MM0

MM7

RAX
RBX
RCX
RDX
RSI
RDI
RBP
RSP

R8
R9

R10
R11
R12
R13
R14
R15

RFLAGS

RIP

K1
K2
K3
K4
K5
K6
K7

AVX512
mask
registers

2013
Intel Xeon Phi
Knights Landing
2286 B of app
registers
per thread

Vector data types (MMX/SSE/AVX/AVX512)

23NPRG054 High Performance Software Development- 2016/2017 David Bednárek

32 32

161616 16

88888888

float float

double

64

128

88

161616 16 161616 16 161616 16 161616 16 161616 16 161616 16 161616 16

32 32 32 32 32 32 32 32 32 32 32 32 32 32

64 64 64 64 64 64 64

128 128 128

float float float float float float float float float float float float float float

double double double double double double double

AVX512 – 512 bits

AVX – 256 bits

SSE – 128 bits

MMX – 64 bits

epi128/si128

epi64 (signed)
epu64 (unsigned)

epi32 (signed)
epu32 (unsigned)

epi16 (signed)
epu16 (unsigned)

epi8 (signed)
epu8 (unsigned)

DQ
or none

Q

D

W

B

PS

PD

only bitwise and/or/xor and shift instructions

ps

pd

C intrinsic
function suffix

assembler
instruction
suffix (Intel)

this picture is shown
in the memory order
(lane 0 on the left)

Floating-point vector data types (MMX/SSE/AVX/AVX512)

24NPRG054 High Performance Software Development- 2016/2017 David Bednárek

161616 16

float float

double

161616 16 161616 16 161616 16 161616 16 161616 16 161616 16 161616 16

float float float float float float float float float float float float float float

double double double double double double double

AVX512 – 512 bits

AVX – 256 bits

SSE – 128 bits

ph PH

PS

PD

ps

pd

C intrinsic
function suffix

assembler
instruction
suffix (Intel)

Bits shown with MSB on the left; opposite of the memory order:

161616 16 161616 16 161616 16 161616 16 161616 16 161616 16 161616 16 161616 16pbh BF16
AVX-512_BF16 - since Cooper Lake (Intel 2020):

AVX-512_FP16 - since Sapphire Rapids (Intel 2023):

EES E EEE E MME M MMM M MMM M MMM M MMM M MMM M

EES E EEE E MME M MMM M

EES E MEE M MMM M MMM M

...EES E EEE E EEE E MMM M MMM M MMM M MMM M MMM M M MMM

ph = IEEE 754 Half

ps = IEEE 754 Single

pd = IEEE 754 Double

pbh

25NPRG054 High performance software development - 2015/2016 David Bednárek

Vector instructions (SSE/AVX/AVX512)

Vector instructions (SSE/AVX/AVX512)

26NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Memory access
 Loads and stores

 In addition, many other instructions may have up to 1 memory operand

 Plain arithmetic instructions
 Parallel execution of the same operation in each lane, independently

 Conditions and masks
 Support for conditional execution, independently in each lane

 Inter-lane arithmetics
 Applying selected operations across lanes

 Inter-lane shuffles
 Movement of data between lanes

 Conversions
 Changing widths of data; interaction with scalar registers

 The list in these slides can never be complete, see the reference:
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Vector instructions (SSE/AVX/AVX512)

27NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Memory access
 Vector load and stores

▪ Load/store vector from/to a consecutive block of memory

▪ load/store - Aligned loads/stores – fault if unaligned to a multiple of 16B

▪ loadu/storeu - Unaligned load/stores – slower if unaligned
▪ In older architectures, slower even if aligned – use only if alignment cannot be guaranteed

▪ stream_load - Non-temporal loads – not stored in caches (where architecture allows)
▪ To avoid cache pollution when the data will not be read again soon

 Memory arguments of vector instructions
▪ At most one argument may reside in memory

▪ In SSE, the memory argument must always be aligned to 16B

▪ In AVX-enabled CPUs, memory arguments may be unaligned (resulting in slower
operation)
▪ Applies also to SSE instructions, if VEX-encoded (assembler names prefixed by ‘V’)

 When used from C/C++
▪ The compiler automatically generates loadu/storeu (or memory arguments if AVX is

enabled) whenever working with memory operands

▪ If alignment is guaranteed, explicit load/store to a local variable usually produces
faster code

Vector instructions (SSE/AVX/AVX512)

28NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Memory access and data types
 Formally, a vector load/store of a particular width (128/256/512 bits) just

moves the bits between memory and a (XMM/YMM/ZMM) register,
independently of the lane size and format

 Physically, floating-point vectors may be routed through different parts of the
CPU than integer vectors
▪ And, in theory, different lane widths may also have different pathways

▪ This arrangement makes the data closer to the respective hardware units for the
following/preceding arithmetic instructions

 Therefore, there are (at least) three kinds of instructions for loads/stores
▪ And even more intrinsic functions mapped to them

▪ *MOVDQ(A|U) = *(load|store)[u]_[e]si(32|64|128) = integer loads/stores

▪ *MOV(A|U)PS = *(load|store)[u]_ps = float loads/stores

▪ *MOV(A|U)PD = *(load|store)[u]_pd = double loads/stores

 Always use the form of load/store related to the arithmetic instructions which
operate on the data
▪ With intrinsic functions in C/C++, this is enforced by the existence of different data

types representing integer/float/double vectors

▪ In assembly language, there is no enforcement

Vector instructions (SSE/AVX/AVX512)

29NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Memory access
 Gather/scatter

▪ Gather available from AVX2, scatter only for AVX512 (and KNC)

▪ Load/store lanes of a vector from/to individually indexed positions
▪ Available only for 32 or 64 bit data elements
▪ Addresses computed by adding a common base address and (the 1/2/4/8-multiple of) an 32/64 bit

index in the corresponding lane of a vector register
▪ Index and data register may differ in size (e.g., _mm256_i32gather_epi64 reads indexes from a

128-bit register and stores to a 256-bit)

▪ The CPU may perform individual lane loads/stores in parallel
▪ if they do not hit the same parts of the internal memory buses
▪ similar to the notion of stride in GPUs but far less massive

▪ In any case, gather/scatter is slower than contiguous loads/stores
▪ But faster than a series of scalar load/stores

▪ Gather:
for (i in 0..N-1) v[i] = a[c*x[i]]

▪ c is a constant of 1/2/4/8

▪ For scatter, individual lanes may be masked by a bit-mask:
for (i in 0..N-1) if (m[i]) a[c*x[i]] = v[i]

▪ Beware: If two indexes are identical in the same scatter, the result is undefined
▪ Use *conflict* instructions (in AVX512CD) to detect, then masking to avoid

Vector instructions (SSE/AVX/AVX512)

30NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Plain arithmetic instructions

 Parallel execution of the same operation in each lane, independently
for (i in 0..N-1) c[i] = f(a[i],b[i])

 Integer arithmetics:

▪ ADD, SUB in 8/16/32/64 bit lanes

▪ Saturated signed/unsigned ADD/SUB in 8/16 bit lanes

▪ Shifts in 16/32/64/128 bit lanes

▪ MUL in 32/64 bit lanes

 Floating-point arithmetics (32/64-bit lanes)

▪ ADD, SUB, MUL, DIV

▪ FMA (fused multiply-add)

d[i] = c[i] + a[i]*b[i]

▪ DP (dot product) with extension pbh->ps

d[i] = c[i] + a[2*i]*b[2*i] + a[2*i+1]*b[2*i+1]

Vector instructions (SSE/AVX/AVX512)

31NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Conditions and masks
 Support for conditional execution, independently in each lane

 SSE and AVX
 Comparisons produce all-ones (-1) or all-zeros (0) in each lane

▪ Only EQ and GT supported for integers, the others must be derived

▪ All six comparisons supported for floating point

 Conditional expressions are simulated using bitwise AND, ANDNOT, and OR:

▪ BEWARE: ANDNOT negates the FIRST argument before anding
// for (i in 0..N-1) e[i] = a[i] == b[i] ? c[i] : d[i]

cond = cmpeq(a,b) // cond[i] = a[i] == b[i] ? -1 : 0

left = and(cond,c) // left = cond & c

right = andnot(cond,d) // right = ~cond & d

e = or(left,right) // e = left | right

 The three bitwise operators come in three flavors, depending on type
▪ The reason is the same as for loads/stores

▪ *P(AND|ANDN|OR) = *(and|andnot|or)_si128

▪ *(AND|ANDN|OR)PS = *(and|andnot|or)_ps

▪ *(AND|ANDN|OR)PD = *(and|andnot|or)_pd

Vector instructions (SSE/AVX/AVX512)

32NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Conditions and masks
 Support for conditional execution, independently in each lane

 AVX512
 7 special mask (K) registers containing single bit for each lane

▪ The number of lanes used depend on the instruction

▪ Presented as types __mmask[8|16|32|64] in C/C++

 Comparisons produce one bit for each lane
▪ All six comparisons supported for all types

 Almost all instructions have masked variants
▪ The instruction is applied for the lanes which have 1 in the corresponding mask operand lane

▪ In the other lanes, the result register retains the previous value

▪ Comparison instructions may be masked too – used to simulate Boolean conjunction

 In C/C++ intrinsics, masking is presented in two forms
▪ mask – two additional inputs: previous value vector src and mask vector k:

for (i in 0..N-1) r[i] = k[i] ? f(a[i],b[i]) : src[i]

▪ maskz – one additional input: mask vector k, masked lanes produce zero:
for (i in 0..N-1) r[i] = k[i] ? f(a[i],b[i]) : 0

 Conditional expressions and statements are simulated using masking:
▪ The same mechanism is used in GPUs

// for (i in 0..N-1) e[i] = a[i] == b[i] ? c[i] : d[i]

cond = cmpeq(a,b) // cond is a mask register

e = mask_mov(right,cond,left) // e[i] = cond[i] ? left : right

Vector instructions (SSE/AVX/AVX512)

33NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Inter-lane arithmetics
 Applying selected operations across lanes

 hadd/hsub - Horizontal ADD/SUB (16/32/float/double lanes)

▪ SSE version:
for(i in 0..N/2-1) {

r[i] = f(a[2*i],a[2*i+1])

r[N/2 + i] = f(b[2*i],b[2*i+1])

}

▪ AVX version acts as applying SSE version to each half of the vectors
▪ A consequence of implementing AVX using 128-bit pipelines

for(i in 0..N/4-1) {

r[i] = f(a[2*i],a[2*i+1])

r[N/4 + i] = f(b[2*i],b[2*i+1])

r[N/2 + i] = f(a[N/2 + 2*i],a[N/2 + 2*i+1])

r[N*3/4 + i] = f(b[N/2 + 2*i],b[N/2 + 2*i+1])

}

▪ Effectively swaps the middle two quarters wrt. the naturally expected behavior

▪ There is no AVX512 version, operands must be first split into pairs of AVX vectors

Vector instructions (SSE/AVX/AVX512)

34NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Inter-lane shuffles
 Movement of data between lanes

 BEWARE: Most AVX/AVX512 shuffle instructions cannot move data between the
128-bit halves/quarters of the vectors

▪ Consequence of the original implementation using 128-bit pipelines

▪ Use permute2f128 for movement across AVX halves, permute4f128 for AVX2

▪ A vector-wide shuffle must be combined from permute and a 128-wide shuffle

 *alignr_epi8 – byte-granular shift right

▪ concatenate two 128-bit vectors, then pick 128 bits at the specified location

▪ the shift amount must be a constant (embedded into the instruction)

 AVX512: *alignr_epi(32|64) – 4/8-byte-granular shift right

▪ works smoothly across 128-bit boundaries

 permute, *shuffle* – “arbitrary” permutations

▪ unary cases
for (i in 0..N-1) r[i] = a[p[i]]

▪ binary cases
for (i in 0..N-1) r[i] = (p[i]&TOP_BIT) ? b[p[i]&LOW_BITS] : a[p[i]&LOW_BITS]

▪ many variants differing in granularity and other limitations

▪ most variants require permutation encoded in a constant, few accept run-time values

Vector instructions (SSE/AVX/AVX512)

35NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Conversions

 Changing widths of data; interaction with scalar registers

 extract - copy selected lane into a scalar register (or smaller vector register)

▪ the lane index must be a constant

 insert - copy a scalar value into a selected lane of a vector register

▪ the rest remains untouched, therefore there is an input vector too

▪ the lane index must be a constant

 broadcast - copy a scalar value (or a smaller vector) into all lanes

 Pseudo-intrinsic functions (not single instructions) in C/C++
 set1 - same as broadcast (where not in instruction set)

 setzero - set all lanes to zero

 cast - conversion between various vector forms (no runtime operation)

36NPRG054 High performance software development - 2015/2016 David Bednárek

Using MMX/SSE/AVX intrinsics in C/C++

Using MMX/SSE/AVX intrinsics in C/C++

37NPRG054 High performance software development - 2015/2016 David Bednárek

 Intrinsic functions

 Formally declared in header files

 Recognized by the compiler

▪ Most intrinsic functions expand to one vector instruction

▪ Some functions are implemented using more than one scalar or vector instruction

 De-facto standard dictated by Intel and copied by MSVC, gcc, and others

 Data types
 Declared in header files together with functions

 Names are standardized, but contents is different (use only as black boxes)

 Data types correspond to vector register types (widths)
__m64, __m128, __m256, __m512

▪ For some type safety, there are three types for each width

▪ single-precision (no suffix)

▪ double-precision (suffix ‘d’)

▪ half-precision (suffix 'bh' for BF16 or 'h' for IEEE 754 Half)

▪ all integer widths (suffix ‘i’, except of __m64)

Using MMX/SSE/AVX intrinsics in C/C++

38NPRG054 High performance software development - 2015/2016 David Bednárek

header file types functions technology

mmintrin.h __m64 MMX

xmmintrin.h __m128 _mm_*_ps SSE

emmintrin.h __m128d, __m128i _mm_*_pd
mm*_ep(i|u)(8|16|32|64)

SSE2

pmmintrin.h _mm_*_p(s|d) SSE3

tmmintrin.h _mm_*_epi(8|16|32) SSSE3

smmintrin.h _mm_*_* SSE4.1

nmmintrin.h _mm_cmp*, _mm_crc32_*,
_mm_popcnt_u(32|64)

SSE4.2

wmmintrin.h _mm_aes*_si128

immintrin.h __m256, __m256d,
__m256i

mm256* AVX, AVX2

__m512, __m512d,
__m512i

mm512* AVX512

ammintrin.h _mm_*, _mm256_* AMD
extensions

Using MMX/SSE/AVX intrinsics in C/C++

39NPRG054 High performance software development - 2015/2016 David Bednárek

 Alignment
 It is recommended to align all vectors to 16 bytes. If not 16-byte aligned:

▪ SSE-only CPUs: segfault except for MOVUPS (loadu/storeu)

▪ AVX-enabled CPUs: reduced throughput, no segfault (even with SSE instructions)

 It is advisable to align AVX2 vectors to 32 bytes and AVX512 vectors to 64 bytes
▪ avoid splitting over cache-line boundary (a split load counts as two loads)

 Compiler support
▪ When vector types are used for static or local variables or their parts, the compiler

will align them (to 16 bytes)
__m256i v1; __m256i v2[4]; std::array<__m256i,4> v3; // everything aligned to 16

▪ When vectors are simulated as arrays of scalar types, variables are unaligned
std::int32_t v1[8]; // aligned only to 4 bytes!!!

▪ alignment may be enforced by alignas(16)

 Library support
▪ C++ library (containers, smart pointers) align correctly only since C++17

std::vector<__m256i> v4; // aligned only to 8 bytes before C++17

▪ Before C++17 (or in C), alignment is done via semi-standardized functions
_mm_malloc, posix_memalign, std::align

Using MMX/SSE/AVX intrinsics in C/C++

40NPRG054 High performance software development - 2015/2016 David Bednárek

 Alignment
 alignas specifier

▪ Attached to class/struct types
struct alignas(16) aligned_chunk { std::int32_t a[4]; };

▪ Attached to variables (including class/struct members)
alignas(16) std::int32_t v1[8];

 Notes
▪ Alignment on dynamic allocation cannot be enforced when allocating primitive types

std::vector<alignas(16) std::int32_t> // SYNTAX ERROR

Using MMX/SSE/AVX intrinsics in C/C++

41NPRG054 High performance software development - 2015/2016 David Bednárek

 Correcting alignment at run time
▪ Determine alignment using (p % 16)

▪ requires reinterpret_cast to std::intptr_t

▪ beware: reinterpret_cast may violate aliasing rules of C++ (C++23: use std::launder)

 When working on one unaligned array

▪ Initial and final unaligned elements processed in scalars, the rest in vectors

 When working on more unaligned arrays

▪ One of the arrays (preferably the output one) dictates alignment

▪ Write initial/final elements as scalars, the rest as vectors

▪ The other arrays:

▪ Either read/written unaligned (requires AVX-enabled CPUs)

▪ Or use alignr to extract the matching arguments from a pair of aligned vectors

▪ Problem: alignr requires a constant as the shift amount

▪ Code must be replicated for every possible value of alignment (may be too many)

▪ Complex templated machinery in C++ may be used

▪ Problem #2: AVX version of alignr works independently on 16-byte halves

▪ This is a consequence of (original) implementation using pipelined 128-bit ALU

▪ Use another instruction (permute2f128) before alignr

	Slide 1: SIMD
	Slide 2: SIMD
	Slide 3: Different processing strategies
	Slide 4: Different lane width
	Slide 5: SIMD
	Slide 6: SIMD
	Slide 7: SIMD in Intel/AMD x64
	Slide 8: SIMD in Intel/AMD x64
	Slide 9: SIMD
	Slide 10: Vector data types and registers (MMX/SSE/AVX/AVX512)
	Slide 11: Integer registers – 8 bit CPU
	Slide 12: Integer registers – 8 bit CPU
	Slide 13: Integer registers – 16 bit mode
	Slide 14: Integer and FPU registers – 16 bit mode
	Slide 15: Integer and FPU registers – 32 bit mode
	Slide 16: Integer and FPU registers – 32 bit mode
	Slide 17: Scalar and vector registers (MMX) – 32 bit mode
	Slide 18: Scalar and vector registers (MMX/SSE) – 32 bit mode
	Slide 19: Scalar and vector registers (MMX/SSE) – 64 bit mode
	Slide 20: Scalar and vector registers (IMCI)
	Slide 21: Scalar and vector registers (MMX/SSE/AVX)
	Slide 22: Scalar and vector registers (MMX/SSE/AVX/AVX512)
	Slide 23: Vector data types (MMX/SSE/AVX/AVX512)
	Slide 24: Floating-point vector data types (MMX/SSE/AVX/AVX512)
	Slide 25: Vector instructions (SSE/AVX/AVX512)
	Slide 26: Vector instructions (SSE/AVX/AVX512)
	Slide 27: Vector instructions (SSE/AVX/AVX512)
	Slide 28: Vector instructions (SSE/AVX/AVX512)
	Slide 29: Vector instructions (SSE/AVX/AVX512)
	Slide 30: Vector instructions (SSE/AVX/AVX512)
	Slide 31: Vector instructions (SSE/AVX/AVX512)
	Slide 32: Vector instructions (SSE/AVX/AVX512)
	Slide 33: Vector instructions (SSE/AVX/AVX512)
	Slide 34: Vector instructions (SSE/AVX/AVX512)
	Slide 35: Vector instructions (SSE/AVX/AVX512)
	Slide 36: Using MMX/SSE/AVX intrinsics in C/C++
	Slide 37: Using MMX/SSE/AVX intrinsics in C/C++
	Slide 38: Using MMX/SSE/AVX intrinsics in C/C++
	Slide 39: Using MMX/SSE/AVX intrinsics in C/C++
	Slide 40: Using MMX/SSE/AVX intrinsics in C/C++
	Slide 41: Using MMX/SSE/AVX intrinsics in C/C++

