
File Organization

 How to organize data?
 Implementation

2

 Note: not heap!!
 Variable-length records ~ file is not homogeneous

 E.g., a log file

 Data not sorted in any way, a record placed always at the end of the file
 Usually used along with another supporting structure
 Insert : O(1)

 Fetch the last block (keep in memory) in the file and append the new record

 Find : O(N / b)
 N – number of records
 b – average blocking factor

 𝑏 = ⌊𝐵/𝑅⌋
 B = block size
 R = record size

 Whole file needs to be scanned

 Fixed-size record
 Data not sorted in any way

 Heap file

 Suitable when data are collected without
any relationship to other data
 We can query for a record using its index

 Insert : O(1)
 Find : O(N / b)

Block Name Department …

0 Galvin Janice Purchasing

Walters Rob Marketing

Brown Kevin Marketing

1 Walters Rob Developlment

Duffy Terri Research

Brown Kevin PR

2 Duffy Terri Developlment

Walters David Production

Brown Kevin Purchasing

3 Matthew Gigi Purchasing

Walters Rob PR

… …

 Fixed size record
 Records sorted in the file according to the

primary search key
 According to only one – the most often

searched

Fetch
 Sequential scan

 O (N / b)
 Binary search

 Direct-access medium
 O (log (N / b))

 Range query
 Find start and read k records

Block Name Department …

0 Brown Kevin PR

Brown Kevin Purchasing

1 Brown Kevin Marketing

Duffy Terri Developlment

2 Duffy Terri Research

Galvin Janice Purchasing

3 Matthew Gigi Purchasing

Walters David Production

4 Walters Rob Marketing

Walters Rob Developlment

5 Walters Rob PR

… …

Insert

 Inserting a new record is costly
 All the following records would have

to be shifted

 Auxiliary file/blocks called overflow
file/bucket need to be established
where the new records are inserted
 Outside the primary file

 The (main) file is periodically
reorganized

Update

 Simple if the update does not include
the primary search key

 If so, it is delete and insert

Delete

 Deleted records are not directly
removed

 Reorganization would have to take place

 A bit designating deleted records is
set

 Deleted records are removed during
periodical reorganization

What if we want to access the data using various attributes?

 Motivation:
 Can we do it better than sorting the data?
 Yes

 Recall binary tree, a-b tree, ...

 An index is an auxiliary structure for a data file that consists of a specifically
arranged structure containing key-pointer pairs
o E.g., name-pointer to the block with the record

 Storage of the index
 Main memory

 Cashed

 Secondary memory
 Accessing index must also be taken into account when computing the find/fetch time
 In real use: blocking factor of the index >> blocking factor of the primary file

 Fixed size records
 Structure

 Primary file/area
 Data sorted according to the

primary search key
 Index/secondary file/area

 Typically hierarchical
 Overflow file/area

 Data can be accessed either using
the index or
sequentially

Block Name …

0 Brown Kevin

Berkman Doloris

1 Clinard Stephnie

Coolidge Emily

2 Duffy Terri

Galvin Janice

3 Leavy Shirleen

Matthew Gigi

4 Peagler David

Shackelford Elsie

5 Walters Rob

Block Name

6 Brown Kevin 0

Clinard Stephnie 1

Duffy Terri 2

Leavy Shirleen 3

Peagler David 4

7 Walters Rob 5

…

Block Name

8 Brown Kevin 6

Walters Rob 7

Primary file

Index file

1. (base) level

Index file

2. (top) level

b = 2

b = 5

Searching for a specific value (query key)

 Check the top level of the index and identify a key-value pair with the highest value
lower than the query key

 Fetch the block referenced by the value
 Repeat the previous steps with lower index levels until a primary file block is

reached
 Fetch time depends on the height of the tree
 Each level = disc access

 Search the primary file block for the specified key

Searching for a range of values

 Search for the lower bound key of the interval
 Sequentially scan the blocks of the primary file until the record corresponding to the

upper bound key is found

Block Name …

0 Brown Kevin

Berkman Doloris

1 Clinard Stephnie

Coolidge Emily

2 Duffy Terri

Galvin Janice

3 Leavy Shirleen

Matthew Gigi

4 Peagler David

Shackelford Elsie

5 Walters Rob

Primary file

Block Name

6 Brown Kevin 0

Clinard Stephnie 1

Duffy Terri 2

Leavy Shirleen 3

Peagler David 4

7 Walters Rob 5

…

Block Name

8 Brown Kevin 6

Walters Rob 7

Index file

1. (base) level

Index file

2. (top) level

Search for Galvin Janice (G)

Search for Galvin Janice – Walters Rob (G – W)

b = 2

b = 5

 When an index is created, index nodes are fixed and do not change during
modifications of the primary file
 Index structure is static

 Later we will see that it does not have to be

 New records need to be stored in reserved areas (pockets) within the primary file
o Long pockets decrease efficiency

 Overflown data are inserted into a new block (created dynamically) – overflown
block
o Outside the primary file
o Buckets can be chained and therefore theoretically the ISF does not need to be rebuilt

 But decrease performance

 Pointer to the overflow area
 for each record in a block

• More space
• Shorter sequences in the overflow area

 for each block

Pros

 Fast access using primary search key
 Shares pros of the sequential file

Cons

 Fast access only when using primary
search key

 Otherwise sequential scan

 Problems with primary file when
updating

 Pockets slow down data access
 Occasional reorganisation (also slow)

 Allows to search the file according to different attributes without the need to scan the
whole file sequentially

 The primary file stays unsorted or is sorted according to one key only
(primary index)
 Sorted = we need to keep the ordering

 If sorted using an artificial key, range queries are not common

 Unsorted – e.g., heap with additional smart structure

 For each query key an index file can be built
→ one primary data file, multiple index files

 Basically corresponds to a standard database table
 One table
 Multiple indexes built over it (possibly of different types)

Primary index

 Index over the attribute based on
which the records in the primary
file are sorted
 Only one

 If the value of the primary attribute
is modified, the file needs to be
reorganised → should be
relatively invariable

 Well-suited for range queries
 There does not have to be a

primary index
 It is desirable to keep it in memory

 Small keys (integer, not string)

Secondary index

 There can be multiple secondary
indexes

 We do not index blocks of the
primary file, but a sorted list of
indexed values (with pointers to
the blocks with the data)

 The bottom level of the index = we
index records, not blocks

 Next levels = we index blocks (with
sorted records)

 Range queries for long ranges
can be very expensive

Block Name Age

0 Brown Kevin 30

Berkman Doloris 18

1 Clinard Stephnie 48

Coolidge Emily 40

2 Duffy Terri 40

Galvin Janice 23

3 Leavy Shirleen 50

Matthew Gigi 51

4 Peagler David 29

Shackelford Elsie 32

5 Walters Rob 48

Primary file

Block Age

6 18

23

29

7 30

32

40

8 …

Bottom level

of index

Block Age

12 18 6

30 7

…

Direct index

 Index is bound directly to records
 Pointers to the primary data file

 Primary file reorganization →
modification of indexing structures

Indirect index

 Contains keys of the data
(which are in the primary
index)

 Not pointers to the primary file

 Accessing a record needs one
more access to the primary
index

 If the primary file is
reorganised, the secondary
indexes stay intact

primary file

primary direct

index

secondary indirect index

secondary direct index

secondary indirect index

A)

B)

C)

D)

• sorted/unsorted

• can be

accessed using

full scan

• if PF is not

sorted, we can

have only

secondary

indexes

 Direct access with one unique key
 Use hash function to map records to pages/blocks addresses
 If the data can not fit into a page/block when inserting, an overflow strategy is employed
 Placement within the page is not specified
 When file is being reorganized, the pages are filled only to, e.g., 80%

 To avoid overflow with next insert
 The value depends on expected insert count

One search key?

Indexed fileSequential access only?

Sequential file Direct access only?

Hashed file Indexed sequential file

YES NO

NO

NOYES

YES

