
External Hashing

 Key/pointer pairs ~ index
 Key space and address space

 Hashed file organization

 Hashing structure does not fit into the main memory
 We need to use the secondary memory

 A bucket can contain multiple records
 Efficiency counted in number of accessed blocks ~ each block can accommodate a

given number of records

 Algorithms

 Static : Cormack, Larson & Kajla

 Dynamic : Fagin, Linear hashing (Litwin)

Static methods

 Hash function maps keys into a
“fixed” number of addresses/pages

 Allows to add records, but not to
extend the address space without
the need to rebuild the whole index

 Good for more or less static
databases
 If we run out of space, we have to

re-build the whole structure

Dynamic methods

 Allow dynamic growth of the
address space based on the size of
the database

 Allow the hash function to be
modified dynamically

 Good for databases that grow and
shrink in size

Directory Schemes

 Directory – a structure in the main
memory
 May grow large

 There is a level of indirection
 Pages can be scattered in the address

space

 High utilization
 We can store some meta-data

 Can allow overflows, but do not have
to

Directoryless Schemes

 No directory
 The address of the page is

determined by the hash function
directly

 No level of indirection – we get a
number denoting a block – we need a
continuous number of blocks to use

 Can show poor utilisation
 We cannot store additional metadata
 Pages split in a predefined order

 A page can be full earlier than it is its
turn to split

 Must allow overflows

 Splitting control has a direct effect on how much overflow will be tolerated
 Delayed splitting improves space utilization

 E.g., 1 full page split into 2 50% utilization
 Wasting space, we want about 80/90%

 Instead of splitting a page as soon as it overflows, an overflow page is utilized
 The size of an overflow page can be different from the size of the primary file

page
 Deferring overflow can be applied to directory schemes

 Especially helpful when the overflow causes directory doubling

Sharing overflow pages

 Space utilization can be increased
by sharing overflow pages

 Multiple pages share one overflow
page
 Even one overflow page for the

entire structures
 Can fill quickly
 Can be kept in the main

memory

Buddy pages

 Logical pairing of pages
 If a page overflows, the overflown

records are inserted into the buddy
page

 If the buddy page needs its space
or too many overflows occur, the
original page overflows

 Good when we do not insert too
many records

Motivation:
 Static hashing structures or a standard hashing table structure have a fixed maximum

size
 Chaining methods lose the expected constant-time operations

 Some operations are slower

 Maximum size limitations should be avoided while retaining the advantages of
constant-time find, insert, and delete operations

 Hash function needs to grow/shrink its domain according to the data
 Not a simple function but an algorithm

Trie = prefix tree

 Branching pattern determined not by the entire key but only by part of it
 All the descendants of a node have a common prefix

 Other than string types can be converted to bit strings

I

T

N

O

E N

D

E

Search for word TEN

 We will work with binary number/string keys
 Longer access times in case of a skewed key distribution

0

1

1

0

A ~ 01

B ~ 00

C ~ 1

0

1

1

0

A ~ 011

B ~ 00

C ~ 1

1

0 D ~ 010

A overflows

blocks

I. INTO A DIRECTORY
 Shortening of a trie by collapsing it into a directory ~ decreasing search time

 Prefix tree is made complete

 Accessing the directory using a hash function
 Uniform hash function ensures a balanced trie
 Directory introduces a level of indirection in the addressing
 Directory doubling when splitting, e.g., A

0

1

1

0

A ~ 01

B ~ 00

C ~ 10

00

01

10

11

1

0

Collapse

using first

2 bits

Directory

Primary file

C ~ 11

 Dealing with the possible growth of the directory in directory schemes
 Fixed upper limit placed on the size of the directory
 When the limit is reached, the nodes expand (not the directory) forming a multipage

node
 Access to the record = access to the directory + searching the multipage node

00

01

10

11

DIRECTORY MULTIPAGE NODES

 Multipage nodes are stored next to each other; thus they can be managed using
standard file organization techniques
 Sorted sequential files

 Records stored in the order they were inserted into the multipage node

 Dynamically hashed file
 The number of pages can be kept in the directory; as a result, the multipage node can be

managed as a dynamically hashed file

II. WITHOUT A DIRECTORY
 Directory-less schemes
 Maintaining pages in a contiguous address space
 The search path in the trie (prefix) forms the address
 Decreases utilisation of the pages

 We cannot store metadata

 Overflow of a page causes a doubling of the address space size and redistributing
records based on the bit prefixes (suffixes) of their keys

0

1

1

0

A ~ 01

B ~ 00

C ~ 10

1

0

Primary file

C ~ 11

