
Hierarchical Indexing - Basics

 Key, pointer pairs ~ index
 Search trees (binary tree, a-b tree,…)
 Unlike hashing, trees allow retrieving a set of records with keys from a given range.
 Tree structures use “clustering” to efficiently filter out non-relevant records from the data

set

 Bayer & McCreight, 1972
 B-tree is a sorted balanced m-ary (not binary) tree with additional constraints

restricting the branching in each node thus causing the tree to be reasonably “wide”
 We do not want a tree that looks like a list

 Inserting or deleting a record in B-tree causes only local changes and not rebuilding
of the whole index

Bonus fact: … Experiments have been
performed with indexes up to 100 000 keys.

An index of size 15 000 (100 000) can be
maintained with an average of 9 (at least 4)
transactions (update, delete, search) per
second on an IBM System/360 Model 44
with a 2 311 disc drive.

B-trees are balanced m-ary trees fulfilling the following conditions:
 The root has at least two children unless it is a leaf
 Every inner node except the root has at least ⌈𝒎/𝟐⌉ and at most 𝒎 children

 Each node is at least half full

 Every node contains at least ⌈𝒎/𝟐⌉−𝟏 and at most 𝒎−𝟏 (pointers to) data records
 Pointers to data, discriminators and pointers to children are tightly coupled

 Each branch has the same length

Node organisation:
p0, (k1, p1, d1), (k2, p2, d2), … , (kn, pn, dn), u

pi – pointers to the child nodes ki – keys/discriminators di – data
u – unused space ⌈𝒎/𝟐⌉−𝟏 ≤ n ≤ 𝒎−𝟏

Records (ki, pi, di) are sorted with respect to ki.
For all kj in subtree pointed by pi : ki < kj < ki + 1

Non-redundant

 The presented definition introduced
the non-redundant B-tree

 Each key value occurred just once
in the whole tree

 Pointers to data are stored with
values

Redundant

 Redundant B-trees store the data
values in the leaves and thus have
to allow repeating of keys in the
inner nodes.
 I.e. use ≤ instead of < in the last

condition

 The inner nodes do not contain
pointers to the data records
 Higher blocking factor

 More widespread

78

48

19 27

2512 35 38 56 91

Is is redundant or non-redundant?

 Usually one page/block contains one node

Existing database management system:

 One page usually takes 8KB
 Redundant B-trees

 Higher blocking factor of inner nodes
 Range queries – values in leaves

 Data are not stored in the indexing structure itself but addressed from the leaf nodes
 Multiple indices

NON
 Insert values:15,9,23,25,19,40,17,21
 m = 3

15 9 15

9 23

15

9 23 25

15

9 19

15 23

25 9 19

15 23

25 40 9 17 19

15 23

25 40

9 17

15

21

19

23

25 40

15 9 23 25 19

40
17 21

Searching a (non-redundant) tree 𝑇 for a record with key 𝑘 :

1. Enter the tree in the root node.
2. If the node contains a key 𝒌𝒊 such that 𝒌𝒊=𝒌

return the data associated with 𝒅𝒊.
3. Else if the node is leaf, return NULL.
4. Else find lowest 𝒊 such that 𝒌<𝒌𝒊 and set 𝒋=𝒊−𝟏.

If there is no such 𝑖 set 𝒋 as the rightmost index with existing key.
5. Fetch the node pointed to by 𝒑𝒋.
6. Repeat the process from step 2.

Example: search for 40
 Remember: one node = one block

9 17

15

21

19

23

25 40

Inserting

 Finding a leaf where the new record
should be inserted.

 When inserting into a not yet full
node no splitting occurs.

 When inserting into a full node, the
node is split in such a way that the
two resulting nodes are at least half
full.

 Split cascade.

Deleting

 When deleting a record from a
node more than half full, no
reorganization happens.

 Deleting in a half full node induces
merging of the neighboring nodes.

 Delete cascade

The logarithmic complexity is ensured by the condition that every node has to be at least half full.

NON

9 17 18

15

21 22

19

23

25 40

9 17

15

21 22

19

25

40

Borrow max from left or min from right subtree

9 17

15

21 22

19

23

25 40

9 17

15

21

19

22

25

Borrow from parent and nearest siblings

Delete 23
Delete 18

Delete 40
Delete 21

NON

9 17

15

19

22

25 9 17

15

19

22 25

9 17

15 19

22 25

The last step gradually:

Propagate problem

up – delete cascade

Only the root

level can

disappear!

Insert into a (non-redundant) tree 𝑇 for a record 𝑟 with key 𝑘 :

1. If the tree is empty, allocate a new node, insert the key 𝑘 and (pointer to record) 𝑟 and
return.

2. Else find the leaf node 𝑳 where the key 𝒌 belongs.
3. If 𝑳 is not full insert 𝒓 and 𝑘 into 𝐿 in such a position that the keys are sorted and return.
4. Else create a new node 𝑳′.
5. Leave lower half records (all the items from 𝐿 plus 𝑟) in 𝑳 and the higher half records into
𝑳′ except of the item with the middle key 𝑘′.

a. If 𝐋 is the root, create a new root node, move the record with key 𝑘′ to the new root
and point it to 𝑳 and 𝑳′ and return.

b. Else move the record with key 𝑘′ to the parent node 𝑷 into appropriate position
based on the value 𝑘′ and point the “left” pointer to 𝐋 and the “right” pointer to 𝑳′.

6. If 𝑷 overflows, repeat step 5 for 𝑃 else return.

Delete from tree 𝑇 for a record 𝑟 with key 𝑘 :

1. Find a node 𝑵 containing the key 𝑘.
2. Remove 𝒓 from 𝑁.
3. If number of keys in 𝑵 ≥⌈𝒎/𝟐⌉−𝟏, return.
4. Else, if possible, merge 𝑵 with either right or left sibling (includes update of the parent

node accompanied by the decrease of the number of keys in the parent node).
5. Else reorganize records among 𝑵 and its sibling and the parent node.
6. If needed, reorganize the parent node in the same way (steps 3 – 5).

 Insert values:15,9,23,25,19,40,17,21
 m = 3

15 9 15

9 15 23

15

9 15 23 25

15

9 15 19 23

15 23

25 9 15 19 23

15 23

25 40

9 15 17 19

15

23

19

23

25 40 9 15 17 19

15

21 23

19

23

25 40

Keep the values

in leaves

Non-redundant

split

15 9 23 25 19

40

17

21

9 15 17 19

15

21 23

19

23

25 40 9 15 17 19

15

21

19

23

25 40

9 15 19

15

21

19

23

25 40 9 15 21

19 23

25 40

Or, we could borrow

a value from a sibling

(deferred merging)

Propagate problem

up – inside the tree

apply the non-

redundant version!

Delete 23 Delete 17

Delete 19

|page| = 8 KiB |key| = 10 B
|node pointer| = 8 B |data pointer| = 9 B
m … arity (blocking factor)

m * |node pointer| + (m – 1) * (|key| + |data pointer|) ≤ |page|
m ≤ (8192 + 19 / 27) = 304

With ⅔ utilization, 202 records per node, we got:
Tree height # Records

0 202

1 40.804

2 8.242.408

3 1.664.996.416

upper limit on

number of reads

required to

search the index

