
External Hashing



 Key/pointer pairs ~ index
 Key space and address space

 Hashed file organization



 Hashing structure does not fit into the main memory
 We need to use the secondary memory

 A bucket can contain multiple records
 Efficiency counted in number of accessed blocks ~ each block can accommodate a 

given number of records

 Algorithms

 Static : Cormack, Larson & Kajla 

 Dynamic : Fagin, Linear hashing (Litwin)



Static methods

 Hash function maps keys into a 
“fixed” number of addresses/pages

 Allows to add records, but not to 
extend the address space without 
the need to rebuild the whole index

 Good for more or less static 
databases
 If we run out of space, we have to 

re-build the whole structure

Dynamic methods

 Allow dynamic growth of the 
address space based on the size of 
the database

 Allow the hash function to be 
modified dynamically

 Good for databases that grow and 
shrink in size



Directory Schemes

 Directory – a structure in the main 
memory
 May grow large

 There is a level of indirection
 Pages can be scattered in the address 

space

 High utilization
 We can store some meta-data

 Can allow overflows, but do not have 
to

Directoryless Schemes

 No directory
 The address of the page is 

determined by the hash function 
directly

 No level of indirection – we get a 
number denoting a block – we need a 
continuous number of blocks to use

 Can show poor utilisation
 We cannot store additional metadata
 Pages split in a predefined order

 A page can be full earlier than it is its 
turn to split

 Must allow overflows



 Splitting control has a direct effect on how much overflow will be tolerated
 Delayed splitting improves space utilization

 E.g., 1 full page split into 2  50% utilization 
 Wasting space, we want about 80/90%

 Instead of splitting a page as soon as it overflows, an overflow page is utilized
 The size of an overflow page can be different from the size of the primary file 

page
 Deferring overflow can be applied to directory schemes

 Especially helpful when the overflow causes directory doubling



Sharing overflow pages

 Space utilization can be increased 
by sharing overflow pages

 Multiple pages share one overflow 
page
 Even one overflow page for the 

entire structures
 Can fill quickly
 Can be kept in the main 

memory

Buddy pages

 Logical pairing of pages
 If a page overflows, the overflown 

records are inserted into the buddy 
page

 If the buddy page needs its space 
or too many overflows occur, the 
original page overflows

 Good when we do not insert too 
many records



Motivation:
 Static hashing structures or a standard hashing table structure have a fixed maximum 

size
 Chaining methods lose the expected constant-time operations

 Some operations are slower

 Maximum size limitations should be avoided while retaining the advantages of 
constant-time find, insert, and delete operations

 Hash function needs to grow/shrink its domain according to the data
 Not a simple function but an algorithm



Trie = prefix tree 

 Branching pattern determined not by the entire key but only by part of it 
 All the descendants of a node have a common prefix

 Other than string types can be converted to bit strings

I

T

N

O

E N

D

E

Search for word TEN



 We will work with binary number/string keys
 Longer access times in case of a skewed key distribution

0

1

1

0

A ~ 01

B ~ 00

C ~ 1

0

1

1

0

A ~ 011

B ~ 00

C ~ 1

1

0 D ~ 010

A overflows

blocks



I. INTO A DIRECTORY
 Shortening of a trie by collapsing it into a directory ~ decreasing search time

 Prefix tree is made complete

 Accessing the directory using a hash function
 Uniform hash function ensures a balanced trie
 Directory introduces a level of indirection in the addressing
 Directory doubling when splitting, e.g., A

0

1

1

0

A ~ 01

B ~ 00

C ~ 10

00

01

10

11

1

0

Collapse 

using first

2 bits

Directory

Primary file

C ~ 11



 Dealing with the possible growth of the directory in directory schemes
 Fixed upper limit placed on the size of the directory
 When the limit is reached, the nodes expand (not the directory) forming a multipage 

node
 Access to the record = access to the directory + searching the multipage node

00

01

10

11

DIRECTORY MULTIPAGE NODES



 Multipage nodes are stored next to each other; thus they can be managed using 
standard file organization techniques
 Sorted sequential files

 Records stored in the order they were inserted into the multipage node

 Dynamically hashed file
 The number of pages can be kept in the directory; as a result, the multipage node can be 

managed as a dynamically hashed file



II. WITHOUT A DIRECTORY
 Directory-less schemes
 Maintaining pages in a contiguous address space
 The search path in the trie (prefix) forms the address
 Decreases utilisation of the pages

 We cannot store metadata

 Overflow of a page causes a doubling of the address space size and redistributing 
records based on the bit prefixes (suffixes) of their keys

0

1

1

0

A ~ 01

B ~ 00

C ~ 10

1

0

Primary file

C ~ 11


