
Hierarchical Indexing

 Key, pointer pairs ~ index
 Hashing drawbacks

 No easy range queries

 Alternative: search trees (binary tree, a-b tree)

 We have a primary file and an index built on top of it
 OK for static data (OLAP – online analytical processing)

 When inserting a record at the beginning of the file, the whole index needs to be
rebuilt
 Typical for OLTP – online transaction processing
 Overflow handling slows down efficiency

 Reorganisation can take a lot of time, especially for large tables

 Most common dynamic indexing structure for external memory
 When inserting/deleting into/from the primary file, the indexing structure(s)

residing in the secondary file is modified to accommodate the new key
 The modification of a tree is implemented by splitting/merging nodes
 Used in: DBMSs, NTFS, …

 An undirected graph without cycles
 Rooted trees ~ one node designated as the root ~ orientation

 Nodes are in a parent-child relation

 Every parent has a finite set of descendants (children nodes)
 There is an upper boundary (we need to implement the tree)

 Every child has exactly one parent
 Root is the only node without parent ~ root of the hierarchy

 Leaves are nodes without children
 Bottom level

 Inner nodes are nodes with children

 Tree arity/degree – maximum number of children of any node
 Binary search tree: 2

 Node depth – the length of the path (number of edges) from the root node
 Tree depth – maximum of node depths
 Tree level – set of nodes with the same depth (distance from root)

 Level 0 … root

 Level width – number of nodes at a given level
 Node height – number of edges on the longest downward path from a node to a leaf
 Tree height – the height of the root node

 Balanced tree
A tree whose subtrees differ in height by no more than one and the subtrees are
balanced as well

 Unsorted tree
A tree where the descendants of a node are not sorted at all

 Sorted tree
Children of a node are sorted based on a given key

 Sorted tree
 Each inner node contains at most two child nodes
 Perfect binary tree ~ every non-leaf node has two child nodes
 Complete binary tree ~ full tree except for the last level where nodes are as far left

as possible

 Perfect tree
 #nodes = ∑ 2i = 2h+1 – 1
 #leaf nodes = 2h

 How big the tree is going to be

Non-Redundant

 Records stored in (addressed from)
both inner and leaf nodes.

Redundant BST

 Records stored in (addressed from)
the leaves

 Structure of inner and leaf nodes
differ

8

4 12

2 7 9

8

4

2

9

2 4

7

7 8

9 12

Discriminator,

not necessarily

the actual value

 Expression trees
 leaves = variables
 inner nodes = operands

 Huffman coding
 leaves = data
 coding along a branch leading to give leaf = leaf’s binary representation

 Query optimizer in DataBase Management Systems
 Query can be represented by an algebraic expression which can be in turn

represented by a binary tree
 Binary trees are not suitable for secondary memory because of their height

log2 1.000 ~ 10 log2 1.000.000 ~ 20

 Binary trees: m = 2
 Increasing arity leads to decreasing the tree height
 Use m – 1 discriminators in each node
 Every subtree contains records with keys restricted by a pair of discriminators

between which the subtree is rooted
 The left/right most subtree of a node contains values lower/higher then every

discriminator in the node

 M-ary trees m = 4
 In reality much higher

 Data could be stored directly in the node as well. But it is not usual in real-world
database environments.

p1 k1 p2 k2 p3 k3 p4

subtree

with

ki < k1

subtree

with

k1 < ki < k2

subtree

with

k2 < ki < k3

subtree

with

k3 < ki

Data Data Data

Disk block

Maximum number of nodes

 m0 + m1 + m2 + …. + mh

 h - height

 ∑0
h mi

 (mh+1 – 1) / (m – 1)

Maximum number of records

 Every node contains up to m – 1 records
 # nodes * m – 1 = mh+1 – 1
 Examples:

 For m = 3, h = 3 we get 80
 For m = 100, h = 3 we get ~ 100.000.000 -1

Minimum height

 h = ⌈logm n⌉

Maximum height

 h ~ n / m

 Height of the tree corresponds to the minimum/maximum number of disk operations
needed to fetch a record.

 O(logmn) < …. < O(n/m)
 The challenge is to keep the complexity logarithmic, that is to keep the tree more or

less balanced

