

Membership tester

MOTIVATION

Hashing What is not inside a page?

MEMBERSHIP TESTERS

- & Answers membership queries for a set: is a query key contained in a set?
- & Suitability checking only for existence and not the content itself
 - 🖄 Weaker than hashing
 - 2 Motivation: spell checking testing whether a word is correct
- & Each (external memory) bucket can have a membership tester associated
- & Membership tester should be small concerning the entire set size
 - 🗶 Keep in primary memory
- Membership tester CAN return false positives ("the record can be there"), but not many
- & Membership tester CAN NOT return false negatives

EXACT MEMBERSHIP TESTERS

- & Let the set come from a finite universe U containing u elements
- & The tester has to represent 2^u subsets
- & At least $log_2 2^u$ bits needed for encoding
 - & Encodes any state = exact membership tester (no false positives)
 - X Too much memory

- & If we restrict ourselves to a fixed subset of n elements we need to represent only all subsets of size $n \sim n \log u$ for $n \ll u$
- & Several membership testers of almost that size have been proposed
 - 🔀 Carter et al. (1978)
 - 🔀 Brodnik and Munro (1999)

APPROXIMATE MEMBERSHIP TESTERS

- ♦ Originally proposed by Bloom, 1970 Bloom filter
- & Bit string of length b
- & **k** hash functions **h**_i: U → {1, ..., b}

 $x \in X$: set the bits corresponding to $h_1(x), h_2(x), ..., h_k(x)$ to 1

MOTIVATION EXAMPLE

Hash functions: k mod 6 (k div 3) mod 6 💥 (k >> 2) mod 6
 1
 2

 1
 1

 1
 1

 1
 1

 1
 1
3 0 0 0 **4** 0 1 1 ... bits 0 5 1 1 1 **1** Insert 7: 1,2,1 0 0 0 0 Insert 22: 4, 1, 5 Insert 34: 4, 5, 2 1 1 Insert 42: 0, 2, 4 0 1 1

 \bigotimes Is 34 there? 4, 5, 2 ... may be (after storing 22 it is not yet) Is 3 there? 3, 2, 0 ... NO

APPROXIMATE MEMBERSHIP TESTERS

- & Bloom (1970), Carter et al. (1978) and Mullin (1983)
 - 🖄 How many bits we should choose
 - 🐹 The more hash functions and bits we have, the better
- 1 In order for **y** to belong to **X** it has to be true that $h_1(y) = h_2(y) = ... = h_k(y) = 1$
- & Can return false positives
- 2 Under the uniform hashing assumption
 - ($h_i(x)$ are independent and uniformly distributed)

$$|X| = n, b = (\log_2 e) kn$$

The error rate is upper bounded by 2^{-k}

- k = parameter
- We specify error rate => formula says how many bits to use
- 2 Deletion not available since that might modify other inserted values
 - & We do not know the other values to unset bits used only by me

