PRINCIPLES OF DATA ORGANISATION

Hierarchical Indexing - Basics

motivition

@ Key, pointer pairs ~ index
© Search trees (binary tree, a-b tree,...)
© Unlike hashing, trees allow retrieving a set of records with keys from a given range.
d Tree structures use "clustering" to efficiently filter out non-relevant records from the data set

B-TREE

〕. Bayer \& McCreight, 1972
\& B-tree is a sorted balanced m-ary (not binary) tree with additional constraints restricting the branching in each node thus causing the tree to be reasonably "wide"
d. We do not want a tree that looks like a list
¿ Inserting or deleting a record in B-tree causes only local changes and not rebuilding of the whole index

B-TREE

Bonus fact: ... Experiments have been performed with indexes up to 100000 keys.

An index of size 15000 (100 000) can be maintained with an average of 9 (at least 4) transactions (update, delete, search) per second on an IBM System/360 Model 44 with a 2311 disc drive.

B-TREE

B-trees are balanced \boldsymbol{m}-ary trees fulfilling the following conditions:
d. The root has at least two children unless it is a leaf
©. Every inner node except the root has at least $[m / 2]$ and at most m children
d. Each node is at least half full
¢. Every node contains at least $[m / 2]-1$ and at most $m-1$ (pointers to) data records
\& Pointers to data, discriminators and pointers to children are tightly coupled
〕. Each branch has the same length
Node organisation:

$$
\mathrm{p}_{0},\left(\mathrm{k}_{1}, \mathrm{p}_{1}, \mathrm{~d}_{1}\right),\left(\mathrm{k}_{2}, \mathrm{p}_{2}, \mathrm{~d}_{2}\right), \ldots,\left(\mathrm{k}_{\mathrm{n}}, \mathrm{p}_{\mathrm{n}}, \mathrm{~d}_{\mathrm{n}}\right), \mathrm{u}
$$

p_{i} - pointers to the child nodes
$\mathrm{u}-$ unused space $\quad \begin{aligned} & \mathrm{k}_{\mathrm{i}}-\text { keys } / \text { discriminators } \\ & \lceil\boldsymbol{m} / \mathbf{2}\rceil-\mathbf{1} \leq \mathrm{n} \leq \boldsymbol{m}-\mathbf{1}\end{aligned} \quad \mathrm{d}_{\mathrm{i}}$ - data
Records ($\mathrm{k}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}$) are sorted with respect to k_{i}.
For all k_{j} in subtree pointed by $p_{i}: k_{i}<k_{j}<k_{i+1}$

$\mathrm{B}=\mathrm{TPR}$

Non-redundant

d. The presented definition introduced the non-redundant B-tree
(c) Each key value occurred just once in the whole tree
@ Pointers to data are stored with values

Redundant

@ Redundant B-trees store the data values in the leaves and thus have to allow repeating of keys in the inner nodes.
d. I.e. use \leq instead of $<$ in the last condition
d. The inner nodes do not contain pointers to the data records
\& Higher blocking factor
〕. More widespread

B-TREE EXAMPLE

Is is redundant or non-redundant?

B-TREE IMPLEMENTTHTION

@ Usually one page/block contains one node
Existing database management system:
〕. One page usually takes 8 KB
d Redundant B-trees
d. Higher blocking factor of inner nodes
d Range queries - values in leaves
d. Data are not stored in the indexing structure itself but addressed from the leaf nodes
d. Multiple indices

EXMMPLE - NON-REDUNDANT B-TREE, INSERT

〕. Insert values:15,9,23,25,19,40, 17,21
(2) $\mathrm{m}=3$

B-TREE - SEARCH

Searching a (non-redundant) tree T for a record with key k :

1. Enter the tree in the root node.
2. If the node contains a key $\boldsymbol{k}_{\boldsymbol{i}}$ such that $\boldsymbol{k}_{\boldsymbol{i}}=\boldsymbol{k}$ return the data associated with \boldsymbol{d}_{i}.
3. Else if the node is leaf, return NULL.
4. Else find lowest \boldsymbol{i} such that $\boldsymbol{k}<\boldsymbol{k}_{\boldsymbol{i}}$ and set $\boldsymbol{j}=\boldsymbol{i}-\mathbf{1}$.

If there is no such i set j as the rightmost index with existing key.
5. Fetch the node pointed to by $\boldsymbol{p}_{\boldsymbol{j}}$.
6. Repeat the process from step 2.

Example: search for 40
d Remember: one node = one block

B－TREE－UPDATE

The logarithmic complexity is ensured by the condition that every node has to be at least half full．

Inserting

d．Finding a leaf where the new record should be inserted．
〕．When inserting into a not yet full node no splitting occurs．
d．When inserting into a full node，the node is split in such a way that the two resulting nodes are at least half full．
d Split cascade．

Deleting

〕．When deleting a record from a node more than half full，no reorganization happens．
d．Deleting in a half full node induces merging of the neighboring nodes．
〕．Delete cascade

EXMMPLE - NON-REDUNDANT B-TREE, DELETE

Borrow max from left or min from right subtree

EXMMPLE - NON-REDUNDANT B-TREL, DELETE

The last step gradually:

B-TREE - INSERT

Insert into a (non-redundant) tree T for a record r with key k :

1. If the tree is empty, allocate a new node, insert the key k and (pointer to record) r and return.
2. Else find the leaf node L where the key \boldsymbol{k} belongs.
3. If L is not full insert r and k into L in such a position that the keys are sorted and return.
4. Else create a new node L^{\prime}.
5. Leave lower half records (all the items from L plus r) in L and the higher half records into L^{\prime} except of the item with the middle key k^{\prime}.
a. If L is the root, create a new root node, move the record with key k^{\prime} to the new root and point it to L and L^{\prime} and return.
b. Else move the record with key k^{\prime} to the parent node \boldsymbol{P} into appropriate position based on the value k^{\prime} and point the "left" pointer to L and the "right" pointer to L '.
6. If \boldsymbol{P} overflows, repeat step 5 for P else return.

B-TREE - DELETE

Delete from tree T for a record r with key k :
l. Find a node N containing the key k.
2. Remove r from N.
3. If number of keys in $N \geq[m / 2]-1$, return.
4. Else, if possible, merge N with either right or left sibling (includes update of the parent node accompanied by the decrease of the number of keys in the parent node).
5. Else reorganize records among N and its sibling and the parent node.

6 . If needed, reorganize the parent node in the same way (steps $3-5$).

EXAMPLE - REDUNDANT B-TREE, INSERT

© Insert values:15,9,23,25,19,40,17,21
(2) $\mathrm{m}=3$

EXAMPLE - REDUNDANT B-TREE, DELETE

B-TREE - COMPLEXITY / CAPACITY

|page| $=8 \mathrm{KiB}$
|node pointer| = 8 B
$\mathrm{m} .$. arity (blocking factor)

$$
\begin{gathered}
m * \mid \text { node pointer } \mid+(m-1) *(\mid \text { key }|+| \text { data pointer } \mid) \leq \mid \text { page } \mid \\
m \leq(8192+19 / 27)=304
\end{gathered}
$$

With $2 / 3$ utilization, 202 records per node, we got:

Tree height	\# Records
0	202
1	40.804
2	8.242 .408
3	1.664 .996 .416

