
Indexing hierarchical data



Pure data are hard to process automatically

We need to:
 Ensure that a particular software understands the data

 Add meaning (semantics) of particular data fragments

E.g. HTML – describes the visualisation of data for an 
HTML browser
 Problem 1: What if we are not interested just in visualisation?

 Problem 2: HTML has lax rules for the structure
 Complex processing

 Solution: semi-structured data formats
 JSON, XML, …





 XML (eXtensible Markup Language) is a format for transfer and 
exchange of general data
 Extensible Markup Language (XML) 1.0 (Fifth Edition)
 http://www.w3.org/TR/xml/

 Extensible Markup Language (XML) 1.1 (Second Edition)
 http://www.w3.org/TR/xml11/

 XML is a subset (application) of SGML (Standard Generalized 
Markup Language - ISO 8879) – from 1986

 XML does not deal with data presentation
 It enables to tag parts of the data
 The meaning of the tags depends on the author
 Presentation is one possible example

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml11/


<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment/>

</message>

Element with text 

content

Empty element

Element with 

element 

content

Root element

Element with mixed 

content

<attachment></attachment>



<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment fig="image01.jpg"/>

</message>

Attribute 

value

Attribute 

name

Element with 

an attribute



<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<!–- to whom the message should be sent? -->

<address>Jan Amos</address>

<text>

<![CDATA[

for (i=0; i < 10; i++)

{ 

document.writeln("<p>Hi!</p>");

}

]]>

</text>

<signature>Steve J.</signature>

<date><?php echo Date("d.m.Y")?></date>

</message>

Comment

Processing 

instruction

CDATA

section

Prologue



SGML

XML HTML

XHTML

specific set of tags, lax rules for 

structurestrict rules for structure

specific set of tags

which tags to use



 XML document is well-formed, if:

 It has introductory prolog

 Start and end tags nest properly 

 Each element has a start and an end tag

 Corresponding tags have the same name (case sensitivity)

<a></A>

 Pairs of tags do not cross

<a><b></a></b>

 The whole document is enclosed in a single root element



Problem: Well-formedness is insufficient
 We need to restrict the set of tags and their content

Document Type Definition (DTD) describes the structure 
(grammar) of an XML document
 Using regular expressions

Valid XML document = well-formed XML document 
corresponding to a given grammar
 There are also other languages – XML Schema, Schematron, RELAX NG, 

…



<!ELEMENT employees (person)+>

<!ELEMENT person (name, email*, relations?)>

<!ATTLIST person id ID #REQUIRED>

<!ATTLIST person note CDATA #IMPLIED>

<!ATTLIST person holiday (yes|no) "no">

<!ELEMENT name ((first, surname)|(surname, first))>

<!ELEMENT first (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT relations EMPTY>

<!ATTLIST relations superior IDREF #IMPLIED>

<!ATTLIST relations subordinates IDREFS #IMPLIED>

Element = 

name 

+

content model

, … sequence
| … selection
? … iteration (0 or 1)
+ … iteration (1 or more)
* … iteration (0 or more)

Attribute = 

name 

+

data type 

+

presence /

default value





<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>



<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

document



<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document



<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"



<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"

customer

number

"C992"

text()

"Steve J."



order

document

date

"10/10/2008"
status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"



 Types of nodes in the model
 Root node

 Element node

 Text node

 Attribute node

 Comment

 Processing instruction

 Namespace

 What is not included: CDATA section, entity 
reference, DTD



 XPath expression is a path

 Path consists of steps

 Absolute path:

 /Step1/Step2/…/StepN

 Relative path:

 Step1/Step2/…/StepN



order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price
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item

code

"929118813"

amount price

text() text()
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text()
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/

"10/10/2008"
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document

date
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text()
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"10/10/2008"



order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price
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item

code

"929118813"
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/order/items/item/price/text()
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order

document

date

status

"confirmed"
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number
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text()
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"48282811"
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order

document

date
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order

document

date
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customer

number
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http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif


 Text-based easy-to-read-and-write open standard for data interchange 
 Serializing and transmitting structured data

 Considered as an alternative to XML

 Filename: *.json

 Internet media type (MIME type): application/json

 Derived from JavaScript scripting language

 Language independent 
 But uses conventions of the C-family of languages (C, C++, C#, Java, JavaScript, 

Perl, Python, …)

 Originally specified by Douglas Crockford in 2001
 RFC 4627

 Requests for comments = "standard" publication of the Internet Engineering Task Force and the 
Internet Society

http://www.json.org/

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://www.json.org/


Built on two general structures:
 Collection of name/value pairs

 Realized as an object, record, struct, dictionary, hash table, keyed list, 
associative array, …

 Ordered list of values

 Realized as an array, vector, list, sequence, …

Universal data structures
 All modern programming languages support them



 object – an unordered set of name/value pairs
 called properties (members) of an object

 { comma-separated name : value pairs }

 array – an ordered collection of values

 called items (elements) of an array

 [ comma-separated values ]



 value – string in double quotes / number / true or false (i.e., Boolean) / null 

/ object / array

 Can be nested



 string – sequence of zero or more Unicode characters, wrapped in double 
quotes

 Backslash escaping



 number – like a C or Java number
 Octal and hexadecimal formats are not used



{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

name/value pair

array

object





 The basic classification of XML documents results from their origin and 
the way they were created

 data-oriented

 document-oriented

 hybrid

 For the particular classes different ways of implementations are suitable



Usually created and processed by humans

 Irregular, less structured
 Semi-structured data

Often contain 
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is crucial

Example: XHTML web pages



<book id="12345">

<title>All I Really Need To Know I Learned in 

Kindergarten</title>

<author>Robert Fulghum</author>

<description>A new, edited and extended publication published 

on the occasion of the fifteen anniversary of the first 

edition</description>

<Text>

<p>Fifteen years after publishing of <q>his</q> 

<i>Kindergarten</i> Robert Fulghum has decided to read it once 

again, now in <i>2003</i>.</p>

<p>He wanted to find out whether and, if so, to what extent 

his opinions have changed and why. Finally, he modified and 

extended his book to...</p>

<Text>

</book>



Usually created and processed by machines

Regular, deep structure
 Fully structured data

They do not contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is often unimportant

Example: database exports, catalogues, …



<book id="12345">

<title>All I Really Need To Know I Learned in 

Kindergarten</title>

<author>

<name>Robert</name>

<surname>Fulghum</surname>

</author>

<edition title="Argo">

<year>2003</year>

<ISBN>80-7203-538-X</ISBN>

</edition>

<edition title="Argo">

<year>1996</year>

<ISBN>80-7203-028-0</ISBN>

</edition>

</book>



 Differ according to the type of documents

 Exploit typical features

 Problem: hybrid documents

 Ambiguous classification

 Document-oriented techniques vs. Data-oriented techniques



We need to preserve the document as whole
 Order of sibling elements

 Comments, CDATA sections, ...

 Even whitespaces

 For legislative documents

Round tripping – storing a document into a database and its 
retrieval
 The level of round tripping says to what extent the documents are similar

 The higher level, the higher similarity

 In the optimal case they are equivalent



 Idea: The data are stored in a relational database management system 
(RDBMS)

 Mapping method – transforms the data into relations (and back) 

 XML queries over XML data  SQL queries over relations

 The result of SQL query  XML document

 Exploit data-oriented aspects (low level of round tripping)

 It is not necessary to preserve the document as a whole

 Order of sibling elements is ignored, document-oriented constructs 
(comments, whitespaces, …) are ignored, …

 No (little) support for mixed-content elements



A numbering schema of a tree model of a document is a 
function which assigns each node a unique identifier that 
serves as a reference to that node for indexing and query 
evaluation

Enable fast evaluation of selected relationships among 
nodes of XML document
 Ancestor-descendant

 Parent-child

 Element-attribute

 …

 Depth of the node

 Order among siblings

 …



 Sequential numbering schema
 The identifiers are assigned to the nodes as soon as they are 

added to the system sequentially, starting from 1

 Structural numbering schema
 Enables to preserve and evaluate a selected relationship

among any two nodes of the document

 Often it is expected to enable fast searching for all 
occurrences of such a relationship in the document



 Stable numbering schema

 A schema which does not have to be modified (except for preserving 
its local features) when the structure of the respective data changes

 i.e., on insertion/deletion of nodes

 A schema of a structural numbering schema

 Is an ordered pair (p, L), where p is a binary predicate and L is an 
inverse function which for the given XML tree model T = (N, E)
assigns each node v ∈ N a binary sequence L(v).

 For each pair of nodes u, v ∈ N predicate p(L(u), L(v)) is satisfied if v
is in a particular relationship with u.

 e.g. v is a descendant of u

 Particular numbering schema: particular p and L



<?xml version="1.0"?>

<contact>

<name>B. Pitt</name>

<phone>

<cell>6091234</cell>

<home>41983</home>

</phone>

</contact>

(1,8)

contact

(2,2)

name

(3,1)

"B. Pitt"

(4,7)

phone

(5,4)

cell

(7,6)

home

(6,3)

"6091234" 

(8,5)

"41983"



 Preorder traversal

 Child nodes of a node follow their parent node

 Postorder traversal

 Parent node follows its child nodes

 Construction of a numbering schema

 Each node v ∈ N is assigned with a pair (x, y) denoting preorder and 
postorder order

 Node v ∈ N having L(v) = (x, y) is a descendant node of node u

having L(u) = (x', y') if x' < x & y' > y



(1,43)

contact

(2,5)

name

(3,4)

"B. Pitt"

(33,42)

phone

(34,37)

cell

(38,41)

home

(35,36)

"13727" 

(39,40)

"41983"

preorder traversal +
 assigning (umin, umax), 
where 
 umin is the time of visiting 
a node 
 umax is the time of leaving 
a node
 Predicate is the same as 
in the previous case



 The predicate 
corresponds to 
searching a substring

 Problem: updates

1

contact

1.1

name

1.1.1

"B. Pitt"

1.2

phone

1.2.1

cell

1.2.2

home

1.2.1.1

"13727" 

1.2.2.1

"41983"

1.3

phone



 New level of tree 
= new level of 
numbering

 We use only odd 
numbers

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727" 

1.3.3.1

"41983"

1.5

phone



1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727" 

1.3.3.1

"41983"

1.5

phone

1.7

phone

o At the end directly



1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727" 

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

o At the beginning using 
negative numbers



1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727" 

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

1.3.2

1.3.2.1

home

1.3.2.1.1

"1234"

1.3.2.3

home

1.3.2.3.1

"56789"

o In the middle using 
an auxiliary node
with even number



What we want: persistent storage of XML data

General classification:
 Based on a file system

 Based on an object model

 Based on (object-)relational databases

 XML-enabled databases

 Exploit a mapping method between XML data and relations

 Native XML databases

 Exploit a suitable data structure for hierarchical tree data

 Usually, a set of numbering schemas

 Later adopted also by the XML-enable databases



 The recording of this lecture can be found here:

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-
2022-12-22

Login: student

Password: PDOhi2022

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-2022-12-22

