
Hierarchical Indexing – Advanced

 Key, pointer pairs ~ index
 B-tree

 Balanced tree
 Node = page/block
 Redundant/non-redundant

Clustered index

 Corresponds to the idea of index-
sequential file organization

 Logical order of the key values
determines the physical order of the
corresponding data records

 Only one
 Fast range queries

Nonclustered index

 Order of data in the index and the primary
file is not related

 Multiple nonclustered indexes can exist

Index pages

Data pages

…

…

…

… …

Sparse index

 Entry for each page/block
 Clustered index – data in a page/block

the data is sorted

 Note: Clustered index can be sparse or
dense

Dense index

 Entry for every data record
 Nonclustered (non-primary) index must

be dense

CREATE TABLE Product(

id INT PRIMARY KEY NONCLUSTERED,

code NVARCHAR(5),

name NVARCHAR(50),

type INT);

CREATE NONCLUSTERED INDEX ixProductCode ON Product(code);

CREATE CLUSTERED INDEX ixProductName ON Product(name);

Forces

ordering

When indexing a large collection, inserting
records one by one can be tedious

 Sort the data based on the search key in
the pages

 Insert pointer to the leftmost page into a
new root

 Move over the data file and insert the
respective keys into the rightmost index
page above the leaf level. If the
rightmost page overflows, split.

6

not yet inserted records
3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

4 11 22 31

9 13

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

4 11 22

9

36

31

13

 Sorted: 3, 4, 6, 9, 10, 11, 12, 13…

3 4 6 9

4

10 11 12 13

11

9

3 4 6 9

4

10 11 12 13 …

9

If we expect

lots of inserts

 Modification of B-tree where an overflow does not have to lead to a page split
 When a page overflows

 Sibling pages are checked
 The content of the overflowed page is joined into set 𝑋 with the left or right

neighbors
 The record to be inserted is added into 𝑿 and the content is equally distributed

into the two nodes
 The changes are projected into the parent node where the keys have to be

modified (but no new key is inserted → no split cascade)
 For high 𝑚 this change leads to about 75% utilization in the worst case

6 15

1 2 9 10 11 12

14

9 15

1 2 6 10 11 12 14

 Certain sequences of inserts can lead to only 50% utilization
 Let us keep an overflow page for each node
 When a page overflows, the overflown record is inserted into the respective overflow

page
 Insert is faster
 Better utilization
 Search is slower

 We need to searh the overflow area

 When both the original and the overflow page are full, the original page is split and
the overflow page is emptied

10 11 13 14

12 15 18

19 2016 171 2 4 5

3 6

7 8

9

Example: Increasing sequence of numbers 1, 2, 3, 4, …, 20 (e.g. typically primary key) fill factor

is 0.5 so the worst possible

1 2 3 4

Insert 5

1 2 3 4

5

Insert 10-20

1 2 3 4

5 6 7 8

Insert 6,7,8

6 7 8 91 2 3 4

5

1 2 3 4 6 7 8 9

5 10 15

16 17 18 1911 12 13 14

20

Insert 9

Fill factor 0.83

 Often we want to index not only numbers but also strings
→ variable length-records (VLR) → different 𝑚 for different nodes
 Note: In existing DB systems, indexable string data types have upper limit on the

number of characters (NVARCHAR(n)) → not exactly VLR
 When splitting a page with VLR, rather length of the records is taken into account

than the number of records
 Result: the distribution is driven by the resulting length

 Can lead to violation of the condition regarding the minimum number
of records in a B-tree

 Longer records tend to get closer to the root, causing lower arity close to the root
 When merging, a short record can be replaced by a longer one causing height

increase

@ D O @ F A L L @ N O T @

Representing the sentence: “DO NOT FALL ASLEEP”

• node size is 15

• pointers represented by @
• For the sake of simplicity let us consider size of a pointer to be identical to the size of a character

• Inserting “ASLEEP” causes overflow → splitting

• Sequence to be split: @ASLEEP@DO@FALL@NOT@

• → O is the middle character

@ A S L E E P @ @ F A L L @ N O T @

@ D O @

 Modification of redundant B-tree
 Inner node keys do not have to be subsets of the keys in the leaf level,

they only need to separate
 Smaller keys lead to higher node capacity → lower trees → faster access
 Suitable choice of separators are prefixes of the keys

F

B Co M

An As C E I N No

A

An

And

As

By

Certain

Computation

Computations

Equation

Equations

For

From

In

Its

Method

Methods

New

Note

Notes

 Redundant B-tree
 The leaf level is chained by pointers

 The leaf nodes do not have to be physically next to each other

 Faster range queries
 Preferred in existing database management system
 Sometimes the inner levels chained as well

 e.g., Microsoft SQL Server

…

…

.

.

.

 Generalization of page balancing
 The root node has at least 2 children
 Every node different from the root has at least ⌈(𝟐𝒎−𝟏)/𝟑⌉ children

 2/3 utilization (in B-tree we have 50%)

 Idea: 2 full pages are split into 3 pages (one new page)
 Algorithm:

 If a node is full but none of its neighbors is full, page balancing takes place
 If the insert occurs in a full page which has full left or right neighbor

 Their content is joined into a set 𝑋 together with the new record
 A new page 𝑃 is allocated
 The records from 𝑋 are equally distributed into the 3 pages

(the 2 existing and 𝑃)
 A new key is added into the parent node and the keys are adjusted

 The delete operation is handled similarly
 Idea: We use page balancing or we take 3 nodes and merge into 2

 m = 5

5 7 10 15

Insert 30

5 7 10

10

15 30

Insert 20,13

5 7 10

10

13 15 20 30

Insert 21

5 7 10 13

13

15 20 21 30

Page balancing

Insert 3

3 5 7

7 15

10 13 15 20 21 30

Oracle 11g MSQL Server

2016

PostgreSQL 9.2 MySQL 5.5

Standard index B+tree B+tree B+tree B+tree

Bitmap index Yes No No No

Hash index Yes (clustering) Yes (clustering) Yes Yes

Spatial index R-tree B+tree

Hilbert curve

R-tree R-tree

