
File Organization Theory

 How can we organize data records?
 Some theory first ...

2

Data record

 Representation of an application
object
 Person, car, product, ...

 Set of fields
 Elementary unit of data

 Age, lenght, ...
 Fixed/variable length

 Attribute is a field with a domain
(data type)

 Key
 Identifier of a record

File

 Named collection of records

Database

 Collection of related data
(named files) in secondary
memory

Logical level

 Attribute set

Physical level

 A physical representation of a logical
record of size R (bytes) in a medium

 Contains additional metadata
 E.g., record delimiters, internal structure

information

 Records are stored in blocks of size B
(bytes)

Fixed length

 File header contains:
 number of records
 length of each field

 Record can be accessed using the
record number (index)

Variable length

 Variable length of the attributes
1. Names of different sizes
2. Similar objects related to a

nonuniform set of data
 E.g., different attributes for different

types of employees

3. Optional attributes
 E.g., product picture

4. Attributes holding records
 E.g., order with multiple items,

employee with multple phone numbers

 Workaround is to set maximum length
for a given field

Blocking factor

 Number of records in a block
 𝑏 = ⌊𝐵/𝑅⌋

 B = block size
 R = record size

 Remember: We read blocks, not
records

Basic division based on blocking

 non-blocked records
 1 record fits 1 block
 easy manipulation

 blocked records
 N records fit 1 block
 Most efficient

 overflown records
 1 record fits N blocks

 Blocked/overflown
 records written without respecting the

blocks boundaries

 suitable for variable-length records or
texts

Fixed blocking

 Fixed-length records
 Put maximum

records in a block
 Possible internal

fragmentation
 Unused

remaining space

Variable-length spanned
blocking

 Variable-length records
 A record can span

multiple blocks
 Continuation is

indicated by a pointer
to the next block

 Hard to implement
 Needs more time to

read records in 2 or
more blocks

Variable-length unspanned
blocking

 Variable-length
records

 No spanning
 Each record occupies

a block (starts at the
beginning of a block)

 Unused space is
wasted

 Possible high internal
fragmentation

 Collection of record stored in the secondary memory
 Reading = block transport to the main memory
 Modification = read → edit in memory → save

 Records are identified using file keys
 File key K = set of attributes <𝐴 𝑗1 , …, 𝐴 𝑗𝑘>

 Its values <𝑎 𝑗1 , …, 𝑎 𝑗𝑘> uniquely identify a record
 Record key

 One of the keys is denoted as a primary key
 Should be artificial

Homogeneous

 Store fixed size records of the
same type

Non-Homogenous

 Either with variable size or with
different type

Modification

 Insert
 Update
 Delete

Querying

 Find
 Find a record within the file

 Fetch
 Loads a record into the main

memory

Formation/Termination

 Create/Remove

Maintenance

 Reorganize/Rebuild
 Not all changes are immediately

projected into the underlying file
organization

 Optimization

One-dimensional queries

 cars with age > 35
 cars with color = ‘red’

Multi-dimensional queries

 Total match
o All attributes specified

 age = 12 & color = ‘red’
 Partial match

 age = 12
 Total interval match

 12 < age < 25 & color in (‘red’, blue’)
 Partial interval match

 12 < age < 25

 How to organise a set of records in a file and how to access them
 The description of the logical memory structure together with algorithms for handling

that structure
 Can involve multiple files

 Optimal choice of an organization depends on the usage (operations, amount of data,
…)

Logical schema

 Algorithms
 Secure and optimal manipulation

with blocks/files
 Logical blocks (pages) in memory

 Structure
 Relations
 Content
 Manipulation

 Logical files
 How the logical pages are related

to each other
 Primary file

 Data records
 Auxiliary files

 Indices, metadata

Physical schema

 Mapping between logical schema and
physical pages

 One logical file can span multiple
physical files and vice versa

 E.g., an area of a magnetic disc

Implementation schema

 Implementation of the physical files
shielded from the logical level by OS

 E.g., particular track, sectors, etc.

