
Hashing Introduction

 Index
 Give (artificial) ID – get position of the record in the primary file

 Direct access ~ equality query
 Not for range queries

 Also known as direct accessing, randomizing
 Hashing is a technique capable of accessing a record in memory in O(1) time by

using hash functions
• Maps search keys to (physical or logical) addresses (buckets)

 Hash function is a mapping from the query space to the address space
h : K* → {0, 1, … , M -1}
• Query space = the space of all possible values of the query key

• Ex. Name, address, age, …

• Usually: address space << query space
 h(k) determines the address of a record with a key k

 A good hash function should have:
 Uniform distribution: Each bucket should contain keys from all parts of the address

space
 Distributes the values evenly across buckets
 All buckets are expected to contain a roughly equal number of hash values
 There are no unused buckets

 Random distribution: Each bucket should be equally filled regardless of the key value
distribution
 The result should be dependent on all bits of the key

 A good hash function should be:
 Deterministic: the resulting value is dependent only on the input values

 For the same key we get the same address
 Fast: it should take only few instructions to compute the resulting value of the hash

function
 Usually an algorithm evaluates the function

 A bad function
 would map all the search keys onto the same address
 search = sequential scan

 The numerical representation of the key represents the relative (or absolute) address
 A small number of values that fit into the (primary memory) address space

 Advantages:
 fast
 perfect (no collisions)

 Disadvantages:
 usable only for relatively small domains
 commonly neither uniform nor random

 Depends on the distribution of the values of the keys

 Examples:
 32-bit integer values – can directly represent the bucket index
 26 letters → 3-letter codes can be uniquely mapped into 26^3 = 17576-long

array

 𝒉(𝒌) = 𝒌 𝒎𝒐𝒅 𝑴

 For M = 16 value of ℎ(𝑘) is dependent solely on the 4 low-order (least significant)
bits of the key
 These bits can be poorly distributed, which can lead to poor distribution of the results

 i.e. lots of collisions

 M is advised to be a prime number

 𝒉(𝒌) = 𝒌 / 𝑴

 We need to know the range of the domain
 Can be seen as an inverse to modulo since it looks at the high-order bits

 If the distribution of the high-order bits is poorly distributed, so will the results

 For M =100 and domain range < 𝟎; 𝟏𝟎𝟎𝟎 >
 values < 𝟎; 𝟗𝟗 > will go to the first slot
● values < 100; 1𝟗𝟗 > will go to the second slot
● ...

 Squares the key value, and then takes the middle 𝒓 bits of the result, giving a value in
the range <𝟎;𝟐r-1>

 Good to use with integers
 Is not dependent on the distribution of low- or high-order bits – all bits contribute to

the final value
 In the previous two cases, a change of some bits has no impact

𝑟 = 2, 𝑘 = 4567 → 4567^2 = 20857489 → ℎ(𝑘) = 57

4567
4567

31969
27402

22835
18268 _
20857489

 Hashing structure fits in main memory ~ limited space
 Each bucket contains one record

 Basically associative array

 Hash table utilises a hash function (map) to match the keys with their associated
values

 If multiple keys are mapped to the same position ~ collision
 Hash tables vary in collision handling

I. Separate chaining/hashing
II. Open addressing
III. Coalesced chaining/hashing
IV. Cuckoo hashing

Buckets contain links to chains of collided records

000

001

002

…

057

058

…

Kevin

Janic

e
Sharon

Michael

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Jenice Marketing

Kevin Research

Sharon Design

Terry Marketing

David Research

Michael Design

RECORDS

Different part of

the main

(primary)

memory!!

Collided record is inserted into the next free bucket (basic version)

000 Janice Marketing

001 Kevin Research

002 Sharon Design

… … …

057 David Research

058

Kevin

Janice

Sharon

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Full

Searching for a record with key K:

1. compute the address 𝑨 from the query key 𝐾
using the hash function

2. if no record is present at 𝑨, the searched

record is not in the table

3. Otherwise, scan (see the following slides) the

table until either record with key 𝑲 is

found (record found) or an empty slot is

encountered (record not present)

Example:

• hash(Terry) = 002 collision

• Use for Terry the next free bucket: 058

• hash(Michael) = 058 collision

• Use for Michael the next free bucket

Next bucket is determined by a probe sequence generated by a probe function.
The function should also keep a track of whether it did not get into a cycle.

void insert(const Key& k, const Record& r)

{

int home; // Home position for k

int pos = home = h(k); // Init probe sequence

int i = 0;

while (HT[pos].key() != EMPTYKEY) {

i++;

pos = (home + p(k, i)) % M; // probe function

if (k == HT[pos].key()) {

cout << "Duplicates not allowed\n";

return;

}

}

HT[pos] = r;

}

Clustering

 When sequentially scanning for a next free slot, the probe sequences can collide
and thus cause clustering
 Long sequence for receiving a record

 Optimal probe function should provide each slot with an equal probability of
receiving a record
 It should cycle through all slots in the hash table before returning to the home

position.

Linear probing

 𝒑(𝒌,𝒊)=𝒄 * 𝒊
 𝒄 and 𝑴 should

share no factors
 M – the size of

address space

 i – the number of
failed attempts to
find an empty
bucket

 c = 1 … try the
next bucket

Quadratic probing

 𝒑(𝒌,𝒊)=(𝒄1 𝒊 + 𝒄2 𝒊
2)

 Wrong choice of constants
can prevent from visiting
every slot

 There exists a fitting choice
of the constants
 c1 = 0, c2 = 1

M = prime number
 At least half slots will be

visited

 c1 = ½ c2 = ½
M = power of 2

 Every slot will be visited

(Pseudo-)random probing

 𝒑(𝒌,𝒊) = 𝒑𝒆𝒓𝒎[𝒊]
 𝑝𝑒𝑟𝑚 is a pre-defined

table with permutations
of length M

Double hashing

 𝒑(𝒌,𝒊) = 𝒊 ∗ g (𝒌)
 The probe sequence is

now different for
different keys

 Combines separate chaining and open addressing
 The chains are stored in the hash table

 When a collision occurs, the new value is stored to the first free bucket from the end
of the table

 The end of the chain is connected to this new value
 Collided records are chained to decrease the retrieval time

 For both insert and query operations

 Two chains never merge (as probe sequences can)

Combines separate chaining and open addressing
Two chains never merge (as probe sequences can)

000 Janice Marketing

001 Kevin Research

002 Sharon Design

… … …

057 David Research

058 Terry Marketing

059 Michael Design

… … …

Kevin

Janice

Sharon

Michael

David

H

A

S

H

F

U

N

C

T

I

O

N

KEYS BUCKETS

Terry

Two hash functions 𝒉1, 𝒉2

 No overflow chains or scanning of the hash table
 If ℎ1 (𝑘) is full, insert the record anyway and kick the residing record (𝑘′) into its alternative

location ℎ2 (𝑘′)
 If ℎ2 (𝑘′) is full, repeat the strategy until a new position is found or the process is too long
 If too long, choose new functions and rebuild (rehash) the structure

 Often implemented by 2 tables each having its own hash function
 Values move between the tables

Insert Z : ℎ1 (𝑍) = 7, ℎ2 (𝑍) = 0 (positions in the table)

The graph shows the insertion “chain”

 𝑍→𝑊
 𝑊→𝐻
 𝐻→𝑍
 𝑍→𝐴
 𝐴→𝐵
 𝐵→𝑒𝑚𝑝𝑡𝑦

 Insert:
 Worst case complexity: O(n)
 Amortized: O(1)

 Look-up, delete: O(1)

https://programming.guide/cuckoo-hashing.html

https://programming.guide/cuckoo-hashing.html

