
Linear hashing extended edition

 Key, pointer pairs ~ index
 Linear hashing
 Issues with page utilization

 Order of splitting is pre-defined by a condition which may not correspond to the data

 Optimizations:
 Recursive linear hashing
 Expansion techniques

 Linear hashing with partial expansion (LHPE)
 LHPE-RL
 Spiral storage (not covered this semester)

 Ramamohanarao & Sacks-Davis, 1984
 Employs recursive overflow handling

 The overflow space is shared for overflow values
 The overflow space is managed as a dynamically hashed file (i.e., linear

hashing)
 Pages in overflow areas may themselves be overflown → multiple levels of

dynamic files
 The overflows are not explicitly linked from the primary page

 We have a separate data structure
 At each overflow level i = 1, 2, ... there is also a linear hash file having:

 depth di

 split pointer pi

 number of pages at level i = si + pi, where si = 2di

 When a record overflows, no overflow page is created but the record is inserted into
the 2-nd level (and possibly recursively into 3-rd and so on)

 Worst case: number of accesses to the secondary memory = number of overflow levels
+ 1

0 … s0-1

0 … s1-1

0 … s2-1

1.overflow level

2. overflow level

𝑝0

𝑝1

𝑝2

 Splitting of a page includes collecting of all the relevant records from all the next
levels
 When a page at level i is split, overflown records are collected from levels 𝑖+1,

𝑖+2, ...
 We search for recors with the same pre/suffixes = it is fast

 If the primary page still overflows, the overflown records are put back into the
first (and possibly following) overflown level

 Decision whether to split can be controlled by the same splitting policy as in
the standard linear hashing

 It has been shown that usually 3 levels are sufficient
 The blocking factor is expected to be high (splits and overflows are not frequent)

 Similar to linear hashing, but every level has different split pointer and number of
pages

ADDR GetAddres(KEY k, int *cnt_pages, int cnt_levels) {

bool found = false;

for (int level = 0; level < cnt_levels; level++) {

d = floor(log(cnt_pages[level], 2));

s = exp(2, d);

p = cnt_pages % s;

addr = h(k) % s;

if (addr < p)

addr = h(k) % exp(2, d + 1);

if (search(addr, level, k)){

found = true; break;

}

}

if (found) return addr; else return NULL;

}

search() searches page addr

in level level for record with

a key k and return the status

of the search

 Dynamic hashing schemes have oscillatory performance
 Having a uniform hash function causes all the pages to be filled more or less at the

same time
 During a short period, many of the pages overflow and split

 Utilization goes to N% and then the next moment drops to about 0.5N %
 During the splitting period the cost of insertion is considerably higher
 If overflow management techniques are employed, when the utilization

approaches 100%, the cost of insertions and fetches increases
 Techniques to smooth the expansion were developed

 Uniform distribution ~ linear hashing with partial expansion
 Non-uniform distribution ~ spiral storage (not covered this semester)

 Larson, 1980
 Overflow chains close to the right end of the unsplit region get too long at the end of

the expansion stage
 Recently split pages are underutilized
 Pages near the right end are overutilized

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10 11 12

 In linear hashing:
 Splitting after L insertions
 We have s pages
 So page s – 1 splits after sL insertions

 In LHPE we distinguish between partial and full expansion
 During one full expansion the file expands in multiple partial stages
 In each partial stage all the pages are split

 If the number of the partial expansion stages is 2, the pages s – 1 splits after sL / 2
insertions ~ shorter overflow chains

𝑑 = 3, s = 2𝑑 = 8, g = 2 (pages in a group)

 We have 8 pages (0 .. 7)
 New page is added

 page 8

 Records from the pages in a given
group are spread across that group
and the new page
 pages 0, 4 and new page 8

 If 𝑏 is the blocking factor and the
pages are full then, utilization after the
split operation is 2/3𝑏

0 1 2 3 4 5 6 7

group 0

p

0 1 2 3 4 5 6 7 8

group 0

p

40 8

Situation after first partial expansion =
splitting all groups

 We have visited each page in the
original file
 p passed through all the groups

 p returns to the page/group 0
 Group 0 consists of pages 0,4,8

 We are halfway to the full doubling but
we have already visited all the pages

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8 12

Second partial expansion

 Next page added will be 12
 If 𝑏 is the blocking factor and the

pages were full, then utilization after
the split operation is about 3/4𝑏

 After this partial expansion, there will
be 16 pages, the file will be doubled
and one full expansion is over
 Two partial expansions are over

 Size of each group will shrink to 2
again

0 1 2 3 4 5 6 7 8 9 10 11

group 0

p

40 8 12

 To address a page we identify the respective group and compute the offset within
that group

 When we are in 𝑑-th full expansion, the gap between pages of the same group is 2𝑑−1

𝒂𝒅𝒅𝒓(𝒌,𝒅,𝒏,𝒑)=𝒈𝒓𝒐𝒖𝒑+𝟐𝒅−𝟏∗𝒐𝒇𝒇𝒔𝒆𝒕
𝑘 … key, 𝑑 … full expansion, 𝑛 … partial expansion, 𝑝 … split pointer

 Group determined as in linear hashing
 Offset determined by another given hash function mapping into the size of the group

 Ramamohanarao & Lloyd, 1982
 Simplified version of LHPE

 Partial expansion in LHPE corresponds to full expansion in LHPE-RL
 Pages of the primary file (having 𝒑𝒅 pages) at stage 𝒅 are grouped into

𝒔𝒅=𝒑𝒅/𝒈 groups (each having 𝒈 pages)
 When a predefined condition is met (e.g., after 𝐿 insertions), a new page is

inserted at the end of the primary file and records in pages in the group
pointed to by the split pointer are redistributed between those pages and the
new page (being the new member of the group)

 When the last group is redistributed, the file is (virtually) reorganized (stage
𝒅+𝟏) so that all the pages are again sorted into
𝒔(𝒅+𝟏)=𝒑(𝒅+𝟏)/𝒈 pages (𝒑𝒅+𝟏=⌈𝒔𝒅∗(𝒈+𝟏)/𝒈⌉∗𝒈)

0

split

pointer

5 10

1 6 11

2 7 12

3 8 13

4 9 14

0 5 10

1 6 11

2 7 12

3 8 13

4 9 14

15

end of the stage 𝒅

0

reorganization

beginning of stage 𝒅+𝟏

5 10

1 6 11

2 7 12

3 8 13

4 9 14

0 7 14

1 8 15

2 9 16

3 10 17

4 11 18

5 12 19

6 13 20
Round-

up page

The reorganization
is only virtual to
form the new
groups of pages
records of which
will be
redistributed
together. No
records are moved
physically at this
step.

15

16

17

18

19

A

B

 b = 3
 𝒉𝟎(k) = k mod 4
 𝒉1(k) = k mod 3
 𝒉2(k) = (k div 3) mod 3
 …

 Insert: 17, 9, 43, 21, 49, 35, 70, 52, || 40, 13, || 5, 8, || 37
 General strategy: splitting || after 2 inserts
 First delayed split after 8th insert (enough space)

0

1

2 4
52

0

17

9

21

1

70
2

43

35

3

49

0

17

9

21

1

52

70

2

43

35

3

49

3

0. 1. 2.

Insert 8 values

using 𝒉𝟎(k)
Split group A,

use 𝒉1(k) for it

A

B

A

B

40

17

9

21

1

52

70

40

2

43

35

3

49,13

0. 1. 2.

Insert

40, 13.

Use 𝒉1(k)

for the 1.

group

40

9

21

1

52

70

40

2

13

43

49

3

0. 1. 2.

Split group B,

use 𝒉1(k) for it
17

35

5

4

0

9

21

1

52

70

40

2

13

43

49

3

17

35

5

Redistribute

the groups

Insert 5, 8.

Use 𝒉1(k) and

ORIGINAL

indices of the

groups

A

B

A

B

A0

A1

A2B0

B1

B2

8
4

0

9

21

1

52

70

40

2

13

43

49

3

17

35

5

5

A0

A1

A2B0

B1

B2

C

D

E

C

D

E

𝒉𝟎(k) = k mod 4

𝒉1(k) = k mod 3

𝒉2(k) = (k div 3) mod 3

43
6

8
4

0

9

21

1

52

70

40

2

13

49

3

17

35

5

5

A0

A1

A2B0

B1

B2

C

D

E

Split group C,

use 𝒉2(k) for it

𝒉𝟎(k) = k mod 4

𝒉1(k) = k mod 3

𝒉2(k) = (k div 3) mod 3

 The file undergoes series of redistributions and splits and so do the records in the
pages

 The method assumes one initial hashing function 𝒉𝟎 and series of independent
hashing functions 𝒉𝒊:𝑲→{𝟎…𝒈} being used when splitting to identify the offset of
records in each group

 To identify a position of a record in the file the sequence of splits and redistributions
has to be “replayed”

1. At stage 1, a record with key 𝒌 is inserted into a page determined by initial hashing
function 𝒉𝟎 (𝒌)

2. When the split pointer gets to the group where 𝒌 resides, the records are
redistributed using hash function 𝒉𝟏 (𝒌) (mapping to the space <0;𝑔−1> and thus the
record moves into page 𝒑𝟏=𝒉𝟎 (𝒌) % 𝒔𝟏+𝒉𝟏 (𝒌)∗𝒔𝟏

3. After the redistribution (stage = 2), page 𝒑𝟏 gets into group 𝒈𝟐=𝒑𝟏 % 𝒔𝟐
4. When the split pointer reaches 𝒈𝟐, 𝒉𝟐 is used to get the new addresses for records in

pages in 𝑔2 (and therefore also page 𝑝1 where the record with key 𝑘 resides) →
𝒑𝟐=𝒈𝟐+𝒉𝟐 (𝒌)∗𝒔𝟐

5. The process iterates until the last stage 𝒅𝑳 is reached
6. If 𝒈𝑳 is greater or equal than the split pointer position the desired page is 𝒑𝑳−𝟏,

otherwise we need moreover to compute 𝒑𝑳 using ℎ𝐿

