
Charles University in Prague
Faculty of Mathematics and Physics

BACHELOR’S THESIS

Roman Betík

XML Data Visualization

Department of Software Engineering

Supervisor: RNDr. Irena Mlýnková, Ph.D.

Study program: Programming

2010

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for leading
my work. I would also like to thank to my parents and my sister for supporting
me during my studies.

I declare that this thesis was composed by myself using only the stated sources.
I agree with borrowing and publishing of this thesis.

6th August 2010, Prague Roman Betík

2

Contents

1 Introduction 6
1.1 Structure of the Text . 6

2 XML Basics 7
2.1 A Brief Introduction to XML Format 7

2.1.1 XML and Namespaces . 8
2.2 XML Schema Definition . 9
2.3 XML Processing in Programming Languages 12

2.3.1 Document Object Model 12
2.3.2 Simple API for XML . 12
2.3.3 Other Methods . 13
2.3.4 XML & .NET Framework 13

2.4 XPath Language . 13

3 Application Goals 17
3.1 XML Data Visualization . 17
3.2 Modifications of the Visualized Structure 18
3.3 Modifications of Appearance of Particular Visualized Elements . . 18
3.4 Element Selection . 18
3.5 XML Schema Editing and Creation 18
3.6 Storing of the Edited Documents 18
3.7 Working with Large Documents 18

4 User Documentation 19
4.1 User Interface . 19

4.1.1 The Ribbon . 20
4.2 XML Document Creation . 22
4.3 Loading Existing XML Documents 23
4.4 Editing Properties . 24
4.5 Adding Child Nodes . 24
4.6 Changing Appearance . 25
4.7 Node Removal . 26
4.8 Copying and Moving Subtrees of Nodes 26
4.9 Node Selection . 26
4.10 DTD Validation . 27
4.11 XML Schema Validation . 27
4.12 Export . 28
4.13 Printing . 28
4.14 Settings . 28

3

4.15 XML Schema Creation and Editing 29
4.15.1 Creation . 29
4.15.2 Editing . 30

5 Architecture of the Application 36
5.1 Introduction . 36
5.2 Overview of the Architecture . 36

5.2.1 Model-View-Controller Design Pattern 36
5.2.2 Model-View-ViewModel Design Pattern 38
5.2.3 XmlStudio.Common . 39
5.2.4 XmlStudio.Model . 41
5.2.5 XmlStudio.Main . 42
5.2.6 Summary . 46

6 Important Algorithms 47
6.1 Handling Large Documents . 47
6.2 Saving the Document . 50
6.3 Layout Rendering . 51

7 Other Solutions 55

8 Summary and Conclusion 57

9 Appendix A 62

4

Title: XML Data Visualization
Author: Roman Betík
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: irena.mlynkova@mff.cuni.cz

Abstract: The aim of the thesis is to implement a graphical editor designated
to create and edit XML documents and documents in XML Schema language.
The main part of the work is design and implementation of the program. Created
application allows to edit (or create) XML documents using tools to modify par-
ticular graphical elements which represent elementary parts of the document (el-
ements, text nodes etc.). It also includes support for easier creation of schemas in
XML Schema language. It is possible to validate edited XML documents against
DTD or XSD schemas. The resulting work can be saved back to its text rep-
resentation or the visualization can be saved as an image. The work includes
description of application’s architecture and description of the most important
parts of the source code.

Keywords: XML, XSD, visualization, planar graph, data, editor, XPath

Názov práce: Vizualizácia XML dát
Autor: Roman Betík
Katedra: Katedra softwarového inžinierstva
Vedúci práce: RNDr. Irena Mlýnková, Ph.D.
E-mail vedúceho práce: irena.mlynkova@mff.cuni.cz

Abstrakt: Cieľom práce je implementácia grafického editoru určeného na vytvára-
nie a editáciu XML dokumentov a dokumentov v jazyku XML Schema. Hlavnou
časťou je návrh a implementácia programu. Samotný program umožňuje editovať
(prípadne vytvárať) XML dokumenty pomocou úpravy jednotlivých grafických
prvkov reprezentujúcich elementárne časti dokumentu (elementy, textové uzly
atď.). Takisto zahŕňa podporu pre jednoduchšie vytváranie schém v jazyku XML
Schema. Editované XML dokumenty je možné validovať voči DTD alebo XSD
schémam. Výslednú prácu je možné uložiť spätne do textovej podoby, prípadne
si vizualizáciu uložiť ako obrázok. Práca obsahuje popis architektúry programu a
najdôležitejších častí zdrojového kódu.

Kľúčové slová: XML, XSD, vizualizácia, rovinný graf, dáta, editor, XPath

5

Chapter 1

Introduction

XML language [2] is a commonly used format when sharing data. It is text-
based so to create or edit XML documents an editor is needed. Most of the avail-
able editors for XML documents are text-based editors. The logical structure
of XML documents enables us to go beyond the text representation and create
applications which render XML documents in a much user-friendlier way.

The aim of this thesis is to create such an application. This application will
be able to load existing XML documents or create new ones and display them
in the form of planar graphs [3]. A user will be able to modify this layout by
adding or removing elements of an XML document or by changing the visual
parameters (like colour or shape) of particular entities. User will also be able to
select elements using the language intented for querying XML data. The program
will include classical functions every editor should have (detailed list of these
feature is included in Chapter 3).

1.1 Structure of the Text
The second chapter describes basic concepts of XML language and XML

schemas. This chapter also includes description of basic methods how to work
with XML from the view of a programmer. The third chapter describes the goals
and requirements of created application. The fourth chapter includes user doc-
umentation. The fifth chapter describes the architecture of the application and
all major tools and libraries used when building it. The following chapter de-
scribes the main algorithms used in this application. The sixth chapter analyzes
existing solutions. The seventh chapter summarizes the work. The last chapter,
Appendix A, lists the contents of the attached CD.

6

Chapter 2

XML Basics

2.1 A Brief Introduction to XML Format
XML (Extensible Markup Language) is a general-purpose specification how to

create new markup languages. It is extensible because XML allows us to create
new markup elements. This format is text based, simple and very flexible.

The main purpose of XML (Listing 1 contains sample XML document) is to
make sharing and distributing information between various independent systems
easier. It is text based, easily parsed format which is easy to read even by humans.
Nowadays it is used not only for storing information but also for data serialization,
as data transport format and even for databases.

More about XML can be found at the website of the World Wide Web Con-
sortium [1].

 <?xml version="1.0" encoding="utf-8"?>
 <Program>
 <Assemblies>
 <Assembly name="XmlStudio.Main">
 <File Source="MainWindow.xaml" />
 <File Source="MainWindow.xaml.cs" />
 </Assembly>
 <Assembly name="XmlStudio.Model">
 <File Source="Models/XmlModel.cs" />

 <File Source="Models/ModelFactory.cs" />
 </Assembly>
 </Assemblies>
 <Resources>
 <Image Source="Images/Icon.ico" />
 </Resources>
 <RequiredNetVersion version="4.0" />
 <Notes>
 <Note>XmlStudio’s source code files.</Note>
 </Notes>
 <!-- This is a comment. -->
 </Program>

Listing 1: Sample XML document.

There is a prolog at the very beginning of this sample XML document. Every
XML file stars with a prolog. It has two parts: the XML declaration, which

7

is shown in the sample (the minimal requirement is to specify the version) and
Document Type Declaration (DTD). DTD is an optional part. More about DTD
in the following sections. After prolog there is a root element with nested child
elements.

Elements consist of so called tags. An element begins with a start-tag, e.g.
<Program> and ends with an end-tag, e.g. </Program>. There can be text be-
tween these tags (as in the case of element <Note>) which is called the value of
the element or another nested tags. When there is no text or no tags between
these two tags, you can skip the end-tag and express the whole tag as an empty
element, e.g. <RequiredNetVersion />. Element itself is identified by its name,
in our sample document there is an element with the name Program.

Elements can have attributes. They appear after the name of the element
and have the form of attributeName=”value”. In our sample there is an attribute
name on element Assembly with the value XmlStudio.Main. XML documents may
also contain some comments which are inserted between <!-- and -->.

This sample XML document is well-formed. The XML specification defines
exactly what well-formedness is and it can be found here [2]. The key points
are that the begin, end, and empty-element tags are correctly nested, with none
missing and none overlapping. Element tags are case sensitive, so the start and
end-tags must match exactly. There is only one root element which contains all
the other elements.

2.1.1 XML and Namespaces

XML language includes the concept of namespaces. When we create docu-
ments, we usually create some kind of vocabulary of elements and attributes. If
we want to combine more of these created “vocabularies” together in one docu-
ment, we might encounter some difficulties with naming. To distinguish these
different vocabularies, XML brings namespaces. This is solved with a separate
standard [4].

Consider the XML fragments in Listing 2 and Listing 3.

 <Company>
 <p>Microsoft Corporation</p>
 <p>Redmond</p>
 </Company>

Listing 2: XML fragment 1

 <Company>
 <Name>Microsoft Corporation</Name>
 <City>Redmond</City>
 </Company>

Listing 3: XML fragment 2

If we tried to use these two fragments together in one document, we would get
a conflict, because there are elements with the same names but a different struc-
ture. The solution of this problem is to put them into separate naming containers,
as you can see in Listing 4. The first part belongs to the namespace identified by

8

the uniform resource identifier (URI) [5] http://www.microsoft.com/. Because us-
ing this long name would be too difficult, there is a shortcut. The shortcut is using
the prefix for the namespace. So for the namespace http://www.microsoft.com/

there is prefix m which is declared on the root element and then used before
the name of the elements that belong to this namespace.

 <Companies xmlns:m="http://www.microsoft.com/"
 xmlns:n="http://www.hotmail.com/">
 <m:Company>
 <m:p>Microsoft Corporation</m:p>
 <m:p>Redmond</m:p>
 </m:Company>
 <n:Company>
 <n:Name>Microsoft Corporation</n:Name>
 <n:City>Redmond</n:City>

 </n:Company>
 </Companies>

Listing 4: Naming conflict solved

2.2 XML Schema Definition
The structure of an XML document can vary a lot and therefore there are

many different ways how to express the same information. This might not be
a problem for people but this could prevent correct communication between dif-
ferent computer systems. Therefore it is a good practice to create a set of rules
for your document which defines what elements and attributes are allowed. This
way both communicating sides know what to anticipate and can prepare their
application logic accordingly.

There are several languages designated for XML schema definition, for in-
stance DTD [6] (Document Type Definition, Listing 5 contains sample DTD),
XML Schema [7] (Listing 6 contains sample XSD), Relax NG [10] or Schema-
tron [11]. Any of these languages itself would need many pages to describe so
in case the reader is interested in these languages we leave him to find detailed
information about these topics himself.

 <!DOCTYPE Program [
 <!ELEMENT Program (Assemblies, Resources, RequiredNetVersion, Notes?)>
 <!ELEMENT Assemblies (Assembly+)>
 <!ELEMENT Resources (Image*)>
 <!ELEMENT RequiredNetVersion EMPTY>
 <!ATTLIST RequiredNetVersion version CDATA #REQUIRED>
 <!ELEMENT Notes (Note*)>
 <!ELEMENT Note (#PCDATA)>
 <!ELEMENT Assembly (File+)>

 <!ATTLIST Assembly name CDATA #REQUIRED>
 <!ELEMENT File EMPTY>
 <!ATTLIST File Source CDATA #REQUIRED>
 <!ELEMENT Image EMPTY>
 <!ATTLIST Image Source CDATA #REQUIRED>
]>

Listing 5: Sample DTD

9

The sample DTD contains schema declaration for the document in Listing 1.
This DTD means that the root element must be element Program. Then there are
definitions for elements and their content. The construct <!ELEMENT ... > de-
fines the content of the element which name is after the keyword ELEMENT. There
are various options you can use when declaring what content can be inside the el-
ement. The next construct is <!ATTLIST ... > which defines what attributes
are valid for the specified element. For the complete instructions about how to
write a DTD see its specification.

The sample in Listing 6 contains XSD schema for our sample XML document.
Every XML schema is also an XML document which only contains specially

defined set of elements. As you can see in the sample, the root element of XML
schema must be element schema. The rest of the schema are special elements and
attributes which define it.

The simplest elements of XML schema language are the simple types. Our
sample does not contain any simple type but in short, when element or attribute
is of a simple type, it means that it can have only text content. But this text
content can be constrained in various ways. Simple types are either built-in data
types [8] or user defined data types [9]. On the other hand, when an element has
been assigned a complex type, this element can contain other elements and also
attributes (if the type specifies them). Our sample contains some complex types.
For example element Notes has been assigned a complex type which contains
a sequence of elements Note.

To describe every aspect of XML schema, we would need much more space.
Therefore we leave the details out and if the reader is interested, the complete
reference can be found in XML Schema specification [7].

10

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Program">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Assemblies">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Assembly" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="File" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Source" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Resources">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Image" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="Source" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="RequiredNetVersion">
 <xs:complexType>
 <xs:attribute name="version" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <xs:element name="Notes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Note" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Listing 6: Sample XSD schema

11

2.3 XML Processing in Programming Languages

2.3.1 Document Object Model

Document object model (DOM) [12] is a language-independent interface for
object oriented programming languages (or script languages). It provides develop-
ers with methods to access and modify the structure of XML documents. XML
processor (or parser) generates virtual tree-like model of the entire document
which is then stored in memory. This implies limits on its usage. XML doc-
uments which object model would not fit into memory cannot be accessed and
modified using DOM. Therefore this method is suitable for smaller documents
(approximately 0B - 10MB, the upper limit is determined by the implementa-
tion of DOM and available system memory). This interface is available for many
languages, such as C++, Java, JavaScript, CORBA, C# etc. Figure 2.1 shows
an example of DOM hierarchy of our sample in Listing 1.

Figure 2.1: XML DOM tree hierarchy

2.3.2 Simple API for XML

Simple API for XML (SAX) [13] is a programming interface based on events.
XML parser reads the document and when it encounters any significant items
(start-tag, end-tag, text node etc.) it raises an appropriate event. A programmer
needs to subscribe for these events using event handlers. These event handlers can
be programmed to do any desired actions the programmer needs. This provides
the developer with forward-only access to XML document. This also limits its
usage. The programmer has to know what to do precisely because he cannot jump
from one node to another randomly. The advantage is that the whole document
does not have to be stored in memory and leaves much smaller memory footprint.
This makes it a great tool for processing huge XML documents which can be
hundreds or thousands of megabytes in their size while preserving small memory
consumption. Its usage is intented mostly for batch processing. Listing 7 shows
some events raised by SAX parser when parsing the sample file from Listing 1.

12

 1) startDocument() - beginning of the document
 2) startElement() Program - beginning of the element
 3) startElement() Assemblies
 4) startElement() Assembly - also provides attributes
 5) ...
 6) endElement() Assembly
 7) startElement() Assembly
 8) ...
 9) endDocument() - end of parsing the document

Listing 7: Example of SAX events

2.3.3 Other Methods

DOM and SAX are the most common ways of accessing and processing XML
documents programmatically. All other methods are just their variations. Differ-
ences are mostly in their implementation or programmatic usage.

2.3.4 XML & .NET Framework

.NET Framework [14] contains two main APIs which deal with XML. Their
implementation is placed within System.Xml namespace.

The first API is based on the class XmlDocument [15], which implements theW3C
Document Object Model (DOM) Level 1 Core and the Core DOM Level 2. This
API contains more classes which model the DOM, like XmlNode, XmlElement,
XmlEntity, XmlAttribute and so on. Each of these classes represents the cor-
responding XML part or entity and contains methods to modify and create these
XML parts.

The second approach is similar to SAX. XmlReader and XmlWriter are classes
which provide us with this SAX like API (to be precise more like Streaming API
for XML, StAX [16] because it is pull-based). With these classes we are able to
read and write documents that do not fit into memory at once.

There is also a third option, quite new technology called LINQ to XML [17].
But it is only rewritten object model for XML using old API and modified to be
queryable using LINQ [18], so we can say it falls into the first category. Creation
and manipulation of XML documents using this new API is easier and less com-
plicated in comparison to XmlDocument and related classes. It has been placed in
the namespace System.Xml.Linq. More about all of these classes can be found in
MSDN library, in System.Xml section1 and System.Xml.Linq section2 namespaces.

2.4 XPath Language
XPath [19] is a language for addressing parts of an XML document. XPath

uses expressions to select nodes in an XML document. The following list sum-
marizes expressions that can be used:

• nodename – selects all child nodes of the named node
1http://msdn.microsoft.com/en-us/library/system.xml.aspx
2http://msdn.microsoft.com/en-us/library/system.xml.linq.aspx

13

http://msdn.microsoft.com/en-us/library/system.xml.aspx
http://msdn.microsoft.com/en-us/library/system.xml.linq.aspx

• / – selects the root node

• // – selects nodes from the current node that match the selection regardless
of their position

• . – selects the current node

• .. – selects the parent node of the current node

• @ – selects attributes

The following list shows some basic path expressions and their results:

• Program – selects all the child nodes of the Program element

• /Program – selects the root element Program

• Assemblies/Assembly – selects all Assembly elements that are children of
element Assemblies

• //File – selects all File elements regardless of their position in the docu-
ment

• Program//File – selects all File elements that are descendants of the Program
element

• //@Source – selects all attributes named Source

Predicates

Predicates in XPath are used to find specific nodes. They are always embed-
ded in square brackets. The next example shows some simple predicates:

• /Program/Assemblies/Assembly[1] – selects the first Assembly element that
is the child node of the Assemblies element which is the child node of
the Program element

• Assemblies/Assembly[last()] – selects the last Assembly element that is
the child of the Assemblies element

• //File[@Source] – selects all the File elements that have an attribute
Source

XPath Wildcards

XPath wildcards are used to select elements that are unknown.

• * – matches any element node

• @* – matches any attribute node

• node() – matches any node (of any kind)

14

XPath Axes

XPath axis defines a set of nodes relative to the current node. The following
list summarizes them:

• ancestor – selects the ancestors of the current node (parent, granparent,
etc.)

• ancestor-or-self – selects all ancestors of the current node and the current
node itself

• attribute – selects all attributes of the current node

• child – selects all children of the current node

• descendant – selects all descendants of the current node

• descendant-or-self – selects all descendants of the current node and the cur-
rent node itself

• following – selects everything after the end tag of the current node

• following-sibling – selects all siblings after the current node

• namespace – selects all namespace nodes of the current node

• parent – selects the parent node of the current node

• preceding – selects everything before the start tag of the current node

• precesing-sibling – selects all siblings before the current node

• self – selects the current node

For better overview of XPath axes, see Figure 2.2.

Location Path Expression

Axes are used in location paths. They are absolute or relative. An abso-
lute location path starts with a forward slash (/), a relative without the slash.
The location path consists of one or more steps, e.g. absolute location path
might look like this: /step/step/step/.... Every step consists of an axis, a node
test (which identifies a node within axis) and zero or more predicates. The syn-
tax for one step is as following: axisname::nodetest[predicate]. For example
child::text() selects all text child nodes of the current node.

The result of an XPath expression can be a node set, a string, a boolean or
a number.

For complete information about XPath language, see the specification of
the XPath language [19].

15

Figure 2.2: XPath axes

16

Chapter 3

Application Goals

Application created as an objective of this thesis is called XmlStudio. From
now on when refering to this application, we use the name XmlStudio.

Main goals of XmlStudio application are the following points:

• XML data visualization.

• Modifications of the visualized structure.

• Modifications of appearance of particular visualized elements.

• Element selection.

• XML Schema editing and creation.

• Storing of the edited documents.

• Working with large documents.

3.1 XML Data Visualization
XmlStudio is an application for graphical manipulation, visualization and

editing of XML documents. Graphical means that the user is not forced to edit
the source code of the document but he gets a visual representation of the XML
tree. Every element of a document, if it is an element or a text node, is rep-
resented with a separate graphical entity and these are connected according to
the structure of the document. These connections emphasize the parent-child
relationships.

XmlStudio creates the visual representation of XML document using simple
interconnected graphical elements layed out on canvas. XmlStudio uses simple
algorithm (which renders XML document as a tree) to layout the tree structure
of XML document so the user gets a clear view of how the structure looks like.
This view makes it much easier to grasp it.

17

3.2 Modifications of the Visualized Structure
XmlStudio enables editing of every element, its properties like name or names-

pace and its attributes. It is possible to add or remove elements from the doc-
ument thus allowing modifications of the tree hierarchy. Whole subtrees can
be copied or moved to another place in the document’s tree. Single elements
can be moved in their layer between their siblings (because order of elements is
significant).

3.3 Modifications of Appearance of Particular Vi-
sualized Elements

Another goal is to provide users with easy modifications of rendered elements,
mostly changing the shape or colours of selected items. Any shape, background
and border colour can be modified as the user wishes.

3.4 Element Selection
XmlStudio offers selection filter to select any set of elements in currently

rendered tree. There is a language for addressing parts of an XML document
called XPath [19]. XmlStudio uses this language for element selection.

3.5 XML Schema Editing and Creation
XmlStudio is also able to create and edit schemas in XML Schema language.

Using predefined sets of allowed elements and attributes, XmlStudio makes it
easier for users to create or edit schemas. XML Schema language is one instance
of the XML. Module which works with XSD benefits from all the tools available
for generic XML documents so when user learns how to use tools for generic XML
editing, learning XSD part is really easy (assuming the user knows XSD).

3.6 Storing of the Edited Documents
XML documents (or XSD schemas) can be saved back to the text format,

exported to various image formats and sent to the printer.

3.7 Working with Large Documents
The last but important objective is to be able to work with very large docu-

ments which cannot be loaded into memory at once. XmlStudio makes it possible
via simple expansion method (described in Chapter 6) which allows to load only
certain parts of the document. All these features are described in more detail in
the following chapters.

18

Chapter 4

User Documentation

XmlStudio offers tools to create and edit XML documents and XSD schemas.
The following sections describe in detail what and how you can achieve with
XmlStudio.

4.1 User Interface

Figure 4.1: Main window

Figure 4.1 shows the main window of XmlStudio. It contains the following
parts:

• Quick access items – the most frequently used commands can be added here

• Ribbon – the main toolbar

19

• XPath text box – input area for XPath queries

• Display switch – switches between Designer mode and Source code mode;
Source code mode shows the source code of currently loaded document,
however, it is read-only

• Canvas – the main working area

• Mode indicator – indicates whether the current document is being edited
in XML or XSD mode

• Zoom – enables to zoom-in or zoom-out the canvas

• Status area – warnings and error messages from validation (DTD or XSD)
are displayed here

4.1.1 The Ribbon

XmlStudio uses special interface called ribbon [31] where toolbars are placed
on tabs. Ribbon was introduced by Microsoft 1 in Microsoft Office 2007 2. Xml-
Studio uses open source implementation called Fluent Ribbon Control Suite [29]
which is targeted for Windows Presentation Foundation applications [26].

The ribbon has a special part called backstage which you can see when you
click on tab File. Backstage area of XmlStudio is shown in Figure 4.2.

Figure 4.2: Backstage

There are several buttons:
1http://www.microsoft.com/
2http://office.microsoft.com/

20

http://www.microsoft.com/
http://office.microsoft.com/

• Save – saves the document to a file

• Save As – saves the document to a file with a chosen name

• Open – opens the document

• Close – closes the current document

• New – shows options to create either blank XML document or blank XSD
document

• Print – shows dialog window with printing options

• Export – shows dialog window with options to export the current document
to various image formats

• Settings – shows Settings dialog

• Exit – terminates the application

The Home tab (see Figure 4.3) contains the following commands:

Figure 4.3: The Home tab

• Refresh – recalculates and redraws the rendered graph

• Validate XSD – tries to validate the document against XSD; it validates
successfully only if XSD is attached inside the document

• Validate DTD – tries to validate the document against DTD; it validates
successfully only if DTD is attached inside the document

• Check XSD – this command is disabled in XML mode

• Attach DTD – allows to attach external DTD to the current document, note
that if there was DTD already specified, this replaces it

• Remove DTD – removes attached DTD

• Create root element – this command is available only when there is no
root element in the document (when the document is empty); if enabled, it
provides the user with dialog to create new root element

• Expand all – if this command is enabled, it makes it possible to expand
all collapsed nodes in the document (warning: use this command only for
small documents, expanding too many nodes leads to poor performance)

The Layout tab contains some basic settings for layout algorithms used in
XmlStudio. Figure 4.4 contains settings for Simple tree layout algorithm.

21

Figure 4.4: The Layout tab

4.2 XML Document Creation
With XmlStudio you can create new XML documents. You need to follow

simple steps to achieve it. First you need to start XmlStudio. Then you can
start inserting new elements. Right-click on the canvas and select Create root

element or click on Create root element command. The dialog, where you can
enter the name (prefix, namespace) of the element, add some attributes if desired,
pops up. When you are done with setting the properties of this new element, click
OK and the element will appear on canvas. Figure 4.5 shows dialog with the new
root element and Figure 4.6 shows the inserted root element.

Figure 4.5: Root element creation

With root element added, there are several step we can take:

• Edit properties of just added element.

• Add child element(s).

22

Figure 4.6: Added root element

• Add child text node(s).

• Change colours or shape of the visualized element.

• Remove the element.

4.3 Loading Existing XML Documents
To open an existing XML document, click on Open command from the back-

stage area. After selecting the file, the root element of the existing document is
loaded in XmlStudio. This situation is shown in Figure 4.7. If the mouse cursor
is over the root element, the small plus button is visible. This button serves to
expand the element. If the element contains less than some number of child ele-
ments (this number can be set in settings of XmlStudio), the element is expanded
right after clicking on this button. If there is more than the set number, the dia-
log pops up. In this dialog you can specify the range of child elements to expand.
This range is expressed as a string, e.g. to expand first ten child elements and
then elements from twenty to thirty, the range should be 1-10,20-30. The dialog
also displays the number of child elements of the element to be expanded. All
this is shown in Figure 4.8. To expand all child nodes simply leave the text box
empty.

If you did not expand all children you still can do so by clicking the plus

button and specifying the remaining range or leaving the text box empty (which

23

will expand all child nodes). You can also collapse the expanded node by clicking
the minus button.

When you know the document contains smaller number of elements (e.g. less
than few hundreds), you can skip expanding single elements and you can use
the Expand all command from the ribbon. This will load the whole document
into XmlStudio and render every node. Use this command with caution because
loading huge documents will practically freeze the application.

Huge documents should be expanded with caution. You should expand only
those branches or elements which you need to work with. All other parts of
the document can stay collapsed.

Figure 4.7: Opening an existing file with root element loaded

4.4 Editing Properties
To edit properties just right-click on the element and select Edit. The same

dialog window as for adding root element pops up. There you can edit whatever
properties you wish, then confirm your changes with OK button or cancel them
with Cancel button. The second approach is to use the contextual tab which opens
when a node is selected. This tab is shown in Figure 4.9. To edit the element,
select it and then click Edit button in ribbon.

4.5 Adding Child Nodes
To add a new child element, right-click on the element and select Add child

element from the context menu. Dialog box appears (similar to the one when
editing an element). Type in the necessary data and confirm your intention

24

Figure 4.8: Expanding an element

by clicking OK. Figure 4.10 shows the added child element on canvas. The child
element is connected to its parent with a line ended with an arrow. This empasizes
the parent-child relationship. You can also use command from the contextual
toolbar in ribbon as in the previous case. Use the Add child element button
after selecting the desired element.

To add new text element, simply select Add child text node from the context
menu of the parent element. In the dialog box insert the text which should be
the content of the new text node and click OK. The new text node appears under
its parent. The same can be done using the Add child text node command from
the ribbon.

4.6 Changing Appearance
To change the colour or shape of selected items (elements or text nodes), first

select them either by dragging the rectangle around them or by clicking on them
while holding the Ctrl key. When you have selected all items you want, right click
on any of them and choose Change colors or Change shape from the context menu
(depending on what you want to change). The dialog box will appear. There you
either change the colours or the shape of the element. As usual, confirm your
action by clicking OK. Figures 4.11 and 4.12 show these two dialogs. Another way
of doing the same is choosing the appropriate commands from the ribbon as in
previous cases.

25

Figure 4.9: Tab with contextual tools

4.7 Node Removal
To remove the node (element or text node), select Remove node from the con-

text menu. There will be a dialog asking you if you want to delete the whole
subtree with the selected node. If you choose yes, the element and all its descen-
dant nodes will be removed from the document. If you choose no, only the se-
lected node will be removed and the child nodes of this node will be added where
the removed node resided. If removed node had more than one child, all of these
children will be moved to the higher level and become the child nodes of the for-
mer parent of the removed node. The same can be achieved using the command
Remove node from the ribbon.

When the document consists of many elements, there are three functions which
can help with copying or moving the whole subtrees.

4.8 Copying and Moving Subtrees of Nodes
The first two operations require two steps. The first step is to select the root

element of the subtree which you want to copy (choose Select for copying from
the context menu or from the ribbon) or move (choose Select for moving from
the context menu or the ribbon). Then select the element which should be the des-
tination of the operation, the new parent of copied (moved) subtree. Then choose
Paste subtree from the context menu (or Paste from the ribbon) and the subtree
will be copied (or moved) to the desired destination. Figure 4.13 and Figure 4.14
show the process of moving a subtree and Figure 4.15 shows the result.

The third operation is changing the order of a node among its siblings. Every
visualized item has two small arrows (Figure 4.16) visible when the mouse is over
it. Using these two arrows, it is possible to change the order of this node. It can
be moved one item to the left or to the right. The content of the moved node
does not change, all descendant nodes are moved with its parent.

4.9 Node Selection
XmlStudio benefits from XPath language and uses it to select nodes in the loaded

document. To select nodes according to your XPath query, type in the query to
the text box as shown in Figure 4.17 and click Select. The nodes selected by the
query will get selected.

Tip: if you want to change colours or shapes of more items at once (of items

26

Figure 4.10: Added child element

that can be a result of an XPath query), write the query, select those items and
then you can easily change visual properties of those items.

4.10 DTD Validation
There are two ways to validate existing document against DTD. If the current

document already contains DTD, the validation can be done using the Validate

DTD command from the ribbon. This will scan the document and report any errors
or warnings to the status area.

If the document does not contain DTD declaration, you can add one using
the Attach DTD command. It will prompt you to locate the file with DTD (please
note that the current version of XmlStudio requires the DTD to be located in
the same directory as the XML document) and it will automatically add the DTD
declaration. Then the command Validate DTD works as in previous case.

4.11 XML Schema Validation
To validate the document against XSD, there already has to be XSD specified

inside the XML document. This can be achieved using the standard editing tools
available in XmlStudio (adding attributes) so there is no special tool for this
case. Then using the command Validate XSD you get all the errors and warnings

27

Figure 4.11: Dialog for changing the colours

violating the XSD.

4.12 Export
The visualized XML document can be saved to one of the following image for-

mats: JPEG, BMP, PNG, TIFF, GIF, XPS. To export the current visualization,
click on the Export command in the backstage area.

4.13 Printing
The visualized XML document can also be sent to the printer. To do so, click

on the Print command in the backstage area.

4.14 Settings
XmlStudio offers some preferences that can be changed. The Settings dialog

is displayed after clicking on Settings item in the backstage area. The dialog
(see Figure 4.18) contains three tabs: General, Colors and XML. General tab
contains the language selection. The user interface of XmlStudio is available in
three languages: American English, Slovak and Czech. The next tab, Colors

28

Figure 4.12: Dialog for changing the shape

(Figure 4.19), provides settings for default colours used by the application when
rendering elements and text nodes.

4.15 XML Schema Creation and Editing

4.15.1 Creation

To create XML schema using XmlStudio, you need to create new blank doc-
ument by clicking New in the backstage area and selecting Blank XSD document.
XmlStudio is now in XSD mode and you can start creating new XML schema.

The process of creating the schema is similar to creating the generic XML doc-
ument. First you need to add the root element. XmlStudio fills the name, prefix
and namespace of the element for you because the root element must be the el-
ement schema in the namespace http://www.w3.org/2001/XMLSchema. The prefix
on the other hand can be changed to anything you want, default is xs. After
adding the root element, you can add child elements. The context menu gives
you the list of all the elements that can be inserted as a child of the element
schema. The example for the element schema can be seen in Figure 4.20.

This way the XML schema can be created from scratch. However, the context
help currently does not take into account already inserted elements, so it always
offers all the available elements as if the parent element had no children.

XmlStudio offers a tool to check whether the current document is the correct

29

Figure 4.13: Moving the subtree, the first step

XSD schema. This tool is available from the ribbon and is called Check XSD. All
the errors and warnings from this tool are reported to the status area.

4.15.2 Editing

If you open an existing XSD, it is loaded and displayed in the same manner
as the generic XML document. You can expand and collapse elements as desired.
You can also edit the element and their attributes, edit the structure by adding
or removing elements etc. The only difference is that if you edit elements in XSD
mode, the editing dialog offers you customized environment.

Figure 4.21 shows a dialog window when editing element restriction. Dialog
box editing attribute base contains the list of available data types that can be set
as a base type. This list contains built-in data types and every named data type
already defined in this schema. The similar value lists are available also when
editing element attribute (attributes ref and type), attributeGroup (attribute
ref), element (attributes ref, type and substitutionGroup), extension (attribute
base), group (attribute ref), keyref (attribute refer), list (attribute itemType)
and union (attribute memeberTypes).

The rest of the tools works the similar way as in XML editing mode (including
appearance changing, exporting, printing, etc.).

30

Figure 4.14: Moving the subtree, the second step

Figure 4.15: Result of moving the subtree

31

Figure 4.16: Arrows to change the element order

Figure 4.17: Selecting nodes using XPath language

32

Figure 4.18: Settings

Figure 4.19: Colors tab

33

Figure 4.20: Available children of schema element

34

Figure 4.21: Editing in XSD mode

35

Chapter 5

Architecture of the Application

5.1 Introduction
The architecture of XmlStudio is based on separation of concerns. It means

that the whole application is divided into set of modules where every module
offers an encapsulated set of functions. This approach helps to keep the entire
application maintainable during its life and easier to comprehend by other pro-
grammers.

When writing small applications using this technique, it might seem that it
prolongs the development time (application is more complex than it would be
when written the most straightforward way). It is often true but in the longer
horizon any major changes require much more time and effort because the applica-
tion was not written to be extendable. When deciding how to design XmlStudio,
we took these questions into consideration and tried to make the best of it.

5.2 Overview of the Architecture
XmlStudio is written in C# language using .NET Framework 4 1 as a de-

velopment platform. The application consists of three main parts (assemblies)
as shown in Figure 5.1. These modules are the result of used design patterns.
The overall architecture is inspired by the MVC (Model-View-Controller) and
the MVVM (Model-View-ViewModel) design patterns described in [23] and [24].

5.2.1 Model-View-Controller Design Pattern

Model-View-Controller is one of the compound design patterns used in soft-
ware development. This pattern requires three parts: Model, View and Controller
as you can see in Figure 5.2. The main advantage of this pattern is object decou-
pling. It means that Model does not depend on the View (user interface/presen-
tation layer) or the Controller and vice versa. In other words if the programmer
decides to change the presentation layer of the application he does not need to
do any major changes in the Model (if the pattern is followed properly).

This design pattern however requires some overhead in the application which
is mostly caused by the need for every call from the user interface to go through

1http://www.microsoft.com/net/

36

http://www.microsoft.com/net/

Figure 5.1: Main program modules

Figure 5.2: Model-view-controller

the Controller and then to the Model. But the benefits of this pattern overweight
the disadvantages. It provides us with three independent units and guides us to
write better encapsulated objects. It means easier future changes in the code and
easier maintenance of the application.

The Model

The Model holds all the state data and application logic. It does not de-
pend on the View or the Controller. On the other hand it provides View and
Controller with the interface which they can use to communicate with it. Model
communicates with the View using the observer pattern. It notifies the View
about changes in itself and it can either send it related data along with the noti-
fication or the View pulls the data out of the Model on its own. Model does not
need to know anything about the Controller. Simply said, it does not depend on
the Controller at all.

37

The Controller

The Controller ’sits’ in the middle between the Model and the View. It receives
user inputs and decides what it means to the Model. It usually calls some Model
methods. Controller then communicates back with the View and notifies it to
change its state. Relation between the View and the Controller could be best
described in the strategy pattern [25]. The View cares only about presentation
layer while the Controller decides what the user actions mean. The Controller
is the strategy for the View. If we change the Controller we could get another
strategy.

The View

The View could be described as an example of composite pattern. User inter-
face elements form the composition and create the whole graphical user interface.
These units are main user input points.

5.2.2 Model-View-ViewModel Design Pattern

Model-View-ViewModel [24] is a design pattern that originated in Microsoft2.
It is targeted for new user interface (UI) development platforms (like Windows
Presentation Foundation, WPF [26] used in XmlStudio).

This patterns attempts to benefit from both MVC as well as from the Extensi-
ble Application Markup Language (XAML) [27] and WPF and their databinding
possibilities. This pattern tries to remove all the code behind from the View layer
and moves it to the ViewModel layer. View contains only bindings to the View-
Model thus provides better separation of concerns.

The Model is practically the same as in MVC pattern. The View refers to
all the graphical user interface (GUI) elements such as windows, buttons, text
boxes, labels etc. The ViewModel is a “model of the view” which means that it is
an abstraction of the View. It servers as a data binding between the Model and
the View. Simpy said it holds data ready to be displayed in the user interface.

The following sections describe the main assemblies used in XmlStudio.

Figure 5.3: Base common classes and interfaces

2http://www.microsoft.com/

38

http://www.microsoft.com/

5.2.3 XmlStudio.Common

XmlStudio.Common is an assembly which contains common classes and inter-
faces used by both XmlStudio.Main and XmlStudio.Model assemblies. The most
important classes and interfaces are shown in Figure 5.3. Every rectangle repre-
sents a class or an interface. The line ended with an empty arrow means that the
class (or interface) where the line begins inherits from the class (interface) where
the line ends. In our case, the interface IXsdModel inherits from the interface
IXmlModel.

IXmlModel

This interface defines properties, methods and events which should be im-
plemented by the class which serves as an application model. It contains all
the necessary methods for generic XML part of XmlStudio. Some members of
the IXmlModel interface can be seen in Listing 8.

 public interface IXmlModel : INotifyPropertyChanged {
 // Properties
 bool CanUndo { get; }
 bool CanRedo { get; }
 bool Modified { get; }
 string DocumentName { get; }
 string Path { get; }
 int NodeCount { get; }
 ApplicationMode Mode { get; set; }

 XmlDocumentType DocumentType { get; }

 // Some methods
 void Open(string name);
 void Close();
 void Save();
 void Save(string path);
 BigXmlNode GetRootElement();
 void SetDocumentType(string rootElementName, string publicId, string systemId,
 string internalSubset);
 void RemoveDocumentType();
 void ExpandNode(BigXmlNode node, string range = "", bool wholeSubtree = false);
 void ExpandAll();
 // and so on...

 // some events
 event EventHandler<NodeExpandedEventArgs<BigXmlNode>> NodeExpanded;
 event EventHandler<NodeCollapsedEventArgs<BigXmlNode>> NodeCollapsed;
 event EventHandler<RawXmlChangedEventArgs> RawXmlChanged;
 event EventHandler<DocumentNameRequiredEventArgs> DocumentNameRequired;
 event EventHandler<NodeUpdatedEventArgs<BigXmlNode>> NodeUpdated;
 event EventHandler<SubtreeUpdatedEventArgs<BigXmlNode>> SubtreeUpdated;
 event EventHandler<NodeAddedEventArgs<BigXmlNode>> NodeAdded;
 event EventHandler<NodeRemovedEventArgs<BigXmlNode>> NodeRemoved;
 // and so on...
 }

Listing 8: IXmlModel interface

39

IXsdModel

This interface inherits from the IXmlModel interface and defines new additional
methods required for XSD part of XmlStudio. Some members of the IXsdModel

interface can be seen in Listing 9.

 public interface IXsdModel : IXmlModel {
 // some of the IXsdModel members
 string XsPrefix { get; }
 void CheckXsd();
 // ...
 BigXmlNode CreateXsdElement(string name);
 IEnumerable<string> NamedAttributes { get; }
 IEnumerable<string> NamedSimpleTypes { get; }
 IEnumerable<string> NamedComplexTypes { get; }

 IEnumerable<string> NamedAttributeGroups { get; }
 IEnumerable<string> NamedGroups { get; }
 IEnumerable<string> NamedElements { get; }
 IEnumerable<string> NamedKeyElements { get; }
 IEnumerable<string> NamedUniqueElements { get; }

 IEnumerable<XsdBuiltInDataType> ListBuiltInDataTypes();
 IEnumerable<BigXmlNode> ListNamedAttributes();
 IEnumerable<BigXmlNode> ListNamedSimpleTypes();
 IEnumerable<BigXmlNode> ListNamedComplexTypes();
 IEnumerable<BigXmlNode> ListNamedAttributeGroups();
 IEnumerable<BigXmlNode> ListNamedGroups();
 IEnumerable<BigXmlNode> ListNamedElements();
 IEnumerable<BigXmlNode> ListNamedKeyElements();
 IEnumerable<BigXmlNode> ListNamedUniqueElements();
 // ...
 }

Listing 9: IXsdModel interface

IXmlView

IXmlView interface defines few methods to be implemented by the View of
the application (in case of XmlStudio, the window). Members of the IXmlView

interface can be seen in Listing 10.

 public interface IXmlView {
 Point GetCurrentMousePosition();
 void Close();
 void AddMessageToStatus(string message);
 void ExportCanvas();
 void PrintCanvas();
 void ChangeMode(ApplicationMode mode);
 void InitXmlMode(string path);
 void InitXsdMode(string path);

 void SetProgressBarVisibility(bool visibility);
 void SetProgressBarValue(int value);
 }

Listing 10: IXmlView interface

40

IController

IController interface defines all the methods used from the side of the View
to control the application. Some of them can be seen in Listing 11.

 public interface IController {
 void ValidateXsdAsync();
 void CancelValidateXsd();
 void ValidateDtdAsync();
 void ValidateDtd();
 void CancelValidateDtd();
 void SetDocumentType(string rootElementName, string publicId, string systemId,
 string internalSubset);
 void RemoveDocumentType();

 // ...
 void CheckXsd();
 BigXmlNode CreateXsdElement(string name);
 // ...
 }

Listing 11: IController interface

BigXmlNode

BigXmlNode is an abstract class which serves as a data transfer object [30]
between the Model and the View. It encapsulates properties and methods of
XML nodes so it can be easily displayed in the View. It includes properties like
Name, Prefix, NamespaceURI, Parent, Value, Attributes etc. All the details are
covered in source code of XmlStudio.

5.2.4 XmlStudio.Model

Assembly XmlStudio.Model contains implementation of Model, Controller and
other helper classes which we can denote as data layer.

Data layer consists of classes which can be seen in Figure 5.4. These classes
encapsulate functionality to read from XML documents and write to them. They
are the core of the XmlStudio. They provide the Model and higher layers with
data from hard drive and take care of writing it back.

Figure 5.4: Data layer classes

Another set of classes shown in Figure 5.5 implements interfaces for Model and
Controller and also contain helper factory classes to create Model and Controller.

41

Figure 5.5: Model, controller classes

Next few classes in Figure 5.6 serve for XSD manipulation (XsdModel), creation
of XsdModel (XsdFactory) and the last class (XsdAttributeFactory) is a helper to
list attributes of XSD elements.

Figure 5.6: XSD classes

Important classes are classes inheriting from the abstract class XmlModelAction.
These classes are actions which manipulate with the structure of XML document.
All of these actions are undoable. XmlStudio uses Undo Framework [21] to im-
plement the undo and redo functionality. Every action needs to implement two
methods shown in Listing 12. Undo Framework contains all other necessary
plumbing so the use of these actions is simple as shown in Listing 13.

5.2.5 XmlStudio.Main

Classes in assembly XmlStudio.Main are mostly GUI elements like windows,
various controls and other helper classes.

GraphSharp

XmlStudio uses open source project GraphSharp [28] for rendering and lay-
outing the visualized elements. GraphSharp is a graph layout framework. It
contains various layout algorithms and a GraphLayout control for use in WPF
applications. XmlStudio uses some of the layout algorithms to display the loaded
document (details are covered in Chapter 6).

42

Figure 5.7: Action classes

Fluent

According to [29], “Fluent Ribbon Control Suite is a library that implements
an Office-like (Microsoft® Office Fluent™ user interface) for the Windows Pre-
sentation Foundation (WPF).” XmlStudio benefits from this library and uses it
for its main window and toolbar. Figure 5.8 shows an example of Fluent user
interface.

Figure 5.8: Fluent user interface

43

 public abstract class AbstractAction : IAction {
 //...

 /// <summary>
 /// Override execute core to provide your logic that actually performs the action
 /// </summary>
 protected abstract void ExecuteCore();

 /// <summary>

 /// Override this to provide the logic that undoes the action
 /// </summary>
 protected abstract void UnExecuteCore();

 //...
 }

Listing 12: AbstractAction class

 // ...
 var action = new RenameElementAction(this, nodeInternal, name);
 this.actionManager.RecordAction(action);
 // ...

Listing 13: Action usage

Tomers.WPF.Localization

XmlStudio supports multiple languages in its user interface. The library which
provides it with all the required classes is called Tomers.WPF.Localization [20].

The translated expressions and texts are placed in separate XML files, each
for one language (culture). This library also provides a markup extension for
XAML so that the translation can be done inside the declarative markup which
defines the user interface, not in the code behind. The simple example of its
usage in XAML code can be seen in Listing 14.

We need to mention two important things about the usage of this localization
library. The first one is the need to declare the Translate.Uid attribute on every
element which we want to translate. This attribute defines a key which we later
use in XML document with translations. The value of the translated property is
replaced with the code {loc:Translate Value}, where Value is the default value
to be shown when the key is missing from the XML file. The example of how
this XML file with translated values might look is shown in Listing 15. You can
notice that sometimes there is more than one value declared for the same key,
this is particulary useful when we want to translate more than one property of
the GUI element, e.g. properties Text and ToolTip of a GUI control. The library
of course handles the look up of the appropriate values from the XML file and
the proper binding to GUI elements.

The ViewModels

Another important classes in the XmlStudio.Main assembly are the ViewMod-
els. There are several of them, the following listing summarizes them.

• XmlAttributeCollectionViewModel - ViewModel for the collection of at-

44

 <Window x:Class="XmlStudio.Dialogs.EditXsdElementDialog"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 loc:Translate.Uid="EditXsdElementDialog.WindowTitle"
 xmlns:loc="clr-namespace:Tomers.WPF.Localization;assembly=Tomers.WPF.Localization">

 <!-- ... -->

 <TextBlock Height="{StaticResource TextBlockHeight}" Grid.Row="0"

 x:Name="prefixTextBlock" Text="{loc:Translate Prefix:}"
 loc:Translate.Uid="EditXsdElementDialog.prefixTextBlock" />
 <TextBlock Height="{StaticResource TextBlockHeight}" Grid.Row="1"
 x:Name="localNameTextBlock" Text="{loc:Translate LocalName:}"
 loc:Translate.Uid="EditXsdElementDialog.localNameTextBlock" />
 <TextBlock Height="{StaticResource TextBlockHeight}" Grid.Row="2"
 x:Name="namespaceURITextBlock" Text="{loc:Translate NamespaceURI:}"
 loc:Translate.Uid="EditXsdElementDialog.namespaceURITextBlock" />
 <TextBlock Height="{StaticResource TextBlockHeight}" Grid.Row="3"
 Grid.ColumnSpan="2" Text="{loc:Translate Attributes:}"
 loc:Translate.Uid="EditXsdElementDialog.Attributes" />

 <!-- ... -->

 </Window>

Listing 14: Tomers.WPF.Localization example

 <!-- Menu items -->
 <Value Id="Menu.File" Header="File" />
 <Value Id="Menu.File.New" Header="New" ToolTip="New" />
 <Value Id="Menu.File.New.Xml" Header="Xml Document" />
 <Value Id="Menu.File.New.Xsd" Header="Xsd Schema" />
 <Value Id="Menu.File.Open" Header="Open" ToolTip="Open" />
 <Value Id="Menu.File.Save" Header="Save" ToolTip="Save" />

Listing 15: Localization file example

tributes.

• XmlAttributeViewModel - ViewModel for one attribute.

• XmlElementViewModel - ViewModel for XML elements.

• XmlNodeViewModel - base ViewModel for all XML nodes.

• XmlTextViewModel - ViewModel for text nodes.

• XsdAttributeCollectionViewModel - ViewModel for the collection of at-
tributes when editing XSD document.

• XsdAttributeViewModel - ViewModel for one attribute when editing XSD
document.

• XsdElementViewModel - special ViewModel for elements when editing XSD
document.

45

• XmlViewModel - wrapping ViewModel which contains all data for the GUI
when editing generic XML documents.

• XsdViewModel - wrapping ViewModel which contains all data for the GUI
when editing XSD documents.

The rest of the classes in this assembly are various dialogs, user controls and
helpers. All the resources like images, icons, XAML templates etc. are contained
within this assembly. The result of compiling this assembly is the executable file
which is the entry point of the whole application.

Figure 5.9: Logical view of XmlStudio

5.2.6 Summary

To sum up the architecture of XmlStudio, we have to emphasize the division
of the whole application into smaller modules. Figure 5.9 best illustrates this.
The core resides in the XmlStudio.Model assembly. There are classes which form
the data layer used for XML data retrieval. A little higher above this data layer
are the model classes which encapsulate the retrieved data and create an object
model for the XML data. It also includes methods for manipulation with this
object model. This assembly also contains the implementation of the Controller.
The XmlStudio.Common contains common interfaces and helper classes. The last
assembly, XmlStudio.Main is the graphical user interface for the application.

46

Chapter 6

Important Algorithms

6.1 Handling Large Documents
XmlStudio offers a feature to load large XML documents. However, these doc-

uments cannot be loaded in memory at once, because it would consume too much
memory and would make performance of the application really poor. Therefore
we had to come with a solution that enables users to work with large documents
but in a way that is bearable both from the side of memory consumption and
the side of performance.

The solution implemented in XmlStudio has very simple idea: enable user to
see only those parts of the document which he needs to work with. Other parts
of the document can be hidden (thus not loaded, not consuming any memory).

XML documents can be regarded as trees [32]. Trees with one vertex desig-
nated as the root are called rooted trees. XML documents can be seen as these
rooted trees. Let every element be a vertex of the tree. Let the root element of
the XML document be the root of the tree. The parent-child relationships form
edges in the tree. Because every element can have only one parent, there cannot
be any cycles in this graph [33] (every tree is also a graph). Therefore this graph
is a tree. The DOM also benefits from this observation.

We model the XML documents exactly that way. Furthermore, we consider
text nodes to be vertices of this tree as well. To be able to read only some
parts of the document, we need some kind of addressing. XmlStudio uses very
simple method where every element (or text node) has its number (actually order
number). This order number is relative to its parent. This method can be best
expressed with a picture. Figure 6.1 shows these address numbers.

Then if you want to get the address of a certain node, you follow the path
from the root element straight to the node which address you want, e.g. the last
element File, which is the child of the second element Assembly, would have
the address [1, 1, 2, 2]. This address is internally represented as an array of
integers. Every node loaded in XmlStudio has this address assigned and is also
used to retrieve child elements and later for saving.

The core of retrieving nodes from the underlying file is implemented in class
BigXmlReader which implements interface IBigXmlReader and resides in assem-
bly XmlStudio.Model. There are several methods used when expanding nodes.
Listing 16 shows the method signatures of the most important ones.

The method GetRootElement(), as its name suggests, gets the root element

47

Figure 6.1: Addressing in XmlStudio

 BigXmlNodeInternal GetRootElement();
 int GetChildCount(int[] address);
 int GetChildCount(XmlReader reader);
 XmlReader NavigateToAddress(int[] address);
 IEnumerable<BigXmlNodeInternal> GetChildNodes(int[] address, IEnumerable<int> range,
 int childCount)
 IEnumerable<BigXmlNodeInternal> GetChildNodes(int[] address, string range);

Listing 16: Method signatures of important methods from BigXmlReader class

of the XML document. It uses XmlReader from System.Xml namespace to nav-
igate through the document and when it is positioned at the root element, it
creates object representation of it (wrapped in class BigXmlNodeInternal and
then counts the number of child elements. This count is done by the sec-
ond method, the GetChildCount(). This method has two overloads, the first
one gets an address as an array of integers, the second one gets a reference
to opened XmlReader instance which is positioned at the element which child
count to get. The second one is the actual doer of counting. The first one
uses the other method, NavigateToAddress(), to get an opened XmlReader at
the right address and then calls the second overload of the GetChildCount().
This second overload of GetChildCount() reads the document using the reader
passed as a parameter and counts elements and text nodes. When it encounters
the end element at the right depth (which equals to the depth when it started
counting) in the document, the count is finished. Then it returns the count.
The method NavigateToAddress() takes an address as a parameter. It reads
from the XmlReader and tries to get to the right element at a certain depth. For
example, consider the document shown in Listing 17.

When we want to navigate to address [1, 3, 2], where the element note

resides, the NavigateToAddress() method needs to do the following steps. Firstly,
get to the root element, skip the next two elements (orderperson and shipto),
then continue reading at the third element, which is element item. After that,
skip the first child element title to finally get to the second element, which is
the final position. The numbers in the address indicate how many elements it is
necessary to skip and then indicates when to dive to the “lower” depth by reading

48

 <?xml version="1.0" encoding="utf-8"?>
 <shiporder>
 <orderperson>John Smith</orderperson>
 <shipto>
 <name>Ola Nordmann</name>
 <address>Langgt 23</address>
 <city>4000 Stavanger</city>
 <country>Norway</country>
 </shipto>

 <item>
 <title>Empire Burlesque</title>
 <note>Special Edition</note>
 <quantity>1</quantity>
 <price>10.90</price>
 </item>
 <item>
 <title>Hide your heart</title>
 <quantity>1</quantity>
 <price>9.90</price>
 </item>
 </shiporder>

Listing 17: Sample XML document to show how NavigateToAddress() works

from the XmlReader.
This method of addressing nodes and loading only particular ones is used

when user wants to expand a single node. This single node has its address so we
can use BigXmlReader to read all of its child nodes. This can be repeatedly used
for every node in XML document.

The GetChildNodes()methods are used to retrieve the collection of nodes from
the specified address. The range parameter denotes which child nodes to retrieve.
One overload takes also a parameter childCount. This is used for performance
reasons. When a node is retrieved from the file, BigXmlReader also counts the
number of its child nodes. This way, when retrieving child nodes of this node,
there is no need to count it again.

There is also an option to expand the whole document at once. This is not
implemented by consecutively calling GetChildNodes() on every address in docu-
ment. This would require to start reading from the beginning of the document for
every single node. When there are few hundreds of nodes, this would cause un-
necessary overhead. Therefore this feature has its own method in BigXmlReader.
It is method called GetAllFromAddress(). This method reads the whole subtree of
the document starting at the specified address, which is passed in as a parameter.
It returns the reference to the root of this loaded subtree. This way, only one
pass through the file is necessary for the entire subtree. If starting at the root,
the method returns the whole document.

BigXmlReader class contains some additional methods, most of them are helper
methods. The one worth mentioning is the method WriteChildNodesFromAddress.
This method is used when saving the document to a file. It takes an address
of the node to save and the reference to XmlWriter instance as parameters. It
navigates to the right address in the original file and writes all descendant nodes
from this point on. However, this methods is only a part of the whole saving
process, the remaining parts are described in the following section.

49

6.2 Saving the Document
Saving the partially loaded document can be quite tricky. The situation is

not so complicated when the nodes from the original file are not being moved
around. It means they have still the same address so it is easy to find them in
the original file and write them back as needed. The problem arises when some
nodes are moved in the document and their addresses change. This becomes
a little more complicated when there are changes in the moved subtree. To solve
the situation we came with the method Save on BigXmlNodeInternal class. This
class is an internal representation of a node in the document. This method is
recursivelly called on every node in loaded document so the whole document is
written to the file.

Every node in XmlStudio has two addresses: OriginalAddress and Address.
The OriginalAddress is the address where the node was when it was retrieved
from the file. The Address is the actual address in the document. If we compare
these two addresses, we know if the node has been moved. If it was not expanded,
we know where to look for its children which we need when saving the document.
If the OriginalAddress is null, we know that the node has not been loaded from
the file but created in XmlStudio.

XmlStudio uses a simple trick to save the file. It writes the current document
to a temporary file. The original file is finally replaced with the new one. In case
anything happens during the save operation, the original file stays intact.

The actual saving starts at the root of the document and continues in the depth-
first search (DFS [34]) manner. The signature of the Save method is shown in
Listing 18.

 void Save(XmlWriter writer, IBigXmlReader reader, bool updateAddresses,
 BackgroundWorker report);

Listing 18: Method signature of of the Save method

The XmlWriter is being passed from one recursive call to another which causes
that nodes are being written in the correct order.

The important part of the whole saving process is how a single node is being
saved. If the node is an element, the start-tag is written to the XmlWriter. Then
the attributes (if there are any) are written. If the current node is fully expanded,
the Save is recursivelly called on every child node of this node. Finally, the end-
tag is written. If the node is collapsed, it means it was not loaded from the file
so now it can be loaded and written to the temporary file. If the node is partially
expanded, the expanded nodes get written the normal way and the collapsed node
are loaded from the original file. The last case is when the node is a text node.
In this case only the value is written. The final step is to update the address of
the node.

When the document is saved, another file is created along with it. This file
has an extension .xmlStudio. This file is an XML document with saved colours
and shapes of the rendered items. When a user saves the file, this file is auto-
matically created. This file contains the list of all the nodes that were loaded
into XmlStudio. This list contains the address of the node and then its vi-
sual properties. These properties are wrapped in VisualizationInfo class within

50

XmlViewModel class. This class is serialized into this file. When the main XML
or XSD document is being loaded, XmlStudio tries to locate this .xmlStudio file
and when it succeeds, the values saved in this file are deserialized. XmlStudio
keeps track of these values in private property of the XmlViewModel class called
LoadedVisualizationInfo. When the user expands the node, XmlStudio checks
this property to see if there are any changes in the appearance. If there are, the de-
fault appearance values are replaced with the values loaded from the .xmlStudio.
file.

6.3 Layout Rendering
XmlStudio uses an open source library called GraphSharp [28] to layout the el-

ements in canvas. This library provides eight different layout algorithms to layout
graphs. It includes the Fruchterman-Reingold algorithm [35], Kamada-Kawai
algorithm [36], ISOM algorithm [37], Simple Tree layout algorithm, Sugiyama
layout algorithm [38] etc.

Simple Tree Layout Algorithm

This simple layout algorithm renders the input tree as a layered tree. The
resulting composition consists of a certain number of layers (which equals to the
height of the tree - which is the longest path from the root of the tree to the leaf).
The resulting layout might look similar to the sample shown in Figure 6.2.

Figure 6.2: Example of a resulting layout of the simple tree algorithm

Let the tree in XmlStudio be a directed acyclic graph [40]. We show this algo-
rithm in the form of C# source code. This code consists of three methods, the first
one is the main method that controls the layouting called InternalCompute,
the other one does the actual layouting (calculation of positions), it is called
CalculatePosition. The third one is the method AssignPositions which adjusts
the final positions. There is also a method GenerateSpanningTree, but this only
creates a spanning tree [39] from the input graph. The input graph in Xml-
Studio is always a tree, so this method does not change the input graph (but
this layout algorithm can be used for general graphs as well). The source code
for the InternalCompute method is shown in Listing 19 and the source code for
the CalculatePosition method is shown in Listing 21.

51

 void InternalCompute() {
 if(Parameters.Direction == LayoutDirection.LeftToRight
 || Parameters.Direction == LayoutDirection.RightToLeft) {
 //change the sizes
 foreach(var sizePair in sizes.ToArray())
 sizes[sizePair.Key] = new Size(sizePair.Value.Height,
 sizePair.Value.Width);
 }

 if(Parameters.Direction == LayoutDirection.RightToLeft
 || Parameters.Direction == LayoutDirection.BottomToTop)
 direction = -1;
 else
 direction = 1;

 // compute a spanning tree from the graph - graphs in XmlStudio
 // are always trees so the result of this phase is the same graph
 GenerateSpanningTree();

 // first layout the vertices with 0 in-edge degree
 foreach(var source in spanningTree.Vertices
 .Where(v => spanningTree.InDegree(v) == 0))
 CalculatePosition(source, null, 0);

 // then the others
 foreach(var source in spanningTree.Vertices)
 CalculatePosition(source, null, 0);

 // assigns the positions to vertices
 AssignPositions();
 }

Listing 19: Source code of the InternalCompute method

The InternalCompute method calls the preparation methods and then the cal-
culation. This algorithm has some parameters (e.g. layout direction, vertex and
layer gaps, spanning tree generation algorithm etc.) but we ommit these details
for the sake of simplicity.

There are some variables worth mentioning. The first one is the layers collec-
tion. This collection contains information about layers, specifically its Size, col-
lection of vertices, the NextPosition and the LastTranslate. The NextPosition

property is the position where the center of the next added vertex would be.
The Size of the layer is the maximum height of a vertex in this layer plus the layer
gap (one of the parameters of the algorithm). The LastTranslate value is the lat-
est translate value of the node in the current layer. This translate value is
described in the following paragraph.

The preparation phase of the algorithm is the computation of the spanning
tree. Then the core calculation begins. The basic principle is a DFS traversal of
the tree. When the CalculatePosition reaches the leaf of the tree, the position
of this node is returned to its caller. However, this position might later change
(during the AssignPositions method).

Every node has a helper data stored in the VertexData class instance. There
are three fields stored in here: the parent node, the amount of translate and finally

52

 void AssignPositions() {
 double layerSize = 0;
 bool changeCoordinates = (Parameters.Direction == LayoutDirection.LeftToRight
 || Parameters.Direction == LayoutDirection.RightToLeft);

 foreach(var layer in layers) {
 foreach(var v in layer.Vertices) {
 Size size = sizes[v];
 var d = data[v];

 if(d.parent != null) {
 d.position += data[d.parent].translate;
 d.translate += data[d.parent].translate;
 }
 VertexPositions[v] =
 changeCoordinates
 ? new Point(direction * (layerSize + size.Height / 2.0), d.position)
 : new Point(d.position, direction * (layerSize + size.Height / 2.0));
 }

 layerSize += layer.Size;
 }
 if(direction < 0)
 NormalizePositions();
 }

Listing 20: Source code of the AssignPositions method

the position. The important field is the translate value. It indicates the differ-
ence between adjacent nodes (parent-child) in the tree (specifically the difference
of their positions). When the nodes beying layed out have all the same size,
the translate value would be always zero. But if the sizes differ, there might
occur a situation when a parent node is wider than its child. Because the child
gets its position sooner, the parent would not fit above it (because it is wider).
Therefore the translate value indicates that the child node must be moved to
the right (or any appropriate direction according to set options). When the po-
sition of a node is computed, the value is returned to the caller and when all
its child nodes are positioned, this parent node is placed right in the middle
above them. This traversal continues until the root element has all its children
positioned. Finally the root itself is positioned above its children.

The AssignPositions method does the adjustments of positions according
to the translate values and according to the algorithm parameters (orientation
etc.). Its source code is shown in Listing 20.

53

 protected double CalculatePosition(TVertex v, TVertex parent, int l) {
 if(data.ContainsKey(v))
 return -1; //this vertex is already layed out

 while(l >= layers.Count)
 layers.Add(new Layer());

 var layer = layers[l];
 var size = sizes[v];

 var d = new VertexData { parent = parent };
 data[v] = d;

 layer.NextPosition += size.Width / 2.0;
 if(l > 0) {
 layer.NextPosition += layers[l - 1].LastTranslate;
 layers[l - 1].LastTranslate = 0;
 }

 layer.Size = Math.Max(layer.Size, size.Height + Parameters.LayerGap);
 layer.Vertices.Add(v);
 if(spanningTree.OutDegree(v) == 0) {
 d.position = layer.NextPosition;
 } else {
 double minPos = double.MaxValue;
 double maxPos = -double.MaxValue;
 //first put the children
 foreach(var child in spanningTree.OutEdges(v).Select(e => e.Target)) {
 double childPos = CalculatePosition(child, v, l + 1);
 if(childPos >= 0) {
 minPos = Math.Min(minPos, childPos);
 maxPos = Math.Max(maxPos, childPos);
 }
 }

 if(minPos != double.MaxValue)
 d.position = (minPos + maxPos) / 2.0;
 else
 d.position = layer.NextPosition;
 d.translate = Math.Max(layer.NextPosition - d.position, 0);

 layer.LastTranslate = d.translate;
 d.position += d.translate;
 layer.NextPosition = d.position;
 }
 layer.NextPosition += size.Width / 2.0 + Parameters.VertexGap;
 return d.position;
 }

Listing 21: Source code of the CalculatePosition method

54

Chapter 7

Other Solutions

There are many XML editors available. One of them is an application called
Stylus Studio 2010 [41]. This application suite contains many XML related fea-
tures like XML Editing tools, XQuery tools, XSLT tools, XML Schema tools,
DTD tools and many more. We are interested mostly in XML Editing tools and
XML Schema tools.

XML Editing Tools offer many features, here is the brief overview of them:

• Multiple synchronized XML editing views: tree view, text view, a robust
XML-aware editor

• XML grid view

• Sense:X: Intelligent XML editing feature that provides XML sensing, XML
tag completion, syntax coloring

• Integrated XML Schema/DTD validator

• XML differencing

• XML well-formedness checker and XML indenter

• XML canonicalizer

• XML generator

• XML document wizards

• XML code folding

• XML spell checker

• etc.

XSD Tools support XSD editing, conversion, validation, documentation gen-
eration etc. Included XSD editor is a visual editor that supports modular XSD
component design, refactoring etc.

Another application offering similar functionality is XMLSpy [42]. This ap-
plication suite is an XML editor, development environment for modeling, editing,
transforming and debugging XML-related technologies. Some of the key features
are summarized in the following list:

55

• Intelligent XML editor

• Graphical XML editing and text-based XML editing views

• XML validation with advanced error handling

• XPath auto-completion and XPath Analyzer window

• Visual XML Schema editor

• Database integration

• Very large file support

• and many more...

There are another XML editors which offer similar functionality like XML
Pro [43], EditiX [44] or Oxygen XML Editor [45]. Table in Figure 7.1 summarizes
the main features of mentioned XML editors and compares it with XmlStudio:

Feature Stylus
Studio XmlSpy EditX

Oxygen
XML
Editor

Xml-
Studio

Textual XML Edit-
ing

yes yes yes yes no

Visual XML Editing grid view grid view form
view tree view

planar
graph
view

XML Schema Val-
idator

yes yes yes yes yes

DTD Validator yes yes yes yes yes
XPath Evaluator yes yes yes yes yes
Undo & Redo yes yes yes yes partial
Textual XSD Editing yes yes yes yes no
Visual XSD Editing yes yes yes yes yes
Large file support partial yes no partial yes
XML Visualization
Exporting

no no no no yes

Figure 7.1: Feature comparison

XmlStudio cannot compete with commercial solutions because these solutions
are developed by development teams, not by a single person. But XmlStudio
shows one possibility how the XML editing could be done in a little different way
and offers simple editing tools which should be enough for simple scenarios.

56

Chapter 8

Summary and Conclusion

The aim of this thesis was to create a graphical XML and XSD editor. Created
application XmlStudio offers tools to create and edit generic XML documents.
These documents are shown as visualized trees. This visualization can be modi-
fied, but not only the document itself but also the colours, shapes or positions of
any elements. XML documents can be checked against DTD or XML schemas.
User can also query loaded parts of the document using XPath language. The
visualized documents can be exported to various image formats including JPEG,
PNG and BMP.

XML schemas can also be edited using this application. Using context help
on XSD elements, the user does not need to remember the names of the elements
available, XmlStudio remembers them instead. The same applies for the at-
tributes and also for some values (like built-in or user defined types, groups,
etc.).

Both XML and XSD documents are being saved with the visualization, so
when the user loads the document, all the colours and shapes are restored.

XmlStudio is capable of opening and editing huge XML files using the simple
expansion method described in this thesis.

However, XmlStudio cannot and does not try to compete with professional
solutions which are on the market nowadays. Those solutions are being devel-
oped by the whole teams of professional developers, architects and other people
involved in the application development. XmlStudio tries to show how XML
editing can be done in a different way and can be used for example for creating
visualizations of simple XML documents or editing XML schemas without writing
all the markup.

Of course, there are many ways how XmlStudio could be enhanced. The
following list shows some ideas which could make XmlStudio a better application:

• Allow simultaneous text and visual editing of XML and XSD documents.

• Add syntax highlighting to the source code view.

• Improve user-friendliness of element editing (allow also direct element edit-
ing on canvas).

• Allow users to better customize the appearance of visualized elements.

• Optimize performance of the application when there are many (thousands)
of elements on canvas.

57

• Add more bulk editing operations.

• Add DTD editor.

• Allow inserting elements via dragging them on canvas.

• Add support for XSLT.

• Improve contextual help for XML schemas.

58

Bibliography

[1] World Wide Web Consortium, http://w3c.org/.

[2] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C, November
2008, http://www.w3.org/TR/REC-xml/#sec-well-formed

[3] Planar graph, Wikipedia, http://en.wikipedia.org/wiki/Planar_graph

[4] Namespaces in XML 1.1 (Second Edition), W3C, August 2006, http://

www.w3.org/TR/xml-names11/

[5] Uniform Resource Identifier, Wikipedia, http://en.wikipedia.org/wiki/

Uniform_Resource_Identifier

[6] Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C, November
2008, http://www.w3.org/TR/REC-xml/#dt-doctype

[7] XML Schema Part 0: Primer Second Edition, W3C, October 2004, http:
//www.w3.org/TR/xmlschema-0/

[8] Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes -
Built-in Data Types, W2C, May 2001, http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/#built-in-datatypes

[9] Biron, P., Malhotra, A.: XML Schema Part 2: Datatypes - Simple Type
Definition, W2C, May 2001, http://www.w3.org/TR/xmlschema-2/#rf-defn

[10] RELAX NG Specification, ISO/IEC 19757-2:2008, December 2001, http:
//www.relaxng.org/spec-20011203.html

[11] Schematron Specification, ISO/IEC 19757-3:2006, 2006, http://www.

schematron.com/spec.html

[12] Document Object Model, W3C, January 2005, http://www.w3.org/DOM/

[13] Simple API for XML, November 2001, http://www.saxproject.org/

[14] Microsoft .NET Framework, Wikipedia, http://en.wikipedia.org/wiki/

.NET_Framework

[15] XmlDocument Class, MSDN Library, http://msdn.microsoft.com/en-us/
library/system.xml.xmldocument.aspx

[16] Streaming API for XML, Wikipedia, http://en.wikipedia.org/wiki/StAX

59

http://w3c.org/
http://www.w3.org/TR/REC-xml/#sec-well-formed
http://en.wikipedia.org/wiki/Planar_graph
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#rf-defn
http://www.relaxng.org/spec-20011203.html
http://www.relaxng.org/spec-20011203.html
http://www.schematron.com/spec.html
http://www.schematron.com/spec.html
http://www.w3.org/DOM/
http://www.saxproject.org/
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/.NET_Framework
http://msdn.microsoft.com/en-us/library/system.xml.xmldocument.aspx
http://msdn.microsoft.com/en-us/library/system.xml.xmldocument.aspx
http://en.wikipedia.org/wiki/StAX

[17] LINQ to XML, MSDN Library, http://msdn.microsoft.com/en-us/

library/bb387098.aspx

[18] Box, D., Hejlsberg A.: .NET Language-Integrated Query, MSDN Library,
February 2007, http://msdn.microsoft.com/en-us/library/bb308959.aspx

[19] Clark, J., DeRose, S.: XML Path Language, W3C, November 1999, http:
//www.w3.org/TR/xpath/

[20] Shaham, T.: WPF Localization - On-the-fly Language Selection, Oc-
tober 2007, http://blogs.microsoft.co.il/blogs/tomershamam/archive/

2007/10/30/wpf-localization-on-the-fly-language-selection.aspx

[21] Ossenkov, K.: Undo Framework, July 2009, http://undo.codeplex.com/

[22] XAML, MSDN Library, http://msdn.microsoft.com/en-us/library/

ms752059.aspx

[23] Model-View-Controller design pattern, Wikipedia, http://en.wikipedia.

org/wiki/Model-view-controller

[24] Model-View-ViewModel design pattern, Wikipedia, http://en.wikipedia.
org/wiki/Model_View_ViewModel

[25] Strategy Pattern, Wikipedia, June 2010, http://en.wikipedia.org/wiki/
Strategy_pattern

[26] Windows Presentation Foundation, MSDN Library, http://msdn.

microsoft.com/en-us/library/ms754130.aspx

[27] XAML Overview (WPF), MSDN Library, http://msdn.microsoft.com/

en-us/library/ms752059.aspx

[28] GraphSharp - graph layout framework, June 2009, http://graphsharp.

codeplex.com/

[29] Fluent Ribbon Control Suite, May 2010, http://fluent.codeplex.com/

[30] Data Transfer Object, Wikipedia, http://en.wikipedia.org/wiki/Data_

transfer_object

[31] Ribbon (computing), Wikipedia, http://en.wikipedia.org/wiki/Ribbon_

(computing)

[32] Tree (graph theory), Wikipedia, http://en.wikipedia.org/wiki/Tree_

(graph_theory)

[33] Graph (mathematics), Wikipedia, http://en.wikipedia.org/wiki/Graph_

(mathematics)

[34] Depth-first search, Wikipedia, http://en.wikipedia.org/wiki/

Depth-first_search

[35] Fruchterman-Reingold Algorithm, Network Workbench, https://nwb.slis.
indiana.edu/community/?n=VisualizeData.Fruchterman-Rheingold

60

http://msdn.microsoft.com/en-us/library/bb387098.aspx
http://msdn.microsoft.com/en-us/library/bb387098.aspx
http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/
http://blogs.microsoft.co.il/blogs/tomershamam/archive/2007/10/30/wpf-localization-on-the-fly-language-selection.aspx
http://blogs.microsoft.co.il/blogs/tomershamam/archive/2007/10/30/wpf-localization-on-the-fly-language-selection.aspx
http://undo.codeplex.com/
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Strategy_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://msdn.microsoft.com/en-us/library/ms752059.aspx
http://graphsharp.codeplex.com/
http://graphsharp.codeplex.com/
http://fluent.codeplex.com/
http://en.wikipedia.org/wiki/Data_transfer_object
http://en.wikipedia.org/wiki/Data_transfer_object
http://en.wikipedia.org/wiki/Ribbon_(computing)
http://en.wikipedia.org/wiki/Ribbon_(computing)
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
https://nwb.slis.indiana.edu/community/?n=VisualizeData.Fruchterman-Rheingold
https://nwb.slis.indiana.edu/community/?n=VisualizeData.Fruchterman-Rheingold

[36] Kamada-Kawai Algorithm, Network Workbench, https://nwb.slis.

indiana.edu/community/?n=VisualizeData.Kamada-Kawaii

[37] Meyer, B.: Self-Organizing Graphs - A Neural Network Perspective of
Graph Layout, January 1998, page 253, http://www.springerlink.com/

content/lau0ugxt04fp1e8b

[38] Eiglsperger, M., Siebenhaller, M., and Kaufmann, M.: An Efficient Imple-
mentation of Sugiyama’s Algorithm for Layered Graph Drawing, J. Graph
Algorithms Appl., 9(3), 305-325, 2005.

[39] Spanning tree, Wikipedia, http://en.wikipedia.org/wiki/Spanning_tree

[40] Directed Graph, Wikipedia, http://en.wikipedia.org/wiki/Directed_

graph

[41] Stylus Studio - XML Editor, XML Data Integration, XML Tools, Web
Services and XQuery, http://www.stylusstudio.com/

[42] XMLSpy - XML Editor for Modeling, Editing, Transforming, & Debugging
XML Technologies, http://www.altova.com/xmlspy.html

[43] Vervet Logic XMLPro - XML Editor, http://www.vervet.com/products.

php

[44] EditiX XML Editor, http://www.editix.com/

[45] Oxygen XML Editor, http://www.oxygenxml.com/

61

https://nwb.slis.indiana.edu/community/?n=VisualizeData.Kamada-Kawaii
https://nwb.slis.indiana.edu/community/?n=VisualizeData.Kamada-Kawaii
http://www.springerlink.com/content/lau0ugxt04fp1e8b
http://www.springerlink.com/content/lau0ugxt04fp1e8b
http://en.wikipedia.org/wiki/Spanning_tree
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Directed_graph
http://www.stylusstudio.com/
http://www.altova.com/xmlspy.html
http://www.vervet.com/products.php
http://www.vervet.com/products.php
http://www.editix.com/
http://www.oxygenxml.com/

Chapter 9

Appendix A

This thesis contains an attached CD with an installer of XmlStudio, source
code of XmlStudio, HTML documentation generated from the source code and
an electronic version of this document.

The disc contains the following directories:

• SourceCode – contains the complete source code in the form of solution in
Visual Studio 2010

• Documentation – contains HTML documentation generated from comments
in the source code

• Installer – contains the installer of XmlStudio with all required dependen-
cies

• Thesis – contains this text in PDF format

62

	Introduction
	Structure of the Text

	XML Basics
	A Brief Introduction to XML Format
	XML and Namespaces

	XML Schema Definition
	XML Processing in Programming Languages
	Document Object Model
	Simple API for XML
	Other Methods
	XML & .NET Framework

	XPath Language

	Application Goals
	XML Data Visualization
	Modifications of the Visualized Structure
	Modifications of Appearance of Particular Visualized Elements
	Element Selection
	XML Schema Editing and Creation
	Storing of the Edited Documents
	Working with Large Documents

	User Documentation
	User Interface
	The Ribbon

	XML Document Creation
	Loading Existing XML Documents
	Editing Properties
	Adding Child Nodes
	Changing Appearance
	Node Removal
	Copying and Moving Subtrees of Nodes
	Node Selection
	DTD Validation
	XML Schema Validation
	Export
	Printing
	Settings
	XML Schema Creation and Editing
	Creation
	Editing

	Architecture of the Application
	Introduction
	Overview of the Architecture
	Model-View-Controller Design Pattern
	Model-View-ViewModel Design Pattern
	XmlStudio.Common
	XmlStudio.Model
	XmlStudio.Main
	Summary

	Important Algorithms
	Handling Large Documents
	Saving the Document
	Layout Rendering

	Other Solutions
	Summary and Conclusion
	Appendix A

