Indexing hierarchical data

MOTIVATION

= Pure data are hard to process automatically

= We need to:
= Ensure that a particular software understands the data
= Add meaning (semantics) of particular data fragments

= E.g. HTML - describes the visualisation of data for an
HTML browser

= Problem 1:What if we are not interested just in visualisation?

= Problem 2: HTML has lax rules for the structure
= Complex processing

= Solution: semi-structured data formats
- JSON, XML, ...

BRIEFLY ON
XML

W3C

XML (EXTENSIBLE MARKUP LANGUAGE)

= XML (eXtensible Markup Language) is a format for transfer and
exchange of general data

= Extensible Markup Language (XML) 1.0 (Fifth Edition)

= Extensible Markup Language (XML) 1.1 (Second Edition)

= XML is a subset (application) of SGML (Standard Generalized
Markup Language - ISO 8879) — from 1986

= XML does not deal with data presentation
= It enables to tag parts of the data

= The meaning of the tags depends on the author
= Presentation is one possible example

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml11/

XML ELEMENTS

Y
Element with
element

content >

Root element

<?xml version="1.1" encoding="iso-8859-2"?>
<message> }

<address> Element Wlth text
<name>Tim Berners-Lee</name> content
<street>Northern 12</street>

</address>

<intro>Hi'!</intro>

< >My <it>Internet</it> does not work!</ >

<signature>Steve J.</signature>

<attachment/>

</message> \Q?\\

\

Element with mixed
] content

[Empty element

|

<attachment></attachment>

XML ATTRIBUTES

<?xml version="1.1" encoding="iso-8859-2"?>

<message>
Element with |<address>
an attribute <name>Tim Berners-Lee</name>
<street>Northern 12</street>
</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>
<signature>Steve J.</signature>

<attachment fig="imageOl.jpg"/>

</message%/<;7/ \§§§:\\

Attribute Attribute
name value

OTHER ITEMS OF XML DOCUMENT

<message>
<!-- to whom the message should be sent? -->
<address>Jan Amos</address>
<text>
<! [CDATA[
for (i=0; i < 10; i++)
{

<?xml version="1.1l" encoding="iso-8859-2"7?> ::i Prologue]

—==::{ Comment]

document.writeln ("<p>Hi!</p>") ;
}
11>
</text>
<signature>Steve J.</signature>
<date><?php echo Date("d.m.Y")?></date>

CDATA
section

</message> —

L

Processing
instruction

SGML V8. XML V5. HTML VS. XHTML

strict rules for structure

specific set of tags

XML

XHTML

SGML
specific set of tags, lax rules for
structure
HTML
e < '
- which tags to use

XML DOCUMENT

= XML document is well-formed, if:
= It has introductory prolog

= Start and end tags nest properly
= Each element has a start and an end tag
= Corresponding tags have the same name (case sensitivity)
<a>
= Pairs of tags do not cross
<a>
= The whole document is enclosed in a single root element

DTD

= Problem: Well-formedness is insufficient
= We need to restrict the set of tags and their content

= Document Type Definition (DTD) describes the structure
(grammar) of an XML document
= Using regular expressions

= Valid XML document = well-formed XML document
corresponding to a given grammar
= There are also other languages — XML Schema, Schematron, RELAX NG,

DTD — EXAMPLE

* + -

-+ sequence

*» selection

-+ jteration (0 or 1)

-+ iteration (1 or more)
-+ jteration (0 or more)

4 Element =

name
+

N content model

/ Attribute = \/

name
+

data type
+

presence /

K default value /

<!ELEMENT employees (person)+>
<!ELEMENT person (name, email*, relations?)>
<!ATTLIST person id ID #REQUIRED>
<!ATTLIST person note CDATA #IMPLIED>
;77/ <!ATTLIST person holiday (yes|no) "no">
<!'ELEMENT name ((first, surname) | (surname, first))>
<!ELEMENT first (#PCDATA)>
<!ELEMENT surname (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!'ELEMENT relations EMPTY>
<!'ATTLIST relations superior IDREF #IMPLIED>
<!ATTLIST relations subordinates IDREFS #IMPLIED>

BRIEFLY ON
XPATH

XPATH DATA MODEL

<?xml version="1.0"?>
<!DOCTYPE order SYSTEM "order.dtd">
<order date="10/10/2008" status="confirmed">
<customer number="C992">Steve J.</customer>
<items>
<item code="48282811">
<amount>5</amount>
<price>22</price>
</item>
<item code="929118813">
<amount>1</amount>
<price>91934</price>
<color>blue</color>
</item>
</items>
</order>

XPATH DATA MODEL

<?xml version="1.0"?>
<!DOCTYPE order SYSTEM "order.dtd">
<order date="10/10/2008" status="confirmed">
<customer number="C992">Steve J.</customer>
<items>
<item code="48282811">
<amount>5</amount>
<price>22</price>
</item>
<item code="929118813">
<amount>1</amount>
<price>91934</price>
<color>blue</color>
</item>
</items>
</order>

document

XPATH DATA MODEL

<?xml version="1.0"?>
<!DOCTYPE order SYSTEM "order.dtd">
<order date="10/10/2008" status="confirmed">
<customer number="C992">Steve J.</customer>
<items>
<item code="48282811">
<amount>5</amount>
<price>22</price>
</item>
<item code="929118813">
<amount>1</amount>
<price>91934</price>
<color>blue</color>
</item>
</items>
</order>

document

\ 4

order

XPATH DATA MODEL

<?xml version="1.0"?>
<!DOCTYPE order SYSTEM "order.dtd">
<order date="10/10/2008" status="confirmed">
<customer number="C992">Steve J.</customer>
<items>
<item code="48282811">
<amount>5</amount>
<price>22</price>
</item>
<item code="929118813">
<amount>1</amount>
<price>91934</price>
<color>blue</color>
</item>
</items>
</order>

document

L
order

N

date status

"10/10/2008" "confirmed"

XPATH DATA MODEL

<?xml version="1.0"?>

<!'DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">
<customer number="C992">Steve J.</customer>

<items> document
<item code="48282811">
<amount>5</amount> v
<price>22</price> order
</item>
<item code="929118813"> /\
<amount>1</amount> date status customer
<price>91934</price> "10/10/2008" "confirmed" ‘////*
<color>blue</color>
</item> number| |[text()
</items> "co92" "Steve J."
</order>

XPATH DATA MODEL

document

order

4—
date
"10/10/2008" items
status
"confirmed" /
item item
customer ‘//////:;;7"§;*
\ 4
code || amount ||price| | code || amount ||price||color
"48282811" "929118813"
number text () \ 4 \ 4 \ 4 \ 4 \ 4
text () text () text () text () text ()
"co92" "Steve J."
||5|| "22" "l" " 91 934!1 "blue"

L)

XPATH DATA MODEL

= Types of nodes in the model
= Root node
= Element node
= Text node
= Attribute node
= Comment
= Processing instruction
= Namespace

= What is not included: CDATA section, entity
reference, DTD

XPATH EXPRESSION

= XPath expression is a path
= Path consists of steps
= Absolute path:
= /Stepl/Step2/../StepN
* Relative path:
= Stepl/Step2/../StepN

XPATH EXPRESSIONS — EXAMPLES

I document I

/
A 4
order
< \
date
"10/10/2008" ltems
"confirmed" -
1tem 1tem
customer ‘/////,:;;7"§;\\\\\\‘
\4
x/////l code || amount ||price| | code || amount ||price||color
"48282811" "929118813"
number text () \ 4 A\ 4 \ 4 \ 4 \ 4
text () text () text () text () text ()
"cggom "Steve J."
ll5ll ll22" lllll ll91934|l "blue"

L)

XPATH EXPRESSIONS — EXAMPLES

/order document

A

date
"10/10/2008" ltems

status ‘//////,/”////'

"confirmed" -
ltem ltem
customer ‘//////:;;7”§;*
A 4
code || amount ||lprice| | code || amount ||price||color
"48282811" "929118813"

number text () A 4 A 4 \ 4 \ 4 \ 4

text () text () text () text () text ()
"Steve J."

"C992" ll5ll 1122u lllll |191934n "blue"

L)

XPATH EXPRESSIONS — EXAMPLES

/order/items/item

A

date
"10/10/20

document

order

items

status
"confirmed" -
Ttem

customer

code || amount ||lprice| | code || amount ||price||color
"48282811" "929118813"
number text () \ 4 \ 4 \ 4 \ 4 \ 4

text () text () text () text () text ()

"Cco99o" "Steve J."
H5H "22" Hl" "91934" "blue"

XPATH EXPRESSIONS — EXAMPLES

/order/items/item/@code

date
"10/10/2008"

status

document

order

items

"confirmed"

customer

code
"48282811"

number text ()

"co92" "Steve J."

item item
\ 4
amount price||color
"929118813"
\ 4 A\ 4 \4 \ 4 \ 4
text () text () text () text () text ()
"5" "22" "1" ll91934|l "blue"

@

XPATH EXPRESSIONS — EXAMPLES

/order/items/item/price/text ()

document
order
date \\\\!
"10/10/2008" 1tems
"confirmed" :
item item
customer ‘/////,:;;7”§;\\\\\\‘
\4
x/////l code || amount ||price| | code || amount ||price||color
"48282811" "929118813"
number text () v A 4 v
text () text () text () text () text ()
"cggom "Steve J."
"5" ll22" "l" ll91934|l "blue"

@

XPATH EXPRESSIONS — EXAMPLES

/order/items/item/color

document
order
date \\\\!
"10/10/2008" 1tems
"confirmed" X
1tem 1tem
customer
\4
‘/////1 code || amount ||price| | code || amount ||price
"48282811" "929118813"
number text () \ 4 A\ 4 \ 4 \ 4 \ 4
text () text () text () text () text ()
"Cco92" "Steve J."
"5" ll22" "l" 119193411 "blue"

L)

XPATH EXPRESSIONS — EXAMPLES

/order/customer/name

document
order
date \\\\!
"10/10/2008" 1tems
"confirmed" :
1tem 1tem
customer ‘/////,:;;7"§;\\\\\\‘
\4
‘/////1 code || amount ||price| | code || amount ||price||color
"48282811" "929118813"
number text () A 4 v v v v
text () text () text () text () text ()
"coo92" "Steve J."
"5" ll22" "l" ll91934ll "blue"

@

XPATH EXPRESSIONS — EXAMPLES

/order/item-list/item

A

date
"10/10/2008"
status

document

order

/

items

"confirmed"

customer

e N,

code
"48282811"

number text ()

"cooz" "Steve J."

item
\ 4
amount |lprice| |code || amount ||[price||color
"929118813"
\ 4 \ 4 \ 4 A\ 4 \ 4
text () text () text () text () text ()
u5u 112211 "1" |191934u "blue"

@

BRIEFLY ON
JSON

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif

JSON
(JAVASCRIPT 0BJECT NOGTATION)

= Text-based easy-to-read-and-write open standard for data interchange
= Serializing and transmitting structured data

» Considered as an

= Filename: * . json
= Internet media type (MIME type): application/json
= Derived from JavaScript scripting language

= Language independent

= But uses conventions of the C-family of languages (C, C++, C#, Java, JavaScript,
Perl, Python, ...)

= Originally specified by Douglas Crockford in 2001
= RFC 4627

* Requests for comments = "standard" publication of the Internet Engineering Task Force and the
Internet Society

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://www.json.org/

JSON

BASIC STRUCTURES

= Built on two general structures:

= Realized as an object, record, struct, dictionary, hash table, keyed list,
associative array, ...
= Realized as an array, vector, list, sequence, ...

= Universal data structures
= All modern programming languages support them

JSON
BASIC DATA TYPES

= — an unordered set of name/value pairs
= called properties (members) of an object

= { comma-separated name : value pairs }

— an ordered collection of values
0O called items (elements) of an array
0O [comma-separated values]

array

0 | value |
£\
s

JSON
BASIC DATA TYPES

— string in double quotes / number / true or false (i.e., Boolean) / null
/ object / array

O Can be nested

value

n
-
5
@
-l

JSON

BASIC DATA TYPES

. — sequence of zero or more Unicode characters, wrapped in double

quotes
string [

= Backslash escaping

Any UNICODE character except
" or \ or control character

quotation mark

reverse solidus

solidus

backspace

formfeed

newline

carriage return

horizontal tab

4 hexadecimal digits

JSON

BASIC DATA TYPES

: — like a C or Java number
» Octal and hexadecimal formats are not used

number

=

JSON EXRMPLE

name/value pair
"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {
"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",

"postalCode": 10021

by
"phoneNumbers" :

{ [:i array

" type" - "home" ,
"number": "212 555-1234"

b /J object

" type" - U"fax" ,
"number": "646 555-4567"

INDEXING OF SEMI-
STRUCTURED (XML) DATA

CLASSIFICATION OF XML DOCUMENTS

= The basic classification of XML documents results from their origin and
the way they were created

» data-oriented
» document-oriented
= hybrid

= For the particular classes different ways of implementations are suitable

DOCUMENT-ORIENTED XML DOCUMENTS

= Usually created and processed by humans

= Irregular, less structured
= Semi-structured data

= Often contain
= Mixed-content elements
= CDATA sections
= Comments
= Processing instructions

= The order of sibling elements is crucial
= Example: XHTML web pages

DOCUMENT-ORIENTED XML DOCUMENTS

<book id="12345">
<title>All I Really Need To Know I Learned in
Kindergarten</title>
<author>Robert Fulghum</author>
<description>A new, edited and extended publication published
on the occasion of the fifteen anniversary of the first
edition</description>
<Text>
<p>Fifteen years after publishing of <g>his</g>
<i>Kindergarten</i> Robert Fulghum has decided to read it once
again, now in <i>»2003</i>.</p>
<p>He wanted to find out whether and, if so, to what extent
his opinions have changed and why. Finally, he modified and
extended his book to...</p>
<Text>
</book>

DATA-ORIENTED XML DOCUMENTS

= Usually created and processed by machines

= Regular, deep structure
= Fully structured data

= They do not contain
= Mixed-content elements
= CDATA sections
= Comments
= Processing instructions

= The order of sibling elements is often unimportant
= Example: database exports, catalogues, ...

DATA-ORIENTED XML DOCUMENTS

<book id="12345">
<title>All I Really Need To Know I Learned in
Kindergarten</title>
<author>
<name>Robert</name>
<surname>Fulghum</surname>

</author>

<edition title="Argo">
<year>2003</year>
<ISBN>80-7203-538-X</ISBN>

</edition>

<edition title="Argo">
<year>1996</year>
<ISBN>80-7203-028-0</ISBN>

</edition>

</book>

IMPLEMENTATION APPROACHES

= Differ according to the type of documents
= Exploit typical features

= Problem: hybrid documents
= Ambiguous classification

= Document-oriented techniques vs. Data-oriented techniques

DOCUMENT-ORIENTED TECHNIQUES

= We need to preserve the document as whole
= Order of sibling elements
= Comments, CDATA sections, ...
= Even whitespaces
= For legislative documents

= Round tripping - storing a document into a database and its
retrieval
= The level of round tripping says to what extent the documents are similar
= The higher level, the higher similarity
= In the optimal case they are equivalent

DATA-ORIENTED TECHNIQUES

= [dea: The data are stored in a relational database management system
(RDBMS)

= Mapping method — transforms the data into relations (and back)
= XML queries over XML data — SQL queries over relations
= The result of SQL query — XML document

= Exploit data-oriented aspects (low level of round tripping)
= It is not necessary to preserve the document as a whole

= Order of sibling elements is ignored, document-oriented constructs
(comments, whitespaces, ...) are ignored, ...

= No (little) support for mixed-content elements

NUMBERING SCHEMAS

A numbering schema of a tree model of a document is a
function which assigns each node a unique identifier that
serves as a reference to that node for indexing and query
evaluation

= Enable fast evaluation of selected relationships among
nodes of XML document
= Ancestor-descendant
= Parent-child
= Element-attribute
= Depth of the node
= Order among siblings

NUMBERING SCHEMAS

= Sequential numbering schema

= The identifiers are assigned to the nodes as soon as they are
added to the system sequentially, starting from 1

= Structural numbering schema

= Enables to preserve and evaluate a selected relationship
among any two nodes of the document

= Often it is expected to enable fast searching for all
occurrences of such a relationship in the document

NUMBERING SCHEMAS

= Stable numbering schema

= A schema which does not have to be modified (except for preserving
its local features) when the structure of the respective data changes

* i.e., on insertion/deletion of nodes

= A schema of a structural numbering schema

= Is an ordered pair (p, L), where p is a binary predicate and L is an
inverse function which for the given XML tree model T = (N, E)
assigns each node v € N a binary sequence L(v).

= For each pair of nodes u, v € N predicate p(L(u), L(v)) is satisfied if v
is in a particular relationship with u.

* e.g.vis adescendant of u
= Particular numbering schema: particular p and L

DIETZ NUMBERING

(1,8)

contact

T

(2,2)

name

(3,1)

"B. Pitt"

T

(4,7)

phone

(5,4)

cell

A 4

(6,3)
"6091234"

<?xml version="1.0"?>
<contact>
<name>B. Pitt</name>
<phone>
<cell>6091234</cell>
<home>41983</home>
</phone>
</contact>

(7,6)

home

A 4

(8,5)
"41983"

DIETZ NUMBERING

» Preorder traversal
= Child nodes of a node follow their parent node

» Postorder traversal
» Parent node follows its child nodes

= Construction of a numbering schema

= Each node v € N is assigned with a pair (%, y) denoting preorder and
postorder order

= Node v € N having L(v) = (%, y) is a descendant node of node u
having L(u) = X, y)ifx' <x&y' >y

DEPTH-FIRST (DF) NUMBERING

(1,43)

contact

(2,9)

name

(3.4)
"B. Pitt"

T

(33,42)

phone

T

(34,37)

cell

A 4

(35,36)
"13727"

(38,41)

home

A 4

(39,40)

"41983"

preorder traversal +

B assigning (Ui, Una),
where

W u_ is the time of visiting
a node

mu_. Isthe time of leaving
a node

B Predicate is the same as
in the previous case

PATH NUMBERING

contact

name

1.1
"B. Pitt"

T

2

phone

2.1

cell

2.1.1
"13727"

| o~

3

phone

2.2

home

2.2.1
"41983"

= The predicate
corresponds to
searching a substring

= Problem: updates

ORDPATH

contact

| o~

A 3 5
name phone phone
! / \
B 3.1 3.3
"B. Pitt" cell home
A 4 A 4
311 3.3.1
"13727" "41983"

= New level of tree
= new level of
numbering

= We use only odd
numbers

ORDPATH — INSERT

11

name

111

"B. Pitt"

1

contact

o

At the end directly

phone

ORDPATH — INSERT

1.-1
title

111

"B. Pitt"

1

contact

o

At the beginning using

negative numbers

phone

ORDPATH — INSERT

1

0 Inthe middle using
an auxiliary node
with even number

contact

1.-1
title

XML DATABASES

= What we want: persistent storage of XML data

= General classification:
= Based on a file system
= Based on an object model
= Based on (object-)relational databases
» XML-enabled databases
= Exploit a mapping method between XML data and relations
= Native XML databases
= Exploit a suitable data structure for hierarchical tree data
= Usually, a set of numbering schemas
= Later adopted also by the XML-enable databases

LINK

= The recording of this lecture can be found here:

https://www.ksi.mff.cuni.cz/~holubova/NDBIO07/download.php?file=NDBI007 -
2022-12-22

Login: student
Password: PDOhi2022

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-2022-12-22

