
Linear (Litwin) hashing

 Key, pointer pairs ~ index
 Hashed file organization
 Dynamic hashing

 More records can be added

 Collapsing a trie
 Issue: Fagin’s directory had to be doubled

 Litwin 1980, Enbody & Du 1988
 Directory-less scheme

 No need to double the directory
 No level of indirection

 We need a continuous address space in the secondary memory

 Principal idea
 Avoid doubling of the directory
 Let us add one page after a pre-specified condition

 E.g., overflow or given number of inserts (bucket load factor)
 The space grows linearly – one page after another

 If we find ourselves in i-th step/iteration, then after 2i insertions we get into
i + 1 iteration

 Expensive expansion process is divided into stages
 Stage d starts when the number of pages is s = 2d and ends when the number

reaches 2d+1

 0. stage = 1 page
 1. stage = 2 pages
 2. stage = 4 pages
 ...
 d = the number of bits to be used to address all pages in a given stage

 0 bits for 1 page
 1 bit for 2 pages
 2 bits for 4 pages
 …

 A (split) pointer p is used to point to pages 0 … 2d

 The purpose of p is to identify the next page to be split

 At the beginning of stage 𝒅, 𝒑 points to page 0
 After every split operation it is increased by 1 (moves to the next page)

 If a page overflows before it is its time to split, overflow pages need to be utilized
 The growth of the primary file is linear

 When splitting, the new page will be at position p+s
 Records from page p (and overflow pages) will be distributed between

p and p+s using hd+1(k)
 We use one more bit to distribute the data

 At each stage we have two types of hash functions
 for pages already split
 for pages not yet split

 When we enter a new stage, we move pointer p to the start

0 … s-1

new page

“stage delimiter”

0 … s-1

split pages

not yet split pages

not yet split pages

b = 3

split: after 2 inserts

Stage d = 0

2d = 1 page

Stage 1

2d = 2 pages

Insert 20, 11 20, 11 Split

20 11

0 1

Insert 8,3 20, 8 11, 3

0 1

Split

20, 8 11, 3

00 1 10
Insert

24,32 20, 8, 24 11, 3

00 1 10

32

Split

20, 8, 24

00 01 10 11

32

11, 3
Stage 2

2d = 4 pages

20 = 10100

11 = 1011

8 = 1000

3 = 11

24 = 11000

32 = 100000

Unlike directory-based hashing, address of a record has to be computed.
Pages left of p are already split and therefore need one more bit for addressing than
pages right of p.

ADDR GetAddres (KEY k, int cnt_pages) {

d = floor(log(cnt_pages, 2));

s = exp(2, d);

p = cnt_pages % s;

addr = h(k) % s;

if (addr < p) addr = h(k) % exp(2, d + 1);

return addr;

}

Uncontrolled splitting

 Page pointed to by p is split after a
given number of insertions

 Page pointed to by p is split when any
page overflows

Controlled splitting

 Splitting occurs when the utilization of
page pointed to by p reaches a
threshold, e.g. 80%

 Problem: some pages may overflow, but we split some other page

 Overflow handling:
 One global overflow area
 One overflow page for each page
 One buddy page for each page

