
Fagin

 Key, pointer pairs ~ index
 Hashed file organization
 Dynamic hashing

 We can add new records (without performace penalty)
 We do not need to specify the amout of data beforehand

 Collapsing a trie (prefix tree)
 We use a growing part of the tree

 Fagin 1979
 In general: hash function h(k) returns a string of bits

 But we do not need all of them all the time
 Directory based

 Level of indirection = we do not need a continuous space in the secondary
memory

 Global depth dG
Bits needed to tell any pair of records from different buckets apart

 Local depth dL (own for each bucket/page)
Number of bits common to all records in a bucket
 2^(𝑑G−𝑑L) = how many directory records point to a page

 Hash function (uniform, fast,...) provides dG -long address of the directory entry with
a pointer to the bucket/page

 Overflowing causes a change in the structure of the directory (dg, dL) and the
primary file
 Adding new blocks or modyfying (doublong) the directory

000

001

010

011

100

101

110

111

2 A

3 B

3 C

1 D

dL

dG = 3

DIRECTORY

In the main

memory

Bits we use

Buckets/pages in

the secondary

memory

dL < dG more than one pointer =

the page can be split, dL++

dL == dG

doubling the

directory and

splitting the

page

Finding a record with a key 𝑘

 Compute k’ = H(k)
 Compute k’’ = hdG (k’)
 Access page pointed to by the directory record with key k’’
 Scan the accessed page for record with key k

 If the record is not found, it is not present in the file

Inserting a record R with a key k

 Find a page where the record R should be inserted
 If the page is not full, insert R into the page and return
 If the page is full, split the page

 Locally
 Globally

Split page P if dL(P) < dG

 Allocate new page Q
 Modify the directory pointers originally pointing to P so that, e.g., half of them

having common first dL(P) bits followed by 0 point to P and rest of them point to Q
 Set dL(P) = dL(Q) = dL(P) + 1
 Reinsert all the data from P

Split page P if dL(P) == dG

 Double the directory size
 dG = dG+ 1
 For each page Q, set the pointers so that if Q was pointed to by an entry with a bit

key x, now it is pointed by entries with keys starting with x0 and x1

H(k1) = 100100

H(k2) = 010110

H(k3) = 110110

 The performance stays more or less constant with increasing number of stored
records

 The directory might not fit in the main memory
 If the block factor is low, many splits can occur leaving many pages empty

