

Hierarchical Indexing

MOTIVATION

- Key, pointer pairs ~ index Hashing drawbacks No easy range queries
- Alternative: search trees (binary tree, a-b tree)

DRAWBACKS OF INDEX(-SEQUENTIAL) ORGANIZATION

- 🗞 We have a primary file and an index built on top of it
 - α OK for static data (OLAP online analytical processing)
- When inserting a record at the beginning of the file, the whole index needs to be rebuilt
 - ጲ Typical for OLTP online transaction processing
 - & Overflow handling slows down efficiency
- & Reorganisation can take a lot of time, especially for large tables

TREE INDEXES

- & Most common dynamic indexing structure for external memory
- When inserting/deleting into/from the primary file, the indexing structure(s) residing in the secondary file is modified to accommodate the new key
- & The modification of a tree is implemented by splitting/merging nodes
- 🔌 Used in: DBMSs, NTFS, ...

TREE BASICS

- ኢ An undirected graph without cycles
- & Rooted trees ~ one node designated as the root ~ orientation
 - α Nodes are in a parent-child relation
- & Every parent has a finite set of descendants (children nodes)
 - X There is an upper boundary (we need to implement the tree)
- & Every child has exactly one parent
 - & Root is the only node without parent ~ root of the hierarchy
- & Leaves are nodes without children
 - & Bottom level
- 🗞 Inner nodes are nodes with children

TREE BASICS

- Tree arity/degree maximum number of children of any node
 Binary search tree: 2
- 2 Node depth the length of the path (number of edges) from the root node
- δ Tree depth maximum of node depths
- Tree level set of nodes with the same depth (distance from root)
 Level 0 ... root
- Level width number of nodes at a given level
- 2 Node height number of edges on the longest downward path from a node to a leaf
- 2 Tree height the height of the root node

TREE BASICS

& Balanced tree

A tree whose subtrees differ in height by no more than one and the subtrees are balanced as well

& Unsorted tree

A tree where the descendants of a node are not sorted at all

≥ Sorted tree

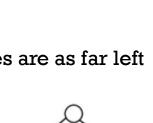
Children of a node are sorted based on a given key

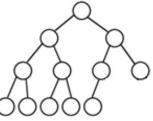
BINARY SEARCH TREE

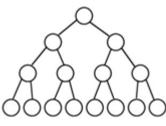
- δ Sorted tree
- Each inner node contains at most two child nodes
- 🗞 Perfect binary tree ~ every non-leaf node has two child nodes
- Complete binary tree ~ full tree except for the last level where nodes are as far left as possible

Perfect tree

- #nodes = $\sum_{i=2^{h+1}-1}$ #leaf nodes = 2^{h}
 - 💥 How big the tree is going to be







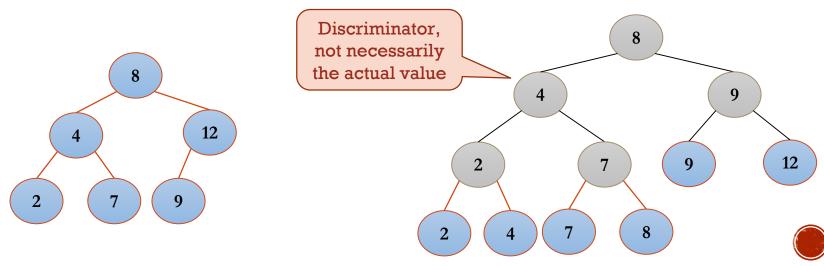
BINARY SEARCH TREE (BST)

Non-Redundant

& Records stored in (addressed from) both inner and leaf nodes.

Redundant BST

- & Records stored in (addressed from) the leaves
- & Structure of inner and leaf nodes differ



BINARY SEARCH TREE – USAGE

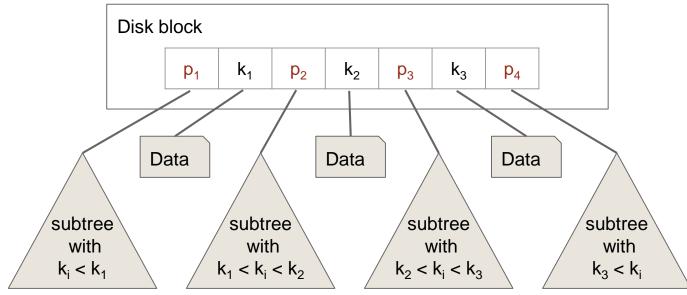
- & Expression trees
 - 🕺 leaves = variables
 - 🔀 inner nodes = operands
- 🗞 Huffman coding
 - 🔀 leaves = data
 - \aleph coding along a branch leading to give leaf = leaf's binary representation
- & Query optimizer in DataBase Management Systems
 - X Query can be represented by an algebraic expression which can be in turn represented by a binary tree
- &Binary trees are not suitable for secondary memory because of their height $\log_2 1.000 \sim 10$ $\log_2 1.000.000 \sim 20$

M-ARY TREES

- & Binary trees: m = 2
- ኢ Increasing arity leads to decreasing the tree height
- & Use m I discriminators in each node
- & Every subtree contains records with keys restricted by a pair of discriminators between which the subtree is rooted
- & The left/right most subtree of a node contains values lower/higher then every discriminator in the node

M-ARY TREES

- & M-ary trees m = 4
 - 🖄 In reality much higher
- & Data could be stored directly in the node as well. But it is not usual in real-world database environments.



CHARACTERISTICS OF M-ARY TREES

Maximum number of nodes

$$\begin{array}{cccc} & m^{0} + m^{1} + m^{2} + \dots + m^{h} \\ & & & & \\ & & & \\ & & & \\ & & & \\ &$$

Maximum number of records

Every node contains up to
$$m - 1$$
 records
 $mathackin m + 1 = m^{h+1} - 1$
Examples:
For m = 3, h = 3 we get 80
For m = 100, h = 3 we get ~ 100.000.000 -1

Minimum height

 $h = \lceil \log_m n \rceil$

Maximum height

≥ h~n/m

CHARACTERISTICS OF M-ARY TREES

- A Height of the tree corresponds to the minimum/maximum number of disk operations needed to fetch a record.
- $\Diamond O(\log_m n) < \dots < O(n/m)$
- X The challenge is to keep the complexity logarithmic, that is to keep the tree more or less balanced

