

Introduction

DATA ARE HERE TO STAY ...

"Software comes and goes, data is forever."

Ondřej Felix, Open data in public administration 2019

HOW DO WE USE DATA?

Technology vector created by starline - www.freepik.com

HOW DO WE USE DATA?

VIEW OF DATA IN DBMS

Data abstraction - allows developers to keep complex data structures away from the users
Several levels:

- **Physical level** (internal level)
 - how the data is stored in the hardware
 - Primary files, indices, ...
- 🔀 Logical level
 - Tables, graphs, documents, ...
- Conceptual level
 - Entities, properties, relationships, ...
- X View level (external level)
 - Data in which the user is interested
 - Many views of the same data

WHERE IS YOUR DATA STORED INTERNALLY?

Small data => main memory Big data => secondary device

When dealing with large amount of data, classical in-memory data structures fail because they consider flat memory hierarchy

Need for specialized data techniques and structures for data not present in the main memory

memory vs. storage \rightarrow nanoseconds vs. milliseconds

Each of the drives attached to this computer has a block size of 4096; each time we read one byte, the drive gives us a block containing 4096 bytes.

If we organise our data structure carefully, each disk access could yield 4096 bytes that are helpful in completing whatever operation we are doing.

MEMORY MODELS

I. RANDOM ACCESS MEMORY MODEL

Traditional model where the run time is based on the number of instructions concerning the size of the input n.

Assumptions:

Large enough main memory to store all the data Memory allocation in unit time

RANDOM ACCESS MEMORY MODEL -APPLICATIONS

1 In-memory database - primarily relies in main memory

- Faster, more predictable performance (no seek) Expensive, volatility of devices

SAPHANA 2

Requires tailored application for in-memory databases

ORACLE

3

DATABASE

Allows to switch to in-memory mode without the need of migration

II. EXTERNAL MEMORY MODEL

- & Also known as I/O model or disk access model
- Counting the number of memory transfers between cache (infinitely fast) and disk (external memory)
 - 🖄 The instructions are much faster
- 2 Data between disk and cache can be transferred only by blocks

效 Our main focus during the course

III. CACHE-OBLIVIOUS MODEL

ℵ Full memory hierarchy

- & Each memory can have different characteristics
- 🗶 Registers, caches, main memory, ..., hard drives, ...
- & Cache-oblivious algorithm does not know the size of its cache or the block size
 - 🖄 No program variables dependent on hardware configuration parameters
 - Designed to take advantage of a processor cache without having the size of the cache
- & Typically, recursive divide-and-conquer algorithm
 - Divided into smaller and smaller subproblems
 - Eventually, one reaches a subproblem size that fits into the cache,
 - regardless of the cache size

