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The thesis is devoted to performance analysis of multi-model database management

systems. Data models, multi-model DBMS and query languages were studied. Based on

comparison of existing database benchmarks and multi-model DBMS functionality,

requirements to the benchmarking process were identified. For the performance

benchmarking, a cross-platform benchmarking application with graphical user interface was

designed and implemented. The benchmarking application has a plugin architecture giving

the possibility to create a DLL-plugin and test a DBMS which is not supported in the initial

release. ArangoDB, RavenDB and MongoDB were tested with focus on document and graph

data models.
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Introduction

Data persistence is a key part of software functional requirements. Almost every

software application saves its state between executions. At least, user settings are saved, at

most, data entries, documents, binary attachments and other digital assets are stored for future

editing and viewing. Data of a simple structure as a short list of key-value pairs could be

saved in local text configuration files or binary files. Usually data of complex domains

contains instances of interrelated entities. Storing and processing complex data requires the

management of relations and constraints. If data is modified by more than one user or

application instance simultaneously, a transaction mechanism and multi-thread server are

needed to be implemented. As more data is accumulated, it is used for analysis and report

generation. Aggregations, projections, joins of collections of entity objects, filters are

operations, implementation of which must be fast and memory efficient. This explains the

demand for reusable and well-designed executable software components for data access and

management. Database management systems (DBMS) are components of software systems

that expose a standard interface for data storage and access, implement commonly used

functionality for data queries and maintain data integrity.

A software project starts from the identification and analysis of requirements which is

followed by data model design of the domain area. When the domain model is created, a

software architect chooses a suitable DBMS for a software project. A software architect

takes into account the nature and the structure of the data, the functional and non-functional

requirements and other restrictions: execution environment, programming languages, the

experience of software developers with particular DBMS, price, maintenance period,

functionality, scalability, performance.

Performance is a key software quality attribute that influences the success of a

software project. As a DBMS is used as-is – without code modification, its performance and

other quality attributes are determined by an external team of developers. DBMSs have their

own development lifecycles: newer versions could be developed and delivered once every

two or more years. Security bug fixes are done and distributed quite quickly, while

performance enhancements require systematic work on architecture and algorithms. On

average, e.g. MariaDB Server has had one stable major release every year [1]. Or, Microsoft

releases a new version of SQL Server once in about two years [2]. The overall security level

of a DBMS could be evaluated by a review of security reports, but performance requires

more detailed research. Firstly, the support of different index types, query optimization and
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other features may be studied. Then developers could create software prototypes and test

them with different DBMSs. While this approach allows one to get a rough estimate of

performance, it seems that formal procedure for DBMSs bench-mark and comparison would

give a solid basis for making decisions on software architecture and choice of DBMS.

Recently a multi-model DBMS (MMDBMS) – a new type of DBMS supporting

several data models – has become popular among software developers. MMDBMSs may

simplify the architecture of software and improve software quality attributes like adaptability

and maintainability. MMDBMS can be used in areas where it is not possible to design and

implement a concrete data model within one abstract pattern. Examples of such areas are

social networks (users’ profiles and relations) or user generated content, fraud and data leak

detection (sequences of users’ and clients’ actions and collections of corporate documents),

recommendation systems (history of user’s actions and website pages). Performance

characteristics of popular relational DBMS (Microsoft SQL Server, Oracle , PostgreSQL [3],

MySQL/MariaDB, FireBird [4]) and tools for performance tuning and measurement (query

plan viewers, performance monitors, missing index scanners, etc.) are published as

certification exam preparation materials, books and online guides on official documentation

portals. MMDBMSs lack such detailed documentation and tools. It is necessary to compare

the functionality and architectures of MMDBMs and determine how the performance of

different multi-model DBMSs varies.

This bachelor thesis is devoted to a comparative analysis of MMDBMSs and

development of the benchmarking application for MMDBMS. The work splits into the

following tasks:

1. Study of abstract data models and comparison of MMDBMSs, choice of DBMSs that

are suitable for benchmarking and performance comparison (Chapter 1).

2. Study of benchmarking methods and algorithms, analysis of existing results of DBMS

benchmarking. Requirements identification and analysis for benchmarking process.

(Chapter 2)

3. Design of benchmarking procedure and its implementation in a software application

(Chapters 2, 3, 4).

4. Obtaining data for performance benchmarking (Chapter 5).

5. Experiments: quantitative assessment of performance and comparison of DBMSs

(Chapter 5).
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1. Multi-Model DBMS

For DBMS analysis, it is necessary to study data models, compare features of DBMSs

and describe in detail those which are relevant to multi-model functionality. Special attention

will be paid to the features of query languages.

1.1 Data models

Abstract data model is a high-level model describing how data elements and their

properties are identified, grouped and related to each other and what operations could be

performed on them. Commonly recognised models are relational, graph, document, key-value

and object.

Relational data model was described by E.F. Codd [5]. The model consists of

relations with fixed schema (set of attributes) and the relational algebra – set of operations

most important of which are join (product), union and projection. The schema (structure) of

the data is known in advance in the relational model [5]. Relations contain tuples. Each tuple

is a vector with a predefined number of components, their order and data type. The SQL

language is a standard tool for data definition and manipulation in this model. According to

the DBMS popularity rank [6], the relational model is frequently used by developers as the

top four DBMSs support this model.

In the document-oriented approach data is stored as a collection of documents –

uniquely identified self-describing data entries. Every entry is represented as a separate XML

or JSON document. Typically, documents in a collection could have a non-fixed schema and

contain different sets of attributes. The document data model allows us to implement

aggregates [7] – data units that can store dependent elements inside them without references

to other data collections (references to tables via foreign keys). In self-contained documents

data items (containers and internal parts) are stored as they appear in the domain area. As the

domain area evolves, the schema of documents may change, but they would still be stored in

the same collection. A collection of business cards could be an example of it. Regardless of a

business card format, the number of printed contact phones and emails on it, all cards with

internal information (collection of contacts) on them are stored in the same collection. In

document oriented DBMS query languages are often based on a mix of JavaScript and JSON

syntaxes. As an example, MongoDB [8] or CoachDB [9] use JavaScript to specify operations

on the data and JSON to filter, update, insert or delete data items.
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Wide-column databases store data entries that contain groups (families) of column

values. Each group of column values is accessed by the same key of a row (see Fig .1.1).

Values of a column family are stored continuously on a physical disk [10]. Wide-column

databases are similar to document-oriented databases in the way that rows may have different

column families [11]. Wide-column databases are suitable for workloads like real-time

analytics or write-heavy log operation of IoT applications [11].

Fig. 1.1 – An example of wide-column data entries [11]

In object-oriented databases data entries are stored as class objects which have not

only a state (values of fields – variables inside class object), but also a behavior (methods and

properties with methods get and set) and may support inheritance. Objects are mutually

related * by pointers. The main similarity with the relational model is that classes in object

oriented programming languages like relations have a predefined schema. An object-oriented

database is very bound to a programming language and execution environment because data

needs to be restored into a set of objects in the memory of the software application process.

When object data is accessed by one user (thread) only, it could be done by serialization and

deserialization to local files [12]. At the time of writing this text, it was found that previously

popular OODBMS db4o (134-th place in the DB-Engines Ranking [6]) was lastly updated on

22.09.2019. Another OODBMS objectbox (185-th place in the DB-Engines Ranking [6]) is in

active development, but it supports only a limited list of programming languages: Java,

Kotlin, C / C++, Python, Go, Dart / Flutter, Swift, EdgeX (very popular PHP and C#

languages are not supported). Because of the above limitations, object oriented DBMS are

not widely used.
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Since about 2000-es a new object-oriented design pattern – Object-Relational

Mapping (ORM) has been used by developers. ORM solutions are available for popular

DBMSs and programming languages, including C# (Entity Framework, NHibernate), Java

(Hibernate), Python (SQLALchemy), PHP (Eloquent). The pattern utilizes the fact that only

state of objects need to be stored in the database, but behavior is statically coded. The pattern

allows to load data from a traditional RDBMS and map it to dynamic lists of class objects. As

a result, the state is loaded from a DBMS. The behavior of the objects is coded in methods of

classes that represent the entities of the application domain. For data read an ORM library

opens a connection to the DBMS, executes a SELECT query and creates an array or a

dynamic list of entity class objects. Modified or newly created class objects are processed by

an ORM library and transformed to CREATE or UPDATE queries to DBMS. The current

demand for OODBMS among developers is almost fully eliminated by ORM libraries.

Key-value databases store data as an instance of an associative array. Each data

element is accessed by its key. The value of a data element could be a string, a number or a

document with complex structure, which nevertheless doesn’t allow any internal documents

inside it. Main difference from the document oriented model is that in key-value databases

data elements are not grouped into containers like tables or collections. New data is added by

inserting a new key into the associative array. Common use cases for key-value databases are

caching, message queuing, and session management [13]. Key-value databases could contain

pointers or descriptors to larger parts of data. Storing data in RAM, key-value DBMSs like

Redis or the Memcached library offer exceptional performance by the price of relatively

simple data structure which does not allow grouping entries in collections.

In graph model data is organized as graphs and manipulated with graph operations

[14]. Graph data model is suitable for domains where entities have a lot of connections which

do not fit fixed relation schema. An instance of a data object is represented as a node or a

directed or undirected relation. Both nodes and edges could contain key-value properties.

Unlike document databases, in graph databases data elements do not store complex

documents with inner elements [15].

Regardless of the data model, entries in a database may be stored in row oriented or

column oriented approaches [13]. Column oriented databases may follow the relational

model, but have a different approach for storage of data: data is stored in columns where the

order of the elements (column values) is respected in every column [13]. Column oriented

approach is implemented in traditional row oriented DBMS as special indexes (columnstore

indexes in Microsoft SQL Server) or may be used as the main approach for data storage

9



(ClickHouse, Apache HBase, Apache Cassandra [13]). Column oriented databases have

better data compression because columns are compressed independently. Read queries with

aggregation and projection operations execute faster making column oriented storage more

suitable for analysis (OLAP) tasks. Row oriented storage is more preferable for OLTP tasks:

data modification operations execute much slower in column oriented storage, because these

operations require rebuilding of every column storage  [13].

1.2 DBMS and MMDBMS

DBMS is a central component in corporate software systems. In [16] two types of

client-server software architectures are described: client-DBMS (two-tier) and three-tier

(DBMS – Application Server – Thin Client) architecture. In three-tier architecture (see Fig.

1.2) an intermediate component Application Server is used. The Application Server is

responsible for business logic and interaction with one or more DBMSs.

Fig 1.2 – Three-tier architecture [16]
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With the growth of social media, digitalisation of the economy and development of

machine learning and AI, large amounts of data are generated and processed daily. The data

can not fit one particular data model and requires different approaches for storage and

processing. Multi-model DBMS, which support more than one data model, could decrease

efforts for software development, deployment and maintenance. Traditional software

architecture (see Fig. 1.3) has the central component (Application Server) which interacts

with different DBMSs, aggregates data and returns it to clients. Developers have to

implement an aggregation process from multiple data sources and subsystems for every

DBMS. Besides aggregation, implementation of security requirements is complicated by

necessity to store users and roles in one DBMS and control access to other data sources on

the Application Server level. Data sources are accessed under the application server account

which could decrease security. If data sources are accessed with a user’s account, all user

accounts must be synchronized for every data source.

Fig. 1.3 – An application server aggregating data from DBMSs [16]

MMDBMS allows implementation of database-centric architecture (see Fig. 1.4)

which could be both two-tier or three-tier. In this architecture a significant part of business

logic is implemented in the database as programmable objects: stored procedures and

functions. In the database-centric architecture CRUD operations could be accessed via an

interface consisting of stored procedures. For corporate applications it could be especially

important to control data access on the DBMS level: every connection is opened under a

user's account, direct access to tables or collections is forbidden and the data is accessed via
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stored procedures. Additionally, deployment and maintenance costs of single MMDBMS are

less than for traditional architecture with multiple DBMSs.

Fig. 1.4 – An application Server accessing data from a MMDMS [16]

1.3 Review and comparison of MMDBMSs

For comparison of MMDBMSs the following characteristics were chosen:

1. Supported data models. A MMDBMS with more models supported is a more general

solution and has higher adaptability characteristics. However, more general

MMDBMS may have worse performance due to its complexity and increased

hardware and execution environment requirements.

2. Architecture of DBMS and implementation of data model. Depending on

implementation, a DBMS could have the primary data models and extensions for

support of remaining or a top level API on a set of data models.

3. Indexes. Depending on the types of supported indexes, a DBMS could be optimized

for different workloads: with indexes queries may be executed without sequential

scan.

4. Programmable objects like functions, stored procedures, views, packages. More types

of programmable objects and several scripting languages could help implementation

of database-centric architecture.
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5. Supported APIs. An SQL API could help developers to carry out data migration from

a relational DBMS.

Multi-model and document oriented DBMSs became available to developers in

2010-es. Open source DBMSs  were chosen for comparison (see Table 1.1).

Table 1.1. Multi-model database management systems.

Name,
Release year

Programming
language

document
model

graph
model

relational
model

Query language

ArangoDB,
2011

C++ X X AQL

OrientDB,
2010,

Java X X X Gremlin,
SQL with extensions
for graphs

RavenDB,
2010

C# X X
(experi
mental
feature

)

RQL (Raven Query
Language) for data
manipulation,
data definition
operations only via a
driver API

CrateDB,
2016

Java X X SQL

MongoDB,
2009

C++/C/JavaSc
ript

X X
(only

limited
suppor

t for
graph

queries
)

JavaScript/JSON,

GraphQLGra
phQ

Couchbase,
2010,

C++ N1QL

Neo4j,
2010

Java X
(limited
support)

X Cypher

For further analysis, DBMSs with support of graph and document models are

selected.
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OrientDB is a multi-platform MMDBMS that supports graph and document data

models over an hierarchical API: document API and graph API on the top of it (see Fig. 1.5).

Fig. 1.5 – OrientDB API [17]

In OrientDB documents always belong to classes – special containers which partially

play the same role as tables in relational databases and collections in document oriented

databases like MongoDB. Unlike tables and collections, OrientDB classes support inheritance

and have one of three types: schema-less, schema-full or schema-mixed. Objects of a

schema-full class have predefined properties with constraints and optional indexes.

Schema-less objects can have no constraints on type and number of attributes. Schema-mixed

objects must follow a predefined schema and may contain additional attributes. A document

belonging to the class inherits all its properties. Classes are grouped into clusters – units of

physical data storage [18].

OrientDB supports four index algorithms [19]: SBTree, Hash, HashV2, Lucene.

Additionally, custom indices could be written in Java. Indexes could be used explicitly in

queries (“SELECT FROM INDEX:<index-name> WHERE key = <key>”).

On the Document API layer documents could be referenced to each other by the

LINK mechanism. Links are set between classes and play the same role as foreign keys in

relational databases. For unique relations between vertices edges are created [20]. Vertices are

documents of the base class V. New vertices could belong to the class V or any derived class.

Edges are documents of the base class E. As any document, an edge can contain content [21].
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Unfortunately, OrientDB developers do not maintain the C# data driver [22]. As C#

popularity is increasing and Java is stepping down [23], this fact could be considered as a

serious disadvantage of OrientDB.

ArangoDB is positioned as a native multi-model database: the same query language

and database engine are used for all supported models [24]. The document, graph and

key-value models are implemented based on the document data model [24]. In an ArangoDB

database documents are grouped in collections. Collections could be one of two types: vertex

and edge. A collection could have a schema object bound to it. Schemas have the control

level attribute. Depending on the control level, all documents or only newly inserted are

validated against the schema [25].

RavenDB is primarily document oriented, but it supports graph querying as an

experimental feature [26]. The graph support is implemented as an extension to the RQL

query language. RavenDB does not store edges as separate documents. Graphs are built and

analyzed based on existing documents (vertices) and references to other documents inside

them. Edge name is set by the attribute containing the reference. RavenDB offers two types

of indexes:auto and static. Auto indexes are created automatically by the server Query

Optimizer component. In the documentation it is stated that RavenDB avoids full scan

operations during query execution by use of auto indexes [27]. Static indexes could be Map

or Map-Reduce.Map indexes specify by what fields documents could be searched.

Map-reduce indexes used for aggregation queries: selection values from fields and with use

of a reduce function and calculation of the aggregation result [28].

MongoDB is another example of a document oriented DBMS. It allows storing

documents with and without schema. Documents could be referenced by a special document

ID – objectID data type. In [29] it is stated that MongoDB could be used for relational,

object and graph operations. MongoDB has limited support for graph queries. In official

MongoDB documentation [29] it is stated that a dedicated graph DBMS may be necessary for

frequent use of graph capabilities. That statement makes us assume that the speed of graph

processing in MongoDB may not be not fast enough. For graph processing referenced

documents are used. Graph edges could be expressed only as references between documents.

Neo4j is a graph DBMS that is often used with MongoDB. Neo4j does not have full

support of the document data model, but allows to store key-value properties which are

assigned to nodes and edges. Neo4j may be used with a document oriented DBMS if full

support of the document model is required. For example, a background software application
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for data synchronization between Neo4j and MongoDB is available as an open source project

on Github [30].

To sum up the review of the MMDBMSs, ArangoDB, OrientDB and RavenDB (with

insignificant limitations) are the DBMSs that have full support for document and graph

storage and processing. Additionally, OrientDB implements the concepts of class and

inheritance instead of collections. This allows development of rich domain models. Another

major difference of OrientDB is that it utilizes class and inheritance for storage of graph

edges. MongoDB could be considered as a single model DBMS with extensions. Use of a

system of MongoDB and Neo4J does not meet the purpose of improving software

maintainability as it increases complexity of a software system.

1.4 Detailed review of ArangoDB, RavenDB and MongoDB

ArangoDB, RavenDB and MongoDB could be good candidates for further analysis of

performance as their query languages share common features (see Table 1.2) . For all of them

it is possible to implement a benchmarking application using C# programming language.

Table 1.2 Comparison of query languages

Feature ArangoDB (AQL) RavenDB (RQL) MongoDB
(JavaScript)

Functions + JavaScript functions JavaScript functions

Views + implemented as
JavaScript indexes

SELECT queries
with limited number
of operators

Stored procedures - - -

Graph edges Edge collection Document attributes

Multi-model query AQL statements Index+graph
extensions

View + graph
extensions or
Aggregation
pipeline

Shortest path search + + -

JOIN + + partial support
with the include
operator

+ $lookup operator
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For detailed analysis of the DBMSs and their query languages, the demo dataset was

used (see Appendix A).

1.4.1 ArangoDB

ArangoDB query language AQL supports document and graph queries. The structure

of a simple AQL document query is the following:
FOR element IN collection

FILTER element.attribute1 == "value"

SORT element.attribute2

RETURN element

An example of document query which selects documents containing more than 10

tags:
FOR doc IN people

FILTER count(doc.tags) > 10

SORT doc.name

return doc

Graph query structure  resembles document query:
WITH people, relations

FOR v

IN min_path_length..max_path_length

OUTBOUND vertex_collection edge_collection

An example of graph query calculates shortest path between two people:
WITH people, relations

FOR v

IN 1..2

OUTBOUND people people_relations

An example of multi-model (graph and document) query firstly filters projects and

people (document part) and then calculates shortests paths (graph part) between them:
WITH people, projects,  relations

FOR p IN people

FILTER count(p.tags) > 10

FOR pr IN projects

FILTER pr._id == projects/25000'

FOR v, e IN OUTBOUND p TO pr people_project_relations

RETURN [v._key, e._key]

ArangoDB queries are processed by the query optimizer which builds query plans.

The query optimizer could build a query plan automatically or use the index which is
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explicitly set by a user. In vertex collections hash indexes for _from and _to are automatically

created.

An example of ArangoDB query plan:
FOR doc IN people

FILTER count(doc.tags) > 10 SORT doc.name return doc

Execution plan:

Id   NodeType         Est.   Comment

1   SingletonNode       1   * ROOT

8 IndexNode 16255 - FOR doc IN people /* skiplist index

scan */    FILTER (COUNT(doc.`tags`) > 10)   /* early pruning */

7   ReturnNode      16255       - RETURN doc

Indexes used:

By Name Type Collection Unique Sparse

Selectivity   Fields       Ranges

8 idx_1718512802621030400 skiplist people false false

99.98 %   [ `name` ]   *

1.4.2 RavenDB

RavenDB query language RQL supports document queries and has an extension for

graph querying. Besides RQL, RavenDB has native support for LINQ – a query language

which is a part of Microsoft .NET.

Every document query begins from the from keyword. Then a collection or an index is

specified:
from Collection_or_index_name as item

where search(attribute, "value1")

select item.attribute1, item.attribute2

The significant limitation of standard collection query is that besides built-in

functions and comparison operators no operations and arithmetic expressions could be used.

As an example, the following query violates the standard RQL syntax:
from People as p

group by p.Department

where p.BaseSalary*1.3>1000

order by count() as long desc

select count(), p.Department.
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For this purpose, a JavaScript or C# index could be created. In RavenDB user-defined

indices are elements that not only used for faster scanning of data elements, but partially

implement functionality of SQL views and functions. RavenDB offers two types of user

defined indexes: map and map-reduce. Map index specifies which fields from document

should be indexed and selected [28]:

map('People', function (employee){

return {

FirstName : employee.FirstName,

LastName : employee.LastName,

Salary:CalculateSalary(employee.Year,

employee.BaseSalary),

Manager: employee.ReportsTo};

})

Map-reduce index allows us to aggregate data. A map-reduce index contains two

parts: map and reduce. The map part selects data from a collection (projection operation).

Then the reduction is applied to the map results [28]. The example below calculates the

average salary per department:
Maps = new HashSet<string>()

{

map('People', function (p){

return {

FirstName : p.FirstName,

LastName : p.LastName,

Salary: CalculateSalary(p.Year, p.BaseSalary),

Manager: p.ReportsTo,

Department: p.Department,

Count:1

};

});

};

Reduce = @"groupBy(x => x.Department)

.aggregate(g => {

var salary_sum = g.values.reduce((sum,x) => x.Salary + sum,0);

var number = g.values.reduce((sum,x) => x.Count + sum,0);

return {
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Department: g.key,

Avg: salary_sum / number

}

})";

A graph query contains three parts: (initial nodes)-[edges]->(ending nodes). Graph

query starts from the match keyword, after which initial nodes are defined in brackets. After

hyphen an edge document attribute is set. Finally, an ending node collection is set in brackets.

A simple query selects friends list using the match operator:
match

(People as person1) -

[FriendOf as FriendOf]->

(People as person2)

select

id(person1) as id1,

id(person2) as id2,

person1.name as name1,

person2.name as name2

For graph traversals recursive queries are used. In the example below, paths from

movies with the tag to people are searched recursively. The min and max params of the path

are set to 2 and 3 respectively:
match

(movies as mv where tags in ("1995 films "))-

recursive as chainOfCommand(2, 3, shortest)

{

[refs as rfs]->

(People as participants)

}

select

{

title : mv.title,

role : chainOfCommand.map(x => x.participants.role).join(' >> ')

}

With the recursive part it is possible to set minimum and maximum numbers of

elements in paths.
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Multi-model queries can be implemented by combination of indexes and graph

queries. The query below selects employees with salary greater than $3000 and their

manager:
match

(index 'map_index_1' as worker where Salary>3000)-

[Manager as mgr]->

(index 'map_index_1'  as manager)

1.4.3 MongoDB

MongoDB utilizes a JavaScript/JSON based query language. Typical READ query

uses the following pattern:
db.<collection>.find($query);

while (myCursor.hasNext())

{

print(tojson(myCursor.next()));

}

For more complex queries, an aggregation pipeline is used. An aggregation pipeline is

a container for sequential data processing stages. It may include filtering (the $match stage),

graph processing (the $graphLookup stage) and grouping (the $group stage) [31].

For graph queries the $graphLookup operator is used. It recursively searches a

collection(s) with restriction on depth and optional filters [32]:
{

$graphLookup:

{

from: <collection>,

startWith: <expression>,

connectFromField: <string>,

connectToField: <string>, as: <string>,

maxDepth: <number>,

depthField: <string>,

restrictSearchWithMatch: <document>

}

}

The example below selects friends of friends with max depth 5:
db.people.aggregate(
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[

{ $graphLookup:

{ from: "people",

startWith: "$FriendOf",

connectFromField: "FriendOf",

maxDepth: 5,

connectToField: "_id",

as: "FriendsLine" }

}

]

)

A multi-model query with mongoDB could be written as a combination of a view and

a graph traversal query or via an aggregation pipeline. After the view is created, it is possible

to use it in a graph query. An example of a view returns employees with salary greater $3000:
db.createView( "HighIncomeEmployees", "Employees", [ { $gt: { Salary:

3000 } } ] )

Results of Chapter 1

Data models and MMDBMSs were studied and compared. The main criteria for

choice of DBMSs for benchmarking were support of the data models and availability of C#

data access driver. Because the thesis is devoted to MMDBMSs, chosen DBMSs must

support graph and document data. Regarding the second criteria, chosen DBMSs must

support C# which will allow us to create modules and perform benchmarking in the same

conditions. Additionally, benchmarks written in C# could represent interest for an increasing

number of Microsoft .Net developers. ArangoDB, RavenDB and MongoDB were chosen for

comparison. It would be worth it to find out if use of RavenDB auto indexes ensures a good

level of performance. Additionally, it is necessary to find out if MongoDB graph extensions

have acceptable performance.
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2. Design and implementation of the benchmarking application

Development of the benchmarking application is a software development process

which splits into the following stages: requirements analysis and identification, design and

implementation. For requirements analysis and identification the benchmarking process is

studied and benchmarking systems are compared. Based on the comparison, a list of

requirements is built. Then a software application architecture is designed and documented

with use of UML diagrams. Finally, the architecture is implemented in the code.

2.1. Introduction to benchmarking

Benchmarking is a process of assessing performance of computer hardware or

programs. The results of benchmarking are quantitative characteristics of performance.

Benchmarking is carried out by use of special software – a benchmarking application. A

benchmarking application takes sample workload, reads user preferences and starts execution

of tests. After execution of tests quantitative results are stored in a local file system or shown

to the user. Workload is a set of operations with the object of testing that imitate some real

daily activity: file copying, video and audio conversion for hardware benchmarking;

browsing of web-site pages, creating reports in a Customer Relationship Management

(CRM) system or chatting and voice calling in a messenger application for software

benchmarking. Examples of popular hardware benchmarks are CPU-Z [33], MemTest86 [34]

and Geekbench [35].

Servers are tested for performance to estimate their response time, memory

consumption and other params. A typical performance benchmarking tool like Microsoft

Wcat may contain the following components: agents and a controller [36]. Agents are

installed on separate machines. A controller is an application or script that sends a test

scenario and a start command to clients. Then clients execute workload and send reports to

the controller. Finally, the controller saves or displays the results. Multi-client deployment of

benchmarking applications may be necessary if network and hardware capacity (ability to

generate a certain number of queries) of a client does not fit the processing capacity of the

server. Multi-client deployment is especially important for stress testing. Unlike web-servers,

DBMSs do not send messages like the HTTP 503 messages. For an isolated DBMS (without

software systems like web-sites or CRM) it is wise to estimate response time under a given
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workload. This will allow us to evaluate algorithms implemented in the DBMS, but not the

whole hardware and software system configuration.

For DBMS benchmarking (see Fig 2.1), a benchmark application should contain two

main elements as input data: a database schema and a workload model. A workload is

represented by a sequence of database read and write queries [37]. The benchmarking process

starts from a data load. After data is loaded, a series of multithreaded tests are executed and

performance metrics are calculated. Response time, number of operations, usage of memory

and disk are used as measured performance characteristics. [38] states that latency is one of

core performance characteristics that influence user experience. Latency is directly connected

with throughput: if the hardware configuration is constant, latency increases with increase of

throughput. Another performance characteristic is scaling which measures performance

change with increasing number of nodes in a database cluster. Availability is studied in

different conditions of hardware failure: whole node failure, network failure, disk failure.

When an element of the database cluster is turned off, benchmarking is carried out.

Fig. 2.1 – DBMS benchmarking process

Four MMDBS benchmarks were found and chosen for further analysis (see Table

2.1).
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Table 2.1. Benchmark results

Benchmark Programming
language

DBMSs Workload Winner

YCSB [39] Java, Python ArangoDB,
Elastic Search,
OrientDB

social network
data

MongoDB

Arango tests
[40]

JavaScript
(NodeJS), shell
scripts

Neo4j,
MongoDB,
PostgreSQL,
OrientDB,
ArangoDB

pokec dataset
(social network
data) by
Stanford
University

ArangoDB

Unibench [41] Java, NodeJS ArangoDB,
OrientDB

E-commerce ArangoDB in
majority of tests

Benchmarking
orientdb with
neo4j and
mongodb [42]

Shell scripts OrientDB,
Neo4j,
MongoDB

social network
data

MongoDB for
document
queries,
OrientDB for
majority of
graph queries

[41] has a detailed description of E-commerce multi-model queries, but for the

benchmark execution the authors used different DBMS drivers (NodeJS for ArangoDB and

Java for OrientDB ) which could distort the results of the experiment. [43] has a simple, but

not well-designed implementation: workloads are hard-coded as class methods, each

workload class in UniBench has a fixed number of workload methods. Besides architecture

drawbacks, in [43] there is no implementation of multi-thread executor of database workload.

Current code in [43] does not fully relate with the paper [41]: it does not contain any NodeJS

code mentioned in the article.

In [39] it was said that not only workload, but database size and deployment

configuration influence performance results. In [39] the Yahoo! Cloud Serving Benchmark

(YCSB) testing tool was used for performance comparison of MongoDB, OrientDB,

ArangoDB and ElasticSearch. The YCSB tool is implemented as a set of Java modules

accessing a database cluster (see Fig. 2.2). The YCSB tool is run via controlling sh (Linux) or

bat (Windows) scripts.
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Fig. 2.2 – YCSB performance benchmarking tool architecture [39]

The testing was performed on a single machine. The authors did not clarify if the

benchmarking application was run on a separate machine. Based on the benchmark results,

MongoDB had significantly better performance [39].

In [40] workload was splitted into the following parts: single document (user profile)

read, single document (user profile) write, aggregation (age distribution for all profiles),

neighbors search (profiles of direct neighbors and neighbors of neighbors), shortest path (path

lengths between nodes in social graph). Additionally, memory consumption was measured.

[40] denotes that the MongoDB extensions for graph queries (particularly the graphlookup

operator) had an unacceptable level of performance. It is worth mentioning that in [40] it is

said about a warm-up phase – a special procedure that executes simple queries that do data

scanning. This procedure allows a DBMS to cache a certain number of data entries in RAM

depending on a DBMS internal architecture. Though the [40] benchmark has strong points

such as good planning, standardized hardware (Amazon Cloud) and ability to run in a local

environment and repeat the benchmark (the scripts are open source and are available on

Github). The main disadvantage is that it was carried out by not a fully independent

organization.

All the above mentioned benchmarking applications ([40], [41] and [39]) have only a

command line user interface. Additionally, YCSB requires both Java and Python to be

installed. Another drawback of these benchmarks is that they don’t provide a standard

template of a DBMS workload executor (module or plugin) and documentation (guide) for

adding workload for new DBMS.
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2.2 Requirements of the benchmarking application

After analysis of the benchmarking applications a list of functional and nonfunctional

requirements was created. From a user perspective (see Fig. 2.3), the application will provide

a graphical user interface for starting the benchmark procedure, modifying the settings and

views statistics of several benchmarks.

Fig. 2.3  – Functional requirements of the benchmarking application

Workload requirements:

1. The workload should contain indexes.

2. The schema must be multi-model and contain elements of graph and document data

models.
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3. Data queries must include shortest path calculation.

Requirements to the benchmarking procedure:

1. Warm-up procedure. All tests must be run after the warm-up procedure. The warm-up

procedure must execute read queries. The warm-up procedure must load every

document one time only.

2. Benchmarking application deployment. The benchmark application and the DBMS

server must be deployed on separate machines to minimize influence on the

benchmarking results.

3. The benchmarking application must execute tests in multithread mode.

4. The benchmarking application must provide a graphical user interface.

5. Comparison of benchmarking statistics must be displayed.

6. DBMS support. The benchmarking must contain ready-to-use modules for RavenDB,

MongoDB and ArangoDB.

7. Measured performance characteristics: latency (maximum and average query

execution times).

Non-functional requirements to benchmarking:

1. Extendability. DBMS modules must be created as pluggable components.

2. Maintainability: the Model-View-ViewModel pattern must be used for the UI

implementation, the application code must be divided into projects.

3. Portability. It must be possible to run the application on Windows and Linux.

2.3 Benchmarking process

The main use scenario of the benchmarking application (see Fig. 2.4) comprises three

steps: setting of the benchmarking process preferences, executing the benchmarking process

and display of benchmark results. A user can start benchmarking after choosing a path to a

DBMS module. When the benchmarking is finished, its results are saved in a subdirectory

inside the application directory. Afterwards it could be used to compare multiple runs of the

benchmarking procedure.
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Fig. 2.4 – General workflow

2.4 Application architecture

The benchmarking application consists of three main components: UI, Runner and

Abstract (see Fig. 2.5). The UI component provides a form based user interface and interacts

with an instance of the Runner component. Runner is responsible for data load, tests
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execution and statistics calculation. The UI component displays the state of the benchmarking

process, buttons for state changing and viewing statistics in tabular form and histograms. The

Abstract component contains data types which are used by the benchmarking application and

pluggable DBMS modules.

Fig. 2.5 – Component architecture

The application is implemented with the use of Microsoft .NET Standard 5.0

execution environment and SDK. The use of it allows us to run the application on Windows,

Linux and MacOS.

2.4.1 Abstract component

The Abstract component contains the WorkloadCreator interface, inside which the

following operations are declared:

1. TestConnection – performs a connection test to the DBMS server with a given

connection string.

2. WarmUp – performs a warm up procedure.

3. ExecuteQuery – executes a query from the workload.

4. GetTitle – returns the default title for the benchmark.

5. Query – property for setting and getting a query text.

6. Stop –  property for stopping warming up or workload execution.

The component is referenced by the benchmarking application and pluggable modules

and is compiled into a DLL file.
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2.4.2 DBMS plugin

DBMS plugin is a replaceable unit of the benchmarking application (see Fig. 2.6). It

is compiled into a DLL-library and contains C# code, which implements connection and

queries to particular DBMS and reads settings. Every DBMS module must contain a class

implementing the IWorkloadCreator interface, which is defined in the Abstract component.

The class must have only a default constructor. Additionally, a module must contain all

necessary params of DBMS connection in the Schema.json file. A compiled plugin is placed

in a separate folder and comprises the following files:

1. module_name.dll (compiled module).

2. Abstract.dll – a module with the IWorkloadCreator interface. The same version of

Abstract.dll must be used in the benchmarking application.

3. Schema.json – a json file with connection string and other params.

4. A set of dll-files of which module_name.dll depends on. They could be database

access drivers, libraries for data conversion, etc.

Fig. 2.6 – The internal structure of DBMS Loader module

DBMS modules are the parts of the benchmarking application plugin architecture (see

Fig. 2.7). The architecture consists of two key elements: a consumer (UI) and plugins (DBMS

modules). The auxiliary element is the Abstract package which contains definitions of data

types (the IWorkloadCreator interface) used by both key elements: the consumer (UI) and

plugins (DBMS modules).
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Fig. 2.7 – Plugin architecture

DBMS modules are loaded via the reflection mechanism which is a part of Microsoft

.NET. A dll file is scanned for classes implementing the IWorkloadCreator interface. If a

class is found, the module could be loaded and executed. The following code contains the

implementation of the plugin loading:
var asm = Assembly.LoadFrom(modulePath);

var type = asm.GetTypes().Where(x =>

x.IsAssignableTo(typeof(IWorkloadCreator))).FirstOrDefault();

var moduleClass = Activator.CreateInstance(type) as IWorkloadCreator;

if (moduleClass == null) throw new Exception("broke");

var task = Task.Run(async () => await moduleClass.TestConnection());

2.4.3 UI component

The UI (see Fig. 2.8 and Fig 2.9) is implemented as a C# form based application. The

component is based on the Avalonia library and the Avalonia project template. The library

allows the implementation of a cross platform form based user interface. The Avalonia library

resembles the functionality of Microsoft WPF: it uses XAML for user interface markup and

has an almost identical set of graphical user controls. The MVVM design pattern is used as a

main architectural solution. The MVVM architecture separates application logic and user

interface and comprises three main elements: model, viewmodel and view [44]. Model

contains classes (BenchmarkResult), which represent data models. The user interface

elements, their layout and styles (the View part) are declared in the XAML documents

App.axaml and MainWindow.axaml. The application logic code is completely separated from

the UI code: it contains no UI element IDs or properties. The viewmodel code (the

MainWindowViewModel class) exposes data elements and data transformation methods
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which are referenced in the UI code by the binding mechanism. The commands subpackage

contains classes (the LambdaCommand and CommandBase classes), which are used for

definition of methods that handle UI events. The implementation template for the Command

package was taken from [45] and [46].

Fig. 2.8 – The structure of the UI component
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Fig. 2.9  – Class diagram

The UI component contains a form consisting of two tabs: Benchmark and

Comparison (see Fig. 2.10). The first contains interface elements for control of the

benchmarking process. The latter allows us to compare results of current and previous

benchmarks.
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Fig 2.10 – Main window,  the Benchmark tab

The UI application uses oxyPlot for displaying a bar chart of benchmarking results.

Elements for comparison are chosen by a set of checkboxes. A user can see details of a

benchmark in a separate window (for detailed description of the user interface see Chapter 3

Section 3.2).

2.4.5 Runner component

The Runner component contains an implementation of the multi-threaded

benchmarking process. The component is implemented in the Runner class and exposes an
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interface with two methods: Run and Stop. The Run method accepts the number of threads,

the number of executed queries (workload elements) and references to four functions:

1. execWorkLoad is a function executing workload (usually the function calls the

ExecuteQuery method of an IWorkloadCreator instance);

2. updateProgress is a function for reporting of progress;

3. logMessage is a function that reports state change of every thread (each thread is

identified uniquely by an integer number);

4. reportFinish is a function for reporting benchmark finish.

Each thread executes the execWorkLoad function in a loop. After the function is

executed, the number of executed workload elements is updated. The progress is calculated

and checked for the finish condition. Depending on the calculation result, updateProgress or

reportFinish is called.

2.5 Plugin development guide

To create a new DBMS plugin, the developer need to follow these steps:

1. Create a new .NET core class library project using Visual Studio or .NET command

line.

2. Add reference to the Abstract project containing the IWorkloadCreator interface.

3. In the project setting set CopyLocalLockFileAssemblies True.

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>

<TargetFramework>net5.0</TargetFramework>

<CopyLocalLockFileAssemblies>true</CopyLocalLockFileAssemblies>

</PropertyGroup>

….

</Project>

4. Add a Schema.json file with a connection string and other params.

5. Add a class implementing the IWorkloadCreator interface. Implement loading of

settings from the Schema.json file.

6. Compile the DLL-library. The library and its dependencies should be automatically

copied to the output folder after the compilation finish.
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Results of Chapter 2

The features of benchmarking systems were investigated. Differences of DBMS

benchmarking from other benchmarking procedures were found. Requirements to the

benchmarking procedure were identified and analyzed. The requirements analysis results

took into account multi-model workload, previous results of DBMS benchmarking,

architecture and functionality of existing benchmarking applications.

Based on the identified requirements, a benchmarking application was developed. The

application has cross-platform graphical user interface and plugin architecture.
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3. User documentation

3.1 Installation

The zip package (see Appendix C) should be unzipped. Before the start of the

application in the app folder, it is necessary to install Microsoft .NET Standard 5.0. The

application could be run on Windows, Linux and MacOS with Microsoft .NET Standard 5.0

installed. A DBMS plugin with its dependencies should be located in a separate folder.

3.2 Benchmark start

To start a benchmark, a user should do the following:

1. Prepare a connection to the DBMS by setting up an SSH tunnel or using a local

instance of the DBMS. An SSH tunnel could be set in a bash console (Linux or

MacOs) or in PowerShell (Windows).

Examples of bash command for establishing a tulles:
MongoDB version 5 Community: ssh -L 27017:localhost:27017

guliyev@acheron.ms.mff.cuni.cz -p 42027

ArangoDB communi ty v3.9: ssh -L 8529:localhost:8529

guliyev@acheron.ms.mff.cuni.cz -p 42027

RavenDB 5: ssh -L 8080:localhost:8080 guliyev@acheron.ms.mff.cuni.cz -p

42027

2. Start the application (the UI.exe file).

3. Select the DLL-module (ArangoLoader.dll for ArangoDB, RavenLoader.dll for

RavenDB, MongoLoader.dll for MongoDB) for the DBMS (see Fig. 3.1).
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Fig. 3.1– The Benchmark Tab

4. In the query field enter a query replacing record IDs by collection name double curly

brackets ({{collection_name}} instead of “collection_name/id”) for ArangoDB or a

number (Q1, Q2, Q3) of a pre-built query for RavenDB or MongoDB (see Fig. 3.1 ).

5. Enter a benchmark title that will help you to identify the benchmark later (see Fig.

3.1).

6. Click the Warm Up button (optional).

7. Click the benchmark button.

8. Wait till the benchmark is finished.

9. Click the Comparison tab (see Fig. 3.3).

10. Click the Refresh button.
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11. Select benchmark results to compare (see Fig. 3.3).

12. Click the Details button to see the benchmark details data (see Fig. 3.3 and Fig. 3.4).

Fig. 3.3 – The Comparison tab
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Fig. 3.4 – The benchmark details window

13. After the benchmark is executed, the results are saved in the tests folder. The

benchmark results are presented by three files: timestamp.json (benchmark params

and calculated values), timestamp.txt (query execution times) and timestamp.query

(query text). The files could be processed in an external application if necessary.
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4. Experiments

During the experiments stage the benchmarking application is used for evaluation of

multi-model performance characteristics.

4.1 Dataset description

For experiments the Pokec dataset [47] was chosen. The Pokec dataset has been

already used for the benchmark [40]. From the dataset 400,000 user profiles and 1,000,000

relations (social graph edges) were loaded. Descriptions of Slovakia geoplaces were loaded

from [48]. The dataset contains social network user’ profiles (the people entity) and

friendship relations (the Friends attribute of the people entity) between them. The following

user profile attributes were chosen: weight, height, gender, age, region. Additionally, a

document collection for region descriptions (the geoplaces entity) was created (see Fig. 4.1).

Entries of the people collection are connected to the geoplaces collection via the Geoname

and Name attributes respectively.

Fig. 4.1 – Dataset schema

In ArangoDB indexes for the attributes _id, _key, _from and _to of the vertex

collection are created automatically. In RavenDB manual index and auto indexes are used.
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In MongoDB the sId attribute was added to the people collection for unique

identification of each record by a string value.

4.2 Execution environment

DBMS servers were deployed on Ubuntu Linux server 20.04 LTS with a 4 core

processor and 4GB RAM.

According to the requirements, each query must access data of two models: document

(aggregation, filter, join) and graph (shortest path, neighbors search). Queries were executed

in four threads. Each workload type contained 1000 queries.

For data visualization Python, Jupyter, seaborn, numpy and matplotlib tools were used

(see Appendix B). Current release of the benchmarking application does not display

histograms due to limitations of the oxyPlot library and Avalonia. The implementation of a

Matplotlib type histogram in Avalonia would require development of a class library

performing operations with low level graphic primitives: it may be implemented in future

versions of the application. Benchmark results were presented as histograms with query

execution time on X-axis and quantity of queries corresponding to the particular execution

time on Y-axis. The input data files for the benchmark result visualization was taken from the

tests folder which was located in the directory of the benchmarking application executable

file. An input data file for the Jupyter notebook is a multi line text file every line of which

contains a query execution time as a float value.

4.3 Workload

Workload type 1. Find user’s friends (graph part) with body mass index (BMI) above

the normal (document part) .

For RavenDB an index was created for calculation of BMI:
index:

map("people", (person) => {

if (person.body != null) {

return {

mass:

10000*person.body.weight/(person.body.height*person.body.height)

};

}

})
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The index was the only possible solution of BMI calculation by means of RQL. The

graph part does not contain recursive search and looks only for nearest friends:
match

(index 'bmi' as person1 where id()='people/1')-

[Friends[] as friend2]->

(index 'bmi'  as endEdge where mass>22 )

For ArangoDB:
WITH people, relations

FOR v

IN 1..1

OUTBOUND {{people}}

relations

filter v.body.height>0 and

10000*v.body.weight/(v.body.height*v.body.height)>20

RETURN v._id

For MongoDB:

View (document query:, body mass index calculation and filtering):
db.createView(

"people1",

"people",

[

{

$match: {

$expr: { $function: {

body: function(weight, height){ return

height>0 &&weight*10000/(height*height)>20;},

args: [ "$body.weight", "$body.height" ],

lang: "js"

}

}

}}

], {}

);

Graph Query:
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db.people_view.aggregate(

[

{$match: {“sId”:”people/1”}},

{ $graphLookup:

{

from: "people",

startWith: "$Friends",

connectFromField: "Friends",

connectToField: "sId",

as: "Frd",

maxDepth: 1

}

}

]

);

Histograms (see Fig. 4.2, Fig. 4.3 and Table 4.1) show that ArangoDB and RavenDB

have comparably the same performance. An index (a view analog) for RavenDB was created

before the benchmark execution. Indexes for height and weight do not affect performance

because the graph part of the query is executed first. After the index on the sId attribute was

added to MongoDB (see Fig. 4.4), it outperformed ArangoDB and RavenDB. The results

prove that even in case of search of adjacent vertices the MongoDB has a modest

performance level.
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Fig. 4.2 – Type 1 workload results from the benchmarking application (MQ1 – MongoDB,

MQ1i – MongoDB with the index, Q1R – RavenDB, M1A – ArangoDB)
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Fig. 4.3 – Distribution of the type 1 workload execution times

Fig. 4.4 – Distribution of the type 1 workload execution times with MongoDB attribute

referenced.

Table 4.1 Workload type 1 benchmark results

DBMS 95-percentile execution time, s

ArangoDB 0.36

RavenDB 0.51

MongoDB 2.39 / 1.61 with index

Workload type 2. Find the shortest path between two users (graph part) and get a list

of regions with descriptions (document part).

For RavenDB (due to the fact that RQL does not support joins, the workload consists

of two queries):
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Part 1:
match

(people as person1 where id()="people/6126")-

recursive as way(0, 2, shortest)

{

[Friends[] as friend]->

(people as middle)

}-

[Friends[] as friend2]->

(people as endpoint where id()="people/6127")

select way[].middle.Friends

Part 2:
from geoplaces as geo

where name in (....)

select geo.name, geo.descriptions

For ArangoDB:
WITH people, relations

FOR v

IN OUTBOUND SHORTEST_PATH {{people}} to {{people}}

relations

LET geo = (FOR x IN geoplaces FILTER x.name==v.region return

x.description)

RETURN {id:v._id, g:geo.description}

For MongoDB:

For MongoDB the query searches for paths from one person with specified max depth

due to the limitation of the graphLookup operator. Then a programmer must check if any path

exists between two people and look for the shortest path among those found. The query was

written in this way due to the fact that MongoDB does not have an operator for the shortest

path search. It is possible to find the shortest path in a path array programmatically on the

client side.

document part:
db.createView(

"people2",

"people",

[
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{  $lookup:

{

from: "geoplaces",

localField: "geo",

foreignField: "name",

as: "place"

}

}

], {}

);

graph part:
db.people.aggregate(

[

{$match: {“sId”:”people/1”}},

{$graphLookup:

{

from: "people2",

startWith: "$Friends",

connectFromField: "Friends",

connectToField: "sId",

as: "Frd",

maxDepht: 2

}

}

]

)

The workload 2 test results (see Fig. 4.5,  Fig. 4.6 and Table 4.7) show that unlike

MongoDB, both ArangoDB and RavenDB guarantee acceptable execution time for almost all

queries.
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Fig. 4.5 – Type 2 workload results from the benchmarking application (Q2M – MongoDB,

Q2R – RavenDB depth=2, Q2RD3 – RavenDB depth=3, Q2A – ArangoDB)
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Fig. 4.6 – Distribution of the type 2 workload element execution times

Two variants (with max depth=2 and max depth=3) of RavenDB workload type 2

queries were compared. RavenDB performance decreases significantly with depth increase

(see fig. 4.7).

Fig. 4.7 – Distribution of the type 2 workload element execution times

Table 4.2 Workload 2 benchmark results

DBMS 95-percentile execution time, s

ArangoDB 0.36

RavenDB (depth=2) 0.49

RavenDB (depth=3) 6.78

MongoDB (maxDepth=2) 17.58
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Workload type 3. Select friends and friends of friends (graph part, see Fig. 4.8) and

count them by the region (document part – grouping).

Fig. 4.8 – Graphical representation of the workload type 3 graph part (created in RavenDB

Management Studio)

For RavenDB (due to the fact that RQL does not support joins, the workload consists

of two queries):

Part 1:
match

(people as person1 where id()="people/5")-

[Friends[] as friend1]->

(people as middlepoint where id()!="people/5")-

[Friends[] as friend2]->

(people as endpoint where id()!="people/5")

select endpoint

Part 2:
from people as p

where p.id() in ()

group by p.region

select p.region, count(p)

For ArangoDB:
WITH people, relations
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FOR v

IN 1..2

OUTBOUND {{people}}

relations

RETURN

MERGE(v, {

region: (

FOR t IN geoplaces

FILTER t.name == v.region

RETURN t.description

)

})

MongoDB:

graph part:

MongoDB Community 5 is not able to process views containing graph queries with

depth 2 or more (see Fig. 4.9).
db.createView("people3", "people", [{$graphLookup: { from: "people",

startWith: "$Friends", connectFromField: "Friends", connectToField: "sId",

as: "Frd",  maxDepth:2,

depthField: "depth"  } } ], {})

Fig. 4.9 – Result of a query to the view containing graph query

db.people.aggregate(

[ {$match:{"sId":"people/1"}}, {$graphLookup: { from: "people2",

startWith: "$Friends", connectFromField: "Friends", connectToField: "sId",

as: "Frd",  maxDepth:2,

depthField: "depth"  } }, { $project: { "Frd.sId": 1} } ]

)

document part:

db.people.aggregate(
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[{$match : { “sId“: [val1, val2, …, val_n]}},

{$group : { “_id“: “$geo”, “count”: {$sum: 1}}},

]

)

Histogram (see Fig. 4.10, Fig. 4.11 and Table 4.3) show that in complex queries

ArangoDB outperforms RavenDB because for the latter it was necessary to decompose the

workload element to a set of queries. MongoDB did not  show any acceptable result.

Fig. 4.10 – Type 3 workload results from the benchmarking application (Q3M – MongoDB,

Q3R – RavenDB, Q3A – ArangoDB)
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Fig. 4.11 – Distribution of the type 3  workload element execution times

Table 4.3. Workload 3 benchmark results

DBMS 95-percentile execution time, s

ArangoDB 1.59

RavenDB 6.00

MongoDB 71.87

4.3 Results discussion

The benchmarking results (see Table 4.4) show that ArangoDB has a significant

advantage over RavenDB and MongoDB: it has predictable and high performance in all tests.

Table 4.4. The benchmarking results

Workload
type

DBMS Avg.
execution
time, s

Max.
execution
time, s

Squared
deviation, s

Total
workload
execution
time

1 ArangoDB 0.22 0,55 0.06 1 min. 27 s.

RavenDB 0,27 0,85 0.12 1 min. 39 s.

MongoDB
(w/o index)

1.32 4.96 0,60 5 min. 59 s.

MongoDB 0.73 4.19 0.51 3 min. 31 s.

2 ArangoDB 0.23 0.50 0.06 1 min. 28 s.

RavenDB 0.28 1.60 0.14 1 min. 40 s.
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(depth=2)

RavenDB
(depth=3)

2.32 32.89 2.69 10 min. 11 s.

MongoDB 31.52 91.47 21.68 111 min. 25 s.

3 ArangoDB 0.93 2.41 0.37 4 min. 22 s.

RavenDB 4.95 72.12 5.53 21 min. 7 s.

MongoDB 33.83 139.43 22.72 130 min. 38 s.

ArangoDB seems more preferable choice for C# developers because of the following

reasons:

1. Unlike RQL, AQL is a more mature query language and has support for joins,

arithmetic operations, subqueries and other essential features. AQL graph query

syntax is more concise and allows us to specify additional options like a graph

traverse algorithm.

2. ArangoDB outperforms RavenDB in cases when queries for RavenDB have to be

decomposed.

3. RavenDB is more optimized for usage with C# and LINQ, but graph queries must be

written in RQL and separated from LINQ queries.

4. The MongoDB graph extension (represented by the graphLookup operator) gives a

moderate and predictable level of performance in case of adjacent vertex search only.

With max depth 2 or more performance decreases significantly.

5. The MongoDB graphLookup operator does not support search between two nodes and

shortest path search.

Both ArangoDB and RavenDB could not be used for implementation of database

centric architecture as they don’t support the full set of programmable objects available in

other DBMSs PostgreSQL or Microsoft SQL Server.
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Conclusion

Main results of the work are the cross-platform benchmarking application, detailed

analysis of multi-document functionality and performance benchmarks for the ArangoDB,

MongoDB and RavenDB DBMSs.

As result of the analysis, it was found that ArangoDB implementation of graph and

document data models is more suited to the needs of .NET developers in terms of

performance, portability and functionality. Regarding MongoDB and RavenDB, it is possible

to conclude that their implementation of graph data models are not mature enough: graph and

document queries are difficult to combine.

Unlike existing open-source solutions, the benchmarking application has a

multi-platform graphical user interface and a plugin architecture with predefined data types.

The extendable application architecture gives an opportunity for developers to create their

own DLL-modules for new workloads and DBMSs. Developers’ efforts are decreased

because they do not need to study the application source code and have only to implement

the plugin interface following the developer’s guide. The application has good

maintainability characteristics as it is structured into components and the UI part is

implemented with the MVVM design pattern and asynchronous commands.

Future work may include development of data visualization capabilities, plugin

manager and a DLL-plugin for PostgreSQL. Plugin manager will provide an interface for

faster plugin installation from a remote repository. A PostgreSQL plugin may increase the

popularity of the benchmarking application among a large group of PostgreSQL developers.

Additionally, it may be worth it to create a multi-agent version of the benchmarking

application. A multi-agent version will allow us to execute heavier workloads sent from a

group of computers.
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Appendix A. Data scheme

The database used in the Chapter 2 for description of query language features consists

of two collections. Examples of entries are shown below.

An example of the people collection entry:
{

"Id":"people/1",

"FirstName":"Alex",

"LastName": "Springer",

"Department":"Actors",

"ReportsTo":"people/25",

"FriendOf":["people/3", "people/6", "people/8"],

"Tags":["2021", "marketing"],

"Year":"1992",

"BaseSalary":3000

}

An example of the projects collection entry:
{

"Id":"projects/25",

"Title":"Construction site #25",

"Tags":["2021", "Nature"],

"Workers":["people/0", "people/24"],

}
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Appendix B. Jupyter notebook for data visualization

#open data files

with open("1.txt") as file:

lines = file.readlines()

data = [float(i.replace(",", ".")) for i in lines]

with open("1_1.txt") as file:

lines = file.readlines()

data2  = [float(i.replace(",", ".")) for i in lines]

with open("1_2.txt") as file:

lines = file.readlines()

data3  = [float(i.replace(",", ".")) for i in lines]

#display graph

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

import warnings

warnings.filterwarnings('ignore')

plt.figure(figsize=(15, 6))

plt.hist(data, range=(0,4), alpha = 0.5, bins=100, color = "skyblue")

plt.hist(data2, range=(0,4),  alpha = 0.5,bins=100, color = "orange")

plt.hist(data3, range=(0,4),  alpha = 0.5,bins=100, color = "green")

plt.legend(['ArangoDB', 'RavenDB', 'MongoDB'])

plt.ylabel("count", fontsize=16)

plt.xlabel("exec. time, s", fontsize=16)

plt.show()

#print percentiles

import numpy as np

print("ar1 : ",

np.percentile(data, 95))

print("ar2 : ",

np.percentile(data2, 95))

print("ar3 : ",

np.percentile(data3, 95))
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Appendix C. Zip-package

The package contains the following elements:

1. thesis.pdf – digital version of the thesis in PDF

2. app – the folder containing the application executable and dependencies. In subfolders

DBMS plugins are placed.

3. source.zip – the archive with Microsoft Visual Studio project.
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