
Linear hashing extended edition

 Key, pointer pairs ~ index
 Linear hashing
 Issues with page utilization

 Order of splitting is pre-defined by a condition which may not correspond to the data

 Optimizations:
 Recursive linear hashing
 Expansion techniques

 Linear hashing with partial expansion (LHPE)
 LHPE-RL
 Spiral storage (not covered this semester)

 Ramamohanarao & Sacks-Davis, 1984
 Employs recursive overflow handling

 The overflow space is shared for overflow values
 The overflow space is managed as a dynamically hashed file (i.e., linear

hashing)
 Pages in overflow areas may themselves be overflown → multiple levels of

dynamic files
 The overflows are not explicitly linked from the primary page

 We have a separate data structure
 At each overflow level i = 1, 2, ... there is also a linear hash file having:

 depth di

 split pointer pi

 number of pages at level i = si + pi, where si = 2di

 When a record overflows, no overflow page is created but the record is inserted into
the 2-nd level (and possibly recursively into 3-rd and so on)

 Worst case: number of accesses to the secondary memory = number of overflow levels
+ 1

0 … s0-1

0 … s1-1

0 … s2-1

1.overflow level

2. overflow level

𝑝0

𝑝1

𝑝2

 Splitting of a page includes collecting of all the relevant records from all the next
levels
 When a page at level i is split, overflown records are collected from levels 𝑖+1,

𝑖+2, ...
 We search for recors with the same pre/suffixes = it is fast

 If the primary page still overflows, the overflown records are put back into the
first (and possibly following) overflown level

 Decision whether to split can be controlled by the same splitting policy as in
the standard linear hashing

 It has been shown that usually 3 levels are sufficient
 The blocking factor is expected to be high (splits and overflows are not frequent)

 Similar to linear hashing, but every level has different split pointer and number of
pages

ADDR GetAddres(KEY k, int *cnt_pages, int cnt_levels) {

bool found = false;

for (int level = 0; level < cnt_levels; level++) {

d = floor(log(cnt_pages[level], 2));

s = exp(2, d);

p = cnt_pages % s;

addr = h(k) % s;

if (addr < p)

addr = h(k) % exp(2, d + 1);

if (search(addr, level, k)){

found = true; break;

}

}

if (found) return addr; else return NULL;

}

search() searches page addr

in level level for record with

a key k and return the status

of the search

 Dynamic hashing schemes have oscillatory performance
 Having a uniform hash function causes all the pages to be filled more or less at the

same time
 During a short period, many of the pages overflow and split

 Utilization goes to N% and then the next moment drops to about 0.5N %
 During the splitting period the cost of insertion is considerably higher
 If overflow management techniques are employed, when the utilization

approaches 100%, the cost of insertions and fetches increases
 Techniques to smooth the expansion were developed

 Uniform distribution ~ linear hashing with partial expansion
 Non-uniform distribution ~ spiral storage (not covered this semester)

 Larson, 1980
 Overflow chains close to the right end of the unsplit region get too long at the end of

the expansion stage
 Recently split pages are underutilized
 Pages near the right end are overutilized

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12

 In linear hashing:
 Splitting after L insertions
 We have s pages
 So page s – 1 splits after sL insertions

 In LHPE we distinguish between partial and full expansion
 During one full expansion the file expands in multiple partial stages
 In each partial stage all the pages are split

 If the number of the partial expansion stages is 2, the pages s – 1 splits after sL / 2
insertions ~ shorter overflow chains

𝑑 = 3, s = 2𝑑 = 8, g = 2 (pages in a group)

 We have 8 pages (0 .. 7)
 New page is added

 page 8

 Records from the pages in a given
group are spread across that group
and the new page
 pages 0, 4 and new page 8

 If 𝑏 is the blocking factor and the
pages are full then, utilization after the
split operation is 2/3𝑏

0 1 2 3 4 5 6 7

group 0

p

0 1 2 3 4 5 6 7 8

group 0

p

40 8

Situation after first partial expansion =
splitting all groups

 We have visited each page in the
original file
 p passed through all the groups

 p returns to the page/group 0
 Group 0 consists of pages 0,4,8

 We are halfway to the full doubling but
we have already visited all the pages

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8 12

Second partial expansion

 Next page added will be 12
 If 𝑏 is the blocking factor and the

pages were full, then utilization after
the split operation is about 3/4𝑏

 After this partial expansion, there will
be 16 pages, the file will be doubled
and one full expansion is over
 Two partial expansions are over

 Size of each group will shrink to 2
again

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8 12

 To address a page we identify the respective group and compute the offset within
that group

 When we are in 𝑑-th full expansion, the gap between pages of the same group is 2𝑑−1

𝒂𝒅𝒅𝒓(𝒌,𝒅,𝒏,𝒑)=𝒈𝒓𝒐𝒖𝒑+𝟐𝒅−𝟏∗𝒐𝒇𝒇𝒔𝒆𝒕
𝑘 … key, 𝑑 … full expansion, 𝑛 … partial expansion, 𝑝 … split pointer

 Group determined as in linear hashing
 Offset determined by another given hash function mapping into the size of the group

 Ramamohanarao & Lloyd, 1982
 Simplified version of LHPE

 Partial expansion in LHPE corresponds to full expansion in LHPE-RL
 Pages of the primary file (having 𝒑𝒅 pages) at stage 𝒅 are grouped into

𝒔𝒅=𝒑𝒅/𝒈 groups (each having 𝒈 pages)
 When a predefined condition is met (e.g., after 𝐿 insertions), a new page is

inserted at the end of the primary file and records in pages in the group
pointed to by the split pointer are redistributed between those pages and the
new page (being the new member of the group)

 When the last group is redistributed, the file is (virtually) reorganized (stage
𝒅+𝟏) so that all the pages are again sorted into
𝒔(𝒅+𝟏)=𝒑(𝒅+𝟏)/𝒈 pages (𝒑𝒅+𝟏=⌈𝒔𝒅∗(𝒈+𝟏)/𝒈⌉∗𝒈)

0

split

pointer

5 10

1 6 11

2 7 12

3 8 13

4 9 14

0 5 10

1 6 11

2 7 12

3 8 13

4 9 14

15

end of the stage 𝒅

0

reorganization

beginning of stage 𝒅+𝟏

5 10

1 6 11

2 7 12

3 8 13

4 9 14

0 7 14

1 8 15

2 9 16

3 10 17

4 11 18

5 12 19

6 13 20
Round-

up page

The reorganization
is only virtual to
form the new
groups of pages
records of which
will be
redistributed
together. No
records are moved
physically at this
step.

15

16

17

18

19

A

B

 b = 3
 𝒉𝟎(k) = k mod 4
 𝒉1(k) = k mod 3
 𝒉2(k) = (k div 3) mod 3
 …

 Insert: 17, 9, 43, 21, 49, 35, 70, 52, || 40, 13, || 5, 8, || 37
 General strategy: splitting || after 2 inserts
 First delayed split after 8th insert (enough space)

0

1

2 4
52

0

17

9

21

1

70
2

43

35

3

49

0

17

9

21

1

52

70

2

43

35

3

49

3

0. 1. 2.

Insert 8 values

using 𝒉𝟎(k)
Split group A,

use 𝒉1(k) for it

A

B

A

B

40

17

9

21

1

52

70

40

2

43

35

3

49,13

0. 1. 2.

Insert

40, 13.

Use 𝒉1(k)

for the 1.

group

40

9

21

1

52

70

40

2

13

43

49

3

0. 1. 2.

Split group B,

use 𝒉1(k) for it
17

35

5

4

0

9

21

1

52

70

40

2

13

43

49

3

17

35

5

Redistribute

the groups

Insert 5, 8.

Use 𝒉1(k) and

ORIGINAL

indices of the

groups

A

B

A

B

A0

A1

A2B0

B1

B2

8
4

0

9

21

1

52

70

40

2

13

43

49

3

17

35

5

5

A0

A1

A2B0

B1

B2

C

D

E

C

D

E

𝒉𝟎(k) = k mod 4

𝒉1(k) = k mod 3

𝒉2(k) = (k div 3) mod 3

43
6

8
4

0

9

21

1

52

70

40

2

13

49

3

17

35

5

5

A0

A1

A2B0

B1

B2

C

D

E

Split group C,

use 𝒉2(k) for it

𝒉𝟎(k) = k mod 4

𝒉1(k) = k mod 3

𝒉2(k) = (k div 3) mod 3

 The file undergoes series of redistributions and splits and so do the records in the
pages

 The method assumes one initial hashing function 𝒉𝟎 and series of independent
hashing functions 𝒉𝒊:𝑲→{𝟎…𝒈} being used when splitting to identify the offset of
records in each group

 To identify a position of a record in the file the sequence of splits and redistributions
has to be “replayed”

1. At stage 1, a record with key 𝒌 is inserted into a page determined by initial hashing
function 𝒉𝟎 (𝒌)

2. When the split pointer gets to the group where 𝒌 resides, the records are
redistributed using hash function 𝒉𝟏 (𝒌) (mapping to the space <0;𝑔−1> and thus the
record moves into page 𝒑𝟏=𝒉𝟎 (𝒌) % 𝒔𝟏+𝒉𝟏 (𝒌)∗𝒔𝟏

3. After the redistribution (stage = 2), page 𝒑𝟏 gets into group 𝒈𝟐=𝒑𝟏 % 𝒔𝟐
4. When the split pointer reaches 𝒈𝟐, 𝒉𝟐 is used to get the new addresses for records in

pages in 𝑔2 (and therefore also page 𝑝1 where the record with key 𝑘 resides) →
𝒑𝟐=𝒈𝟐+𝒉𝟐 (𝒌)∗𝒔𝟐

5. The process iterates until the last stage 𝒅𝑳 is reached
6. If 𝒈𝑳 is greater or equal than the split pointer position the desired page is 𝒑𝑳−𝟏,

otherwise we need moreover to compute 𝒑𝑳 using ℎ𝐿

