
Indexing hierarchical data

Pure data are hard to process automatically

We need to:
 Ensure that a particular software understands the data

 Add meaning (semantics) of particular data fragments

E.g. HTML – describes the visualisation of data for an
HTML browser
 Problem 1: What if we are not interested just in visualisation?

 Problem 2: HTML has lax rules for the structure
 Complex processing

 Solution: semi-structured data formats
 JSON, XML, …

 XML (eXtensible Markup Language) is a format for transfer and
exchange of general data
 Extensible Markup Language (XML) 1.0 (Fifth Edition)
 http://www.w3.org/TR/xml/

 Extensible Markup Language (XML) 1.1 (Second Edition)
 http://www.w3.org/TR/xml11/

 XML is a subset (application) of SGML (Standard Generalized
Markup Language - ISO 8879) – from 1986

 XML does not deal with data presentation
 It enables to tag parts of the data
 The meaning of the tags depends on the author
 Presentation is one possible example

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml11/

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment/>

</message>

Element with text

content

Empty element

Element with

element

content

Root element

Element with mixed

content

<attachment></attachment>

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<address>

<name>Tim Berners-Lee</name>

<street>Northern 12</street>

</address>

<intro>Hi!</intro>

<text>My <it>Internet</it> does not work!</text>

<signature>Steve J.</signature>

<attachment fig="image01.jpg"/>

</message>

Attribute

value

Attribute

name

Element with

an attribute

<?xml version="1.1" encoding="iso-8859-2"?>

<message>

<!–- to whom the message should be sent? -->

<address>Jan Amos</address>

<text>

<![CDATA[

for (i=0; i < 10; i++)

{

document.writeln("<p>Hi!</p>");

}

]]>

</text>

<signature>Steve J.</signature>

<date><?php echo Date("d.m.Y")?></date>

</message>

Comment

Processing

instruction

CDATA

section

Prologue

SGML

XML HTML

XHTML

specific set of tags, lax rules for

structurestrict rules for structure

specific set of tags

which tags to use

 XML document is well-formed, if:

 It has introductory prolog

 Start and end tags nest properly

 Each element has a start and an end tag

 Corresponding tags have the same name (case sensitivity)

<a>

 Pairs of tags do not cross

<a>

 The whole document is enclosed in a single root element

Problem: Well-formedness is insufficient
 We need to restrict the set of tags and their content

Document Type Definition (DTD) describes the structure
(grammar) of an XML document
 Using regular expressions

Valid XML document = well-formed XML document
corresponding to a given grammar
 There are also other languages – XML Schema, Schematron, RELAX NG,

…

<!ELEMENT employees (person)+>

<!ELEMENT person (name, email*, relations?)>

<!ATTLIST person id ID #REQUIRED>

<!ATTLIST person note CDATA #IMPLIED>

<!ATTLIST person holiday (yes|no) "no">

<!ELEMENT name ((first, surname)|(surname, first))>

<!ELEMENT first (#PCDATA)>

<!ELEMENT surname (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT relations EMPTY>

<!ATTLIST relations superior IDREF #IMPLIED>

<!ATTLIST relations subordinates IDREFS #IMPLIED>

Element =

name

+

content model

, … sequence
| … selection
? … iteration (0 or 1)
+ … iteration (1 or more)
* … iteration (0 or more)

Attribute =

name

+

data type

+

presence /

default value

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

document

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"

<?xml version="1.0"?>

<!DOCTYPE order SYSTEM "order.dtd">

<order date="10/10/2008" status="confirmed">

<customer number="C992">Steve J.</customer>

<items>

<item code="48282811">

<amount>5</amount>

<price>22</price>

</item>

<item code=“929118813">

<amount>1</amount>

<price>91934</price>

<color>blue</color>

</item>

</items>

</order>

order

document

date

"10/10/2008"

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

order

document

date

"10/10/2008"
status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

 Types of nodes in the model
 Root node

 Element node

 Text node

 Attribute node

 Comment

 Processing instruction

 Namespace

 What is not included: CDATA section, entity
reference, DTD

 XPath expression is a path

 Path consists of steps

 Absolute path:

 /Step1/Step2/…/StepN

 Relative path:

 Step1/Step2/…/StepN

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/@code

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/price/text()

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/items/item/color

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/customer/name

"10/10/2008"

order

document

date

status

"confirmed"

customer

number

"C992"

text()

"Steve J."

items

item

code

"48282811"

amount price

text() text()

"5" "22"

item

code

"929118813"

amount price

text() text()

"1" "91934"

color

text()

"blue"

/order/item-list/item

"10/10/2008"

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif

 Text-based easy-to-read-and-write open standard for data interchange
 Serializing and transmitting structured data

 Considered as an alternative to XML

 Filename: *.json

 Internet media type (MIME type): application/json

 Derived from JavaScript scripting language

 Language independent
 But uses conventions of the C-family of languages (C, C++, C#, Java, JavaScript,

Perl, Python, …)

 Originally specified by Douglas Crockford in 2001
 RFC 4627

 Requests for comments = "standard" publication of the Internet Engineering Task Force and the
Internet Society

http://www.json.org/

http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://en.wikipedia.org/wiki/File:JSON_logo.gif
http://www.json.org/

Built on two general structures:
 Collection of name/value pairs

 Realized as an object, record, struct, dictionary, hash table, keyed list,
associative array, …

 Ordered list of values

 Realized as an array, vector, list, sequence, …

Universal data structures
 All modern programming languages support them

 object – an unordered set of name/value pairs
 called properties (members) of an object

 { comma-separated name : value pairs }

 array – an ordered collection of values

 called items (elements) of an array

 [comma-separated values]

 value – string in double quotes / number / true or false (i.e., Boolean) / null

/ object / array

 Can be nested

 string – sequence of zero or more Unicode characters, wrapped in double
quotes

 Backslash escaping

 number – like a C or Java number
 Octal and hexadecimal formats are not used

{

"firstName": "John",

"lastName": "Smith",

"age": 25,

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

{

"type": "home",

"number": "212 555-1234"

},

{

"type": "fax",

"number": "646 555-4567"

}

]

}

name/value pair

array

object

 The basic classification of XML documents results from their origin and
the way they were created

 data-oriented

 document-oriented

 hybrid

 For the particular classes different ways of implementations are suitable

Usually created and processed by humans

 Irregular, less structured
 Semi-structured data

Often contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is crucial

Example: XHTML web pages

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>Robert Fulghum</author>

<description>A new, edited and extended publication published

on the occasion of the fifteen anniversary of the first

edition</description>

<Text>

<p>Fifteen years after publishing of <q>his</q>

<i>Kindergarten</i> Robert Fulghum has decided to read it once

again, now in <i>2003</i>.</p>

<p>He wanted to find out whether and, if so, to what extent

his opinions have changed and why. Finally, he modified and

extended his book to...</p>

<Text>

</book>

Usually created and processed by machines

Regular, deep structure
 Fully structured data

They do not contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

The order of sibling elements is often unimportant

Example: database exports, catalogues, …

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>

<name>Robert</name>

<surname>Fulghum</surname>

</author>

<edition title="Argo">

<year>2003</year>

<ISBN>80-7203-538-X</ISBN>

</edition>

<edition title="Argo">

<year>1996</year>

<ISBN>80-7203-028-0</ISBN>

</edition>

</book>

 Differ according to the type of documents

 Exploit typical features

 Problem: hybrid documents

 Ambiguous classification

 Document-oriented techniques vs. Data-oriented techniques

We need to preserve the document as whole
 Order of sibling elements

 Comments, CDATA sections, ...

 Even whitespaces

 For legislative documents

Round tripping – storing a document into a database and its
retrieval
 The level of round tripping says to what extent the documents are similar

 The higher level, the higher similarity

 In the optimal case they are equivalent

 Idea: The data are stored in a relational database management system
(RDBMS)

 Mapping method – transforms the data into relations (and back)

 XML queries over XML data  SQL queries over relations

 The result of SQL query  XML document

 Exploit data-oriented aspects (low level of round tripping)

 It is not necessary to preserve the document as a whole

 Order of sibling elements is ignored, document-oriented constructs
(comments, whitespaces, …) are ignored, …

 No (little) support for mixed-content elements

A numbering schema of a tree model of a document is a
function which assigns each node a unique identifier that
serves as a reference to that node for indexing and query
evaluation

Enable fast evaluation of selected relationships among
nodes of XML document
 Ancestor-descendant

 Parent-child

 Element-attribute

 …

 Depth of the node

 Order among siblings

 …

 Sequential numbering schema
 The identifiers are assigned to the nodes as soon as they are

added to the system sequentially, starting from 1

 Structural numbering schema
 Enables to preserve and evaluate a selected relationship

among any two nodes of the document

 Often it is expected to enable fast searching for all
occurrences of such a relationship in the document

 Stable numbering schema

 A schema which does not have to be modified (except for preserving
its local features) when the structure of the respective data changes

 i.e., on insertion/deletion of nodes

 A schema of a structural numbering schema

 Is an ordered pair (p, L), where p is a binary predicate and L is an
inverse function which for the given XML tree model T = (N, E)
assigns each node v ∈ N a binary sequence L(v).

 For each pair of nodes u, v ∈ N predicate p(L(u), L(v)) is satisfied if v
is in a particular relationship with u.

 e.g. v is a descendant of u

 Particular numbering schema: particular p and L

<?xml version="1.0"?>

<contact>

<name>B. Pitt</name>

<phone>

<cell>6091234</cell>

<home>41983</home>

</phone>

</contact>

(1,8)

contact

(2,2)

name

(3,1)

"B. Pitt"

(4,7)

phone

(5,4)

cell

(7,6)

home

(6,3)

"6091234"

(8,5)

"41983"

 Preorder traversal

 Child nodes of a node follow their parent node

 Postorder traversal

 Parent node follows its child nodes

 Construction of a numbering schema

 Each node v ∈ N is assigned with a pair (x, y) denoting preorder and
postorder order

 Node v ∈ N having L(v) = (x, y) is a descendant node of node u

having L(u) = (x', y') if x' < x & y' > y

(1,43)

contact

(2,5)

name

(3,4)

"B. Pitt"

(33,42)

phone

(34,37)

cell

(38,41)

home

(35,36)

"13727"

(39,40)

"41983"

preorder traversal +
 assigning (umin, umax),
where
 umin is the time of visiting
a node
 umax is the time of leaving
a node
 Predicate is the same as
in the previous case

 The predicate
corresponds to
searching a substring

 Problem: updates

1

contact

1.1

name

1.1.1

"B. Pitt"

1.2

phone

1.2.1

cell

1.2.2

home

1.2.1.1

"13727"

1.2.2.1

"41983"

1.3

phone

 New level of tree
= new level of
numbering

 We use only odd
numbers

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.7

phone

o At the end directly

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

o At the beginning using
negative numbers

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

1.3.2

1.3.2.1

home

1.3.2.1.1

"1234"

1.3.2.3

home

1.3.2.3.1

"56789"

o In the middle using
an auxiliary node
with even number

What we want: persistent storage of XML data

General classification:
 Based on a file system

 Based on an object model

 Based on (object-)relational databases

 XML-enabled databases

 Exploit a mapping method between XML data and relations

 Native XML databases

 Exploit a suitable data structure for hierarchical tree data

 Usually, a set of numbering schemas

 Later adopted also by the XML-enable databases

 The recording of this lecture can be found here:

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-
2022-12-22

Login: student

Password: PDOhi2022

https://www.ksi.mff.cuni.cz/~holubova/NDBI007/download.php?file=NDBI007-2022-12-22

