
Indexing hierarchical data

Pure data are hard to process automatically

We need to:
 Ensure that a particular software understands the data

 Add meaning (semantics) of particular data fragments

E.g. HTML – describes the visualisation of data for an
HTML browser
 Problem 1: What if we are not interested just in visualisation?

 Problem 2: HTML has lax rules for the structure
 Complex processing

 Solution: semi-structured data formats
 JSON, XML, …

 XML (eXtensible Markup Language) is a format for transfer and
exchange of general data
 Extensible Markup Language (XML) 1.0 (Fifth Edition)
 http://www.w3.org/TR/xml/

 Extensible Markup Language (XML) 1.1 (Second Edition)
 http://www.w3.org/TR/xml11/

 XML is a subset (application) of SGML (Standard Generalized
Markup Language - ISO 8879) – from 1986

 XML does not deal with data presentation
 It enables to tag parts of the data
 The meaning of the tags depends on the author
 Presentation is one possible example

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml11/

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment/>

</message>

Element with text

content

Empty element

Element with

element

content

Root element

Element with mixed

content

<attachment></attachment>

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment fig="image01.jpg"/>

</message>

Attribute

value

Attribute

name

Element with

an attribute

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<!–- to whom the message should be sent? -->

<address>Jan Amos</address>

<text>

<![CDATA[

for (i=0; i < 10; i++)

{

document.writeln("<p>Hi!</p>");

}

]]>

</text>

<signature>Steve J.</signature>

<date><?php echo Date("d.m.Y")?></date>

</message>

Comment

Processing

instruction

CDATA

section

Prologue

SGML

XML HTML

XHTML

specific set of tags, lax rules for

structurestrict rules for structure

specific set of tags

which tags to use

 XML document is well-formed, if:

 It has introductory prolog

 Start and end tags nest properly

 Each element has a start and an end tag

 Corresponding tags have the same name (case sensitivity)

<a>

 Pairs of tags do not cross

<a>

 The whole document is enclosed in a single root element

Problem: Well-formedness is insufficient
 We need to restrict the set of tags and their content

Document Type Definition (DTD) describes the structure
(grammar) of an XML document
 Using regular expressions

Valid XML document = well-formed XML document
corresponding to a given grammar
 There are also other languages – XML Schema, Schematron, RELAX NG,

…

<!ELEMENT employees (person)+>

<!ELEMENT person (name, email*, relations?)>

<!ATTLIST person id ID #REQUIRED>

<!ATTLIST person note CDATA #IMPLIED>

<!ATTLIST person holiday (yes|no) "no">

<!ELEMENT name ((first, surname)|(surname, first))>

<!ELEMENT first (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT relations EMPTY>

<!ATTLIST relations superior IDREF #IMPLIED>

<!ATTLIST relations subordinates IDREFS #IMPLIED>

Element =

name

+

content model

, … sequence
| … selection
? … iteration (0 or 1)
+ … iteration (1 or more)
* … iteration (0 or more)

Attribute =

name

+

data type

+

presence /

default value

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

document

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

order

document

date

"10/10/2008"
status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

 Types of nodes in the model
 Root node

 Element node

 Text node

 Attribute node

 Comment

 Processing instruction

 Namespace

 What is not included: CDATA section, entity
reference, DTD

 XPath expression is a path

 Path consists of steps

 Absolute path:

 /Step1/Step2/…/StepN

 Relative path:

 Step1/Step2/…/StepN

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/@code

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/price/text()

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/color

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/customer/name

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/item-list/item

"10/10/2008"

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif

 Text-based easy-to-read-and-write open standard for data interchange
 Serializing and transmitting structured data

 Considered as an alternative to XML

 Filename: *.json

 Internet media type (MIME type): application/json

 Derived from JavaScript scripting language

 Language independent
 But uses conventions of the C-family of languages (C, C++, C#, Java, JavaScript,

Perl, Python, …)

 Originally specified by Douglas Crockford in 2001
 RFC 4627

 Requests for comments = "standard" publication of the Internet Engineering Task Force and the
Internet Society

http://www.json.org/

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://www.json.org/

Built on two general structures:
 Collection of name/value pairs

 Realized as an object, record, struct, dictionary, hash table, keyed list,
associative array, …

 Ordered list of values

 Realized as an array, vector, list, sequence, …

Universal data structures
 All modern programming languages support them

 object – an unordered set of name/value pairs
 called properties (members) of an object

 { comma-separated name : value pairs }

 array – an ordered collection of values

 called items (elements) of an array

 [comma-separated values]

 value – string in double quotes / number / true or false (i.e., Boolean) / null

/ object / array

 Can be nested

 string – sequence of zero or more Unicode characters, wrapped in double
quotes

 Backslash escaping

 number – like a C or Java number
 Octal and hexadecimal formats are not used

{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

name/value pair

array

object

 The basic classification of XML documents results from their origin and
the way they were created

 data-oriented

 document-oriented

 hybrid

 For the particular classes different ways of implementations are suitable

Usually created and processed by humans

 Irregular, less structured
 Semi-structured data

Often contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is crucial

Example: XHTML web pages

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>Robert Fulghum</author>

<description>A new, edited and extended publication published

on the occasion of the fifteen anniversary of the first

edition</description>

<Text>

<p>Fifteen years after publishing of <q>his</q>

<i>Kindergarten</i> Robert Fulghum has decided to read it once

again, now in <i>2003</i>.</p>

<p>He wanted to find out whether and, if so, to what extent

his opinions have changed and why. Finally, he modified and

extended his book to...</p>

<Text>

</book>

Usually created and processed by machines

Regular, deep structure
 Fully structured data

They do not contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is often unimportant

Example: database exports, catalogues, …

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>

<name>Robert</name>

<surname>Fulghum</surname>

</author>

<edition title="Argo">

<year>2003</year>

<ISBN>80-7203-538-X</ISBN>

</edition>

<edition title="Argo">

<year>1996</year>

<ISBN>80-7203-028-0</ISBN>

</edition>

</book>

 Differ according to the type of documents

 Exploit typical features

 Problem: hybrid documents

 Ambiguous classification

 Document-oriented techniques vs. Data-oriented techniques

We need to preserve the document as whole
 Order of sibling elements

 Comments, CDATA sections, ...

 Even whitespaces

 For legislative documents

Round tripping – storing a document into a database and its
retrieval
 The level of round tripping says to what extent the documents are similar

 The higher level, the higher similarity

 In the optimal case they are equivalent

 Idea: The data are stored in a relational database management system
(RDBMS)

 Mapping method – transforms the data into relations (and back)

 XML queries over XML data SQL queries over relations

 The result of SQL query XML document

 Exploit data-oriented aspects (low level of round tripping)

 It is not necessary to preserve the document as a whole

 Order of sibling elements is ignored, document-oriented constructs
(comments, whitespaces, …) are ignored, …

 No (little) support for mixed-content elements

A numbering schema of a tree model of a document is a
function which assigns each node a unique identifier that
serves as a reference to that node for indexing and query
evaluation

Enable fast evaluation of selected relationships among
nodes of XML document
 Ancestor-descendant

 Parent-child

 Element-attribute

 …

 Depth of the node

 Order among siblings

 …

 Sequential numbering schema
 The identifiers are assigned to the nodes as soon as they are

added to the system sequentially, starting from 1

 Structural numbering schema
 Enables to preserve and evaluate a selected relationship

among any two nodes of the document

 Often it is expected to enable fast searching for all
occurrences of such a relationship in the document

 Stable numbering schema

 A schema which does not have to be modified (except for preserving
its local features) when the structure of the respective data changes

 i.e., on insertion/deletion of nodes

 A schema of a structural numbering schema

 Is an ordered pair (p, L), where p is a binary predicate and L is an
inverse function which for the given XML tree model T = (N, E)
assigns each node v ∈ N a binary sequence L(v).

 For each pair of nodes u, v ∈ N predicate p(L(u), L(v)) is satisfied if v
is in a particular relationship with u.

 e.g. v is a descendant of u

 Particular numbering schema: particular p and L

<?xml version="1.0"?>

<contact>

<name>B. Pitt</name>

<phone>

<cell>6091234</cell>

<home>41983</home>

</phone>

</contact>

(1,8)

contact

(2,2)

name

(3,1)

"B. Pitt"

(4,7)

phone

(5,4)

cell

(7,6)

home

(6,3)

"6091234"

(8,5)

"41983"

 Preorder traversal

 Child nodes of a node follow their parent node

 Postorder traversal

 Parent node follows its child nodes

 Construction of a numbering schema

 Each node v ∈ N is assigned with a pair (x, y) denoting preorder and
postorder order

 Node v ∈ N having L(v) = (x, y) is a descendant node of node u

having L(u) = (x', y') if x' < x & y' > y

(1,43)

contact

(2,5)

name

(3,4)

"B. Pitt"

(33,42)

phone

(34,37)

cell

(38,41)

home

(35,36)

"13727"

(39,40)

"41983"

preorder traversal +
 assigning (umin, umax),
where
 umin is the time of visiting
a node
 umax is the time of leaving
a node
 Predicate is the same as
in the previous case

 The predicate
corresponds to
searching a substring

 Problem: updates

1

contact

1.1

name

1.1.1

"B. Pitt"

1.2

phone

1.2.1

cell

1.2.2

home

1.2.1.1

"13727"

1.2.2.1

"41983"

1.3

phone

 New level of tree
= new level of
numbering

 We use only odd
numbers

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.7

phone

o At the end directly

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

o At the beginning using
negative numbers

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

1.3.2

1.3.2.1

home

1.3.2.1.1

"1234"

1.3.2.3

home

1.3.2.3.1

"56789"

o In the middle using
an auxiliary node
with even number

What we want: persistent storage of XML data

General classification:
 Based on a file system

 Based on an object model

 Based on (object-)relational databases

 XML-enabled databases

 Exploit a mapping method between XML data and relations

 Native XML databases

 Exploit a suitable data structure for hierarchical tree data

 Usually, a set of numbering schemas

 Later adopted also by the XML-enable databases

 The recording of this lecture can be found here:

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-
2022-12-22

Login: student

Password: PDOhi2022

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-2022-12-22

