Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Martin Adam

Optimization of Processing of Data
Files in System DIRAC

Department of Software Engineering

Supervisor of the bachelor thesis: doc. RNDr. Irena Holubova, Ph.D.
Study programme: Computer Science

Specialization: Administration of Computer Systems

Prague 2015

I would like to thank my supervisor, doc. RNDr. Irena Holubové, Ph.D., for her
patience and advice when writing this thesis.

I would also want to thank Dr. Andrei Tsaregorodtsev, the DIRAC product
manager for finding me a suitable task I could work on during my thesis and for
continuous encouragement and help during my work.

Further, I thank RNDr. Jiti Chudoba, Ph.D. for providing me with a suitable
testing environment in the computing center of the Institute of Physics of the
Czech Academy of Sciences, and RNDr. Dagmar Adamova, CSc. for consulta-
tions concerning Grip issues.

Finally my thanks belong to my parents for helping me to enhance the text of this
thesis and last but not least I thank my girlfriend Annie for her great patience
and support.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Nazev prace: Optimalizace zpracovani dat v systému DIRAC
Autor: Martin Adam

Katedra: Katedra softwarového inzenyrstvi

Vedouci bakalaiské prace: doc. RNDr. Irena Holubova, Ph.D.

Abstrakt: Systém DIRAC je softwarovy framework poskytujici kompletni feseni
pro jednu nebo vice uzivatelskych komunit, které potiebuji zajistit pristup k dis-
tribuovanym vypocetnim zdrojum. V této praci je rozsiten DIRAC File Catalog
(DFC) o modul DatasetManager, priddvajici funkcionalitu datasett definovanych
dotazem nad metadaty. K vylepseni prace s dotazy v kodu systému je vyvinuta
nova trida MetaQuery, ktera shlukuje obsluzné metody a ptridava normalizaci
a optimalizaci dotazu na vstupu. Jazyk vyjadiujici dotazy byl také rozsiten
pridanim moznosti pouzivat logické spojky a zavorky.

Druha cast prace se zabyva testovanim hypotézy, ze pouziti NoSQL databaze jako
back-end pro metadatovou ¢ast DFC by prineslo vylepseni vykonu vyhledavani.
Nekolik NoSQL databazi je otestovano na datech podobnych produkénim datum
pouzivanych systémem DIRAC. Nejvykonéjsi z testovanych databazi je pak pripojena
k DFC pouzitim nového specializovaného rozhrani.

Klicova slova: Systém DIRAC, NoSQL databaze, efektivni zpracovani datovych
soubort, dotazovani nad metadaty

Title: Optimization of Processing of Data Files in System DIRAC
Author: Martin Adam

Department: Department of Software Engineering

Supervisor: doc. RNDr. Irena Holubové, Ph.D.

Abstract: DIRAC is a software framework for distributed computing providing a
complete solution to one (or more) user community requiring access to distributed
resources. In this thesis the DIRAC File Catalog (DFC) is extended by adding
a DatasetManager module, thus adding support for datasets based on metadata
queries. To improve the metaquery handling in the code, a new class MetaQuery
was implemented that bundles the handling methods and adds normalization and
optimization of the user input. The metaquery language was extended enabling
logical operators and parenthesis.

In the second part of the thesis the hypothesis that connecting the metadata
part of the DIRAC File Catalog to a NoSQL database could improve metaquery
performance is evaluated. Several databases are tested and the best performing
one is then connected via an interface module to the DFC.

Keywords: System DIRAC, NoSQL databases, efficient processing of data files,
metadata querying

Contents

Introductionl 3
I DIRAC System| 6
(.1 DIRAC Architecturel 6
(.2 DIRAC Frameworkl 7
(1.3 DIRAC Data Management System| 8
(1.4 DIRAC File Catalog| 9
(1.4.1 DIRAC Replica Catalog| 10

[1.4.2 Metadata Catalog|. 10

[1.4.3 DFC Interfaces 10
2__Related Works| 12
DI _ATLASDDM o oot e e 12
RIT Rucid oo 12

2 ATEDl . . . oo o 13
2.3 Comparison| 14

[3 The Metaquery| 15
[3.1 Metaquery Theoryl 15
[3.2 Metaquery Implementation|. 16
[3.2.1 Query Input|. oL 16

[3.2.2 Query Evaluation|o 17

[3.2.3 Output of the Query| 18

[4 The DatasetManager| 19
4.1 Previous Statud 19
[4.2 Implementation Details|. 19
[4.2.1 Releasing and Freezing a Dataset| 19

[4.2.2 Dataset Overlappingl 20

[5 Choosing the NoSQL Database| 21
[>.1 ~Apache Cassandral 21
[>.1.1 Developing a Data Model for Cassandra] 21

h.2 Document Databases 23
[b.2.1 MongoDB| 23

(.22 Flasticsearchl 24

.3 Database Tests o 24
[>.3.1 Loading the Big Data]. 25

[5.3.2 Testing Query Performance on a Predefined Sample] 25
[5.3.3 The Comparison Between NoSQL and the Current Deploy- |

[mentl 29
6 NoSQL Integration into DFC| 31
[6.1 Query Strategy| 31
[6.2 The New Implementation| 32

...............................

I[L1.4 removel.

Conclusion|

[Bibliography|
[List_of Tables
G FAD] fions

A_DVD contents|

B Queries
[C MongoDB explain index|

33
33
33
33
33
34
34
34
34
34
34
34
35
35
35
35
35
36
36
36
36
36
37

38

39

42

43

44

45

49

Introduction

The Worldwide LHC Computing Grid

In the past decade the scientific research collaborations, as well as the commer-
cial world, have witnessed the start of a period of explosive data growth. The
expressions like "Data Tsunami” or ”Big Data” became widespread and entered
a standard terminology. The scientific collaborations developed a world leading
expertise in building and operating very large scale infrastructures for handling
unprecedented and ever growing volumes of data to be processed and analyzed [I].
One of the most important scientific communities, for which these abilities be-
came essential, is the High Energy Physics (HEP) community of the experiments
at the Large Hadron Collider (LHC) at CERN[}

Physicists collide particles accelerated to enormous energies to get at very
short scales, which enables them to reveal at the microscopic level the basic
ingredients of the matter and their interactions. On the edge of our millennium
their ultimate instrument is the LHC, colliding protons or atomic nuclei. In each
collision debris of tens of thousands of new particles are created which have to
be registered in huge detectors and carefully analyzed for signs of new physical
phenomena. The collisions take part at four interaction areas, where the detectors
(ATLAS, ALICE, CMS and LHCb) were built. Each experiment collects huge
volumes of data that have to be stored, remaining accessible to many groups of
physicist scattered all around the globe.

The volumes of collected data are larger than any single computing center
within the LHC collaboration could handle, so the concept of distributed data
management was conceived. In 2001 the CERN Council approved the start of an
international collaborative project that consists of a grid-based computer network
infrastructure, the Worldwide LHC Computing Grid (WLCG) [2].

The WLCG has a hierar-

< chical architecture, where par-
Tape
ticipating sites are categorized
— according to the resources
LHC CERN and services they provide —
Experiments Data Center Tier-0

into four importance levels
called Tiers. Each Tier is rep-
Taipei UsA Germany Tier-1 resented by a single or dis-
tributed computing and stor-
age cluster and yields a specif-
Vienna Hamburg Prague Tier-2 ic set of services. The largest
center, CERN data center or
Figure 1: The WLCG Tier-1 centers with CERN Tier-0, provides the perma-
Tier-0 in the middle nent storage of experimental

data and makes the data avail-
able for the WLCG processing. Although it contributes less than 20% of the

'European Organization for Nuclear Research (name derived from Conseil Européen pour
la Recherche Nucléaire) — European research organization that operates the largest particle
physics laboratory in the world.

WLCG computing capacity, the role of CERN is unique in keeping one copy of
the data from all experiments and for performing the first pass of the data recon-
struction. When LHC is not running, Tier-0 provides resources for re-processing
of the raw experimental data and eventually for simulation campaigns.

Another copy is passed to one of the Tier-1 centers. Tier-1s are huge comput-
ing centers located in Europe, Canada, USA and Taipei. They provide non-stop
support for the Grid, store a share of raw data, perform reprocessing and store
its output. They are connected to CERN with dedicated high-bandwidth optical-
fiber links. Then there are more than 160 Tier-2 centers all around the world.
Their role is mainly to run simulation campaigns and end-user analysis. Tier-3
centers are small local computing clusters at universities or research institutes
and even individual PCs [3].

Grid Middleware

The operation and functionality of WLCG, as well as other Grid systems, is en-
abled by specific software packages and protocols, so-called Grid middleware. It
manages the basic domains of the Grid functions: job management, data man-
agement, security and information services [4]. The term middleware reflects the
specific role of this software system: it is a layer between the application area for
solving user tasks and the resource area consisting of basic fabric and connectivity
layer.

The vast variety of requirements and needs of the user communities from the
four LHC experiments is impossible to meet with only one set of middleware com-
ponents. Consequently, each experiment user group started developing its own
set of tools. For example AliEn is a middleware solution made by the ALICE
experiment collaboration and DIRAC was developed by the LHCb collaboration.
Along with some packages from the WLCG-middleware they include some ad-
ditional specific packages and provide complete framework for data processing
according to the individual experiments’ computing models.

DIRAC

The DIRACP] middleware was developed to satisfy the needs of not only the
LHCDb collaboration developing it, but also to enable other smaller experiments
to use it as their middleware solution. This was achieved by focusing on modular
architecture that enables adding new features or modifying the systems behavior
according to individual experiment’s needs.

DIRAC is constructed from loosely coupled systems where each system man-
ages one part of its functionality. This thesis focuses on the DIRAC File Catalog,
which is a part of the Data Management system. This particular system is respon-
sible for data managing tasks across a wide range of distributed storage elements.
It also enables users to quickly find and use their files. It is accomplished by
maintaining a directory structure with a similar interface as the UNIX shell and
enabling users to define their own metadata and use them to search for files.

2The Distributed Infrastructure with Remote Agent Control

4

Goals of the Thesis

The first task of this thesis is to upgrade the DIRAC File Catalog (DFC) by:

e adding a new module for dataset support, enabling users to bundle their
files based on a metadata search (a metaquery) into a single object,

e implementing a class to encapsulate all the methods handling metaquery
and to extend its functionality by adding normalization and optimization
procedures.

The second task is to test the hypothesis that storing the user defined meta-
data in a suitable NoSQL database would improve metaquery performance. If
the tests prove that hypothesis, the task is to extend the code of DIRAC to in-
corporate the database in the File Catalog making a prototype, that can be then
evaluated by the DIRAC collaboration.

Structure of the Thesis

In Chapter [I] the DIRAC middleware will be introduced with the focus on the
data management part and the file catalog. Afterwards DIRAC will be com-
pared to two other middleware solutions in Chapter [2] more specifically ATLAS
Distributed Data Management system and ALICE Environment framework.

In the next two chapters our contribution to DIRACs code will be presented.
The Chapter [3]is about the new MetaQuery class and the Chapter [4] deals with
the Dataset Manager.

In the last part several NoSQL databases will be tested in order to select
the one that is the best option for storing file metadata (Chapter |5) and in the
Chapter [6] a module created for integrating that database is described.

Finally, the Chapter [7] provides user documentation to all the commands used
to interact with the CLIP| of the DFC used to control any of the parts that were
changed by this project. The last Chapter summarizes evaluation of the test
results and conclusions.

3Command Line Interface

1. DIRAC System

The LHCb Collaboration [6] is running one of the four large experiments at the
LHC particle collider at CERN, Geneva. The amount of data produced by the
experiment annually is so large that it requires development of a specialized sys-
tem for the data reconstruction, simulation and analysis. The DIRAC project of
the LHCb Collaboration was started to provide such a system.[7] The developers
were aiming to create a easy to run system, which would be able to seamless-
ly utilize the various heterogeneous computing resources available to the LHCb
Collaboration, that can be run by only one production manager.

The DIRAC software architecture is based on a set of distributed, collaborat-
ing services. Designed to have a light implementation, DIRAC is easy to deploy,
configure and maintain on a variety of platforms. Following the paradigm of
a Services Oriented Architecture (SOA) [§], DIRAC is lightweight, robust and
scalable. One of the primary goals was to support various virtual organization
with their specific needs: it supports well isolated plugable modules, where the
organizations specific features can be located. It allows to construct grids of up to
several thousands processors by integrating diverse resources within its integrat-
ed Workload Management System. The DIRAC Data Management components
provide access to standard grid storage systems. The File Catalog options include
the LCG File Catalog (LFC) as well as a simple DIRAC File Catalog discussed
later.

1.1 DIRAC Architecture

DIRAC components can be grouped in to four categories:

Resources

Because every grid middleware has to deal with a large number of differ-
ent technologies, it needs its own interfaces for each of them. To this end
DIRAC has a class of components called Resources, which provides access
to the available computing and storage facilities. Computing resources in-
clude individual PCs, computer farms, cloud resources and computing grids.
Storage resources include storage elements with SRM interface [9] and most
of the popular data access protocols (gridftp, (s)ftp, http,...) are integrated
as wellll

IDIRAC does not provide its own complex storage element, it includes however a Storage
Element service which yields access to disk storage managed by a POSIX compliant file system.
This is sufficient for small deployments and development purposes

6

Services

The DIRAC system is built around a set of loosely coupled services that
keep the system status and help to carry out workload and data manage-
ment tasks. The Services are passive components which are only reacting
to the requests of their clients, possibly contacting other services in order to
accomplish their tasks. Each service has typically a MySQL [15] database
backend to store the state information. The services accept incoming con-
nections from various clients. These can be user interfaces, agents or run-
ning jobs.

Agents
Agents are light and easy-to-deploy software components built around a
unified framework. They are active components, usually running close to
the corresponding services, watching for changes in the service states and
reacting accordingly by initiating actions like job submission or result re-
trieval.

Interfaces
The DIRAC functionality is exposed to the system developers and to the
users in a variety of ways:

e the DIRAC programming language is python, so the programming
interfaces (APIs) are available in this language,

e for users the DIRAC functionality is available through a command line
interface. Some subsystems have specialized shells to work with,

e DIRAC also provides a web interface suitable for monitoring and man-
aging the system behavior.

1.2 DIRAC Framework

DIRAC’s logic is built on top of basic services that provide transversal func-
tionality to DIRAC Systems [I1]. The set of basic services that form the core
framework for DIRAC are:

e DISET — secure communication protocol is the DIRAC secure trans-
port layer. DISET was created by enhancing the XML-RPC protocol with
a secure layer with GSIP| compliant authentication mechanism [12]. It takes
care of all the communication needs between DIRAC components. When se-
cure connections are not needed communication is done using plain TCP /IP.

e Configuration System is built to provide static configuration parameters
to all the distributed DIRAC components. Being able to distribute the
configuration is critical. When the configuration data is not available, the
systems cannot work. For maximum reliability it is organized as a single
master service, where all the parameter updates are done, and multiple
read-only slave services, which are distributed geographically.

2Grid Security Infrastructure

e Web Portal is the standard way to present information to visitors. It
provides authentication based on user grid credentials and user groups: or-
dinary users can see their jobs and have minimal interaction with them,
administrators can change the global configuration in a graphical inter-
face. All the monitoring and control tools of a DIRAC system are exported
through the Web portal, which makes them uniform for users working in
different environments and on different platforms.

e Logging System is a uniform logging facility for all the DIRAC compo-
nents.

e Monitoring System collects activity reports from all the DIRAC services
and some agents. Together with the Logging Service, it provides a complete
view of the status of the system for the managers.

Other widely used systems include the Workload Management System, able
to manage simultaneously computing tasks for a given user community [13], Re-
quest Management System [14] managing simple operations, that are performed
asynchronously on behalf of users, and others.

1.3 DIRAC Data Management System

The DIRAC middleware solution covers the whole range of tools to handle data
management tasks. The low level tools include many clients for various types
of storage. In addition to providing clients of all the common storage systems,
DIRAC also implements its own simple Storage Element. Both technologies are
exposed to the users by a uniform API. Many experiments use the LCG File
Catalog (LFC) through a client API which connects it to the DIRAC system,
others are using the DIRACs own File Catalog’] The Replica Manager class
encapsulates all the basic file management operations: uploading, replication,
registration. It masks the diversities of different storage systems and can handle
several file catalogs at the same time.

. Configuration Service
Scripts

A\ 4
<
S

Web Interface File Catalog client File Catalog Service
> 9 9 File Catalog DB
A
DISET
Command line API ——>» DIRAC Python API o .
. Monitoring Service
——> Database connection

Figure 1.1: DIRAC File Catalog built inside the DISET framework

3LHCD, the experiment developing DIRAC, uses a third party file catalog.

8

The higher level Data Management components include an automatic Data
Distribution System and a Data Integrity Checking System. The Data Distribu-
tion System allows the definition of destination storages for all the types of data
used by a VO before the data actually becomes available. Once the first replicas
of the data to be distributed are registered in the File Catalog, the replication
requests are formed and sent for execution automatically. The Data Integrity
Checking System is checking the integrity of data stored and registered in various
storage systems and file catalogs.

1.4 DIRAC File Catalog

Any middleware solution covering the problem of Data Management must have a
file catalog enabling the user to find the files he wants to work with, and a replica
catalog keeping tracks of file replication.The DIRAC couples these two services
into one, introducing the DIRAC File Catalog (DFC) [16]. Implemented using
the DISET framework (see Figure[1.1]), the access to DFC is done with an efficient
secure protocol compliant with the grid security standards. The protocol allows
also to define access rules for various DFC functionalities based on the user roles.
The clients are getting the service access details from the common Configuration
Service. The DFC behavior is monitored using the standard DIRAC Monitoring
System and the errors in the service functioning are reported to the Logging
System. A MySQL database is used to store all the DFC contents (for the scheme
of the database, see Figure .

Following the plug-able module schema, there are many file catalog mod-
ules altering its behavior. For example the data files in DFC are stored in a
hierarchical directory structure and its implementation depends on the current
module plugged in the dtree slot in the FileCatalogDB class instance inside the
FileCatalogHandler (see Figure .

File Catalog components

ugManager
User and Group

‘—| . management seManager
. Storage element

management

|@—— | datasetManager

fmeta

FileCatalogHandler |@— FileCatalogDB L File metadata module

dtree
Directory tree module

dmeta

Directory metadata
! i module

securityManager

Figure 1.2: Class diagram inside the File Catalog service. The clients requests
are arriving at the FileCatalogHandler class, the FileCatalogDB class then issues
requests for MySQL database, sometimes using one or more of its’ modules

4Virtual Organization

1.4.1 DIRAC Replica Catalog

When managing distributed storage systems, one of the major problems is how
to translate the logical file name (LFN) into a URL of the file replicas, which in
the DIRAC system is a task for the Replica Catalog. The replica information
can be stored in 2 different ways. In the first case, the full Physical File Names
(PEFN) are stored as complete access URLs. In the second case, the DFC exploits
a convention that the PFNs are containing the corresponding LFNs as its trailing
part. This helps to establish correspondence between the physical files and entries
in the catalogs when checking the data integrity. There is also no need to store
the full PFN in the catalog, when the information about the wanted storage
element (SE) is available. In such a case the PFN can be constructed on the
fly and when the SE description changes, e.g. its access point, it is enough
to change the SE description in the DIRAC Configuration System to continue
receiving correct PFNs. Support for managing various user and group usage
quotas is also implemented. Another feature supported by the Catalog based on
the experience in the HEP experiments is to store and provide information about
ancestor-descendant relations between files.

1.4.2 Metadata Catalog

Each virtual organization has varying needs in terms of file metadata, DIRAC
takes this chance and attracts more users by enabling them to define their own.
The Metadata Catalog keeps track of these arbitrary user metadata associated
with his files and directories as key-value pairs. The catalog administrators can
declare certain keys. In the current implementation whenever an index is being
declared, another table in the MySQL database is created to store the values of the
respective metadata. The indexed metadata can be used in file lookup operations.
The value types include numbers, strings or time stamps. To decrease the amount
of data in the database, and to simplify the administration, the metadata values
are inherited in the directory structure. So when a metadata is associated with
a directory, every file in the sub-tree with the root in this directory has the
metadata set as well. The directory hierarchy is common for both the Replica
Catalog and the Metadata Catalog.

1.4.3 DFC Interfaces

The DFC is providing several user interfaces. The command
dirac-dms-filecatalog-cli launches a shell connected to the file catalog the
user is supposed to interact with, based on his or her user group and VO. Its
functionality is similar to a classic UNIX shell, with commands like 1s, cd,
chmod, . .., with added file catalog specific commands for handling metadata,
replication, storage element usage reports.

The DFC Python API is a programming interface that allows creating any
custom commands or even small applications working on the DFC data.

The only graphical interface is provided by the Web portal. It features the
DFC file browser with a look and feel similar to desktop applications.

10

FC_DirectoryLevelTree

PK DirlD
DirName
Parent
Level
LPATH1
LPATH2
LPATH3
LPATH4
LPATH5
LPATH6
LPATH7
LPATHS8
LPATH9
LPATH10
LPATH11
LPATH12
LPATH13
LPATH14
LPATH15

INT
VARCHAR
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT
INT

FC_MetaDatasetFiles

PK DatasetID INT
PK FilelD INT
FC_MetaDatasetFiles
PK DatasetID INT
DirlD INT
DatasetName VARCHAR
DatasetHash CHAR(36)
TotalSize BIGINT
NumberOfFiles INT
uiD INT
GID INT
Mode SMALLINT
Status SMALLINT
MetaQuery VARCHAR
CreationDate DATETIME
ModificationDate DATETIME
FC_DatasetAnnotations
PK DatasetID INT
Annotation VARCHAR

FC_Directorylnfo

PK DirlD INT
uiD SMALLINT
GID SMALLINT
CreationDate DATETIME
ModificationDate ~DATETIME
Mode SMALLINT
Status SMALLINT

FC_Users

PK UID INT
UserName VARCHAR

FC_Groups

PK GID INT
GroupName VARCHAR

FC_Statuses

PK StatusID INT
Status VARCHAR

FC_FileAncestors

FilelD INT

AncestorID INT

AncestorDepth INT

FC_MetaFields

PK MetalD INT
MetaName VARCHAR
MetaType VARCHAR

FC_DirMeta

PK DirlD INT

PK MetaKey VARCHAR
MetaValue VARCHAR

FC_FileMetaFields

PK MetalD INT
MetaName VARCHAR
MetaType VARCHAR

FC_FileMeta

PK FilelD INT

PK MetaKey VARCHAR
MetaValue VARCHAR

FC_DirectoryUsage

PK DirlD

PK SEID
SESize
SEFiles
LastUpdate

INT

INT
BIGINT
BIGINT
DATETIME

FC_StorageElements

PK SEID INT
SEName VARCHAR
AliasName VARCHAR

FC_Replicas

PK ReplD INT
FilelD INT
SEID INT
Status SMALLINT

FC_Replicalnfo

PK ReplD INT
RepType ENUM
CreationDate DATETIME
ModificationDate DATETIME
PFN VARCHAR

FC_Files

PK FilelD INT
DirlD INT
Size BIGINT
uiD SMALLINT
GID SMALLINT
Status SMALLINT
FileName VARCHAR

FC_Filelnfo

PK FilelD INT
GUID CHAR(36)
Checksum VARCHAR
CheckSumType ENUM
Type ENUM
CreationDate DATETIME
ModificationDate DATETIME
Mode SMALLINT

Figure 1.3: UML diagram of the tables in the current MySQL implementation of
the DIRAC File Catalogs DB. The color scheme is chosen to make the orientation
in the diagram easier: the grey tables are “the core” of the File Catalog, blue
are directory related, green are file related, purple are for the dataset manager,
yellow are the Replica Catalog and red are the Metadata Catalog (in the initial
state. When the user starts creating indexes, for each index there is going to be
a new table). Note that there are no relations between the tables, this is because
no foreign keys are declared, all the table relationships are handled in DIRACs

code.

11

2. Related Works

Currently there are several other middleware projects similar to DIRAC. The
DFC was developed by the LHCb experiment collaboration which, however, has
similar needs as other LHC experiments. In particular the ATLAS Distributed
Data Management system and the AliEn file catalog are the closest comparable
solutions.

2.1 ATLAS DDM

The ATLAS experiment at LHC is a general-purpose particle detector designed to
investigate physics at the energy frontier. The output data rate, already reduced
by the online trigger is 200-400Hz. Even with this reduction ATLAS records a
huge amount of data — more than 10PB of raw collision data have been taken
since the LHC started running in November 2009. After the first pass of process-
ing was done at CERN, the data is registered in the ATLAS Distributed Data
Management system (DDM) [17].

Although a basic unit of data in the ATLAS DDM is a file, the basic operation
unit is a dataset: they may be transferred to the Grid sites, whereas single files
may not. There is also one more layer of aggregation called the container, which
is a collection of datasets. Datasets may overlap and in practice they do so in a
hierarchical manner: production will use small datasets, referring to a few jobs
processed at a site. These datasets are then aggregated into the main dataset
that refers to a particular task in the ATLAS production system. These main
datasets then may be added to a container, where the output of several similar
tasks is gathered. Datasets may be open (new files can be added to them), closed
(no new files may be added, but can have versions which differ in their content)
and frozen (no new files may be added and no new versions created).

The responsibilities of the ATLAS DDM cover data registration, transfers
between sites, file deletion, dataset consistency ensuring (manage file loses on
sites), enforcing ATLAS Computing model policies and monitoring. The current
implementation is called Rucio (the previous one was DQ2).

2.1.1 Rucio

In the current implementation files, datasets and containers follow an identical
naming scheme which is composed of the scope and a name, called a data identi-
fier [I8]. Scopes are used to separate production and individual users. Metadata
associated with a data identifier is represented using attributes (e.g. for a file
its availability, for a dataset whether it is open, closed or frozen,...) which are
represented as key-value pairs. The set of available attributes is restricted. Some
metadata attributes can be set by a user, e.g. physics attributes (run number).
Metadata not set by users include system attributes (size, creation time,...). For
datasets and containers it is possible that the value of metadata is a function of
the metadata of its constituents, e.g. the total size is the sum of the sizes of the
constituents.

12

The Rucio Storage Element (RSE) is a repository for physical files. It is the
smallest unit of storage space addressable within Rucio. It has a unique identifier
and a set of properties (e.g. supported protocols, storage type, physical space,...).
Physical files stored on RSEs are identified by their Physical File Name (PFN).
The PFEN is a fully qualified path identifying a replica of a file. The mapping
between the file identifier and the PFN is a function of the identifier, RSE and
protocol. Replica management in Rucio is based on replication rules defined on
data identifier sets. A replication rule is owned by an account and defines the
minimum number of replicas to be available on a list of RSEs.

2.2 AliEn

AliEn (ALICE Environment) [19] is a Grid framework developed by the ALICE
Collaboration and used in production for more than 10 years.

The AliEn File Catalog is one of the key components of the Alikn system.
It provides the mapping between Logical File Names (LFNs) visible to the end
user and one or more Physical File Names (PFNs) which describe the physical
location of the file by identifying the name of a storage element and the path to
the local file. The LFNs are manipulated by users, one LFN can point to more
PFNs. To prevent duplicate entries, each LFN is associated with a Globally
Unique [Dentifier (GUID).

The interface of the catalog is a hierarchical structure of directories and files,
similar to the UNIX file system. The directories and files in the File Catalog have
UNIX-like privileges.

It also extends the familiar file system paradigm to include information about
running processes in the system (in analogy to the /proc directory in Linux
systems). Each job inserted into AliEn Task Queue gets a unique id and a
corresponding /proc/id directory, where it can register temporary files, standard
input and output as well as all job products [20].

The File Catalog is designed to allow each directory node in the hierarchy to be
supported by different database engines, possibly running on different hosts and
even having different internal table structures optimized for a particular directory
branch.

From the user point of view, the catalog behaves as a single entity. Internally
it is divided between the LFN and GUID catalogs that are kept in separate
databases. Every LFN database has an index table used to locate the files and
a table that contains all the information about the concrete LFN (owner, group,
size,...).

In addition, there can be user-defined tables containing metadata. AliEn
supports file collections. A file collection is a user-defined list of entries that can
be either other collections, LFNs or GUIDs. The collection mimics a file in the
file catalog, its size is the sum of sizes of all its components. If a command is
executed over a collection, it will be executed on each entry of the collection (e.g.
if a user issues a command to replicate a collection, all the files of that collection
will be replicated).

13

2.3 Comparison

The ATLAS DDM is made to be used by the ATLAS collaboration only, so
it does not have to cover all the requests from other experiments, e.g. user-
defined metadata. The DDM also introduces more layers of data structures above
files: there are datasets, nested datasets and containers. Furthermore, there is
no structure in the names of datasets and containers, they have just unique
identifiers.

AliEn is opened for other virtual organizations, however there are only 2 other
virtual organizations using AliEn services, while there are more than 15 ones
using DIRAC. Since the administration of the whole middleware solution requires
high effort, a proposition was made to integrate smaller independent DIRAC
installations into a single service to optimize operational costs. Thus the France-
Grilles DIRAC service, after an initial pre-production period of 6 months, was put
into production in May 2012 [21]. This enabled small user groups, not capable
of installing, configuring and maintaining such complex systems as DIRAC, to
use it without the need to understand and operate the complex software and
configurations. From the data management point of view, the structure is similar:
there are files and datasets in a directory structured space, user can define new
metadata.

Unlike DIRAC, AliEn uses the directory structure not solely for keeping the
information about the files, but also introduces the /proc directory for temporary
job files and outputs.

14

3. The Metaquery

When working with metadata in the DFC’s metadata catalog, one of the most
important operations is to find files by giving a specific set of conditions on their
metadata. Each condition concerning one metafield is called term and is in the
form of <metafield> <operator> <value>, where

e metafield is the name of the metadata field,
e operator is one of the classical comparison operators: =,1=<,<= > >=

e value is the value specifying the condition.

In the current production implementation the terms are coupled together by
writing them in a space separated list, which translates into a conjunction with
each space having the same meaning as the logical operator AND.

As the DFC grows bigger and more elaborate, the need for new classes emerges.
Before the start of this project, the information about the metaquery was stored
in a python dictionary data structure and every operation upon it was done in
the code of the particular procedure. The handling was done similarly in several
places so a decision was made to create a Metaquery class to encapsulate all the
handling methods.

There was also a need for extending the metaquery language by adding the
logical operators OR and NOT and allowing brackets. Another task was set when
the demand for the user input to be optimized and normalized was raised. This
meant that if two users inserted two equivalent metaqueries but wrote them down
differently (e.g. A=2 AND (B>3 OR C!=4) vs. A=2 AND B>3 OR A=2 AND C!=4)7
internally they would be stored in the same way. This is opening an option for
the metaquery to be hashed so that all the equivalent metaqueries would have
the same hash and thus it could be used as a database index etc. The task of
studying all the possible utilizations of the metaquery hash is not the aim of this
project but should be engaged in the future.

3.1 Metaquery Theory

When evaluating the truth-value of a formula on a given substitution of its free
variables, the form that comes in mind is the disjunctive normal form (DNF). A
logical formula is in DNF if it is a disjunction of at least one conjunction of at least
one literal. In our case literals are the terms specifying conditions on metadata
and the variable substitution is the trueness of the term when a specific value of
metadata is substituted for the metafield name. The whole formula is then true
when at least one of the disjuncts evaluates as true, which makes evaluating the
trueness of the formula on a given set of metadata values rather easy.

To be able to use this form, an efficient practical implementation had to be
discussed, having in mind that backwards compatibility with the old metaquery
representation is mandatory. The decision was made to represent the formula in
DNF using a list of dictionaries, where each dictionary represents one conjunct
of the outer disjunction. This is similar to the status before this project when
only one dictionary was used to represent a conjunction of terms.

15

3.2 Metaquery Implementation

The Metaquery class contains

e the information about the metaquery itself written in a form of list,
e information about the types of all the metafields,

e handling and evaluating methods and functions.

Serialization of the class is done by exporting the list containing information
about the formula. When a handling method has to be used somewhere in the
code, a new instance of the class is created using this list. This helps to limit the
network traffic to a minimum.

3.2.1 Query Input

The class has a constructor taking 2 parameters: queryList - the list representa-
tion of the metaquery and typeDict - the dictionary of metafield types. When a
new metaquery is to be created from a user input, an instance of the Metaquery
class is created without any information about the query itself, but ideally using
a valid typeDict. Then the query string is parsed, tokenized and fed into the
setMetaQuery method.

When the user inputs a query it first has to be tokenized. To enable the user
to input the query without caring about whitespace distribution, the tokenization
is done character by character. The user can also use the old input method (query
string is in form <metafield> <operator> <value> [<metafield> <operator>
<value>]*), the output will be then one conjunction as expected (AND opera-
tors are inserted in the correct places). However when the user uses at least one
logical operator, no additional insertions are made and the rest of the input has
to be a well formed formula.

Once the query string is tokenized, it has to be converted into DNF (see
Algorithm (1) and optimized to gain the metaquery properties. Every formula
can be transferred to DNF and method setMetaQuery takes care of it and also
calls a private method for optimization.

The normalization algorithm follows the proof in a sense that when it traverses
the input left to right, recursively descending into every sub-formula, it first re-
moves the negationﬂ and then takes care of the elements themselves, distributing
the disjunction in the correct manner. The function takes one token of the query
at a time, creates terms and connects them into inner conjunctions. These are
then redistributed to form the outer disjunction converting the input into DNF.
While adding terms into the conjunction and redistributing them following the
distributivity rules of boolean algebra the elements of newly created conjunctions
are checked for duplicities and colliding terms. The user is alerted when any are
discovered. For instance when the user input would lead to a situation where
metal = 2 AND metal = 3, the algorithm detects this, fails and alerts the USGIEI.

!'Removing negation depends on the position of the NOT operator. When it is in front
of the parenthesis surrounding a sub-formula it involves switching the meaning of the logical
operators in it. When the NOT operator is in front of a term the comparison operators have
to change (e.g. < — >).

2This is a feature requested by the DIRAC community

16

Algorithm 1 Convert the tokenized input string into a query in DNF
1: procedure TODNF(inputList)
2 termTmp = [|; last = |]
3 for all atoms in inputList do
4: if atom is ’(’ then
5: Find correct ’)’
6
7
8
9

last «+— ToDNF (sub-list between parentheses)
else if atom is logical operator then
if termTmp is not empty then
newTerm < Parse(termTmp)

10: termTmp = | |

11: else if negGlobal is set then

12: Switch atom meaning

13: end if

14: if atom is AND then

15: add last or newTerm in conjunction buffer
16: else if atom is NOT then

17 switch negGlobal flag

18: else > atom is OR
19: add term or buffered conjunction to output
20: end if

21: else

22: add atom to termTmp

23: end if

24: end for
25: end procedure

The query in DNF is then passed to a method that goes through the disjuncts,
checks them for common metafields and whether they are both relevant for the
meaning of the query. If not, the irrelevant parts are removed.

3.2.2 Query Evaluation

To provide a correct input is a major challenge of the Metaquery class, although
the main reason the file catalog features metaqueries is evidently the search for
files. For files already stored in databases the DIRAC project tries to leave as
much work as possible on the database, so the only thing to solve in this area is
the interface between the database and the file catalog (the conversion between
the Metaquery class and the databases query language). This problem is tackled
in the Chapter

Applying the metaquery to a particular set of metadata (for instance when a
new file is uploaded to the file catalog) is handled by the Metaquery class itself,
although there has been a discussion whether it is possible to let the database
engine handle this situation. The conclusion was that applying an ordinary query
would not be a big enough problem to justify initiation of network communication
between the catalog server and the database server (which is the current practice
of deployment). Instead a dictionary, where metafields are keys indexing their
values, is passed to the method applyQuery() on an initialized Metaquery class.

17

Evaluating whether a concrete set of metadata satisfies the metaquery is made
as simple as possible by using the DNF, where each element of the disjunction is
tested (all the conditions in the element must be satisfied by the set of metadata).
If at least one passes, the query is satisfied.

3.2.3 Output of the Query

For the development of the function providing the output of the Metaquery class,
the need for a consistent result of equivalent metaqueries was the main goal.
A disjunction is commutative so there has to be an artificial rule forcing the
disjuncts to appear always in the same order. Internally the elements of the
disjunction are represented as dictionaries, so sorting them according to their keys
(the metafields) is the obvious choice. However, theoretically there could be two
disjuncts with exactly the same metafields, so the values also had to be considered.
In the case of identical metafields the optimization function guarantees that their
values are going to be different.

18

4. The DatasetManager

As mentioned before, the DIRAC software architecture is based on a set of dis-
tributed, collaborating services, following the paradigm of a Service Oriented
Architecture (SOA). The services themselves consist of modules. DatasetManag-
er is one of the modules used by the File Catalog, where the other include e.g.
FileMetadata module, DirectoryTree module etc.

The dataset is a set of files grouped together based on their common metadata.
To accomplish that, each dataset is associated with a metaquery and all the files
that it contains are satisfying it. Moreover there are two types of datasets: a
dynamic dataset and a frozen (static) one. A dynamic dataset is exactly what
is described above: a set of all the files that satisfy a given metaquery. The
dynamic dataset changes every time a file satisfying its metaquery is added to
the file catalog. A frozen dataset is a snapshot of a dynamic dataset. The user
can freeze a dataset — the files of which he is using — in order to maintain the set
of files for further evaluation or cross-checking the results of his work with other
users over the same set of files. When a frozen dataset is later deleted, the user
is asked whether the files, that are exclusively contained in this dataset should

be deleted.

4.1 Previous Status

Before the start of this project, a prototype of the DatasetManager module was
already in place. It complied with the demands requiring, what the structure of
the database should look like and what is the expected behavior of the datasets,
but many crucial features (like e.g. deleting files when a frozen dataset is deleted,
dataset replication and overlapping and other) and properties (identifying the
dataset based on its’ location in the directory tree) were missing,.

4.2 Implementation Details

The DatasetManager is one of the modules in the file catalog. The class offers
multiple methods handling the datasets and exposing them to other modules.
The state of the datasets is saved in a database, the class itself holds only an
instance of the database interface object, so restarting the FileCatalog service is
done without any problems. The module handles mainly basic CRUD operations
with some additions.

4.2.1 Releasing and Freezing a Dataset

When a dataset is created, an entry is inserted to the database. It contains the
dataset name, id, metaquery, status, id of the directory it is located in, UID and
GID of the user who created it and some other properties. When a dataset is
frozen, the query is evaluated and all the files, which the dataset contains, are
associated with it (the records are inserted in the table FC_MetaDatasetFiles).
Releasing the dataset only deletes these records and updates the cached proper-
ties.

19

When a dataset is deleted, its record in the database is removed. Moreover
when the deleted dataset is frozen it is requested it would be deleted with the
files it contains not including files contained by another frozen dataset. This is
done using one select

SELECT FilelID

FROM FC_MetaDatasetFiles

WHERE FileID IN (
SELECT FilelID
FROM FC_MetaDatasetFiles
WHERE DatasetID=X

)

GROUP BY FilelD

HAVING Count (*)=1;

where in place of the X symbol the id of the deleted dataset is inserted. The
user is then asked, whether he really wants delete those files from the file catalog.
When he agrees, a request to the DIRACs Request Management System (RMS)
is created. This system ensures that all the files are deleted from all the storage
elements as well as from the file catalog database, which prevents memory leaks.
The RMS is also used when dataset replication is executed.

4.2.2 Dataset Overlapping

Another important feature not included in the previous implementation was the
determination of dataset overlapping. In the first step the metaqueries of the
two datasets are combined into a conjunction and the check proceeds only if the
conjunction is a valid metaquery. The procedure of the second step depends on
the statuses of the datasets. When the two datasets in question are dynamic,
the files satisfying the conjunction of their metaqueries are their overlap. When
comparing a dynamic and a frozen dataset, the files satisfying the conjunction are
compared to the list of the frozen datasets files. Finally, when two frozen datasets
are checked, the sets of their files are simply compared and if the intersection is
empty they do not overlap.

20

5. Choosing the NoSQL Database

One of the main goals of this project was to test whether connecting the file
catalog, more specifically its metadata part, to a NoSQL database would improve
the feedback speed of the service thus making it more pleasant to use or make it
easier to implement and maintain. The new database had to satisfy the following
conditions in order to be connectable to DIRAC and deployable in the computing
centers

e a freeware version has to be available for DIRAC,

e the database has to have a python interface or client so it would be easy to
incorporate into the DIRACs code.

The characteristics of the data itself add some restrictions. The database
should be optimized for search speed. When combined with the current metada-
ta implementation, we get two different types of data retrieval. For directories
the database has to be able to get all the metadata associated with a directory
identified by an ID. On the contrary, the files are fetched based on the terms in
the metaquery so all the querying techniques the metaquery could use have to be
possible, including range queries.

5.1 Apache Cassandra

Apache Cassandral]is a distributed database for managing large amounts of struc-
tured data across many commodity servers, while providing highly available ser-
vice and no single point of failure [23]. Cassandra’s data model is a partitioned
row store, rows are organized into tables. Each row has an altering number of
columns identified by a unique ID, which are essentially a key-value pair. Adding
that Cassandra features its own query language CQL (Cassandra Query Lan-
guage) which resembles the standard SQL used by all relational databases, it
seems to be a perfect candidate for the metadata catalog.

5.1.1 Developing a Data Model for Cassandra

Although CQL makes it look like a relational database, the developer has to keep
in mind that Cassandra is different. Our first scheme used the altering number
of columns and organized the data in tables, where each file or directory had
its own row with metanames as column names and values as column values (see
Table . Secondary indices were created over column values so that the query
would be possible. Although CQLs’ similarity with SQL would suggest otherwise,
it turned out that this kind of indexing does not support range queries so this
data-model had to be abandoned.

After understanding more thoroughly how Cassandra works, another data-
model was introduced utilizing most of Cassandra specific features. The key
properties Cassandra guaranties are that rows are not divided across multiple

"http://cassandra.apache.org/

21

http://cassandra.apache.org/

Metal 123 200 4000

1 Metal | Meta2 | Meta3 ill}h’ ’{j}lt’ {2}

123 "alpha’ | 0 Meta2 alp a 26 a
9 Metal | Meta2 | Meta3 | Meta4d é } i }

4000 ‘delta’ | 0 ‘beta’ Metad %) 3
3 Metal | Meta3 ’b(;ta’

200 1 Meta4

{2}

Table 5.1: The first data model using
Cassandra. The FilelD is in the first
column (row key), the next columns
are metanames and their values.

Table 5.2: The second Cassandra
scheme. FileIDs are now in sets in
column values, metanames are row
keys and metavalues are columns
names.

nodes in the cluster and column keys inside the row are sorted. Based on these
two characteristics a functioning data model was created. For directories row
IDs are mapped on directory IDs and the model the same as the previous one.
Retrieving a row with a given row ID is one of the supported operations. For files
each metaname has its row, column names are meta values and column values
are sets of fileIDs of files having this metaname and value associated with them
(see Table [p.2)).

The rows are grouped in tables by value type, because the algorithm used to
sort the column names is unified per table. There is also an index over fileID
sets, so that retrieving all metadata for one specific file is possible. However the
scheme is not optimized for this operation, because this is done only for the users
information and when setting new metadata.

Listing 1 Data structure described using CQL
CREATE TABLE file_int (

metaname text,

value int,

fileid set<int>,

PRIMARY KEY (metaname, value)

In CQL this structure looks like a table with three columns and a compound
primary key (see Listing . This brings the main disadvantage of this approach:
meta names can be queried only one at a time and the result has to be then
finalized in the DIRACs code. The expected structure of data could suggest that
the number of files satisfying only a part of the metaquery can be large, the
idea of using Cassandra as the File Catalog database was abandoned, because
fetching multiple times a large number of files from the database and then doing
an intersection in the python code is not optimal.

22

Listing 2 Metadata stored in a document database. This is a basic example,
there can be many more fields in the JSON structure, but it will always remain
a simple structure.

{

"id '’ :id
"metalntl’ : 1,
"metaStrl’ : ‘qwerty’,
"metalnt3’ : 123

5.2 Document Databases

A document-oriented database replaces the concept of a row from the world of
relational databases with a more dynamic and versatile document. By allowing
arrays and embedded documents the document-oriented databases provide de-
normalization of the data and complex relationships in a single document. Also
there are no predefined schemes, which is essential for our project, because the
number of associated metadata varies between files. The metadata are stored in
simple a JSON structure with names being metanames (see Listing .

Document databases were not the first choice during developing this project,
because the idea of storing metadata in a JSON structure and then building
indices above the properties is not as familiar as Cassandras columns. But it
turned out to be even easier to use.

5.2.1 MongoDB

MongoDB is an open-source document-oriented database storing JSON files. Cur-
rently, in November 2015, MongoDB is the fourth most popular type of database
management system, and the most popular for document stores [24]. In Mon-
goDB the document is the basic unit, documents are grouped into collections. A
single instance of MongoDB can host multiple databases, each grouping together
multiple collections. In collections documents are identified using a special field
_id which has to be unique within a collection [25]. This projects maps the file
or directory ids from the file catalog to this id field.

5.2.1.1 Using MongoDB

On Scientific Linux it can be installed from a package so the initial set up is
rather easy. MongoDB comes with its own shell based on JavaScript, which the
administrator can use to query and update data as well as perform administrative
operationg’] The client is rather easy-to-use and its commands are very similar to
those used by the python library. The mongo package also contains several tools
for monitoring the database including the mongot opE] and mongosta‘cﬁ]7 and several
other helping the administrator with e.g. dumping and restoring the database.

’https://docs.mongodb.org/getting-started/shell/client/
3https://docs.mongodb.org/manual/reference/program/mongotop/
‘https://docs.mongodb.org/manual/reference/program/mongostat/

23

https://docs.mongodb.org/getting-started/shell/client/
https://docs.mongodb.org/manual/reference/program/mongotop/
https://docs.mongodb.org/manual/reference/program/mongostat/

For further debugging the log file provides a sufficient amount of information,
when its verbosity is turned up to at least 3. Overall the database is easy to use
and administer thanks to many well documented utilities.

There are two types of configuration files supported by MongoDB: the older
one in form of <setting> = <value> and the newer using YAML format [26].
The database comes with the older one (although it is not developed since version
2.4), but most of the configuration documentation is in the newer one (and some
of the new features can be only set in YAML format) so the administrator should
convert it manually before using the database since it could ease the usage and
optional re-configuration later. The major drawback when using this database is
that every property has to be indexed manually, which not only takes time, but
also consumes disk space.

5.2.2 Elasticsearch

Elasticsearch (ES)E] is a real-time distributed open-source analytics and search
engine [27] built on top of Apache Luceneﬂ Unlike very complex Lucene, ES
features a simple RESTful API that makes it easy to use. Moreover it can be
used not only for full-text search, but also for real-time analytics or, which is
important for this project, as a distributed document store, where every field is
indexed and searchable. Its python clientE] provides a wrapper for the RESTful
APT as well as some useful additional commands called helpers (e.g. for bulk
loading data, the command helpers.bulk(es, dataToLoad(size)) was used).

5.2.2.1 Using ES

Like MongoDB, Elasticsearch comes in a package. The installation set reasonable
defaults (the only thing that was changed on the testing server was the data
directory and listening on the universal IP address had to be enabled, because
the default is only local host). The configuration file is in YAML format. There
is no need for any initial data structure, the first data is simply inserted using
the correct URIE]. In ES, a document belongs to a type and types are contained
by indices (hence the index and doc_type in the command). An Elasticsearch
cluster can contain multiple indices, which can contain multiple types (there is
a rough parallel with the world of relational databases, where indices would be
databases and types would correspond to tables). Unlike the relational databases
ES can create the index and type with the first inserted document using its default
configuration.

5.3 Database Tests

For testing, a single IBM iDataPlex dx340 server was used, equipped with 2x Intel
Xeon 5440 with 4 cores, 16GB of RAM and 300GB SAS hard disk, where all the

Shttps://www.elastic.co/products/elasticsearch

Shttps://lucene.apache.org/

"http://elasticsearch-py.readthedocs.org/en/master/

8http://host:port/index/doc_type/doc_id is the URL the RESTful API uses, when
using the python library index, doc_typedoc_id are specified using the function arguments

24

https://www.elastic.co/products/elasticsearch
https://lucene.apache.org/
http://elasticsearch-py.readthedocs.org/en/master/
http://host:port/index/doc_type/doc_id

database files were stored. After several smaller datasets, the main testing data
was generated trying to mimic the DIRAC production data structure. There is ex-
pected over 10 million files with approximately 20 different meta names. The gen-
erated set had (10000000—1) files with 1 to 998 metanames associated with them[,
which is more than the production data would have, but gave the testing more
data to encumber the databases. The metrics names were test [Int|Str]NNN,
where NNN stands for a number. The integer values were all picked from the inter-
val [1;1000] and the string values were one of the words from the NATO phonetic
alphabet [28], which lead to easier composition of testing queries. Integer fields
represent continuous data types and string fields represent discreet data types.

The data was stored in two CSV files with lines id,metaname,value and the
sizes of 53 and 59 GB.

5.3.1 Loading the Big Data

Both databases feature bulk loading functionality. Although the user will not
probably use it, in this project, which involved testing the databases on a large
data, the loading of them was one of the challenges.

ES python interface features a bulk load function (the default data chunk size
is 500 records). Unfortunately it crashes on a TimeoutException from time to
time, making the loading by a simple script a rather long procedure. We have
not been able to discover the cause of the exception.

MongoDB features a command mongoimport which can read a file of JSON
objects and load them all. Its pace on the test data was approximately 150 — 200
entries per second. Unfortunately the script froze from time to time so loading
the whole dataset took again several days. Once the data was loaded, it could be
backed up using the utility mongodump and then again loaded using the command
mongorestore. These two utilities ran without problems and were used when
changing the storage engine.

5.3.2 Testing Query Performance on a Predefined Sample

The task of the database in this deployment will be to accept a query, execute the
search and return all the ids of documentd | satisfying the query. To measure the
results as precisely as possible, a list of queries was generated. When testing one
database, all other database services were stopped so that they did not interfere
with the test. As we mentioned, to effectively search for data in MongoDB the
document properties have to be indexed manually. Indices were made on several
integer fields (testInt1-8) and three string fields (testStrl,testStr2testStr3). The
time cost of buildingE] the indices and their space requirements are listed in
Table (.3

ES does not have a similar limitation, however the queries were kept the same
so that the comparison is as correct as possible.

9 The generator chose a randomly 1 to 499 integer metrics and the same number of string
ones.

0Document ids are mapped on file ids, so this procedure is returning the ids of files that
satisfy the query

Hfor the default storage engine

25

Field Time Disk Space (MMAP) Disk Space (WT)

testInt1 00:20:50 211 390 46 785
testInt2 00:20:00 211 407 46 789
testInt3 00:19:59 211 390 46 785
testInt4 00:20:12 211 415 46 789
testInth 00:19:58 211 390 46 785
testStrl 00:20:06 203 043 44 351
testStr2 00:20:13 203 026 44 351
testStr3 00:20:51 203 043 44 356
testInt6 00:21:03 211 407 46 789
testInt7 00:19:57 211 399 46 785
testInt8 00:19:58 211 390 46 785

Table 5.3: The time and storage requirements for indices used in MongoDB. The
indices were built while using the MMAP storage engine. Sizes are in MB.

The queries were generated randomly combining the integer and string prop-
erties. The number of hits was not considered while generating the queries. All
the queries used can be found in Appendix [B]

The program testing the performance is a python script running on a personal
computer in the same LAN as the database machine (similarly to the expected
deployment of the service). The measured time is the interval between the mo-
ment the query was submitted, to the moment the results were extracted to a
python list. Neither the preparation of the query, nor the printing of the results
were included in the final time.

For ES the cache of the index was flushed after every query to keep the results
consistent (although as Figure suggests, flushing the cache does not make a
notable difference for bigger data volumes).

number of hits ES
ES without cache

10000 ¢ le+07
1000 [le+06
100 & 100000 £
= [10000 =
< 10 [Ny
£ - A 1000 2
= 1L] g
F— 2 100 =
0.1 ~v 10
0.01 L 1

Figure 5.1: Query times for Elasticsearch comparing performance with and with-
out dumping depending on the number of hits (logarithmic scale)

26

Storage Engine Total Database Size Total Index Size

MMAPv1 136 161 2 579
WiredTiger with zlib comp. 22 788 615
WiredTiger with default comp. 42 249 616

Table 5.4: Disk usage comparison of MongoDBs storage engines. Note the size
of the indices does not depend on the compression used. All sizes are in MB.

The original MongoDB instance was using the default storage engine used by
versions up to 3.0 There is also a new storage engine WiredTigei"¥| available
and their performances were compared. Moreover the new engine brings the
option of choosing the compression strategy. The comparison of disk space usage
can be seen in Table [5.4] and query performance in Figure [5.2

number of hits MDB WT zlib

MDB —— MDB WT
100000 ; le+07
10000 | 1 le+06
1000 | 1 100000 Zf
% 100 | {1 10000 5
E 10 | {1000 £
1f 1 100 %
0.1 1 10
0.01 11

Figure 5.2: Query times for MongoDB comparing performance with different
storage engines and compression options: the old MMAPv1 (MDB), the newly
available WiredTiger (MDB WT) and WiredTiger with extra compression (MDB
WT zlib). Logarithmic scale.

We can conclude as follows: if the administrator does not have a critically low
amount of disk space available, MongoDB works best with the new WiredTiger
storage engine with the default compression. In Figure[5.3|we can see the compar-
ison of performance on the sample queries between the WiredTiger configuration
of MongoDB and Elasticsearch.

The queries on MongoDB are taking much more time than on Elasticsearch.
MongoDB provides a tool for explaining query execution. This becomes very
useful when trying to investigate efficiency problems like this one. In the listing
in Appendix [C| one can see the output of the command for one of the sample
queries. The query planner tries all the indices associated with one of the queried
properties, then selects one and based on just this one performs the search. The

2MMAPv1 Storage Engine based on memory mapped files
13 https://docs.mongodb.org/manual/core/wiredtiger/

27

https://docs.mongodb.org/manual/core/wiredtiger/

number of hits MDB WT

ES ——

20000 3e+06

18000 .

14000 | 2e+06 =
o 12000 -
g 10000 F 1.5e+4-06 =
g 8000 <

4000 | 500000

2000 F

0 0

Figure 5.3: Comparison between ES and the best performing MongoDB (MDB
WT) configuration.

search results are then filtered so that the returned fields satisfy the other condi-
tions of the input query. To test the best possible performance, special compound
indices were created for each query and the performance was tested using these
indices.

number of hits m— MDB WT

ES —— MDB WT comp
100000 le+07
10000 le+06
1000 100000 ;f
% 100 10000 5
E 10 1000 2
1 100 §
0.1 10
0.01 1

Figure 5.4: Comparison between MongoDB with indices created especially for
the tested queries (MDB comp) and ES. To show the improvement the MongoDB
performance without the compound indices is graphed as well (MDB WT)

Creating an index for each query is not the preferred usage pattern in this
case. Also Figure |5.4] clearly states that even with these specialized indices Mon-
goDB shows worse performance than Elasticsearch, although there is a great
improvement when compared to the version without the new indices.

28

5.3.3 The Comparison Between NoSQL and the Current
Deployment

As we mentioned, currently the database back-end to all the services in DIRAC,
where a database is needed including the File Catalog and its metadata part, is
relying on MySQL. The table scheme of the metadata part of the DFC can be
seen in Figure [5.5]

FC_MetaFields
PK MetalD INT
MetaName VARCHAR
MetaType VARCHAR
FC_DirMeta FC_FileMeta_Z FC_DirMeta_C
PK DirlD INT PK FileID INT PK DirlD INT
PK MetaKey VARCHAR FC_FileMeta_Y ype FC_DirMeta_B ype
MetaValue VARCHAR PK FilelD INT PK DirlD INT
FC_FileMetaFields GCERilchetalX ype FC_DirMeta_A ype
PK MetalD INT PK FilelD INT PK DirlD INT
MetaName VARCHAR MetaValue MetaType MetaValue MetaType
MetaType VARCHAR
FC_FileMeta
PK FilelD INT
PK MetaKey VARCHAR
MetaValue VARCHAR

Figure 5.5: The File Catalog part of the database scheme. The tables on the
left are created implicitly with the rest of the scheme. They are used for keeping
the track of the types of metafields and un-indexed metadata values. For each
new indexed field a new table is created, in this scheme there are 3 indexed file
metafields (X, Y, Z) and three indexed directory metafields (A,B,C).

In order to see if it is worth to start using a NoSQL database, in this project
we compared the current deployment with the database that performed the best
in the tests we completed. When trying to test the MySQL database against the
same queries by only loading the relevant data (creating tables only for 8 integer
typed metadata and 3 string ones), the performance was much better than all the
NoSQL databases. This was due to the fact, that the MySQL engine loaded the
whole dataset in memory and did not have to use the disk when executing the
query. This however is not the expected behavior, because the database engine
will most likely not serve only the DFC metadata catalog, so there will not be
enough memory space to keep all the metadata in cache. To test how the database
could behave in production, the command flush tables; was used after every
query to dump the cached tables. Also the whole dataset was inserted into the
database. This also let us to compare the size of data indexed by MySQL and
by NoSQL (Table [5.5)).

To test the databases more thoroughly a new set of queries was created.
These queries involve more than just the small set of metafields indexed by the
MongoDB. MySQL on this set proved itself better on queries consulting a lesser
number of metafields and a larger number of hits. Performance of Elasticsearch
seems to correspond to the number of hits while the complexity of the query does
not seem to have an effect on its speed (results are provided in Figure .

In all the tests above Elasticsearch and its indices were left with the default
settings. Since ES is primarily a distributed store, the default setting assumes
that there will be more than just one server in the cluster. This means that

29

Database Total database size

MongoDB 42 249
Elasticsearch 59 715
csv files 113 384
MySQL 185 135

Table 5.5: The comparison of disk usage for all databases. For an illustration the
size of the input CSV files is shown. All sizes are in MB.

for every read several nodes have to be contacted and even though the testing
deployment consists of only one server, the index cut the data into 5 shard{"]
(default setting). The volume of data used in this project is not as large to need
a whole cluster to be stored so it was re-indexed into an index with no replicas and
only one primary shard, which is ideal when only one server is used. Also it comes
closer to the MySQL database, because it can be run on only one server. The
performance on re-indexed data was not significantly better and an even worse
performance drop is observable when fetching a large number of documents. The
queries contained from 2 to 6 conditions (consulted 2 to 6 different metadata).

Number of hits ES one shard
ES —— MySQL
10000 le+07
1000 } E le+06
_ = ;
- 100000 2
ol 2
T 10 | , c
i NS 1000 2
i Lf ! 100 :
I E =
0.1 i 10
0.01 1

Figure 5.6: Comparison between the currently deployed MySQL and ES on a
larger set of queries. ES performance with data re-indexed to one shard is also
graphed (ES one shard).

A shard is a single Lucene instance. It is a low-level “worker” unit which is managed
automatically by Elasticsearch. An index is a logical namespace which points to primary and
replica shards.

30

6. NoSQL Integration into DFC

To prove the concept of connecting the metadata part of the DIRAC File Catalog
to a NoSQL database modules fmeta and dmeta that manage the metadata in
the FileCatalog service were modified. As discussed in the previous chapter, the
best available NoSQL database for this particular purpose is Elasticsearch.

6.1 Query Strategy

The current query search algorithm cuts the query per element of the disjunction.
With each element the File Catalog finds directories satisfying the directory part
of the query. Then it finds the files satisfying the file part. With the list of files
and list of directories it filters the files that are not in the sub-tree of one of the
satisfying directories (the algorithm is described by Algorithm .

Algorithm 2 Find files satisfying query

: function FIND(queryList)

outFiles = | |

for all element in queryList do
dirMeta < getDirectoryMeta(element)
dirs < findDirectories(dirMeta) > including sub-trees
fileMeta < getFileMeta(element)
files «+ findFiles(fileMeta)
files < dropFilesNotInDirs(files, dirs)
outFiles.append(files)

end for

11: return removeDuplicates(outFiles)

12: end function

—
=

The procedure is so complicated, because the metadata for directories and for
files are managed by different modules (in the algorithm, function findDirectories
is in module dmeta and findFiles is handled by fmeta). This can result in un-
necessary fetching of files, which are then dropped because they happen to be
located in a directory that does not satisfy the query. This is especially relevant
because as the tests done by this project suggest, the query speed of Elasticsearch
unlike MySQL depends mainly on the number of hits it has to retrieve and not
on the complexity of the query (see Figure .

The solution could be letting the database engine deal with the complexity
of the search algorithm. This would mean storing all the metadata associated
with a file (its own as well as the ones inherited from the directory structure) in
the files document. This would increase disk space (but as Table suggests,
Elasticsearch is much more space efficient when compared to MySQL) as well as
the difficulty of metadata management. The inheritance of metadata through the
directory structure has to be maintained when setting and unsetting them. The
result would be that finding files would only consist of translating the metaquery
from the internal representation to an Elasticsearch compatible form (which is

31

now done per element in functions findDirectories and findFiles) and sub-
mitting the query. What would be sacrificed is the fact that directory and file
metadata can be handled in a completely different manner.

6.2 The New Implementation

A new module has been developed to create a specialized interface between the
database and the metadata catalog. This also minimized the changes that had
to be done in the current metadata managing modules (the practice where one
module manages directory metadata and another manages file metadata was pre-
served). As discussed above, the module stores all the metadata in one document
to improve the speed of queries. Setting and un-setting directory metadata is a
rather complicate procedure, which requires fetching all the documents associated
with files in the particular sub-tree and updating them with the new metadata
(respectively removing the one removed from the directory).

Removing a property from a document in FElasticsearch is not one of the
basically supported operations. There are two ways to implement it:

1. get the whole document from the database, remove the property and insert
it again;

2. submit a script that deletes the property from the document inside the
database in a update-like operation.

Since the scripting has to be enabled by the database administrator and it is
not guaranteed for the DIRAC administrator to have administrator access to the
database as well, the first approach was chosen. This means that removing a
metadata from a directory that has lots of files in its sub-tree is a non-trivial
operation and shall be executed as rarely as possible. Updating and setting new
metadata can be done by a simple command.

For searching the metadata managing modules from the file catalog had to
be changed. The new algorithm simply converts the query to the correct format,
submits it and reads the result.

32

7. User Documentation

To start working with DIRAC (or the Grid in general), the user should join
some grid Virtual Organization and obtain a Grid Certificate. Before a user can
work with DIRAC, the user’s certificate proxy should be initialized and uploaded
to the DIRAC ProxyManager Service [I1]. This is done by running command
dirac-proxy-init. After that, all the DIRACs’ functionality is ready for use
and all the actions will be signed by the users certificate.
The primary interface to the DIRACs’ file and metadata catalog is the command-

line interface provided by script dirac-dms-filecatalog-cli. Commands that
use the modules implemented by this project are meta, find and dataset.

7.1 Command Meta

Command used for all the metadata manipulating operations. The sub-commands
of command meta are: index, get, set, remove and show.

7.1.1 index

Usage: meta index [-d|-fl|-r] <metaname> <metatype>

This command adds new a metadata name to available metadata names. The
user then can assign a value to the metaname for a concrete file or directory. The
parameters —-f and -d specify, whether the new metaname will be associated with
files or directories, respectively. The -r parameter is used, when the user wants
to remove the metadata name. <metatype> can be one of the following: int, float,
string, date. The user has to be in the dirac_admin group to be allowed to use
this command.

7.1.2 set

Usage: meta set <path> <metaname> <metavalue>
This command sets a value to a metaname for a directory or a file specified
by the path parameter.

7.1.3 get

Usage: meta get [<path>]

This command gets all user defined metadata for a directory or file specified
by the path parameter. When getting metadata for a file, it also gets all the
inherited directory metadata. When getting metadata for a directory, the output
specifies which are defined on that concrete directory and which are inherited:

>meta get dirl
'testDirStr : foo
*unitFloat : 1.5
*testDirInt : 1

The metadata prefixed with the ! mark are defined on the directory, others
(prefixed with *) are inherited.

33

7.1.4 remove

Usage: meta [remove|rm] <path> <metaname>
This command removes the previously defined metaname for a directory or a
file specified by the path parameter.

7.1.5 show

Usage: meta show
This command shows all the available metadata names, divides them between
the file and the directory metadata and supplies the type.

7.2 Command Find

Usage: find [-q] [-D] <path> <metaQuery>

This command finds all files satisfying the given metadata query. When the
command is invoked it parses the query and, unless the -q parameter is used,
prints it out in its internal representation. After the query results return, the list
of all the files satisfying it is printed out. When the -D parameter is used, the
command prints only the directories that contain the files satisfying the meta-

query.

7.3 Command Dataset

Command used for all the operations involving the dataset functionality. Its sub-
commands are add, annotate, check, download, files, freeze, locate,
overlap, release, replicate, rm, show, status and update.

7.3.1 add

Usage: dataset add [-f] <dataset name> <meta_query>

This command adds a new dataset containing all files satisfying the query
supplied by the <meta_query> parameter. In the <dataset_name> the user spec-
ifies the path where the dataset should be located. When parameter -f in used,
the dataset is immediately frozen.

7.3.2 annotate

Usage: dataset annotate [-r] <dataset name> <annotation>

This command adds annotation to a dataset. There is no indexing involving
annotations, they are just for the user. The annotation is a string up to 512
characters long. When the -r parameters is used, the annotation is removed
from the specified dataset. A dataset can have only one annotation.

7.3.3 check

Usage: dataset check <dataset_name> [<dataset_name>]*

34

This command checks the correctness of the cached information about the
dataset. It can be supplied with one dataset, or a list of dataset names separated
with spaces. The information can be outdated by recent file addition or removal
in the file catalog and can be updated using the sub-command update.

7.3.4 download

Usage: dataset download <dataset_name> [-d <target_dir>] [<percentage>]

This command invokes download of the dataset files. If the <percentage>
parameter is used, a subset of the datasets files are downloaded. The size of
the downloaded part is approximately the inserted percentage of the size of the
whole dataset. Unless the -d parameter supplies the target directory, the current
working directory is used. The command creates a directory with the same name
as the dataset and all the files are saved there.

7.3.5 files

Usage: dataset files <dataset_name>

This command lists all the files that the specified dataset groups. In case of a
frozen dataset, the files saved in the database associated to the dataset are listed.
When the dataset is dynamic, the command returns the same result, as using the
find command with the datasets metaquery.

7.3.6 freeze

Usage: dataset freeze <dataset_name>

This command changes the status of a dataset to frozen. All the files that
satisfy the datasets metaquery at the moment of the command invocation are
associated with the dataset. For releasing the dataset, the sub-command release
is used.

7.3.7 locate

Usage: dataset locate <dataset_name>

This command shows the distribution of the dataset files over the storage
elements providing the absolute size and percentage of the dataset size used per
storage element.

7.3.8 overlap

Usage: dataset overlap <dataset_namel> <dataset_name2>

This command checks if the two datasets have the same files. The metaqueries
are checked first so that when there cannot be files satisfying both, the check does
not compare lists of files.

35

7.3.9 release

Usage: dataset release <dataset_name>

This command changes the status of a dataset to dynamic. All the records
associating concrete files to the dataset are deleted from the database. For freez-
ing the dataset, the sub-command freeze is used. However, if there were files
added to the file catalog that satisfy the datasets metaquery after the dataset
was frozen, the subset of files satisfying the metaquery not including those files
cannot be recreated after releasing the dataset.

7.3.10 replicate

Usage: dataset replicate <dataset name> <SE>

This command initiates a bulk replication of the datasets files to a storage
element specified by the parameter <SE>. The replication is handled by the
Request Management System.

7.3.11 rm

Usage: dataset rm <dataset name>

This command deletes the dataset from the file catalog. If the dataset is
frozen, its files are cross-checked with all other frozen datasets and if there are
some files that are grouped by the deleted dataset only, the user is offered the
option to delete those files from the File Catalog. The deletion is handled by the
Request Management System.

7.3.12 show

Usage: dataset show [-1] [<dataset_name>]

This command lists the names of all the existing datasets. When the -1
option is used, other data about the datasets are printed as well. When a
<dataset_name> is provided, the command restricts itself to this dataset.

7.3.13 update

Usage: dataset update <dataset name> [<dataset_name>]x*
This command updates the cached parameters for a dataset or for a space-
separated list of datasets.

36

7.3.14 status

Usage: dataset status <dataset_name> [<dataset_name>]*
This command prints details about a specified dataset or a space-separated
list of datasets

> dataset status testDataset

testDataset:
Key Value
1 NumberQOfFiles 13
2 MetaQuery testDirInt = 1
3 Status Dynamic
4 DatasetHash A89F08D23140960BDC5021532EF8CCOA
5 TotalSize 61562
6 UID 2
7 DirlID 5
8 OwnerGroup dirac_admin
9 Owner madam
10 GID 1
11 Mode 509
12 ModificationDate 2015-09-24 11:50:28
13 CreationDate 2015-09-24 11:50:28
14 DatasetID 71

37

Conclusion

This project successfully added dataset support to the DIRAC File Catalog mak-
ing DIRAC even more versatile. The dataset support was actively requested by
two experiments, that can now start using DIRAC. Closely coupled with the
dataset functionality went the development of the new MetaQuery class that ex-
tended the metaquery language by adding more logical operators. The new Meta-
Query also supports normalization and optimization of the query input, opening
new possibilities for future usage in the DIRAC Data Management system as well
as in the Workflow Management system.

This project also tackled the problem of storing metadata. Trying to enhance
the current solution, a couple of NoSQL databases were tested on sample data
similar to the DIRAC production metadata. The tests proved that connecting the
metadata part of DFC to a NoSQL database could improve query performance,
especially on more complex queries. A better performance is observable when
applying 4 and more constraints and retrieving less than 10 000 hits.

To prove the concept of connecting a NoSQL database to DIRAC, a new
module was developed to provide an interface between DFC and the database.
As the back-end database Elasticsearch was used, because it performed best in
the conducted tests. To improve the query performance, the complexity was
moved from the python code of DIRAC to the database engine. This was traded
by adding complexity to the management procedures. These do not have to be,
unlike the query mechanism, optimized for time performance.

In future if the DIRAC collaboration decides to use Elasticsearch as the
database back-end for the metadata catalog, more functionality can be added
using Elasticsearch specific features. For example when a query is executed,
the number of documents satisfying it is returned before all the documents are
fetched. This could be used for example when checking the properties of a dy-
namic dataset or when trying to predict the time for fetching all the results of
a particular query. Also new comparison operators translating to one of Elastic-
search query typesﬂ can be added to extend the metaquery language.

Ihttps://www.elastic.co/guide/en/elasticsearch/reference/current/
term-level-queries.html

38

https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/term-level-queries.html

Bibliography

1]

2]

[10]

[11]

[14]

B. JONES. Towards the European Open Science Cloud [online] Zenodo 2015-
03. [ref. 2015-12-01] http://dx.doi.org/10.5281/zenodo.16001

J. HAYES. Happy 10th Birthday, WLCG! [online] International Sci-
ence Grid This Week [ref. 2014-09-18] www.isgtw.org/feature/
happy-10th-birthday-wlcg

The Grid: A system of tiers [online] CERN [ref. 2014-09-18] home.web.
cern.ch/about/computing/grid-system-tiers

Grid Computing - Technology and Applications, Widespread Coverage and
New Horizons. edited by Maad, Soha; InTech, 2012. ISBN 978-953-51-0604-3

User Interfaces [online] EGIWIiki [ref. 2014-09-29] wiki.egi.eu/wiki/User_
Interfaces

A. A. ALVES, L. M. FILHO, A. F. BARBOSA, I. BEDIAGA, G. CERNIC-
CHIARO, G. GUERRER, H. P. LIMA, A. A. MACHADQO, et al. The LHCb
Detector at the LHC. Journal of Instrumentation. 2008-08-01, vol. 3, issue
08. DOI: 10.1088/1748-0221/3,/08/S08005.

A. TSAREGORODTSEV, M. BARGIOTTI, N. BROOK, et al. DIRAC: a
community grid solution. Journal of Physics: Conference Series. 2008-07-01,
vol. 119, issue 6. DOI: 10.1088/1742-6596/119/6,/062048.

T. ERL. Service-oriented architecture: concepts, technology, and design. Up-
per Saddle River, NJ: Prentice Hall Professional Technical Reference, 2005,
xxviii, 760 p. ISBN 01-318-5858-0.

A. SHOSHANI, A. SIM, J. GU. Storage Resource Managers: Middleware
Components for Grid Storage. 2002.

P. DUBOIS. MySQL: the definitive guide to using, programming, and admin-
istering MySQL 4.1 and 5.0. 3rd ed. Indianapolis, Ind.: Sams Pub., 2005,
xxii, 1294 p. ISBN 06-723-2673-6.

A. CASAJUS, R. GRACIANT and The Lhceb Dirac TEAM. DIRAC distribut-
ed secure framework. Journal of Physics: Conference Series. 2010, vol. 219,
issue 4. DOI: 10.1088/1742-6596/219/4/042033.

A. C. RAMO, R. G. DIAZ. DIRAC Security Infrastructure. Proceedings of
the CHEP 2006 Conference. 2006.

A. CASAJUS, R. GRACIANI, S. PATERSON, A. TSAREGORODTSEV
and The Lhcb Dirac TEAM. DIRAC pilot framework and the DIRAC Work-
load Management System. Journal of Physics: Conference Series. 2010-04-
01, vol. 219, issue 6. DOI: 10.1088/1742-6596/219/6,/062049.

Request Management System [online] DIRAC administrators documenta-
tion [ref. 2015-10-16] diracgrid.org/files/docs/AdministratorGuide/
Systems/RequestManagement/rms.html

39

http://dx.doi.org/10.5281/zenodo.16001
www.isgtw.org/feature/happy-10th-birthday-wlcg
www.isgtw.org/feature/happy-10th-birthday-wlcg
home.web.cern.ch/about/computing/grid-system-tiers
home.web.cern.ch/about/computing/grid-system-tiers
wiki.egi.eu/wiki/User_Interfaces
wiki.egi.eu/wiki/User_Interfaces
diracgrid.org/files/docs/AdministratorGuide/Systems/RequestManagement/rms.html
diracgrid.org/files/docs/AdministratorGuide/Systems/RequestManagement/rms.html

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

[27]

C. HAEN. Federating LHCb datasets using the Dirac FileCatalog (presen-
tation, 21st International Conference on Computing in High Energy and
Nuclear Physics 2015)

A. TSAREGORODTSEV, S. POSS. DIRAC File Replica and Metadata Cat-
alog. Journal of Physics: Conference Series. 2012-12-13, vol. 396, issue 3.
DOI: 10.1088/1742-6596/396/3/032108.

V. GARONNE, R. VIGNE, G. STEWART, M. BARISITS, T. B.
EERMANN, M. LASSNIG, C. SERFON, L. GOOSSENS, et al. The AT-
LAS Distributed Data Management project: Past and Future. Journal of
Physics: Conference Series. 2012-12-13, vol. 396, issue 3. DOI: 10.1088/1742-
6596/396/3/032045.

V. GARONNE, R. VIGNE, G. STEWART, M. BARISITS, T. B.
EERMANN, M. LASSNIG, C. SERFON, L. GOOSSENS, et al. Rucio —
The next generation of large scale distributed system for ATLAS Data Man-

agement. Journal of Physics: Conference Series. 2014-06-11, vol. 513, issue
4. DOI: 10.1088/1742-6596/513/4,/042021.

S. BAGNASCO, L. BETEV, P. BUNCIC, F. CARMINATI, C. CIRSTOIU,
C. GRIGORAS, A. HAYRAPETYAN, A. HARUTYUNYAN, A. J. PE-
TERS, P. SAIZ. AliEn: ALICE environment on the GRID. Journal of
Physics: Conference Series. 2008-07-01, vol. 119, issue 6, s. 062012-. DOI:
10.1088/1742-6596/119/6,/062012.

P. BUNCIC, A. J. PETERS, P. SAIZ, J. F. GROSSE-OETRINGHAUS.
The architecture of the AliEn system. Proceedings of the Computing in High
Energy Physics (CHEP 2004), Interlaken, Switzerland, 106.

A. TSAREGORODTSEV. DIRAC Distributed Computing Services. Jour-
nal of Physics: Conference Series. 2014-06-11, vol. 513, issue 3. DOLI:
10.1088/1742-6596/513/3/032096.

DIRAC overview [online] DIRAC documentation [ref. 2014-09-18]

diracgrid.org/files/docs/Overview/index.html

DATASTAX CORPORATION. Introduction to Apache Cassandra White
Paper. 2013. Also available online: www.datastax.com/wp-content/
uploads/2012/08/WP-IntrotoCassandra.pdf

Popularity ranking of database management systems [online] DB-Engines
Ranking [ref. November 2015] http://db-engines.com/en/ranking

K. CHODOROW. MongoDB: the definitive guide. Second edition. Beijing:
O’Reilly, [2013], xix, 409 pages. ISBN 14-493-4468-2.

O. BEN-KIKI, C. EVANS, B. INGERSON. YAML Ain’t Markup Language
(YAML™) Version 1.1. Working Draft 2008-05, 2009, 11.

C. GORMELY, Z. TONG. Elasticsearch: the definitive guide. S.1.. O’Reilly
Media, 2014. ISBN 978-144-9358-549.

40

diracgrid.org/files/docs/Overview/index.html
www.datastax.com/wp-content/uploads/2012/08/WP-IntrotoCassandra.pdf
www.datastax.com/wp-content/uploads/2012/08/WP-IntrotoCassandra.pdf
http://db-engines.com/en/ranking

[28] Combined Communications and Electronics Board. COMMUNICATION IN-
STRUCTIONS GENERAL. OCTOBER2010, (121). Allied Communications
Publications. Available on: http://jcs.dtic.mil/j6/cceb/acps/acpl21/
ACP121T1.pdfl Section: 318

41

http://jcs.dtic.mil/j6/cceb/acps/acp121/ACP121I.pdf
http://jcs.dtic.mil/j6/cceb/acps/acp121/ACP121I.pdf

List of Tables

[>.1 The first data model using Cassandra. The FilelD is in the first [

column (row key), the next columns are metanames and their values.| 22

h.2 The second Cassandra scheme. FilelDs are now in sets in column |

values, metanames are row keys and metavalues are columns names.| 22

(5.3 The time and storage requirements for indices used in MongoDB. |

The indices were built while using the MMAP storage engine. Sizes [

arem MBJ. . ..o 26

[5.4 Disk usage comparison of MongoDBs storage engines. Note the |

size of the indices does not depend on the compression used. All |

sizesarein MBJo 27
[>.5 The comparison of disk usage for all databases. For an illustration [
the size of the input CSV files is shown. All sizes are in MB.| . . . 30

42

List of Abbreviations

CERN European Organization for Nuclear Research (name derived from Conseil
Européen pour la Recherche Nucléaire) — European research organization
that operates the largest particle physics laboratory in the world.

LHC Large Hadron Collider — the world’s largest and most powerful particle
collider built by CERN

WLCG The Worldwide LHC Computing Grid — global collaboration of more
than 170 computing centers in 42 countries, linking up national and inter-
national grid infrastructures

ALICE A Large Ion Collider Experiment — one of the four big experiments for
the LHC, hosted at CERN

ATLAS A Toroidal LHC Apparatus — one of the four big experiments for the
LHC, hosted at CERN

CMS Compact Muon Solenoid — one of the four big experiments for the LHC,
hosted at CERN

LCHb LHC beauty — one of the four big experiments for the LHC, hosted at
CERN

CLI Command Line Interface — means of interacting with a computer program

DNF Disjunctive Normal Form — standard form of a logical formula, which is a
disjunction of conjunctive clauses

DIRAC The Distributed Infrastructure with Remote Agent Control — middle-
ware developed by one of the CERNSs’ collaborations

DFC DIRAC File Catalog — file catalog service in the DIRAC middleware
LFC LCG File Catalog — file catalog provided by CERN IT department
LFN Logical File Name — name of the file displayed to a file catalog user
PFN Physical File Name — complete file URL

CQL Cassandra Query Language — the primary language for communicating
with the Cassandra database

WT WiredTiger - MongoDB storage engine, newly available in version 3.0

SRM Storage Resource Managers — middleware software modules managing
available storage resource

43

A. DVD contents

The attached DVD contains:

e Thesis.pdf — this thesis,
e /DIRAC/ — the whole DIRAC source code,
e /data/ — a sample of the testing data,

e /scripts/ — all the scripts used for database loading and testing.

44

B. Queries

This attachment lists the set of queries, which was used to get a basic benchmark
of the databases performance. The queries are written in JSON form for con-
vinience: a one level JSON is essentially a serialized form of the python dictionary
data structure. When creating a meaningful query from the JSON the following
algorithm is used:

e if the current key contains the substring Int, then according to the projects’
conventions the field represents an integer typed metafield. The query con-
dition in this case is [key] > [valuel],

e otherwise (key contains substring Str) the field represents a string metafield
adn the condition is [key] = [value].

{"testInt2 ’: 844, ’testInt8 ’: 406}
{"testInt2 ’: 125, ’testInt7 ’: 101}
{"testInt5 ’: 270, ’testlnt6 ': 267}
{"testIntl ’: 154, ’testInt2’: 69, ’testInt7’: 305}
{"testInt2 ’: 260, ’'testInt4d ’: 731, ’testlnth ': 873}
{"testIntl ’: 185, ’testIntb5 ’: 389, ’testInt7’: 561}

{"testInt2 ’: 19,
"testInt3 ': 745,
"testIntb 7: 600,
"testInt7 7: 321}

{"testIntl ’: 330,
"testInt2 7: 168,
"testInt3 7 477,
"testInt7 ’: 515}

{"testInt2 ’: 809,
"testInt4 ': 339,
"testInt7 7. 848,
"testInt8 7: 562}

{"testInt5 ’: 593, ’testStrl ': ’foxtrot '’}
{"testInt2 ’: 258, ’testStr2 ’: ’yankee’}
{"testInt6 *: 805, ’'testStr3 ’: ’tango’}

45

{"testInt4
{"testIntbh
{"testInt3

{"testInt2
"testInt4
"testIntb
"testStr2

{"testIntl
"testInt4
"testInt8&
"testStr3

{"testInt2
"testInt4
"testInt8&
"testStr3

{"testIntl
"testInt6
"testInt7
"testInt8&
"testStr3

{"testInt3
"testInth
"testInt6
"testInt?7
"testStrl

{"testIntbh
"testInt6
"testInt?7
"testInt8&
"testStr3

{"testInt8

{"testInt6

{"testInt3

{"testIntb
"testInt6

467,

85, ’testInt8 :

206,

645,
57,
309,
"kilo '}

794
190,
663,
“juliet 7}

621,
495
558,
"whiskey ’}

833,
807,
336,
58,

"sierra '}

943
292,
762,
160,
"charlie '}

339
918,
752,
789,
‘mike’}

"testIntb :
385,

"testIntd

364,

840,

157,
347,
109,

240,
578,

"testStrl :

"testStrl 7

"testStrl :

46

"kilo 7,
‘'papa’,

"victor

"testStr2

"testStrl 7:

"testStr2 7

"testStr2 :

"testStr2

T, TtestStr3

“juliet '}
“juliet ’}

"victor '}

"hotel ’}
"india '}

“juliet ’}

"testStrl
"testStr3

{"testInt3
"testInt4
"testStrl
"testStr2

{"testInt3
"testInt8&
"testStrl
"testStr3

{"testInt4
"testInth
"testInt7
"testStr2
"testStr3

{"testInt3
"testInt7
"testInt8&
"testStrl
"testStr3

{"testIntl
"testInt4
"testInt6
"testStr2
"testStr3

{"testIntl
"testInt2
"testInt3
"testInt8&
"testStrl
"testStr2

{"testIntl
"testInt4
"testInth
"testInt8&
"testStrl
"testStr2

{"testInt2
"testInt4
"testInth

"delta 7,
"golf 7}

131,
160,
"kilo 7,
"tango '}

A48T
856,
"charlie 7,
"whiskey "}

443,
103,
540,

“india 7,

"golf '}

303,
200,
866,
"foxtrot 7,

"golf '}

232,
371,
155,
“india 7,
"yankee '}

479,
432,
915,
33,
"quebec 7,
"alpha '}

826,

802,

824,

874,
“juliet 7
"golf 7}
604,

791,
354,

47

"testInt6
"testStrl
"testStr2

668,
“juliet 7,
"xray '}

48

C. MongoDB explain index

This appendix lists output of the db.collection.explain.find() command
applied to one of the queries from the testing set. The rewriting of that query
can be seen in the first listing, the output in the second one.

SELECT FileID FROM Metas
WHERE testIntb5.Value > 364
AND testStr2.Value=’juliet’
AND testInt4.Value > 467,

In the beginning the query planner writes some basic information about the
search (the names namespace, parsedQuery, etc.). Then the details of the query
plan selected by the optimizer are listed in a name winningPlan. The stage
FETCH describes retrieving documents, in this particular case the documents are
filtered so that the constraints that are minor according to the query planer are
fulfilled. Then, in the next stage IXSCAN, the index is scanned. In this case the
index over the property testStr2 was chosen. After the winning plan, two more
rejected plans are described. These plans differ from the winning one by using a
different index. In the end some information about the current server was printed
by the command, but was not included here because it has no relevance for this
problem.

{

”queryPlanner”: {
"plannerVersion”: 1,
"namespace”: 7 fcall.files”
"indexFilterSet”: false ,
"parsedQuery”: {

7$and”: |
{
TtestStr2”7: {
"$eq”: 7 juliet”
}

I
{

"testIntd”: {
"$gt”: 467
}

’

{

"testInt5”7: {
"$ot”: 364

}

}
]
%
"winningPlan”: {
"stage”: "FETCH” ,

49

"filter”: {
7$and”: |
{
"testIntd”: {
"Sgt”: 467
}

I
{

"testIntbs”: {
7$gt”: 364
}

}
]
}

“inputStage”: {
"stage”: "IXSCAN” |
"keyPattern”: {
"testStr27: 1
Y
"indexName”: 7 testStr2_17,
7isMultiKey”: false
"direction”: "forward”,
”indexBounds”: {
TtestStr27: |

77[\77juliet\77’ \7’ju116t\77]77
]

}
}
Iz
"rejectedPlans”: |
{
"stage”: "FETCH”,
"filter”: {
7$and”: |
{
"testStr2”7: {
"$eq”: 7 juliet”

}
}
{

"testIntd”: {
"$gt”: 467
}
}
]
Iz
"inputStage”: {
"stage”: "IXSCAN” |

50

"keyPattern”: {
"testIntb”: 1
)
"indexName”: "testIntb_17,
7isMultiKey”: false |,
"direction”: "forward”,
7indexBounds”: {

"testInt5”: |
" (364.0, inf.0]”

}
}
Iz
{
"stage”: "FETCH” ,
"filter7: {
7$and”: |
{
"testStr2”7: {
7$eq”: 7 juliet”
}
I
{
"testInths”7: {
"$egt”: 364
}
}
)
Iz
"inputStage”: {
"stage”: "IXSCAN”,
"keyPattern”: {
"testIntd”: 1
"indexName”: "testInt4d_17,
"isMultiKey”: false |
"direction”: "forward”,
7indexBounds”: {
"testIntd”: |
" (467.0, inf.0]”
]
}
¥
}
]
Iz
Tok”: 1

51

	Introduction
	DIRAC System
	DIRAC Architecture
	DIRAC Framework
	DIRAC Data Management System
	DIRAC File Catalog
	DIRAC Replica Catalog
	Metadata Catalog
	DFC Interfaces

	Related Works
	ATLAS DDM
	Rucio

	AliEn
	Comparison

	The Metaquery
	Metaquery Theory
	Metaquery Implementation
	Query Input
	Query Evaluation
	Output of the Query

	The DatasetManager
	Previous Status
	Implementation Details
	Releasing and Freezing a Dataset
	Dataset Overlapping

	Choosing the NoSQL Database
	Apache Cassandra
	Developing a Data Model for Cassandra

	Document Databases
	MongoDB
	Elasticsearch

	Database Tests
	Loading the Big Data
	Testing Query Performance on a Predefined Sample
	The Comparison Between NoSQL and the Current Deployment

	NoSQL Integration into DFC
	Query Strategy
	The New Implementation

	User Documentation
	Command Meta
	index
	set
	get
	remove
	show

	Command Find
	Command Dataset
	add
	annotate
	check
	download
	files
	freeze
	locate
	overlap
	release
	replicate
	rm
	show
	update
	status

	Conclusion
	Bibliography
	List of Tables
	List of Abbreviations
	DVD contents
	Queries
	MongoDB explain index

