
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Jan Konopásek

Systém pro správu úkolů a testů

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Irena Mlýnková, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2011

I would like to thank my supervisor, RNDr. Irena Mlýnková, Ph.D., who bore with
me throughout the whole time it took me to finish this project. I offer my sincere
gratitude to my parents for both the wanted and the needed advice. Finally, I thank
you, Misha, for keeping me going.

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In date Jan Konopásek

Název práce: Systém pro správu úkolů a testů

Autor: Jan Konopásek

Katedra: Katedra softwarového inženýrství

Vedoucí bakalářské práce: RNDr. Irena Mlýnková, Ph.D., Katedra softwarového
inženýrství

Abstrakt: Cílem této práce je implementace softwarového systému usnadňujícího
správu domácích úkolů a automatické generování testů. Správou domácích úkolů se
z pohledu vyučujících rozumí vytváření úloh a jejich zadávání studentům a oprava a
hodnocení přijatých řešení. Z pohledu studentů se pak jedná o odevzdávání řešení
k aktuálně zadaným úlohám a o přehled hodnocení vypracovaných řešení.

Těžištěm práce je popis implementace a způsobu použití webové aplikace
Assignment Manager. Součástí aplikace je kromě výše uvedených vlastností také
správa uživatelských skupin, správa studentských skupin a sdílení úloh mezi
skupinami v rámci přednášky a možnost částečné automatizace kontroly řešení
pomocí externích „pluginů“. Samostatnou částí je schopnost generování testů z
uložených množin testových otázek.

Aplikace byla testována ve zkušebním provozu po dobu jednoho semestru a
upravována na základě připomínek studentů i pedagogů. Práce obsahuje i diskuzi
kontrastu mezi původními předpoklady, na jejichž základě byla aplikace navržena, a
reálnými požadavky při nasazení aplikace v praxi.

Klíčová slova: správa domácích úkolů, automatické opravování domácích úkolů,
automatické generování testů, generování náhodných testů

Title: Homework and Test Management System

Author: Jan Konopásek

Department: Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Irena Mlýnková, Ph.D., Department of
Software Engineering

Abstract: The goal of this thesis is to implement a software system facilitating
management of homework assignments and automated generation of tests. From
the teachers' point of view, homework management means creation of problems,
their assignment to students, and correction and rating of solutions. For students, it
means handing in solutions to assigned problems and solution rating overview.

The focus of this thesis is the description of implementation and utilization of the
Assignment Manager web application. Apart from the goals described above, the
application also enables the management of user groups, sharing of problems among
student groups within the scope of a single course, and using external “plug-ins” for
automated correction of solutions. Furthermore, it is capable of automated
generation of tests from saved sets of test questions.

The application was field-tested during a single semester and it was extended
based on the teachers' and students' suggestions. The thesis includes a discussion of
the differences between the original assumptions serving as the basis for the
application's implementation and the demands of live deployment.

Keywords: homework management, automated correction of homework, automated
generation of tests, generation of random tests

Contents
Introduction ... 1

1. Management of College Course Homework and Tests 3

1.1 Extended Homework Assignment Scenario ... 4

1.1.1 Basic Terminology ... 4

1.1.2 Actors .. 5

1.2 Automated Generation of Tests ... 6

2. Code Examiner .. 9

2.1 Lecturer & Tutor vs. Group Owner .. 9

2.2 Fully Automated Correction .. 10

2.3 Notable Similarities ... 10

3. Inside the Assignment Manager ... 11

3.1 Used Technologies .. 11

3.2 System Breakdown and Interaction ... 12

3.3 Core .. 13

3.3.1 Tasks ... 13

3.3.2 User Session ... 14

3.3.3 User Account .. 15

3.3.4 User Permissions .. 15

3.3.5 Courses, Groups, Problems, and Assignments 17

3.3.6 Solutions and Their Correction .. 18

3.3.7 Attachments, Questions, Templates, and Tests 19

3.3.8 Core Request Handling .. 21

3.3.9 Errors ... 22

3.3.10 Error Logging ... 23

3.3.11 Plug-in Launching ... 23

3.3.12 File Management .. 24

3.3.13 Sending E-mails .. 25

3.3.14 Configuration ... 26

3.3.15 Database ... 27

3.3.15.1 Database Request Layer .. 27

3.3.15.2 Abstract Query Layer .. 27

3.3.15.3 Database Adapter Layer ... 28

3.3.15.4 Data Structure ... 29

3.3.16 Requirements ... 29

3.4 User Interface .. 30

3.4.1 Presentation Elements .. 31

3.4.2 Table Element .. 32

3.4.3 Form Element .. 34

3.4.4 Layout and Content ... 36

3.4.5 Visual Design ... 40

3.4.6 Model-view-controller Pattern ... 41

3.4.7 Widgets ... 42

3.4.8 User Session ... 44

3.4.9 Navigation and Browser History ... 44

3.4.10 Display Components .. 46

3.4.11 Data Retrieval and Storage ... 47

3.4.12 Events ... 48

3.4.13 Error Reporting .. 49

3.5 Plug-ins .. 50

3.5.1 Tasks .. 51

3.5.2 Plug-in Format .. 51

3.5.3 Communication Contract ... 52

3.5.4 PHP Plugin Framework ... 54

3.6 Installer .. 55

3.6.1 Install .. 56

3.6.2 Upgrade .. 56

3.7 Documentation ... 57

4. How to Use he Assignment Manager .. 59

4.1 User Roles .. 59

4.2 Installation and Configuration .. 60

4.2.1 Requirements ... 60

4.2.2 Installation ... 60

4.2.3 Configuration ... 61

4.3 User Interface Layout .. 62

4.4 Control Elements ... 64

4.4.1 Table ... 64

4.4.2 Form ... 66

4.5 Error Reporting .. 67

4.6 How to 68

4.6.1 Common Tasks ... 69

4.6.2 Student ... 70

4.6.3 Tutor ... 71

4.6.4 Lecturer .. 72

4.6.5 System .. 74

4.7 Common Task Sequences ... 75

4.7.1 Student .. 75

4.7.2 Tutor ... 75

4.7.3 Lecturer .. 75

4.7.4 Administrator ... 76

5. Assignment Manager in the Wild ... 77

5.1 Design for Reality ... 77

5.1.1 Users Real and Imaginary ... 77

5.2 Cost of Modularity and Complexity ... 79

5.3 Testing and Reliability ... 80

5.4 Dependencies and Maintenance ... 80

5.5 Proposed Enhancements .. 81

Conclusion ... 85

Bibliography .. 87

List of Abbreviations .. 91

List of Figures .. 93

Attachments ... 95

A. List of Files .. 95

Introduction
The need for homework assignments is a thing that almost all college lectures have
in common. For teachers and their assistants, the management of homework
submission and correction is a waste of precious time, which could be better used on
research. Nowadays, basic management of homework assignment usually entails
setting up a web page containing descriptions of assigned problems and their
deadlines as well as tables with students' results. Teachers with little or no
background in IT may find it daunting, therefore they might greatly benefit from a
solution suited specifically to this task. Also, correction of students' homework takes
more time with ever increasing number of students, which could be often remedied
by partial or full automation of the correction process. But again, creating a
correction tool complete with user interface etc., is a big time investment with
uncertain results.

Another necessity common to all lectures is the creation of tests. To keep up with
the students posting test solutions on the Internet, teachers need to create a special
set of questions for every exam. One way to aproach this problem is to generate a
large pool of test questions from which the tests could be randomly generated.
Again, teachers would benefit from a simple solution that would let them enter
questions and generate tests on demand.

This thesis is concerned with the implementation of a web-based software system
allowing teachers to set up problems, to assign them to students as homework, and
to set up systems of partially or fully automated correction of solutions, and allowing
students to hand in their solutions and see the results, all in one place. The objective
is to create a modular solution that works as a tool for the management of
homework assignments on its own, but is easily extensible to allow automated
correction as well. In addition, the system should let lecturers create pools of test
questions and generate tests on demand. The deployment of the application with
some specific homework correction plugins in a real-world use-case scenario is
discussed as well.

The initial chapter, Management of College Course Homework and Tests,
analyses the problem and presents a broad outline of the proposed solution. The
following chapter, Code Examiner, looks at the application with a similar focus and
discusses its bearing on the problem. Chapter three, Inside the Assignment
Manager, contains a detailed description of the implemented software. The user
manual is included in the next chapter, How to Use he Assignment Manager. The
last chapter, Assignment Manager in the Wild, describes the experience with the
deployment of the application in the real world and suggests several changes and
extensions of the application based on that experience. The implemented application

1

itself, as well as the extensive code documentation, is located on the attached CD
(see Attachment A.).

2

1. Management of College Course
Homework and Tests

Before we start creating software for the management of homework assignments, we
need to define its expected properties. Let us do this by defining a simple homework
assignment scenario and then expanding it to cover the requirements outlined in the
previous chapter.

Our simple homework assignment scenario has two actors, a teacher and
a student. The teacher creates homework problems and assigns them to the student
with a specific deadline. Then the student creates a solution of assigned problem and
hands it in. In the end, the teacher grades the solution. The role of the assignment
manager software in such scenario would be just to provide teachers with a place to
post the homework problems and their deadlines, to allow students to post their
solutions, and to let the teachers retrieve them and post the grades.

To meet the expectations outlined in the first chapter, we need to expand the
scenario described above by a few important elements. The most important of them
is making the software capable of (semi-)automated correction of students'
solutions. This makes the software a discernible entity instead of a mere transparent
interface between the teacher and the students. However, it should still be possible
to use the software as a simple manager. Adding the automated correction means
splitting the grading process into two parts further called “correction” and “rating”,
where the former is performed by the software and the latter by the teacher.

Other important expansion follows the usual structure of a college course. In
large college courses, students are divided into smaller groups for exercise or
experimental sessions, which can only accommodate limited amount of people at a
time. These exercise groups have their assigned tutors, who supervise the exercise
sessions, assign homework to students, and rate their solutions. In this case,
homework assignment needs to be split into two separate parts, problem creation
and problem assignment. Thus, all students attending the same course can be
assigned the same problems, but the deadlines can be specific for each exercise
group to fit its schedule and pace.

Lastly, a typical college course contains multiple homework assignments of
unequal importance. Therefore the homework assignment scenario should support
separate weighted ratings of individual assignments, which could be combined into a
single comprehensive rating of the whole coursework.

While extending the scenario, the following considerations should be taken into
account. Firstly, the project presented here is to be the work of a single developer

3

over a limited period of time, so the scope of the project needs to be reasonably
limited. Additionally, it is the author's opinion that any software should not only
help users accomplish their tasks but also promote good practices. In the context of
homework correction and grading, these are namely transparency and fairness.

1.1 Extended Homework Assignment
Scenario

Before we continue with the description of the extended homework assignment
scenario, we need to define some terms. All terms defined below are commonly used
words with broad meaning (e.g. course, group, problem). For the purpose of this
work, their meaning is constrained. They are sorted in logical, not alphabetical,
order.

1.1.1 Basic Terminology
 Assignment manager software (AMS). AMS stands for the focus of this

work, an application facilitating simple management of homework
assignments and (semi-)automated correction of solutions. It is used to refer
to such software in general, rather than to the particular implementation
described in the rest of this work.

 Course (lecture). Course stands for a single college course, as well as a set of
problems related to the course topic.

 Group. Group stands for a group of students belonging to certain course,
created for the purpose of exercise sessions and homework assignments.

 Problem. Problem stands for the description of a homework problem.

 Assignment. Assignment stands for a problem bundled with its deadline as
well as for the act of passing such a bundle to all students in a single
homework group.

 Solution. Solution is a set of data created to solve certain problem.

 Submission. Submission stands for a solution successfully uploaded to the
server plus all the data bound to it during its life cycle inside the application
(e.g. the results of automated correction or rating).

 Correction. Correction stands for the automated correction performed by
AMS, during which the solution is checked for adherence to some or all
problem specifications.

4

 Checker plug-in. Checker plug-in (or just plugin-in) is a separate executable
or script added to the AMS to extend it with a capability of automated
correction of solutions of certain problems.

 Rating. Rating (noun) stands for the points received by a student for a
specific solution. Rating (verb) is the act of assigning a rating to that solution.

The remaining special terms are defined in the following section.

1.1.2 Actors
In the extended form, the college course homework assignment scenario involves the
following actors:

 Lecturer. Lecturer is the person designing the course and responsible for it.
He creates problems, which are the same for all students attending the course.
He also manages the corrective plug-ins to be used for correcting the
problems.

 Tutor. Tutor is responsible for a single group. He assigns homework
problems created by the lecturer to his group and rates the solutions.

 Student. Student is a member of one or more groups. He receives homework
assignments and submits his solutions for correction and rating.

 Administrator. Administrator is a person responsible for installation and
maintenance of the AMS and also for the management of AMS users and their
privileges.

Of course, this list of actors does not match every possible real-world situation, but it
should be comprehensive for most cases. The actors and the actions performed by
them are shown in Figure 1.1.

5

Figure 1.1: Actors in a homework assignment scenario.

1.2 Automated Generation of Tests
Automated generation of tests is mentioned in the Introduction separately, because
it is not directly related to the management of homework assignments. It is,
however, one of the goals of this project. Namely, the goal is to allow the lecturers to
submit test questions related to the lecture's topic, to let them create test
constraints, and to generate tests from the set of submitted questions based on these
constraints. The generated tests should be formatted for printing. Additionally, the
lecturers should be able to supplement the test questions with text or image file
attachments. Let us define a few additional terms to be used in the rest of this work.

 Question. Question stands for a test question.

 Attachment. Attachment stands for a text or image file that can be attached
to a question.

 Template. Template stands for a set of questions and a set of constraints
usable as a basis for the test generation. The constraints include the number of
questions that the generated tests should contain.

 Test. Test stands for a set of questions and their attachments in a printable
format.

Providing the test generation to the scenario described above requires only to add
a few additional actions that could be performed by the lecturer. He should be able
to upload attachments, to create questions and bind attachments to them, to create

6

templates, and to use the templates repeatedly to generate and print tests. The
additional actions are shown in Figure 1.2.

Figure 1.2: Test generation actions.

The scenario described above is used as a model for the application that makes up
the main part of this work. Before describing its implementation, let us digress and
look at an already released application that was tailored to very similar purpose.

7

8

2. Code Examiner
Before implementing an application, it would be appropriate to look at already
existing applications with the same goals and analyse their merits and faults.
However, even extensive Internet search revealed no reference to such an
application. Fortunately, there is a similar project developed right at the Faculty of
Mathematics and Physics of Charles University in Prague (MFF UK), that has been
released just recently. Its name is Code Examiner (CodEx) and its properties are
describe in full in [1]. CodEx also deals with management of homework assignments,
but it is focused on programming courses, and problems in programming courses
form a very specific class of problems from the correction point of view.

Generally, homework is "simple"; there is one set of input data and the task is to
find the corresponding output. What is specific about programming problems is the
fact, that their "input" is a whole class of input data sets. The solution of a
programming problem is a program able to find the corresponding output for any
input from the defined class. While going over the solution of a "simple" problem
should provide an accurate notion whether it is correct or not, programming
problem solutions usually need to be "tested", i.e. run on multiple sets of input data
prepared with potential solution flaws in mind. Automation of testing is the main
focus of CodEx.

There are many similarities between CodEx and the proposed AMS. CodEx is an
application that allows teachers to post homework problems, set up correction
mechanisms, and assign problems to students with specific deadlines. Also, it allows
students to hand in their solutions and have them automatically corrected. But in
spite of the similarities, the focus of AMS is quite different from the focus of CodEx.
The differences between the model scenario used by CodEx and the scenario used by
AMS (further referred to as the "proposed scenario") are described below.

2.1 Lecturer & Tutor vs. Group Owner
The first notable difference is the fact that CodEx recognizes only a single unified
“group owner” instead of the proposed two-tiered teacher hierarchy (lecturer-tutor).
In CodEx, problems are created by group owners as either "public" or "private",
where the public ones can be used by any group owner while the private ones can be
used only by their creator. This scenario is simpler, which is obviously beneficial. On
the other hand, its drawback is the lack of support for multiple parallel courses, each
containing multiple groups of students. As a consequence, it is impossible to share
problems between the groups inside a single course while not exposing them to
other courses. This drawback can be bypassed by having a separate instance of

9

CodEx for each course, which requires more administration, or by re-creating the
problems separately for each group, which means more work for group owners.
Proposed scenario eliminates these shortcomings. Moreover, it adds additional
options, such as the possibility for the lecturer to check on his students' results while
delegating the rating process to his subordinate tutors.

2.2 Fully Automated Correction
What is really different between the CodEx design from proposed scenario is
the premise that the correction of all solutions can be fully automated. While this
premise makes sense in the context of programming courses, it cannot work for the
assignment management in general, because for many homework problems
automated correction would be either very difficult or it would not make sense at all.
The authors of CodEx obviously realized this shortcoming and added a mechanism
for awarding "bonus points" manually. Still, the model used in AMS based on
manual correction with an option of adding automated one is more intuitive and
transparent than the model used by CodEx.

The question of full automation with bonus points vs. manual correction with
the possibility of automation is just a technical detail. What makes the key difference
between our project and CodEx is the different approach to the problem definition.
The authors of CodEx asked "How do we automate the correction of programming
homework?" and they ended up with a solution allowing basic homework
management as well. We approach the problem from the opposite direction. The
question behind the proposed scenario is "How do we make homework management
easier?" or even "How do we make course management easier?" and the ability to
correct solutions automatically or to generate simple tests is just an additional
requirement.

2.3 Notable Similarities
Despite the differences, some of which were discussed above, several parts of CodEx
design fit the proposed scenario well, namely the system of groups, private and
public, to which the students subscribe to receive assignments. Other similarities
include 1) the setting of a maximum rating to each assignment and awarding points
for the respective solutions, 2) having predefined user roles but supporting different
configurations, and 3) having a special role for system administrator. These
elements can serve as a possible source of inspiration when implementing the AMS.

The following chapter describes the implementation of the application designed
to make handling proposed homework assignment scenario easier.

10

3. Inside the Assignment Manager
Assignment Manager (AsM) is a software system designed to fulfill the expectations
outlined in the first two chapters. Its concept was first proposed in the spring of
2008 and it was developed during the years 2009-2011. The development time was
longer than expected both due to misjudging the complexity of the project and the
time constraints of the author. It was deployed live in the spring of 2011 and tested
on the XML1 Technologies course at MFF UK.

This chapter broadly describes AsM implementation and discusses the choices
made. For more implementation details, please see the developer documentation on
the attached CD, or see [2].

3.1 Used Technologies
A web-based application is the obvious choice for this project with no real drawbacks
and a lot of benefits, the foremost among them being portability. Particular
technologies chosen for this project include PHP2 for the server side and “dynamic
HTML” (XHTML3 and JavaScript4 with jQuery5 framework) for the client side, which
is a common choice for web applications. This selection of technologies offers the
least restrictions and makes use of author's previous experience.

Selecting PHP for the application's server side imposes a restriction upon it and
that is the "passive application" logic. PHP in its most common form is designed just
to respond to client requests. PHP scripts are invoked upon receiving a client request
and return a result upon completion. (There are different possibilities as well, but
this one is prevalent.) This model suits the proposed scenario, because AMS is just
supposed to help the actors perform their tasks easily. All actions performed by the
application are to be triggered by users, with one notable exception. The checker

1 Extensible Markup Language (XML) is a set of rules for creating documents with added
logical structure (see [19]).

2 PHP is a programming language with syntax loosely based on C, Java, and Perl. It is most
often used for serving dynamic web pages and server-side scripting in web applications
(see [3] for details).

3 XHTML is a document type used for web pages based on XML (see [22]).

4 JavaScript is a programming language most often used to add interactivity to web pages,
specified in [4].

5 jQuery is a JavaScript library that simplifies access to XHTML elements and events and
communication with the web server. It radically changes the way of writing JavaScript
code (see [5]).

11

plug-ins, although being a part of the application, should run on its own and trigger
"save correction results" action. This is achieved by launching the plug-ins
asynchronously in the background and binding handlers to their completion (as
described below).

Out of the selected programming languages, only PHP is a full-fledged language
with file-system access, etc. Being also the programming language, the author was
most familiar with at the time of AsM development, PHP serves as the project's base
programming language. As such, it is used not only for server-side part of AsM, but
also for various utility scripts.

The next section explores the top-level breakdown of application parts and the
interactions between them.

3.2 System Breakdown and Interaction
In the AsM implementation, a lot of emphasis is placed on extensibility, i.e. creating
a modular and robust code, which is a concept not directly related to its goals.
Simplicity vs. extensibility is a choice to be made on every level of application
structure. In this case, maximum extensibility had been chosen wherever possible,
even on the top level of the application. This choice was based on the assumption
that extensibility always saves time in the long run. Unfortunately, that assumption,
caused by the lack of author's previous experience with projects of comparable
scope, proved false. The excessive focus on extensibility increased application's
complexity dramatically. For further discussion of this problem, see Section 5.2.

The AsM application is divided into three separate parts. The following list
provides just a brief overview of the parts and their interaction. The rest of this
chapter provides more detail.

 Core. Core is an alias for the application's server side. It is written exclusively
in PHP and it uses MySQL6 database for data storage. It is open for
communication with the client side using HTTP7 requests with specifically
formatted contents. This type of communication is initiated exclusively by the
client side. Other venue of communication is the communication between the
Core and the checker plug-ins, when the Core launches the plug-ins and
receives specifically formatted results.

 User Interface. User Interface is the application's client side and provides
the only access point to the application for users. It is written mainly in

6 MySQL is an open source database widely used by modern web applications.

7 Hypertext Transfer Protocol (HTTP) is a networking protocol used as the base means of
communication between a web browser and a web server (see [20]).

12

JavaScript and it makes use of jQuery framework for extended cross-browser
capabilities of DOM8 manipulation and AJAX9 communication.

 Plug-ins. Checker plug-ins are not an inherent part of the application, but
they are closely tied to it. Each of them belongs to one of the three possible
types: PHP script, Java JAR10 archive, or a native executable. All of them have
to conform to the AsM plug-in specifications, which differ quite a bit between
PHP script and the other types. A framework for PHP plug-in creation is part
of the AsM itself. Apart from correction results, plug-ins can also produce
other arbitrary output, so they can be used for solution preprocessing as well
as correction.

There are other parts belonging to the AsM project than just the AsM application.
The most costly one is a complete set of checker plug-ins for a single college course
XML Technologies. Another part closely tied to the AsM is the AsM Installer, which
helps with the initial configuration and upgrades. Last significant part is a code
documentation framework that allows to document both the PHP and JavaScript
code using similar formatting and to generate single common external
documentation.

The following sections describe the individual parts in greater detail.

3.3 Core
AsM Core performs various tasks upon receiving requests from the client (AsM User
Interface, a.k.a. UI). Apart from that, the Core is passive - there are no Core
processes running on the server other than those handling the client requests. The
first part of this section, up to the Section 3.3.6, describes the tasks performed by the
Core and the logical entities the tasks are performed on. The rest is dedicated to
implementation details.

3.3.1 Tasks
Follows the list of tasks performed by the Core.

8 Document Object Model (DOM) is a cross-platform representation of objects in XHTML
documents used by JavaScript and other scripting languages to manipulate those objects
(see [21]).

9 Asynchronous JavaScript and XML (AJAX) is a set of technologies used to create
asynchronous web applications. Asynchronous web application is a web page that
communicates with the server in the background, which enables it to behave like a single
application entity rather than a set of interlinked pages.

10 Java Archive (JAR) is an archive file format used for distribution of applications or
libraries written in Java programming language.

13

 Authentication. Login and logout. Access restrictions based on users'
permissions.

 User management. Creation, modification, and removal of user accounts
and user types.

 Plugin management. Receiving uploads, testing, and removing the plug-
ins.

 Course management. Creation, modification, and removal of courses and
their associated problems, attachments, questions, and templates.

 Group management. Creation, modification, and removal of student
groups. Assignment of problems to students in those groups, and rating of
students' solutions.

 Solution hand-in. Receiving solution uploads and correction of solutions
using plug-ins. Removal of solutions or their confirmation for rating.

3.3.2 User Session
Before performing any other tasks, the Core requires the user to be authenticated.
The only exception to this rule are the tasks that assist the user with getting
authenticated. After the user successfully logs in using active user account
credentials, a "user session" is started, which allows the user to perform required
tasks while being restricted by the permissions associated with his account. The user
session makes use of PHP session to store data. Particular behaviour of the PHP
session depends on the web server configuration.

The session remains active only for a certain period of time, but can be
"refreshed", which resets the timer. The session is refreshed by any successful core
request that requires authentication, but it can also be refreshed manually by a
special request. The main reason for automatic expiration of the session is security.
Leaving the session open "forever" would increase the risk of session hijacking if the
user left an open session on a public computer. For increased security, users can also
terminate session manually by logging out.

The inherent part of user session data are user's permissions, which are loaded
from a database on the session start. They are used to determine which of the
requested tasks are permitted to the user. See Section 3.3.4 for more detail.

The PHP session is bound to the web browser, so multiple user sessions can be
opened from the same computer only by using multiple browsers. In that case, each
session is completely separated from the others. There is no limit on the number of
concurrently open user sessions apart from the limits of the PHP server itself.

14

3.3.3 User Account
Before a user can log in, i.e. start a user session, he first needs to own an active user
account. User account consists of login information (username and password),
associated user type (see the next subsection), and other miscellaneous data.

User account can be created in two ways, each suited to a different situation. One
way is very simple - a user with appropriate permissions can directly create a new
active user account of any kind. This is useful for creating user accounts for lecturers
and tutors, as they need specific permissions. However, creating all students'
accounts this way would mean a lot of work for the person in charge of creating the
accounts.

Another way to create an account is to "register" it. Registering a new user
account does not require login, so it can be done by the students themselves. User
account created this way has two important properties. First, right after its creation
the user account is inactive and cannot be used to log in. To become active, it needs
to be activated by a code sent to the e-mail address entered during the registration
process. This security measure prevents automated user account creation by bot
scripts. Second, users cannot choose their permissions when registering new user
account. Instead, they are assigned the default user type STUDENT. User type of any
user account can be changed by a user with appropriate permissions.

Users cannot remove user accounts without appropriate permissions, not even
their own account.

3.3.4 User Permissions
The proposed scenario describes several actors and the actions they need to be able
to perform. This is a simplification for the sake of an easy use-case analysis. In
reality, different situations call for slightly different solutions, so having a fixed set of
actors would not be a good idea. Instead, every task performed by the Core has an
associated "permission", and these permissions are grouped into sets called "user
types". AsM comes with several predefined user types corresponding to the actors of
the proposed scenario.

Two of the predefined user types are special. The first of them is the ADMIN type,
which has all permissions and cannot be modified or removed. AsM contains a
single non-removable user of this type to ensure that there is always a user capable
of managing it. The second is the STUDENT type mentioned above, which cannot be
removed either. It serves as the default user type.

Follows the list of all user permissions.

 Create user. Create a new active user account.

15

 Modify user. Modify any user account.

 Remove user. Remove any user account.

 Browse users. Retrieve user account data of all users (except passwords).

 Manage user types. Create, modify, remove, or view any user type.

 Create plug-in. Upload new plug-in and add it to the application.

 Modify plug-in. Modify data of any plug-in.

 Browse plug-ins. Retrieve data of all plug-ins.

 Remove plug-in. Remove plug-in from the application.

 Test plug-in. Test-run any plug-in with custom arguments and input.

 Submit solution. Upload solution to assigned problem.

 Subscribe (public). Subscribe to a public group.

 Subscribe (private). Subscribe to a private group without requesting
consent from the group's owner.

 Request (private). Request owner's consent to subscribe to his private
group.

 Create group. Create a new group.

 Manage group (own). Modify or remove owned group and create, modify,
or remove assignments bound to it.

 Manage group (any). Modify or remove any group and create, modify, or
remove assignments bound to it.

 Create course. Create a new course.

 Manage course (own). Modify or remove owned course and create, modify,
or remove problems, attachments, questions, and templates bound to it.

 Manage course (any). Modify or remove any course and create, modify, or
remove problems, attachments, questions, and templates bound to it.

 Rate solution. Rate a solution uploaded by a student in one of the owned
groups.

 View author. See real names of solution authors while rating the solutions.

 Modify rating. Modify rating of an already rated solution.

 View log. Retrieve the system log contents.

As it is apparent from above descriptions, there are actions that require more than
just a specific permission. Few of them require ownership of the action's object as

16

well. In most cases there are stronger "override" permissions allowing to bypass the
ownership requirement, but there are a few cases, where that is not possible, e.g. the
rating of solutions. Object ownership is established at the time of its creation and
cannot be changed later. An option to pass object ownership from the original
creator to another user, as seen in CodEx, could be a nice extension, but it is not part
of the original design.

Originally, AsM was designed to enforce maximum fairness and transparency to
the point of being very unforgiving to tutors' mistakes when rating. Modifications,
such as adding the permission to change the rating of an already rated solution, have
been made as the results of live testing.

3.3.5 Courses, Groups, Problems, and
Assignments

From the Core viewpoint, a course is a named group of problems owned by a single
user. A problem consists of a problem description and (optionally) of plug-in
configuration, which comprises of plug-in selection and the arguments required to
make it usable for this specific problem (if the plug-in accepts arguments). Unlike
CodEx, where problems can exist in public domain, every problem in AsM belongs to
a single course. It is possible to view each course as a namespace encapsulating
CodEx-like environment.

A group is a named set of assignments bound to a single course and owned by a
single user. The group can be owned by a different user than its “parent” course. An
assignment consists of a problem from the parent course and a deadline.

A group can be either public or private. Public groups are visible to all users with
the subscribe (public) permission and these users can freely subscribe to any of
them. To subscribe to a private group, a user needs to request consent from the
group's owner. This mechanism allows tutors to make sure that only students
belonging to their homework group in reality are subscribed to it in AsM, thus
keeping the groups well-arranged. Students subscribed to a group can access the
problems assigned to that group and submit their solutions.

The entities described above cannot outlive the entity they belong to. Therefore, a
great care needs to be taken when removing objects like courses, groups, problems,
and assignments, or when cancelling subscriptions. Removing an assignment
removes all respective solutions. Removing a group removes all assignments in that
group, while removing a problem removes all assignments based on that problem.
Removing a course removes all problems and groups belonging to that course,
effectively removing any trace of it from the system. Removing a user causes his
groups to become owner-less and thus practically unusable. This mechanism was
chosen for its simplicity and heavily relies on the responsibility of more empowered

17

users. Associated risks may be lowered by not giving users permissions to remove
higher-level objects or by adding safeguards to the user interface.

Relations between the objects described above are shown in Figure 3.1.

Figure 3.1: Course management entities and their relationships.

3.3.6 Solutions and Their Correction
The format of a solution may vary a lot depending on the problem it is supposed to
solve. These differences have no meaning from the Core viewpoint, so a unified
format is imposed to hide them and make the solution handling more convenient.
Before handing in, the data of every solution have to be packed into a single ZIP11
archive. This is convenient, because ZIP archives are supported on all major
operating systems and compression makes uploading solutions to the server faster
and helps save space.

After a solution is successfully uploaded to the server, it is annotated with date
and time and becomes a submission. During its life-cycle in Core, a submission is
always in one of the following states: new, corrected, confirmed, and rated. The
sequence of the states is linear and their changes are irreversible.

Every submission starts as new. If there is a plug-in set up to correct it, it is
launched and the uploaded solution is handed to it. When the correction is finished,
the plug-in returns the results of all performed checks. The results are added to the

11 ZIP is a common file format allowing to compress multiple files into a single archive.

18

submission as well as the percentage of the overall success. If there is no plug-in
associated with the problem, this step is skipped. In both cases, the submission
becomes corrected.

The corrected submission is still fully under its author's control. The author of the
submission can view the correction results (if present) and decide whether to
confirm the submission for rating (which makes it confirmed). The only alternative
(apart from leaving the solution in corrected state) is the removal of the submission,
which can be done at any point before the confirmation.

Once a submission is confirmed, it becomes the author's official solution and can
be viewed and rated by its associated tutor. It can no longer be removed and no
other submission for the same assignment can be confirmed. Submission stays in
this state until the tutor reviews and rates it. Then it becomes rated.

There are two key points in the solution handling procedure described in this
section. One of them is the possibility to cancel the submission based on the
correction results before handing it over for rating. The main motivation for this is
the assumption that the tutors' time is much more valuable than computing time. It
is also assumed that the main point of any homework is an exercise, not testing.
While the latter holds true for the AsM's original deployment environment, it is not
true for every possible case. To remedy this, a limit could be put on the number of
solutions that a single user can upload for a single assignment.

Another key point in the solution handling procedure is the lack of an option to
return the solution to its author for modifications, once the solution has been
confirmed. This restriction was imposed not just because of the complications
associated with the implementation of such an option, but also to promote fairness.
If it was possible to return confirmed solutions, additional safeguards would have to
be put in place to ensure that the users are kept informed about their returned
solutions and that they have enough time to submit new solutions before the
deadline.

3.3.7 Attachments, Questions, Templates, and
Tests

Attachments, questions, and templates are all connected to a particular course;
therefore, they are all managed by that course's owner. The attachments are
mentioned as separate entities, because they are managed separately, which allows
reusing the same attachment for multiple questions. It could also allow binding the
attachments to homework problems if necessary. Apart from the attachment file
itself, the attachment entity created by the Core contains the attachment's name and
type. The name is used to easily identify the file when binding it to a question. The

19

type can be one of the following three types: text, code, and image, and it is used to
render the attachment correctly when including it in a test to be printed.

A question can have one of multiple types as well. In this case, the types are text,
choice, and multi, and they indicate the style of the answer. A question with the
text type requires a complete text answer, while the choice and multi types of
questions require selecting one and any number of options, respectively. Therefore,
a question with the choice or multi type must be supplemented by a set of options
(answers). Additionally, a question can use one or multiple attachments.

A template is created by selecting a set of questions and the number of questions
the generated tests should contain. The selected questions are further divided into
two categories: mandatory and optional. The template can be used to generate a test
that contains all the mandatory questions and as many of the optional questions as
necessary to reach the required question total. For increased convenience, a test is
generated right when the template is created, and the Core stores the last generated
test for every template to allow downloading and printing the test multiple times.

The generated tests are downloaded as HTML files, each containing first the
selected questions and second the attachments, if there are any. Both the questions
and the attachments are numbered. Questions with choice and multi types are
followed by the description of their type and a list of available answers. Every
attachment is included only once, even if it is used by multiple questions, and each
question that uses attachments is followed by the list of the attachment numbers it
uses.

The relationships between the entities described in this section are shown in
Figure 3.2.

20

Figure 3.2: Entities used for test generation and their relationships.

3.3.8 Core Request Handling
The tasks described above are performed by the Core upon receiving a request. This
section describes the nature and handling of these requests. A list of all supported
requests and their arguments and requirements is in the developer documentation
on the attached CD.

A Core request is a POST or GET12 HTTP request containing key-value pairs in
the format appropriate for the request type. These are further called "properties",
where "property A" stands for a key-value pair with key "A". All requests have to
contain the property "action" with the Core request name. All other properties are
the arguments for the specified core request. A Core request can have both
mandatory and optional arguments. Sending a request without all its mandatory
arguments results in an error. Other requirements have to be met to run most of the
requests, often based on specific user permissions.

AsM Core has a single entry point, a script handling all the received requests. A
special address ./core/, where the working directory is the one where AsM is

12 POST and GET are the most common HTTP request methods used by web browsers to
submit data to web servers and retrieve content from them respectively.

21

deployed, is used to redirect requests to the handler script instead of addressing it
directly. The handler script sets up the environment for request handling and
launches the handling procedure. Every request has an associated handler class,
which contains the logic specific to that request. All handler classes are descended
from a common parent, which implements the base handling logic including error
reporting and logging, input validation, handling of uploaded files, and other
common tasks. Both this and the adjustments of the environment done by the entry
point script ensure consistent request handling and error reporting behaviour.

In response to requests, the Core returns either an output file (in some special
cases), or a JSON13-encoded object with two properties. A property data contains
request-specific result data, or it may be empty in case of errors. A property errors
is set only if some error(s) occurred and contains an array of errors.

3.3.9 Errors
Generally, most applications use a simple model for errors, in which an error
consists of an error message and (optionally) its “severity”. AsM expands on this by
splitting the error message into “cause”, “effect”, and “details” and adding code
numbers to known error causes. The errors should simultaneously serve all of the
following purposes.

1. To give the user a general idea, what might be the cause of the problem. The
user should be able to differentiate between errors caused by his incorrect use
of the application, and other errors.

2. To inform the user about the immediate effects of the error related to the
action he was trying to perform.

3. To provide a detailed error description helpful for the person trying to fix the
problem.

Additionally, using code numbers for known causes serves two different purposes.
First, not to confuse users with different error messages in different instances of the
same error cause. Second, to allow the client (UI) to define specific reactions to
certain error causes (e.g. insufficient permissions) without binding them to specific
error message strings.

As a side-effect, the described expansion of the error structure emphasises the
need of being aware of the relation of created errors to the user while writing the
code. This helps preventing a frequent mistake of software developers - creating
errors that are incomprehensible for users, because they describe the error in a
completely alien context.

13 JavaScript Object Notation (JSON) is an open standard for text representation of simple
data structures (see [23]).

22

3.3.10 Error Logging
To fix errors encountered by users, the administrator needs to have access to all
details of these errors. Since the users often fail to remember or write down the
encountered error messages, it is necessary to backup all error data on the server for
later perusal. Using a database for this purpose would be unwise, because errors can
easily occur during the communication with the database. In contrast to writing into
a database, writing directly to a file is very simple and therefore much easier to keep
error-free. For this reason, AsM logs all errors directly into log files. Additionally,
should AsM ever break down completely, having errors logged in simple text files
makes it easy for the system administrator to look them over without AsM's
assistance.

Logging in AsM is managed by a stand-alone logging class independent on the
rest of the application. Its functionality is based on the fact that all errors occur in
certain context and that multiple errors may have the same context. In AsM's case,
every error's context consists of a Core request, IP address issuing the request, etc.
Therefore, AsM logger enables logging of "entries", each one consisting of a header
(context) and variable number of "lines" (events). Entry header always contains a
time-stamp and it can optionally contain any other data as well. Each entry line may
contain any number of data "items". When using the logger, this abstract structure
has to be concretized by supplying strings for separating individual log entities. The
separators are stripped from all consequently logged items to avoid corrupting the
log. Care should be taken to select separators that make the log files human-readable
and that are not needed inside the logged entries. The log files themselves do not
contain information about their structure, so it is possible to read a log file using two
differently configured loggers.

To avoid swamping the file system with overly large logs, log files have
configurable maximum size and they are automatically "rotated". This means that a
single log consists of a whole sequence of files. When an entry would make a log file
exceed its size limit, it is logged to the next file in the sequence instead. Maximum
number of files in the sequence is customizable. Then , when the number of log files
in the sequence reaches a given limit, the oldest file is always deleted before a new
one is created. Log rotation is a mechanism commonly implemented on Unix
operating systems. However, using this implementation would mean a substantial
restriction for AsM deployment, so the log rotation is implemented as part of the
AsM logger instead.

3.3.11 Plug-in Launching
Launching of plug-ins is AsM's only deviation from the conventional model of
passive PHP application. The automated correction can be time-consuming;

23

therefore, the handler of a Core request that leads to plug-in launch cannot wait for
the plug-in to finish before returning request results. Consequently, plug-ins need to
be able to run outside the passive model of Core request handling. Additionally,
when a plug-in stops running, AsM database needs to be updated with the correction
results. This is accomplished by detaching plug-ins from the request handling
process into a separate background process. This requires the following two steps.

1. Detaching the environment. If plug-ins were allowed to call the Core with
the correction results directly, it would result in great increase of complexity.
In that case, the channels of communication between the Core and the plug-
ins would have to be defined. To ensure security, a plug-in session would have
to be established based on the user session that caused the plug-in to be
launched. AsM uses a much simpler alternative. When a plug-in needs to be
detached, the Core dynamically creates a script, which is able to initialize a
partial copy of the current PHP environment and then launch the plug-in and
retrieve its results. The created script is then launched in a separate process.

2. Detaching the process. Launching the script in a separate process is
unfortunately an OS-dependent task not covered by the native PHP functions.
AsM contains methods for detaching a background process on both Unix-
based operating systems and Microsoft Windows. These methods belong to
one of the standalone utility modules implemented as a part of AsM and they
are very convenient for any application in need of performing asynchronous
tasks on the server.

Plug-ins themselves are launched and handled in a manner depending on their type.
Executables and JAR archives are simply launched and requested to return results
as specifically constrained XML. PHP plug-ins are more closely integrated with the
Core. They are executed inside the parent environment and are given access to the
PHP Plugin Framework classes released with AsM. They are requested to return
results directly in order to avoid XML creation and parsing.

See the Section 3.5 for detailed description of how the plug-ins work and how
they are integrated into the Core.

3.3.12 File Management
AsM Core needs to deal with files on a regular basis. These files include attachments,
plug-ins, assignment solutions, input data for plug-in testing, and plug-in output
files. They are uploaded to the server as property values of certain Core requests.
The POST method needs to be used for these requests, because the GET method
does not support file transfer.

Sending files attached to regular requests has a significant drawback. Request
handlers accepting files need to wait for the whole files to be uploaded before doing

24

anything else. Waiting for a response to such a request may therefore take quite a
long time. A possible way to improve this situation is to add a special file upload
request that temporarily saves the file and returns its storage ID. Request making
use of that file would then include just the file ID, not the file itself. The user
interface could use it when a user needs to enter additional data that are to be sent
with the file. The file in question could be sent as soon as it is selected by the user
and it could already be uploaded by the time the user sends the rest of the data
along, resulting in shorter waiting times.

The mechanism for pre-uploading files had been implemented as a part of the
AsM Core, but it was abandoned after testing, because the benefits were not
substantial enough to warrant the increased complexity of the system. Furthermore,
there are just a few requests making use of file upload, and the single one that is
used frequently (solution upload) does not accompany the file with any additional
data.

The handling of uploaded files depends on their purpose. Uploaded attachment
files are stored with unique names based on the id of the lecture they belong to and
their assigned name. Solutions, input data for plug-in testing, and plug-in output
data are stored as ZIP archives with unique names based on the date and time of the
upload/creation and other context variables. Solutions are passed to plug-ins still as
ZIP archives, and the plug-ins themselves are responsible for their temporary
unpacking. Plugin files are unpacked right after their upload and they are stored
unpacked to be ready for repeated execution.

Downloading a file stored by the AsM Core is not only a simple matter of knowing
the file's location and requesting it from the server. In such model, enforcing
restrictions based on the ownership and user permissions would be very difficult,
not to mention, that the file storage folder structure and filenames are private
implementation details. Instead, files are requested in the same way as all other
data, using a Core request. If the request is granted, the requested file is returned
directly as the result. This is the only case where the result of a Core request is not a
JSON-encoded object. If an error occurs during the handling of such request, the
usual error result is returned instead. Therefore, the sender of the request needs to
adjust the handling of the result based on its type.

3.3.13 Sending E-mails
Sending e-mail alerts and digests is a feature not included in AsM due to time
constraints. However, the e-mail sending mechanism itself is implemented and it is
used during the user account registration process.

The implementation of the mailing mechanism is modular. The mailer class is
decoupled from the rest of the application to be easily exchangeable for a different

25

implementation of the mailer interface defined by AsM. The currently used mailer is
just an adapter for the PEAR14 class Mail used with SMTP15 back-end. SMTP server
set-up is a part of the AsM Core configuration.

3.3.14 Configuration
To be deployed successfully, AsM Core needs some specific information about the
environment it is supposed to interact with. This information is supplied using the
AsM configuration file, which is an INI file with sections, as described in [17]. The
INI format has been chosen both because it is a standard format for configuration
files and because PHP includes support for INI file parsing. From the Core
viewpoint, the configuration file is read-only.

AsM configuration consists of two parts, public and private. In the public part,
properties describe the external environment. AsM administrator is encouraged to
change them manually if necessary. They include MySQL account data and
a database name, SMTP server account data and a "From" header value for
outbound e-mails, paths to PHP CLI16 and Java interpreter, an absolute path to
Apache document root and a relative path to AsM deployment directory, etc. The
private part is clearly separated from the public part and contains properties
describing the inner structure of the application. These properties serve only for
development purposes and should not be changed manually by AsM administrators
under any circumstances.

During the early development and even in the alpha version of AsM Core, the
manual modification of the configuration file was the only way to configure the
application. Later on, an additional script, AsM Installer, was introduced to make
AsM deployment simpler. The Installer requests the initial configuration data from
the administrator and it attempts to guess and verify some of the values (e.g. paths
to PHP and Java interpreters). Section 3.6 contains more information on this
subject.

14 PHP Extension and Application Repository (PEAR) is a system for distribution of
reusable PHP components (see [24]). It is used to add the component modules directly to
the web server.

15 Simple Mail Transfer Protocol (SMTP) is a standard defining e-mail communication over
IP networks, e.g. the Internet (see [25]).

16 PHP Command-Line Interface (CLI) is an interface of PHP usable from command-line (as
opposed to the PHP CGI used for web server scripting).

26

3.3.15 Database
The Core uses a database to store all data apart from the configuration and from
error logs. The access to the database is managed by a special database framework,
which is implemented as a part of AsM. The framework provides the following
abstraction layers over the used database implementation: the database request
layer, the abstract query layer, and the database adapter layer.

3.3.15.1 Database Request Layer
The database request layer is the only layer accessible to the rest of the Core. It
provides a set of "database requests", i.e. addProblem, cofirmSubscriptionById, or
getGroupsVisibleByUserId. Each of them has a name and a specific set of required
arguments. The layer's purpose is to restrict the access to the database to a set of
predefined actions and thus ensure the consistency of contained data with the
application data model. Ensuring database consistency is much easier when the Core
uses abstract requests based on application logic instead of accessing the database
directly. In the former case, the mistakes are much more easily spotted. On the other
hand, transforming raw database requests into the abstract logical requests without
adding unnecessary restrictions to the Core requires a lot of additional code.

Another function of the database request layer is to provide high-level validation
of database query data, so that any error messages refer to data in application terms
instead of revealing details about the internal database structure. At this level, the
data that are potentially harmful to the database are rejected or erased, so the lower
layers may expect all input passed to them to be clean and sensible.

To fully function as a buffer between the database and the rest of the Core, the
database request layer needs to perform one additional role - to translate the
internal database representation of stored data into the application data model. This
is accomplished by translating property names of application entities (i.e. user,
problem, group) into field names of database entries. This approach allows to use
the same name for a certain property of a certain entity regardless of the possible
differences in its naming on lower levels. Again, this feature makes the rest of the
Core code cleaner and easier to maintain, but it requires additional code.

3.3.15.2 Abstract Query Layer
The abstract query layer basically makes it possible to avoid using a particular
database query language altogether by providing an object-oriented query
framework. It uses an extensive hierarchy of abstract expressions to cover basic
database query functionality and bring its strong typing over into the PHP code
(using “type hinting” feature of PHP described in [6]).

27

The abstract query framework contains wrappers for all expressions required in
the basic database queries. The complex expression constructors have strongly typed
arguments, which ensures semantic correctness of all expressions. The expression
wrappers include expressions that yield a value (e.g. Literal), predicates that yield
a boolean value (e.g. Conjunction, Negation), "statements" (e.g. Query), and special
re-typing wrappers (e.g. QuerySource). Creating database queries in this manner is
much more verbose than using a native database query language. To overcome this
disadvantage, AsM contains various factory methods that make creating simple
database queries as easy as supplying sets of values. Another drawback is that
abstracting database management logic requires keeping track of the whole database
layout inside the application code. Such data duplication lowers extensibility by
increasing modification costs.

Main purpose behind the creation of the abstract query framework was an effort
to write code that clearly shows the application logic and that is independent on the
particular database type chosen. The framework is a feature that proved to be
insufficiently analysed and much more costly than previously expected. Its
implementation required creation of a class hierarchy that sufficiently reflects the
semantics of simple database queries. That is a task markedly diverging from the
scope of AsM Core. As a result, the part of AsM Core dealing with the database
management became so large that it does not correspond to its importance with
respect to the project. Due to time limitations, some of the more complex features of
the framework (notably complex queries joining multiple tables) could not be
included and workarounds have to be used instead.

3.3.15.3 Database Adapter Layer
Database adapter layer is the bottom layer and it manages the transformation of
abstract queries into a native query language of the used database. MySQL was
selected as a database of choice for AsM; therefore, the only adapter implemented is
the MySQL adapter. Database adapter layer logic is implemented as part of abstract
query functionality; therefore, an abstract query just needs a set of database-
dependent tokens to be transformed into a native query string.

Figure 3.3 shows the interaction between the layers during a single database
request.

28

Figure 3.3: Interaction between database layers during a database request.

3.3.15.4 Data Structure
The database contains both the various entities and the connections between them.
Base data are stored in simple tables. Each table has a special ID column with
numeric IDs of table rows. The connection of the tables is arranged using "views",
which are predefined SELECT queries stored in the database, which can be used as
sources for other queries just like normal tables. The views created as a part of AsM
join the tables by connecting ID references with the respective IDs.

As an example, the database contains tables users and usertypes. The first table
contains columns for properties such as user's full name, his e-mail address,
username, and password. It also has a type column, which contains references to
row IDs in the second table. Apart from the obligatory ID column, the second table
contains columns for the usertype name and the set of user permissions. A view
usersWithPermissions, also included in the database, joins these two tables by
extending the user table rows with the usertype name and the privileges
corresponding to the user type referenced by the type column.

3.3.16 Requirements
AsM Core code is written in PHP 5.3 and takes full advantage of its features, such as
namespaces or class constants; therefore, it is incompatible with the earlier versions
of PHP. A great deal of effort was put into making its object-oriented code as clean

29

as possible. Type hinting (PHP 5 feature) is used to substitute strong typing missing
in older versions of PHP.

Furthermore, the Core requires Apache17 to run and takes advantage of some very
convenient features including (but not limited to) the usage of its rewrite module
(documented in [7]) to prevent access to AsM source, configuration files, and stored
data. This is not a large restriction, because Apache runs on all major operating
systems.

This concludes the section dealing with the AsM Core. For more insight into the
implementation, please see the developer documentation on the attached CD. The
next section describes another large part of the project, the AsM User Interface.

3.4 User Interface
User Interface (UI) of the AsM is a JavaScript application that runs in a web browser
and provides access to the tasks performed by the AsM Core. It communicates with
the Core using POST and GET HTTP requests (see previous section for more
details). To provide access to the Core tasks and present retrieved data the UI uses
just a few basic elements (e.g. “form” or “table”) with extended functionality.

The AsM UI is written in JavaScript. It utilizes a tiny framework Base.js, which
enhances regular JavaScript with some “syntactic sugar” that enables the use of the
classical inheritance pattern instead of the default prototypal inheritance (see [8]).
Another much larger framework, jQuery, is used as the sole means of DOM
manipulation and AJAX communication. jQuery was chosen because it is simple to
use and provides an extensive array of DOM access and manipulation functions. Its
functionality bridges the gap between the implementation of standards in web
browsers and the usability requirements of a modern web application.

Another reason for choosing jQuery as the base framework was its extension,
jQuery UI. It extends the severely outdated HTML model by using various "widgets"
like “date-picker”, “dialog” window, and “progress bar” together with the animation
effects for element transitions. jQuery UI also provides a "widget factory" that can be
used to create additional widgets. The widgets created by this factory represent an
exception to the class-based model used throughout the rest of the AsM UI code.
Instead of being part of the class hierarchy, they follow the jQuery model of
immediate extension of DOM element selection.

This section consists of two distinct parts. The first part (up to Visual Design)
deals with the used presentation elements and the UI contents. The rest of the
section describes the key aspects of internal UI functionality.

17 Apache HTTP server (Apache) is an open source web server.

30

3.4.1 Presentation Elements
To fulfill its purpose, the AsM UI has to be usable by users with very little or no
technical background. This requires maximum possible clarity, which is achieved by
simplicity and consistency of the UI. Only a handful of presentation and interaction
elements is used throughout the application. Thus, the users are not surprised with
new concepts on every page. The elements are carefully extended to provide tools
required by the users while remaining intuitive and easy to use. The list of used
elements follows (the details of the most important two of them are provided in the
following sections Table Element and Form Element). See section Widgets for
implementation details.

 Form. Form fields provide hints about value restrictions as well as visual
focus cues and an instant validation feedback. Forms are designed to be fully
validating, so that instead of sending the data and hoping for the best, the
users are sure that they are sending the correct data.

 Table. Enhanced tables serve as the principal means of data presentation and
interactivity. They include both static enhancements concerned just with data
display, such as pagination, sorting, and filtering, and interactivity
enhancements provided by "action buttons".

 Editor. Editor is not a single visual element like a form or a table, but rather a
design pattern, which combines a table with a form for the creation and/or
modification of table rows. Editor pattern, as defined in AsM, unifies the look
and descriptions of the action buttons used for the creation, modification, and
removal of rows and how the two used elements interact. In its initial state, an
editor is just a table with rows that can be created, modified, or removed.
When a user decides to either create or modify a row, the table is hidden and a
form is shown instead. When the form is successfully submitted, it is hidden
again, and the table is brought back. The resulting effect is different from
having a table with editable cells, because when using the editor pattern, the
rows are the base entities instead of the cells.

 Panel. AsM UI does not have open space for random content. Most content
has a tabular character and it is therefore displayed using the table element (or
form element when showing a single item). Panel provides a consistent way to
enclose content with different structure. Apart from visually setting off the
content, it provides a unified way to add an icon to it or to highlight it to
increase clarity.

 Accordion. Accordion is a common design pattern (described in [9]), which
is used in AsM UI only for a single element, the navigation menu. It provides a
natural way to merge the two navigation levels into a single visual element that
displays the lower level of navigation only for the currently selected item in the

31

upper level, thus showing all information needed while avoiding unnecessary
clutter.

 Loading overlay. Sometimes, the user should not be able to access a
particular content area, because its content is being loaded or submitted and
touching it would only lead to inconsistencies. The loading overlay provides a
unified method to prevent access to content in such cases while clearly
presenting the user with the reason of access denial and indicating that the
restriction is only temporary. It does so by putting up a semi-transparent
screen over the restricted area with a small panel in the middle containing an
animated icon indicating activity and a short explanatory message.

 Text cutter. In certain cases only a beginning of a long block of text should be
displayed by default to avoid cluttering the screen (e.g. when displaying long
text inside a table cell). Text cutter provides a smart way to cut text exceeding a
certain length and to hide the rest, even in HTML content. It is optimized to
either display just the first line of text, or at least to cut at spaces. A click-able
tool for showing/hiding the remaining text is appended after the text.

3.4.2 Table Element
Figure 3.4 shows a mock-up of a simple table element and points out all areas of
interest. An enhanced table is built on a standard table with a caption, a row of
column headers and multiple rows of data. Below, there are the descriptions of the
additional features that make the table truly useful as the main presentation
element. Most of these extensions are similarly used by many modern web
applications.

Figure 3.4: Table element mock-up.

 Pagination. If the table is to be used as a main display element, it needs to be
capable of being limited to certain height. Then it is possible to put multiple

32

tables on a single content page while keeping the layout well-arranged. This
needs to be done without limiting the volume of table contents. It is achieved
by breaking the table into "pages" of similar size (the number of rows) and
showing only one page at a time. A control panel is added to the bottom of the
table to allow changing pages and/or changing the page size. Page changing
controls allow going one/five pages forward/backward or jumping to the
first/last page directly. To avoid unnecessary clutter, these controls are hidden
while all rows fit on a single page.

 Sortable columns. Table columns can be flagged as sortable by the
developer. The headers of flagged columns are highlighted on mouse-over and
they are click-able. When a user clicks on a column header, the values in table
rows are sorted in ascending order. Clicking on the same header again sorts
the table in descending order. The sorting is stable and it is possible to flag a
column for the numeric sorting instead of the default lexical sorting.

 Filters. Tables containing large ammounts of data can be hard to navigate,
especially when a user is interested only in a specific subset of that data. Filters
provide a way to restrict the displayed data by placing restrictions on values in
certain columns. A filter may restrict values to those equal to, less/greater
than, starting/ending with, or containing a specific value (all of these can be
inverted as well). Filters of the "start/end with" or “contain” type cannot be
used on columns flagged for numeric sorting. Multiple filters can be applied at
once for more complex filtering.

Filter controls are at the bottom of the table as well, next to and below the
pagination controls. By default, only the Filter overview button is displayed,
showing the numbers of currently enabled filters and all created filters, as well
as a button for removing all filters at once. Clicking the Filter overview button
toggles visibility of the whole filter control pane underneath, containing array
of filters and a simple tool for the creation of additional filters. Individual
filters consist of a button showing the filtering rule and an adjoined button for
removing the filter. It is possible to disable a filter temporarily by clicking its
button and then enable it again by another click.

The filtering not only is convenient for users in certain cases (e.g. for an
administrator trying to find only users of a certain type), but it is also used by
the application itself as (e.g. linking to problems belonging to a certain course
right from the table of courses).

 Action buttons. Adding action buttons transforms a table from a static
display element to a highly useful interactive element. Action buttons fall into
two categories - row action buttons and global action buttons. Row action
buttons are displayed at the left side of each row and they are used to add
actions which are connected specifically to the entities represented by the table

33

rows (e.g. for editing a user account, cancelling a subscription, downloading a
solution, or viewing problems belonging to a specific course). Global action
buttons are located on the column header row above the row action buttons
and they are used for actions not directly connected to any specific entity
displayed in the table, but rather to the whole group of entities represented by
that table (e.g. for adding a new user/course/problem/group). Action buttons
represent the main method of interacting with AsM UI.

 Collapsibility. A table has an option to be collapsed as a whole by clicking
the table header, while another click expands the table again. This feature is
useful when there are more tables on a single content page. Additionally, a
table can be flagged as auto-collapsing, so that it is automatically collapsed
when empty. Collapsing an empty table means hiding its column headers and
bottom controls, which saves space and also significantly decreases page
clutter. An empty auto-collapsed table has “(empty)” label appended to the
header and it cannot be manually expanded.

3.4.3 Form Element
A form consists of one or more field-sets and a submit button, and optionally some
additional custom buttons. Each field-set contains one or more fields. Figure 3.5
shows a mock-up of a sample form with multiple field-sets, various field types, and
with extended interaction cues. Regardless of the field type, all fields have the same
visual structure and use the same interaction patterns described below.

34

Figure 3.5: Form element mock-up.

Every form field consists of three parts: a field label, one or more input elements,
and an interaction cue space. Field parts are displayed from the left to the right in a
row and aligned with the respective parts of other fields, as seen in Figure 3.5.
Interaction cue space contains one of the following interaction cues.

 Initial hint. Initial hint contains information about the value expected to be
filled in. It can be empty if the value restrictions are self-enforced (in case of a
check-box, a radio button, or a select box) or self-explanatory.

 Check mark. Check mark is an icon indicating that the field value is valid.

 Validation hint. Validation hint specifies the value restriction not satisfied
by the current field value.

A field is always in one of the following states.

 Disabled. A disabled field has no value and cannot be edited. A field may be
disabled for example when its value would not make sense in the context of
another field's value (e.g. field "plug-in configuration" makes no sense if there
is no plug-in selected in the "plug-in" field). The state of the disabled field is
indicated by the input elements being "greyed out" and unselectable and the
interaction cues being hidden.

35

 Read-only. The only difference between a disabled and a read-only field is
that a read-only field contains a value. This makes sense for fields that must
not be edited for some reason (e.g. the username and user type of admin user,
which cannot be modified). There is not difference in visual properties.

 Untouched. A field is untouched when it is enabled (i.e. not disabled or read-
only) and its value has not been edited yet. An initial hint is shown while the
field is in this state.

 Focused. A field is focused when one of its input elements is focused. The
focused input element is always highlighted, while the rest of field's visual
properties depend on its previous state. If a field becomes focused after being
invalid, it retains the visual cues of the invalid state. Otherwise the initial hint
is displayed.

 Valid. Valid field is an enabled field that is not focused containing a value that
has been edited and that is valid. A check mark is shown to inform the user
about the field's validity.

 Invalid. Invalid field is an enabled unfocused field with a value that has been
edited and that is now invalid. In this case, the whole field (not just the input
elements) has a background and border indicating an error and a validation
hint is displayed. These visual properties are retained even after an invalid
field becomes focused.

While a form contains one or more invalid fields, its submit button is disabled to
prevent submission of invalid data. The field state transitions described above
ensure instant feedback and empower the user to fill the form correctly before
submitting it. This ensures that the user feels completely in control of the
consequences of his actions, in contrast to the server-side validation model and thus
leads to higher user satisfaction.

Custom form buttons are not directly related to the form functionality. They just
provide a way to add additional exit points to the form apart from the submit button.
For example, a simple "Go back" exit point may be convenient for users not familiar
with using the browser history.

3.4.4 Layout and Content
AsM UI uses one of two simple layouts depending on the displayed content. The
three special pages that do not require login (Registration, Activation, and Login)
have the content displayed in the middle of the screen, because each of them
consists just of a single form. Figure 3.6 shows the layout used by the rest of the
application. It consists of three distinct areas - the header, the left menu, and the
content area. The header contains the AsM logo (which is in fact just a place-holder

36

icon), the application name and version on the left, and the user's username and the
Logout button on the right. The left menu contains the UI navigation divided into
two levels by separating pages by the role of their typical user. The content area is
designated for the content of each content page, where a content page is a set of
content belonging to a particular navigation item.

Figure 3.6: Main UI layout.

Figure 3.7 shows the grouping of content pages and the connections between
them. The descriptions of the individual content pages and the tasks managed by
them follow. See the Core section for task details, as the UI only provides an access
to the tasks performed by the Core.

37

Figure 3.7: Content page grouping.

 Registration page allows the registration of a new inactive user account.

 Activation page allows the activation of a previously registered user account.

 Login page lets the user log in using an active user account data.

 Home page is the first page displayed after login and it provides a welcome
screen with a “dashboard” and a link to the AsM project documentation (which
contains the AsM User Manual). The dashboard shows an overview of tasks
related to the used user account. Its content depends on permissions
associated with that user account. It may include information about point
totals for subscribed groups, pending assignments, unconfirmed solutions,
solutions pending for rating, system errors, and others things.

 Assignments page contains two tables, one with the pending assignments
from subscribed groups and one with the past assignments. Assignments can
be selected to view their details in a well-arranged format and to allow the
upload of solutions.

 Submissions page contains three tables with new, corrected, and confirmed
submissions, respectively. Submissions can be confirmed or removed
depending on their state.

38

 Subscriptions page displays two tables; 1) groups available for subscription
and 2) groups already subscribed to. User may subscribe or request
subscription to the former and unsubscribe from the latter.

 Assignments page (in the Tutor section) is an editor allowing the
management (creation, modification, and removal) of assignments.

 Groups page is an editor for the management of groups.

 Submissions page (in the Tutor section) contains a table with solutions
ready to be rated.

 User ratings page contains a table for every owned group. Each table shows
ratings awarded to solutions created by students in that group as well as every
student's total rating.

 Subscription requests page is a table with pending subscription requests,
which can be used to allow or deny other users' requests to subscribe to a
private group owned by the user.

 Lectures page is an editor allowing the management of courses (a.k.a.
lectures).

 Problems page is an editor for the management of problems.

 Plugins page is another editor for the creation and removal of plug-ins.

 Plugin tests page allows testing plug-ins by running them with custom
arguments on the supplied input. The page contains two tables with running
and completed tests, respectively, and a form for starting a new test. The tables
provide means for test removal and, in case of completed tests, the download
of plug-in output.

 Questions page contains an editor for the management of questions and a
form for the creation of templates. The latter is hidden while a question is
being created or edited. The form is closely connected to the table, because it
uses the table for the selection of questions. Table filters can be used to
constrain the set of questions included in the template. Additionally, table row
selection can be used to choose the mandatory questions.

 Attachments page is an editor for the management of attachments.

 Tests page is a table of templates. It enables generating new tests from the
templates, printing the generated tests, and removing the templates.

 System log page allows viewing of the Core error log in a table. While this is
not the best way to view long log entries, it is very convenient for sorting and
filtering of entries, which is often used while trying to fix a particular error.

39

 UI error log page is a table with errors that occurred during the currently
open user session. Unlike system log, this page is accessible for all users and it
exists solely for the purpose of remote troubleshooting. Not only does it
contain error messages received from the AsM Core, but it also contains UI
errors and notices which do not appear in the system log at all. Data contained
in the user log are available only while the user session is open, because the
user log is cleared upon logout. UI error log page is one of the two pages that
exist independently on Core tasks.

 Users page is an editor for the management of user accounts.

 User types page is an editor for the management of user types.

 User account settings page lets users change properties of their own user
account (i.e. their full name, e-mail address, and password) using a simple
form.

 UI settings page is the second page with no connection to the Core. It allows
changing of UI properties. Unfortunately, the personalisation of the UI is very
low on AsM project priority list; therefore, the page currently allows only the
visual theme selection.

3.4.5 Visual Design
The goal of the AsM UI visual design is to create an interface that is clean and
clutter-less while feeling fresh and up-to-date. A big emphasis is put on clarity of the
UI. To accomplish these goals in a limited time frame and without having any visual
design experience, the author relied heavily on the jQuery UI theme framework.

jQuery UI theme framework is a CSS18 framework with capabilities extending far
beyond styling of widgets that come with the jQuery UI library itself. It defines a
handful of logical types of elements and allows the definition of visual styles
appropriate for each of the element types. A set of visual style definitions for all
defined element types (plus a few common style properties) is called a "theme".
DOM elements can then be flagged as belonging to a particular type (using classes)
to have the appropriate style applied to them when a theme is used. This allows
using well-defined visual cues consistently throughout the application to ensure the
clarity.

Additional feature of jQuery UI theme framework is that every theme contains an
extensive set of simplistic single-color icons, which is rendered in multiple colors,
one for each element type. Using these icons is as simple as adding an appropriate

18 Cascading Style Sheets (CSS) is a style sheet language used to describe the look and
formatting of a document written in a markup language such as HTML or XHTML (see
[26]).

40

icon class to a DOM element, which then becomes an icon. Icons are always
displayed in color combinations appropriate to their context (the element type of
their container), allowing them to be used to complement or replace text wherever
needed. That is a very powerful tool for UI simplification and it increases the clarity
even more.

Each jQuery theme is comprised of the used font (only a single font face is used),
the corner radius of rounded corners, overlay and shadow definitions, and color
schemes for various types of elements. Every color scheme consists of a background
color and texture, and the border, text, and icon colors. A texture is a pattern
displayed over the background in white color with customizable transparency. The
list of defined element types and their use in AsM UI follows.

 Header/toolbar. Used for application header bar and headers of some
jQuery UI widgets (e.g. dialog windows, date-picker).

 Content. Partially used as a base style for the whole application and fully used
for bodies of jQuery widgets as well as AsM UI widgets (e.g. table, form, panel,
dialog window).

 Click-able: default state. Used for interactive UI elements (those that can
be clicked). Also used for headers in a few cases where using header styles
would be confusing (field-set headers, table column headers).

 Click-able: hover state. Used for interactive UI elements when a mouse
cursor is hovering over them to indicate their ability to be clicked.

 Click-able: active state. Used for interactive UI elements just after they
have been clicked (in case of button-like elements) or as long as they are active
(in case of tabs, accordion headers, and other switch-like elements).

 Highlight. Used to highlight focused input elements in forms and warning
messages.

 Error. Used to highlight form fields with invalid values and error messages.

AsM UI uses the jQuery UI theme framework as the base for visual theme definition
(apart from base layout constraints). This keeps the UI looking fresh while behaving
consistently and therefore predictably. As a bonus, jQuery UI web page contains
both a large selection of already completed themes and a tool for easy creation of
new ones. All of the completed themes are included in AsM UI and the user can
switch between them on the UI Settings page.

3.4.6 Model-view-controller Pattern
AsM UI implementation is loosely based on the model-view-controller (MVC) design
pattern described in [10]. It is not a matter of conscious choice, because at the time

41

of AsM implementation, the author was not familiar with MVC pattern yet;
nonetheless, it emerged in the code due to an ever-present effort to reduce the
complexity and to keep the code modular and extensible.

A part of AsM UI acting as the "model" (or back-end) is in fact just a layer
providing direct access to data retrieved from server and masking the retrieval
process (see Section 3.4.11 for more details). It does not have exclusive access to the
server, because it is not necessary for requests concerned with actions rather than
data retrieval. Those actions are preformed directly by the “controller”.

"Controller" and "view" parts of AsM UI are reasonably well decoupled, even
though the decoupling was not done with the MVC pattern in mind. Their separation
is clear even in the source code, because each of them is written using a very
different approach. View code is completely separated from the rest of AsM UI code-
base, because it consists of external library (jQuery UI) and an extension of it
through its widget factory (see the Widgets section for details). Controller, on the
other hand, uses classical hierarchy enabled by Base.js library, the same as the
model. For details on controller implementation, see Section 3.4.10.

Wiring of the three parts together is facilitated by events, which are further
discussed in the Events section.

3.4.7 Widgets
AsM UI implementation uses a combination of two different approaches. Most of it
is implemented using purely a classical hierarchy model and uses jQuery, which does
not follow such model at all, just as a DOM access layer and a communication layer.
In a similar fashion, jQuery UI is used as an extension to DOM element
functionality. However, part of AsM UI code falls into another category, which
directly extends jQuery UI using its “widget factory”. "Widgets" created this way are
not regular stand-alone classes, but rather direct functional and visual extensions for
regular DOM elements.

There are three kinds of extensions provided by widgets, extensions of properties,
extensions of methods, and visual enhancements. Visual enhancements are usually a
part of any widget. Property extensions are far more common than method
extensions.

Widgets implemented as a part of AsM UI depend only on jQuery, jQuery UI, and
sometimes on other simpler widgets. Therefore, they are fully reusable in other
projects. The reason for implementing them separately is to thoroughly separate the
display logic layer from the main application logic. In other words, widgets created
as a part of the AsM UI help the display layer to function as required, so that the rest
of the code can really focus on what should be displayed.

42

The list of selected widgets and the extensions they offer follows. Note that some
of them follow concepts described in the Presentation Elements section.

 Corner. Corner widget extends an element with a corner style property
reflecting (when used on a box element) which element corners are rounded.
The corner rounding in this context means the uniform corner rounding used
throughout the application with a common radius.

 Field. The Field widget greatly extends a basic form field by making its type
mutable, adding several new field types (e.g. check-box set or date), and
adding a lot of other properties based on behaviour requirements of the form
presentation element (see Section 3.4.3). It binds a field with its label, visually
enhances it, and adds mechanisms for value hinting and validation. Other
extensions include an option to make the field read-only and an option to use
an alternate "fancy" display mode for some field types (e.g. a check-box can be
displayed as a button switch). Fields are grouped together using the Fieldset
and Form widgets.

 Icon. Icon widget turns an element into an icon and extends it with an icon
type property specifying which icon it is.

 Stateful. The Stateful widget extends an element to support mouse clicking.
The element can be enhanced visually based on its state and handlers can be
assigned to its activation and deactivation events. It can also be assigned a
group of other stateful elements together with a group behaviour style (e.g.
single, which means that only one element of the group can be active at a
time).

 Table. The Table widget greatly extends a basic table both visually and by
adding sorting, filtering, and pagination capabilities, as well as an option to
add action buttons to its rows and to the table as a whole. A part of the action
button specifications is a handler function, which is launched when the button
is clicked, and which is supplied with the respective row data. Table widget is
an extension of a static table. Sorting, filtering, and pagination make use of
showing only certain rows and hiding the rest, so they are as fast as possible.
However, it means that all rows have to be initialized when the table is created,
which is a severe drawback for large tables. Moreover, all rows also have to be
initialized every time the table is updated with new data (in case of dynamic
tables). The Table widget could possibly be upgraded to enhance only the
currently displayed rows. For very large tables, partial data retrieval could also
come into play, but that would mean adding filtering and sorting capabilities
to the Core.

43

 Text cutter. Text cutter enhances an element containing (formatted) text
with the capability to show only its beginning and to show/hide the rest by
clicking a special mark added after the text.

3.4.8 User Session
The Core uses user sessions as the way to provide secure access to its features. To
assure this, the UI has not only to provide login/logout option but also to handle
other user session aspects, namely its automatic expiration and the access
restrictions based on permissions associated with the user account.

Automatic expiration of a user session decreases security risks, but it is not very
practical for users, because the session may expire while users are performing some
of the more time-demanding tasks, e.g. writing a full description of a more complex
problem. Additional mechanisms would have to be implemented for letting a user
re-log without losing unfinished work and even then it would not be very
convenient. Other extreme would be refreshing the session automatically before it
expires, which would be in conflict with the purpose of automatic expiration. AsM
UI uses a third approach; it keeps automatically refreshing the session as long as it is
actively used. This basically means extending the "refresh session on every
successful action" principle, present in the Core, to the UI as well. A UI action is
either a mouse movement or a keyboard key press while the application is focused.

Access restrictions in the UI have to reflect the possibility of having user types
with various combinations of user permissions based on the deployment context.
Retaining such modularity makes it impossible to hand-craft the UI layout and
content specifically for every possible user role, which is otherwise a feasible option
for systems with just a few distinct user roles. Also, it is necessary to disable
interaction with UI parts connected with unavailable tasks, namely to disable
navigation items leading to inaccessible pages, or to hide these parts entirely. Both
approaches have their benefits. Disabling keeps users informed about the full
application functionality even if they cannot access some of it at the time, while
hiding reduces the clutter. Because the AsM user-base will always consist mostly of
students, i.e. users with very few permissions, hiding is the obvious choice in this
case. Hiding permeates both levels of navigation; the navigation group header is
hidden if all of the items in that group are hidden.

3.4.9 Navigation and Browser History
Navigation in AsM UI is not just restricted to using navigation menu or a few of the
action buttons in select tables. AsM UI is a web application running in a web
browser, which means that its users may well expect it to act like a static web page

44

and respond to browser controls Back and Forward. In other words, it should be
possible to navigate it using the browser “history” (or through the address bar).

The address bar navigation is trivial for regular web pages that are served by the
web server depending on the URL19 entered into the address bar. In contrast, a
JavaScript web application, such as AsM UI, is served just once by the server. After
that its interaction with the server (even content retrieval) takes place in the
background, hidden from the user. While the application is running, sending a new
URL to the server using the address bar would stop the application and load new
content into the browser window/tab. However, there is an optional part of URL
called fragment identifier (or "hash"), which is not sent to the server with the rest
and which can therefore be changed without triggering a server request (see [11]).

Fragment identifiers are used by regular web pages to point the user to a specific
part of the currently loaded page (e.g. chapter, section, picture). AsM UI uses them
in a similar fashion, only in this case the page content is dynamic, making it
impossible to just let the browser point the user to the appropriate part of the
content. Instead, the UI keeps an active lookout for hash changes and reacts to them
by rendering the content corresponding to the current hash value. This makes it
possible to use the browser buttons Back and Forward or to navigate the application
directly using the browser address bar.

Using the hash for navigation has one caveat. Unlike a static web page, where the
hash is simply an address of a point on the page, the addressing in dynamic web
application means, in a sense and to some extent, describing the state of the
application. Navigation complexity depends on the complexity of the address space.
Therefore, AsM UI chooses to impose the following limits for its navigation and
content.

1. At any time there is exactly one "content area" in the whole display area (a.k.a.
viewport) and only the content in that area is addressed. The left menu in user
session layout is a slight exception to this, as its selection reflects the current
address even though it is not a part of the content area itself.

2. An address consists of one or more parts separated by hash signs, ordered
from the left to the right by decreasing importance. Each part but the leftmost
is a further specification of the address formed by the parts to its left.

Address change handling is closely connected to the component hierarchy of the UI
and it is described in the following section, Display Components. Invalid addresses
are stripped of the invalid parts from the right until the remaining fragment is a
valid address and then they are replaced with that fragment, so they do not even
remain in the browser history. The addresses of content pages unavailable to the
user because of insufficient user permissions are considered invalid.

19 Uniform Resource Locator (URL) is an address of an Internet resource, e.g. web page,
image, or script (see [27]).

45

AsM UI uses the hash navigation only in its simplest form. Possible
enhancements include assigning titles to the components so that the use of the
application would leave a history, that could be used for jumping directly to a certain
content page. This would also make creating bookmarks of a specific content page
more convenient; however, that would require an accompanying mechanism for
remembering the requested address through the login process. Another possible
enhancement would be the ability to lock the hash navigation while the access to
other navigation controls (i.e. menu, action buttons) is disabled (e.g. while showing
a modal dialog window).

3.4.10 Display Components
The main application logic of the AsM UI consists of the communication with the
Core and generation and display of the UI content. In the context of the whole AsM
project, AsM UI is the front-end and AsM Core is the back-end. The same distinction
can be made in the AsM UI context, with content generation and display being the
front-end, and data retrieval and storage being the back-end. The front-end is clearly
separated from the back-end and it uses its global "data stores" to get the needed
data regardless of how they got there (see Section 3.4.11 for more details). This
section broadly describes the implementation of AsM UI front-end.

The AsM UI front-end consists predominantly of "components". Components are
classes with common ancestor Panel, that take over a certain DOM element and
using it as a container for the content managed by them. There are two distinct types
of components, “containers” and “content components”, which can be visualized as
the inner nodes and the leaves of the component hierarchy tree, respectively. The
containers cannot manage any content directly, but instead they contain children
components and manage sharing of their assigned display space between those
children. The content components, as their name suggest, contain the real UI
content.

All components share a handful of common properties and behavior patterns
defined by their common ancestor. They are eventful (a.k.a. observable, see Section
3.4.12 for details) and use their hierarchy as the event hierarchy. They have two
layers of configuration, the base configuration supplied to the constructor and
additional "display parameters" passed to content display/adjustment methods.
Most importantly, they share a common two-part display model, which separates
content "showing" and "adjusting". Content showing is the creation of the base
content independent on display parameters while content adjusting is the
modification of the base content to reflect the display parameters. This helps to
separate building of the static and dynamic parts of the content and thus to avoid
repetitive building of the same static content (e.g. forms do not need to be rebuilt
every time they are to be filled with new values).

46

The Container class extends the functionality described above not only with its
signature ability to have children but also with common handling of display
parameters, which makes it possible to control the component hierarchy with the
hash navigation (see Navigation and Browser History). The base container is
designed to be completely transparent. It passes commands and display parameters
directly to its children. The navigation is really connected to the component
hierarchy in its descendant, ContentSwitcher, which uses the first of its display
parameters to select one of its children to be displayed and passes the rest of the
parameters to that child.

The ContentPanel class (base for the content components) extends the base
component functionality by going one step further and separating content building
from its display and adding an option to cache the content, so that it does not need
to be rebuilt when being repeatedly hidden and shown. It also provides a way to
disable access to the content (see the Loading overlay in Section 3.4.1), which can be
used while the content is being built. Its descendant DynamicContentPanel, the
ancestor of almost all of the content components used throughout the application,
goes even further by introducing an additional step, called “initializaton”, into the
content showing process. In this context, initialization means the retrieval of needed
data from the UI back-end and generation of the content based on that data.
Disabling access to the content is stretched to cover the initialization period as well.

3.4.11 Data Retrieval and Storage
AsM UI back-end manages the retrieval of data from the Core using jQuery as a
cross-browser connection layer. Retrieved data are stored in "stores", which are
global instances of classes with a common ancestor, Store. UI front-end interacts
solely with the stores, leaving the underlying data management to the back-end.
Apart from data retrieval, the front-end also manages flagging stores as expired
based on user's actions.

A store provides a way to store the results of a specific Core request and to
decouple data retrieval from data usage. It contains various features designed to
prevent redundant requests or UI rebuilds. It uses a timed caching mechanism
implemented separately to refresh itself (reload data) only if the age of contained
data exceeds certain threshold, so parallel data retrieval by multiple UI components
does not lead to redundant Core requests. Caching can be influenced in two slightly
different ways - manual refresh and expiration flagging. Refreshing a store manually
bypasses the caching completely and causes an immediate data reload. The store
refresh method can be used in the same manner as the common data retrieval
method in cases where no caching is required. Flagging the store as expired does not
have any immediate consequences, but it causes the store to be refreshed the next
time anyone tries to retrieve data from it.

47

Stores are designed to be used as read-only to avoid code duplication and possible
inconsistencies. When a certain action (e.g. entity removal) impacts the validity of
the data contained in a certain store, a proper course of action is to flag that store as
expired. Stores are eventful (see Section 3.4.12), so their updates and/or expiration
can be observed and acted upon. For example, when a store used by a currently
displayed UI component expires, that component may refresh the store (and
subsequently itself) right away to keep the display up-to-date.

Last feature of stores is their ability to refresh automatically upon expiration
(cache time-out as well as manual expiration). The automatic refresh is very useful
when a store is being used by a currently active UI component. However, frequent
component rebuilds based on store reloads would not be very convenient for users,
especially when the store refresh does not necessarily mean data change. For that
reason, stores contain an additional mechanism called "revisions". A store contains a
numeric property revision, that is increased only when the newly loaded data
actually differs from previously stored data. A store triggers a change event only
when its revision number increases, which makes it possible to refresh the store
often (possibly automatically) and, at the same time, to rebuild the UI only when it is
really necessary.

3.4.12 Events
Event-driven interaction between classes is an important part of AsM UI
implementation. The idea of events is based on DOM events, which constitute the
means of binding JavaScript handlers to user interaction with a web page. jQuery
further enhances these events by adding more convenient ways of their handling as
well as an option to create completely new custom events. However, jQuery custom
events are still bound to DOM elements and bubble up the DOM tree. Events in AsM
UI (further called just “events”) take this concept and apply it to any JavaScript class
(see the beginning of this chapter for details on how classical hierarchy is added to
JavaScript).

Before describing how the event model works, an excursion needs to be made
about a concept called “mix-ins”, which is used in the AsM UI implementation, but
which does not fit into a classical hierarchy model. Mix-ins allow a partial multiple
class inheritance. While full multiple inheritance is not feasible (a class can have
only a single constructor, etc.), it can be used with some restrictions for impressive
results. A mix-in class must not have a constructor and its properties should follow
especially established naming conventions so that the risk of overwriting other
classes' properties would be minimal. Its purpose is not to be instantiated directly,
but to be "mixed into" other classes instead, thus extending them with a specific
behaviour. Mix-in concept is very useful for implementing behaviour patterns
common to multiple classes without needing them to descend from a class with that

48

behaviour pattern implementation. This enables to include multiple behaviour
patterns in a single class independently, which is impossible in the classical
inheritance model.

A mix-in most widely used throughout the AsM UI is the Eventful class, which
extends classes with an ability to trigger events similar to those used by DOM
elements. Events can be observed and acted upon in a similar fashion (event
handlers are bound to the class instance and event name to be automatically run
when an event with that name is triggered by the instance). Events can be triggered
with arguments which specify the nature of the event and which are passed to all
event handlers. Instances of eventful classes may be assigned a parent (in event
hierarchy) to make all events bubble up to that parent. Events bubble up to the
parent only after being handled by the immediate instance handlers, which have the
option to stop event propagation much as it is possible with DOM events. Multiple
handlers can be bound to the same event and the bound handlers can be unbound
again.

Eventful mix-in is a practical implementation of the Observer design pattern
described in [12] and allows to wire together model, view, and controller parts of the
AsM UI while avoiding pitfalls of the tight coupling.

3.4.13 Error Reporting
Error reporting constitutes a small separate part of AsM UI. It is divided into four
parts: error wrapping, management, display, and logging. To enforce common error
structure, a wrapper class is provided and it or its descendants are used to wrap all
errors. Error wrapper structure does not reflect AsM Core error structure, because
the UI has very different needs where errors are concerned. Every error in UI
consists of error message, severity, time-stamp, a "reported" flag, and optionally a
list of additional details (providing implicit extensibility). Specialized error wrapper
descendants are provided for most commonly encountered errors, namely
connection errors and Core errors. The Core errors are transformed by having their
cause, effect, and details squeezed into a single string with unified formatting and
their severity mapped onto a less granular UI error severity scale.

Regardless of their real source, errors in AsM UI take the form of error events
originating in a UI component. Error event triggering mechanism is common to all
components (it is implemented in their common ancestor) and it includes wrapping
of those errors, that are not wrapped already. Because UI components create a tree
structure used for event hierarchy as well, it is possible to catch errors originating in
a specific part of the UI by observing its root component. Catching and logging of
errors (and possibly their display) is a task for "error manager" classes. Design of the
error managers (and error wrappers to certain extent) is based on the following
requirements.

49

1. Errors should be displayed close to their source. Therefore it should be
possible to handle the display of errors originating in different parts of UI
separately.

2. A single error should not be displayed repeatedly.

3. There should be a way to view all errors that occurred in the UI on demand,
regardless of their point of origin.

Based on the above requirements, error managers contain different logic for logging
and displaying of errors added to (caught by) them. Additionally, error wrappers
contain a "reported" flag, which helps to ensure that each error is displayed just
once. Stopping the event's propagation could be used for the same purpose, but
using a separate flag allows simple creation of a log containing all errors by catching
errors at the root of the component tree (AsM UI makes use of this technique and
allows viewing of the error log on a separate page). The default behaviour of an error
manager is to observe its assigned component, to log all observed errors, to display
those of them which are not yet flagged as reported, and to flag them as reported.

The base error manager class does not implement error display at all, just a
notion of having a set of "currently displayed" errors, to which all new errors to be
displayed are added. Descendant classes implement their own methods of error
display and hiding. AsM UI contains two such descendants, PanelErrorManager and
DialogErrorManager, which use a set of panels and a sequence of dialogs,
respectively, to report errors. While using dialogs for error reporting is quite
straightforward, it is also very disruptive to user's work. Therefore, the use of panels
is preferred throughout the application. The panels have additional features such as
auto-hiding after certain time supplemented by the ability to be "pinned” to the
screen (preventing auto-hiding) or to be closed manually. Both panels and dialog
windows can be highlighted to indicate error severity.

3.5 Plug-ins
Plug-ins for the correction of solutions make up the third part of the AsM
application. The AsM project contains six full-fledged plug-ins, but they are not
interesting with regard to this paper, because they are narrowly focused on the
correction of some very specific problems (see [18]). Rather than describing the
individual plug-ins, this section is concerned with the AsM plug-in specifications,
communication between the Core and plug-ins, and the PHP Plugin Framework
included in AsM.

The author's work also includes a project concerned with facilitating Java plug-in
creation, called ASM Plugin Framework. It is distributed separately from the AsM
and therefore it is not further discussed in this paper (it is fully documented in [13]).

50

It is, however, built on the same basic principles as the PHP Plugin Framework
discussed at the end of this section.

3.5.1 Tasks
Each AsM plug-in needs to do the following tasks during its every run.

 Unpack a ZIP archive with the solution files to be able to access those files.

 Set up the “criteria” to be used for judging the solution.

 For every criterion, check the files of interest in the supplied solution and
determine, how much they fulfill the criterion.

 Optionally, process some of the input files to produce other files (a.k.a. plug-in
output). Pack the output files into a single ZIP archive.

 Clean up all temporary files (unpacked solution files, output files).

 Return a response with information about the fulfilment of the plug-in criteria
(including descriptions of all found mistakes). If an error occurred during the
plug-in run, return the error info instead.

As described above, every plug-in must have a set of criteria, which reflect the
requirements imposed on the solutions. Adherence to each of the criteria must be
judged and reported separately. Judging of each criterion results in the following
information: an indication of whether the criterion is “passed”, a “fulfilment”
percentage, and the “details”. The first two properties are not automatically bound
together, i.e. a criterion may be flagged as passed even when it is not fulfilled
completely. If the criterion is not fulfilled completely, all found mistakes must be
accurately described in the details.

3.5.2 Plug-in Format
An AsM plug-in needs to have a very specific format to be accepted by the AsM Core.
All of the plug-in files need to be packed in a single ZIP archive together with a
special "manifest" file (see below). A plug-in is unpacked (with the folder structure
being preserved) as soon as it is added to the Core and the information contained in
the manifest is used to determine how to use it. A plug-in cannot be added to the
application, if its manifest file is not well-formed or if it does not contain the
required data.

A plug-in manifest is a XML file manifest.xml, which is located in the plug-in
root folder (i.e. the root folder of the ZIP archive). It uses the following format:

<?xml version="1.0" standalone="yes"?>

51

<plug-in-manifest>
 <mainFile>MAIN_FILE_PATH</mainFile>
 <type>TYPE</type>
 <description>DESCRIPTION</description>
 <arguments>
 <argument>ARGUMENT_DESCRIPTION</argument>
 ... <!-- more arguments -->
 </arguments>
</plug-in-manifest>

where TYPE is a plug-in type (see below), MAIN_FILE_PATH is a path to the main plug-
in file (relative to the plug-in root folder), DESCRIPTION is a plug-in description (the
names and specifications of the required input files, etc.), the <arguments> tag is
optional, and ARGUMENT_DESCRIPTION is a short argument description. Arguments
must be listed in the order in which they are accepted by the plug-in.

A plugin type is based on the type of the main plug-in file (the one that is able to
be run by the AsM Core). The Core accepts three plug-in types: php, java, and exe,
which stand for PHP, Java, and native executable plug-ins respectively. At the first
glance, the last type is the least restrictive, because there are many ways to create a
native executable. However, it is not a cross-OS solution, which may impact re-
usability of the plug-in. Both PHP and Java plug-ins use their specific programming
language, but they are interpreted independently on the OS; therefore, they are more
portable.

While the Java plug-ins and the native executables are launched from the
command-line and act like stand-alone programs, PHP plug-ins use a different
approach. The main file of a PHP plug-in must contain a class descended from the
Plugin class included in the PHP Plugin Framework (see Section 3.5.4). The Plugin
class implements all the technical tasks required from every plug-in, so the
individual plug-ins only need to contain the main correction logic.

3.5.3 Communication Contract
Every plug-in's contract (i.e. the accepted input and the returned output) needs to
adhere to the specifications described in this section, so that it could be properly
launched by AsM Core. The first restriction is that every plug-in needs to accept a
path to a solution archive as its first argument.

There are no restrictions placed on the other arguments accepted by plug-ins but
every accepted argument must have a corresponding entry in the plug-in manifest.
Argument descriptions in the plug-in manifest are necessary because the AsM Core
needs to be able to inform its users about them. The argument values supplied by
users are guaranteed to be passed on to the plug-in only for the arguments described

52

in the manifest. Plugin arguments allow for greater flexibility through abstraction
instead of creating a separate plug-in for every problem. The flexibility could be
further enhanced by allowing the use of multiple plug-ins for correction of a single
solution, but it would notably increase the complexity. A similar result can be
achieved by sufficient abstraction in the plug-in code and by subsequent code reuse.

Unlike plug-in arguments, the plug-in results (i.e. the values returned by plug-
ins) need to follow very strict formatting rules. These rules are based on the criterion
model (see Section 3.5.1), but they differ largely based on the plug-in type. PHP
plug-ins need to return an instance of the PluginResponse class, which is used as a
plug-in response parser and wrapper by the Core. Fortunately, the response
management is implemented as a part of the base Plugin class, so the PHP plug-in
developers do not need to concern themselves with the output formatting at all.
Plug-ins of other types need to return a XML string with one of the following
structures, depending on the nature of the response. If a plug-in finishes
successfully, it needs to use the following response structure:

<?xml version="1.0" standalone="yes"?>
<plug-in-reply>
 <output>
 <file>OUTPUT_FILE_PATH</file>
 </output>
 <criterion name="CRITERION_NAME">
 <passed>PASSED</passed>
 <fulfillment>FULFILLMENT</fulfillment>
 <details>DETAILS</details>
 </criterion>
 ... <!-- more criteria -->
</plug-in-reply>

where the <output> tag is optional, CRITERION_NAME is unique (in context of the
response), PASSED is either "true" or "false", FULFILLMENT is a number from 0 to 100,
and DETAILS is a string of arbitrary length. If a plug-in finishes with an error, it
needs to use a simpler response structure:

<?xml version="1.0" standalone="yes"?>
<plug-in-reply>
 <error>ERROR</error>
</plug-in-reply>

where ERROR is a string containing the detailed error message.

53

3.5.4 PHP Plugin Framework
PHP Plugin Framework is a set of PHP classes distributed together with the AsM
Core, which provides a solid base for the development of AsM plug-ins in PHP. The
benefits provided by it can be divided into three parts: the implementation of the
common plug-in logic, a "test" model aimedtheat decoupling the input processing
from the correction, and the set of utility functions.

The part of the PHP Plugin Framework implementing the common plug-in logic
is not only a asset, but it is also a restriction, because its use is compulsory for all
PHP plug-ins This allows for close integration of PHP plug-ins into the AsM Core
without a need for an additional interface layer. Since the common logic is quite
straightforward and it would have to be implemented by every plug-in anyway, this
restriction is not of any importance. The benefits of the framework, on the other
hand, are unquestionable, because the framework allows the individual plug-ins to
focus on implementing their main correction logic without being distracted by the
unrelated tasks of technical nature. A PHP plug-in just needs to implement its
correction logic as an override of a particular abstract method and to use the
criterion handling, output saving, and error reporting methods of its ancestor to save
the results. Everything else including the unpacking of the solution archive, error
handling, output packing, clean-up, and returning well-formatted results, is taken
care of. See the developer documentation on the attached CD for more
implementation details.

There is a second part of the PHP Plugin Framework, which is not compulsory for
plug-in developers. It establishes a specific model of solution processing and
correction, which allows to keep these two tasks separated and thus increase code
re-usability. The impulse for the development of such model is a simple realization,
that even with an inventive use of arguments, the code of a plug-in can never be
really reusable, because it needs to be specialized for a very specific problem (or a set
of problems at best). While the correction is connected to a specific problem, most of
the solution processing could be reusable if it was separated correctly. This idea led
to the creation of the "test" model.

The first concept of plug-in tests had been to have a lot of small separate tests for
all processing tasks that need to be done. However, it soon became apparent that the
processing tasks tend to form groups based on common prerequisites (e.g. parsing of
the same input file). This led to the emergence of a more complex test concept. A
test, as implemented in the Test class of the PHP Plugin Framework, is a set of
"goals", which can be reached or failed. It is run with a set of parameters, containing
at least the paths of files to be processed. Using tests to group the tasks related
implementation-wise, while using plug-ins to group the tasks related problem-wise,
is a good way to separate the problem-specific code and keep the rest as reusable as
possible. The Test class included in PHP Plugin Framework is useful by providing

54

goal management, precision error reporting tools, and a few other convenience
enhancements.

The last advantage of choosing PHP as a platform for plug-in development, is the
access to utility classes and functions implemented as a part of the AsM Core. These
include various convenient methods not included in PHP itself, such as simplified
custom array sorting, filtering, and mapping, or ZIP (de)compression of whole
directories. For the full list of available utility enhancements, see the developer
documentation on the attached CD.

3.6 Installer
The AsM Installer was not a part of the first version of the AsM project. It was added
as an afterthought, and it is completely separated from the other parts. It is a web-
based “wizard”20, which guides the administrator through the initial configuration of
AsM or through an upgrade to a newer version. There are two reasons for adding the
Installer to the application. First of them is an upgrade capability and the second
one is usability. Upgrading AsM without such a tool would be a very trying task as it
may require for example a direct adjustment of the database. If done incorrectly,
such adjustment could have catastrophic results. The initial configuration of AsM
Core could be done without the Installer by editing the configuration file manually,
but using the Installer for this task allows to add features like guessing and
validation of certain configuration option values, e.g. locations of PHP and Java
command-line interpreters.

The Installer is written in XHTML and PHP, but its code-base is not in any way
connected with AsM Core. It uses the redirection module of the Apache server to
present itself in place of the AsM UI as long as the initial configuration is not
successfully finished and every time when the administrator attempts to upgrade
AsM. The same redirection module is used to hide the Installer after it has finished
and to provide access to the UI and Core instead. It is not possible to switch between
the AsM UI and the Installer on demand.

This section briefly describes the implementation of the install and upgrade
procedures in AsM. The implementation of the Installer itself is trivial, it is only a set
of web pages using PHP as the server-side scripting language; therefore, it is not
explored further.

20 A “wizard” in this context means a sequence of steps (pages, forms) shown one at a time
to help the user complete a certain complicated task.

55

3.6.1 Install
The AsM install procedure is not as sophisticated as the procedures employed by
many other contemporary software products because its enhancements are not cost-
effective, i.e. they do not impact main application functionality. The installation of
AsM on a web server consists of copying the folder with the source files into an
accessible location, slightly altering the web server configuration if necessary, and
installing a set of PHP library modules (see Section 4.2 for details).

The implemented Installer is not a real installer concerned with the procedure
described above. It is just a tool designed to help with the initial configuration of the
AsM, which requires the configuration to function properly (see Section 3.3.14 for
details). Its purpose is to gather the initial configuration values from the user and to
use them to create the configuration file and to initialize the database. Apart from
being used to store the configuration, the configuration file serves as an indicator of
that the application is/is not properly initialized.

After the initialization is completed, the Installer moves on to the upgrade
procedure described below.

3.6.2 Upgrade
Upgrading AsM is similar to its installation, but it is far less complicated. An
upgrade is started simply by copying a new set of the source files over the old ones.
This rewrites the file with redirection rules and thus puts the application into the
install mode again, i.e. it starts showing the Installer instead of the UI. If the
application is already initialized, the Installer skips the initialization procedure
described above and continues directly to the upgrade.

The upgrade process consists in the application of patches. A patch is a set of
changes that need to be performed on the application parts except for the source
files in order to reflect the source file changes. Most commonly, this means a change
(or extension) of the database structure. A patch can either be a set of MySQL
queries that perform the changes of the database, or it can be a full-fledged patch
script. Patches are versioned so that the Installer could automatically apply the
necessary changes in the correct order.

The upgrade is irreversible, because making it reversible would require
substantial amount of programming unrelated to the main AsM functionality.

56

3.7 Documentation
Any source code that should be easily modifiable (extensible) needs to be
documented. For a project as large as AsM, the code documentation is not sufficient;
more accessible documentation has to be available as well. A common way to
provide such documentation is to automatically generate the developer
documentation from a specifically formatted code documentation. However, every
programming language is different; therefore, many of them have their own
formatting rules and documentation tools. This section describes the tools used by
the AsM project to generate common developer documentation for the whole
project.

AsM project is composed of parts written in different programming languages,
mostly in PHP and JavaScript. PHP has a formal code documentation standard,
PHPDoc, which is described in [14]. It not only allows to generate a separate
documentation using external tools such as phpDocumentor, but it also lets IDEs21
provide various convenient features, e.g. code completion. JavaScript, being a very
different programming language altogether, has no such standard. While it would be
possible to generate separate documentation for each part of the AsM project (the
Core and the UI being the most important), it would be quite restrictive, e.g. cross-
referencing between parts would become a problem. Additionally, using different
tools for each part would require spending additional time studying how to use those
tools. Instead, a decision was made to use a single tool for generating documentation
for the whole project, providing that there is one which meets the following
requirements.

 PHP documentation format should resemble PHPDoc format, so that the IDEs
could understand it as such.

 There should be little or no difference between the JavaScript and PHP code
documentation formatting.

 Modification of the tool for this purpose should be less costly, i.e. time-
consuming, than creation and maintenance of documentation in two different
formats.

The tool selected on the basis of these requirements, Doxygen, is the most widely
used source code documentation tool nowadays. It supports a wide range of
programming languages and it is highly customizable. Doxygen formatting can be
customized to resemble PHPDoc formatting enough to pass for one (see [15]).
Unfortunately, JavaScript is not supported by Doxygen, because in general, the
JavaScript code has very loose structure. To remedy this, the AsM project includes a
21 Integrated Development Environment (IDE) is an application providing a comprehensive

set of tools for software developers, including a source code editor, a compiler, and a
debugger. Commonly used IDEs include NetBeans, Microsoft Visual Studio, or Eclipse.

57

script for turning both the classical JavaScript code and widget factory code (see
Section 3.4 for details) to a pseudo-C# code understood by Doxygen. Formatting
accepted by this pre-processing script is identical to the PHP code documentation
formatting, except for a few details, e.g. @tparam is used for adding types to the
method arguments, instead of @param.

Having a common documentation for the whole project could quickly make it
incomprehensible with the increasing project size. To prevent this, a combination of
two mechanisms is used. On the top level, the documentation is separated into
"modules" (Doxygen constructs). Each module has its own documentation page
explaining its purpose and basic functionality. Entities such as namespaces or
classes can be linked to modules. The second mechanism is a coordinated use of
namespaces across the whole project. A common namespace asm is used for the
whole project (except for widgets) and the second namespace level is used to
distinguish parts of the project and link them to modules.

By virtue of Doxygen's extensive set of features, the main page with project
description is a part of the documentation as well as the whole User manual. This
makes it possible to publish all project documentation together and to maintain it
very easily.

58

4. How to Use he Assignment
Manager

Assignment Manager UI is focused on establishing high standard of usability while
staying flexible and extensible. This chapter starts with the User Roles section,
which describes how these conflicting goals are achieved. The next section,
Installation and Configuration, deals with the deployment of the AsM. Finally, the
rest of the chapter describes how to use the AsM UI to perform the tasks provided by
the AsM.

AsM UI uses powerful tools to achieve high usability: simplicity and uniformity. It
uses just a few control and presentation elements to provide all of its functionality.
The level of the uniformity is so high that learning to use AsM UI requires first of all
that the user should cope with these few control elements. Therefore, it is more
reasonable to describe how to use the control elements, and then to add a few details
that are particular to individual tasks, rather than to describe all tasks in full detail.
For this reason, the sections concerned with using AsM UI were divided into two
groups. The first group describes the UI in general. It consists of the following
sections: User Interface Layout, Control Elements, and Error Reporting. The former
two are particularly important and using the UI after reading those two sections
should be very intuitive. The second group consists of just one section, How to ...,
containing all details useful for the users who are still unsure about a certain task.

4.1 User Roles
Accessing any AsM feature requires a user account. Every user account has a set of
permissions bound to it, which defines the features available while using that
account. The sets of permissions are called "user types" and they are defined
separately to make it easier to manage permissions of whole groups of users. To
retain maximum possible flexibility, AsM allows combining permissions into custom
sets. However, such flexibility alone would make it very difficult to start using the
application right away, so the AsM also provides a set of predefined user types,
which reflect the actors described in Section 1.1.2. They are administrator,
lecturer, tutor, and STUDENT. These four user types altogether provide access to all
application functionality but each of them provides an access only to the tasks
necessary for the respective role (see Figure 1.1 and Figure 1.2 for an overview of task
distribution between user roles).

User roles reflected by predefined user types do not only provide a way to let
users start using the application quickly and easily. They also provide a very intuitive

59

distribution of tasks into distinct groups. The same grouping of the tasks is used in
the last section of this chapter to help the reader to find any particular task very
quickly.

4.2 Installation and Configuration
AsM is a web-based application, which means that it needs to be installed on a web
server. Once installed properly, it is accessed over the local network or over the
Internet using a web browser. Using the application is quite simple even for users
with very little or no information technology (IT) background. However, the
installation requires certain experience with IT. It should not be performed without
some basic knowledge of the Apache web server, and the PHP server (extended by
PEAR).

4.2.1 Requirements
The requirements necessary for installing and running AsM are described below.

 Apache web server accessible to all potential users (either through the school's
local network or over the internet) running PHP version 5.3 or greater with
PEAR. The server needs to be correctly configured, as described below.

 MySQL server using MySQL version 5.0.1 or greater. AsM needs a valid user
account on the MySQL server with permissions to create a database and to
fully manage it.

 A standard-compliant web browser such as Mozilla Firefox, Opera, or Google
Chrome on a computer with the access to the web server mentioned above.

4.2.2 Installation
The installation (or upgrade) is partly manual and partly managed by the AsM
Installer. Use the following steps to install the application.

1. Extract the application files and folders to a folder located inside the
"document root" of your Apache web server (see [16]).

2. Ensure that the web server is correctly configured (.htaccess files are allowed
in the application folders and URL rewriting is enabled) by adding the
following configuration to the configuration file of the Apache server.

AccessFileName .htaccess
LoadModule rewrite_module /path/to/mod_rewrite.so
<Directory /application/folder/path/relative/to/document/root>

60

AllowOverride FileInfo
</Directory>

3. Ensure that the correct default time-zone is set for both PHP CGI and CLI (see
Runtime Configuration section of [6]):

date.timezone = Europe/Prague

(use your time-zone, set the same values for CGI and CLI).

4. Install the PEAR modules Mail and Net_SMTP (if they are not already
installed).

5. Ensure that the Apache server can create files and sub-folders in ./files,
create files in ./core, and write to .htaccess, where all the paths are relative
to the root folder of the extracted files.

6. Access the AsM Installer from your web browser by entering the following
address: http://WEB_SERVER_ADDRESS/APPLICATION_LOCATION/, where
WEB_SERVER_ADDRESS is the address (IP or domain name) of your web server,
and APPLICATION_LOCATION is the path to the folder where you extracted the
application (relative to the document root).

7. Follow the Installer wizard and fill in the appropriate data. The entered data
are saved to the configuration file and it is possible to modify them later. The
configuration file is described below.

8. Wait for the AsM UI to launch after the Installer has successfully finished.

9. Log in as administrator (username admin, password admin) and change your
administrator password.

4.2.3 Configuration
AsM is configured using a special configuration file ./core/config.ini, which can
be opened and edited in any text editor. It is an INI file with sections, as described in
[17]. Only the property values should be edited, while property names and section
names should never be changed. Neither the properties nor the sections should be
moved or added. Values should be enclosed in quotes and any quotes inside the
values should be escaped with backslash. The description of the individual sections
and properties follows.

 database - MySQL server properties

 host - server address

 user - username

 pass - password

61

 db - database name

 mail - SMTP server configuration

 host - SMTP server address

 user - username (leave blank for no authentication)

 pass - password (optional)

 from - value of the From e-mail header. Some SMTP servers require this to
be at least syntactically valid e-mail address to accept outgoing e-mails.

 bin - paths to used external programs

 phpCli - path to PHP interpreter for running PHP scripts from command-
line

 java - path to the Java interpreter for running Java plug-ins

 defaults

 submissionFileName - default name suggested when downloading a
submitted solution file

 pluginTestFileName - default name suggested when downloading a test
input file for a plug-in

 pluginOutputFileName - default name suggested when downloading a
plug-in output file

 roots

 web - absolute path of the web server document root (with trailing slash)

 app - path to the application root folder relative to the document root
(without leading slash, with trailing slash)

Only forward slashes should be used in paths, independently on the used operating
system. Editing the properties below the comment "DO NOT CHANGE
PROPERTIES BELOW" is discouraged, because it can have unexpected results
including severe data loss.

4.3 User Interface Layout
AsM UI uses two layouts, the "pre-login" and the "post-login" layout. The pre-login
layout is used just by the three content pages, which do not require login, and each
of which consists of a single form. Figure 4.1 shows these three pages as well as
navigation between them. A successful login leads to the post-login (main) layout.

62

Figure 4.1: Pre-login layout.

The main layout is shown in Figure 4.2. It consists of a top bar, a left menu, and a
content area. The top bar and the left menu take up just a little space on the edges of
the screen and the rest is reserved for the dynamic content. The right side of the top
bar allows the user to log out, leading him back to the login screen (in the pre-login
layout).

Figure 4.2: Main application layout.

The left menu consists of navigation links divided into groups. A menu group is
expanded by clicking its header. Only one group can be expanded at a time. Other
groups are collapsed, showing only their headers. Menu groups reflect the user roles
(see Section 4.1), so that each one contains the pages useful for a particular user role.

63

There are two exceptions to this rule. The first exception is the UI error log page in

the System group, which is accessible by all users regardless of their role. The second

exception is the last group, Settings, which also contains pages useful for all users.
See Figure 4.3 for an overview.

Figure 4.3: Navigation menu.

The content area is filled with content depending on the selected item in the left
menu. There is one additional page not accessible from the menu, namely the one
that is shown right after the login. It is a minimalistic dashboard, showing important
information related to current user's account (e.g. number of pending assignments
or point totals for subscribed groups) as well as a link to the AsM project
documentation. The dashboard can be accessed at any time by clicking the
application name on the top bar.

4.4 Control Elements
AsM UI is controlled by using just two control elements (apart from the left menu
described in the previous section), table and form. These two elements are extended
to provide all necessary functionality, as described below.

4.4.1 Table
The table element is used for data presentation. In addition to data perusal, it is
possible to interact with the table in the following ways (see Figure 4.4 for the
positions of all interaction elements mentioned below).

64

Figure 4.4: Table.

 Perform table-specific actions. A table can contain "global" and/or "row"
action buttons, which provide the main method of interaction. They are
labelled only with icons to avoid taking too much space, but hovering with a
mouse cursor over an action button displays the action's description. Clicking
the button performs the described action. Row action buttons are used to
perform actions on the respective rows (e.g. delete a user in the table of users).
Global action buttons perform actions related to the table but not actions
related to a specific row (e.g. create a new user).

 Collapse/expand table. The whole table can be collapsed (or expanded) by
clicking on its header. An empty table is automatically collapsed and cannot be
expanded.

 Expand/collapse cell content. If a cell contains an overlong text, only the
beginning of the text is shown. The rest can be shown (or hidden) by clicking a
small plus (or minus) sign in square brackets appended aside the value. All
cells in a single row can be expanded (or collapsed) at once by double-clicking
the row.

 Show table as multiple pages with X rows. To prevent tables from using
too much space, there is a row limit (page size) set for each table. If a table
exceeds that limit, its rows are divided into "pages". User can navigate pages
using "pagination controls" on the bottom of the table, which allow moving
one or five pages forward or backward or moving directly to the first or to the
last page. Page size can be changed at the bottom of the table as well.

 Sort rows by column. Clicking a column header will sort the table by the
values in that column in ascending order. Clicking the same header again
reverses the order. The latest sorting is indicated by a little triangle icon shown
inside the column header, pointed upwards (or downwards) to indicate
ascending (or descending) sorting.

 Filter rows. A table can be filtered to show only the rows satisfying certain
conditions. A filtering condition restricts values in a certain column by

65

comparing them to a specified value. Possible restrictions are "equal to" (==),
"greater than" (>), "less than" (<), "starting with" (^=), "ending with" ($=), and
“containing” (*=), where the last three cannot be used with numeric columns.
All of the restrictions can be inverted. Filtering is accomplished by creating a
filter for each condition. A filter is created as "active" and it is immediately
applied, but it can be deactivated again without being destroyed. Filtering
controls are located at the bottom of the table. Only two buttons are visible by
default, Filter overview and Remove all filters. The first button shows the
current number of active filters and the current number of all filters,
respectively. Clicking on it shows (or hides) the rest of the controls, i.e. a list of
filters and a filter creation tool. A filter is created with the filter creation tool
by selecting a column, optionally the “inversion flag” (!), and a comparison
type, filling in the value for comparison, and confirming the selection. The
created filter immediately shows up in the filter list. Any filter in the list can be
deactivated (or activated) by clicking it or removed by clicking the Remove

filter button next to it.

 “Pin” rows to screen. Any table row can be selected by a single click.
Selected row is highlighted and "pinned" to the screen, so that it is displayed
even after moving to a different table page or after applying a filter that would
otherwise hide it. The selected row can be deselected by another single click.
Multiple rows can be selected at a time.

4.4.2 Form
The form element is mostly used for modification of application entities (e.g. users,
assignments) or creation of new ones, but there are a few cases, where it has a
different purpose (e.g. as login or user account activation). The forms used in the
AsM UI have the following enhancements (see Figure 4.5 for details).

66

Figure 4.5: Form.

 Value hints. When entering a form, most of the fields have hints displayed
next to them. Hints provide the information needed to fill in the correct values.

 Instant validation. After a form field is edited and abandoned (the user
moves to the next field), its value is checked immediately and a feedback is
provided in one of the two possible forms. If the field is correctly filled in, a
check mark is displayed next to it. If the value is incorrect, the whole field is
highlighted as an error and a validation hint is displayed in place of the value
hint, describing how to correct the current value.

 Smart submit button. Form submit button is disabled as long as the value
of any field is invalid. Therefore, the user cannot submit incorrect data by
mistake.

The described enhancements empower users to fill in the appropriate data quickly
and correctly before submitting a form.

4.5 Error Reporting
Any errors that occur during the application run are displayed either in error panels
or in error dialog windows, depending on their importance and the current layout.
While in the pre-login layout (see Section 4.3), all errors are displayed in dialog
windows regardless of their importance. In the main layout, only the fatal errors are
displayed in dialog windows (see Figure 4.6); non-fatal errors are displayed in
panels (see Figure 4.7). Both styles of error reporting also include highlighting of
errors and adding icons to errors reflecting their importance.

67

Figure 4.6: Error dialog.

Figure 4.7: Error panels.

Dialog windows are displayed in the center of the screen. They are "modal",
preventing the access to the rest of the UI until they are closed. Error panels are
shown in the content area of the main layout above all other content. They are set to
fade away fifteen seconds after they appear, which can be either prevented by
"pinning" the error to the screen or hastened by closing the error manually. Pinning
the error to the screen does not suspend the timer, so if the error is unpinned again,
it is usually hidden immediately.

A log of all the errors that appeared during a single user session can be accessed
at any time to help with troubleshooting (see below).

4.6 How to ...
This section describes how to perform all basic tasks available in AsM UI. All tasks
require the user to be logged in first if not specifically told otherwise. After logging
in, the user usually needs to find the appropriate content page using the menu or the
top header. To keep the descriptions short, this step is described as "go to group >

page", where group is the group name shown at a menu group header and page is
the name of the menu item to be selected.

Other common steps include using the table action buttons or using the "editor"
pattern. Action buttons are labelled with icons and using them is described as "use
the action (icon) action", where action is the action description visible on mouse-

68

over, and icon is the icon name. See Figure 4.8 for a comprehensive list of icon
names used below. Editor pattern consists of using the "Edit entity" (or "Create
entity") action, filling in the displayed form, and submitting it to modify (or create) a
particular entity (e.g. user). The act of filling in and submitting the form is described
simply as "edit entity" (or "create entity").

Figure 4.8: Icon names.

The tasks described in this section are divided into five groups. The first group
includes all tasks not specific to any user role. The rest is grouped based on the
menu groups (i.e. based on the user roles).

4.6.1 Common Tasks
 Register a new user account.

1. Instead of logging in, click on the Register button on the login screen.

2. Fill in the registration form and submit it. Entering a working e-mail
address is essential.

3. Check your mailbox corresponding to the e-mail address you entered. When
you receive the activation e-mail, continue by activating the user account.

 Activate a user account.

1. Instead of logging in, click on Activate button on the login screen.

2. Enter the activation code received in the activation e-mail (see above) and
submit the form.

3. Registered user account is now active and it can be used to log in.

 Log out. Click the Logout button in the top right corner of the screen. If there

is no Logout button there, you are not logged in.

 Change the properties of your user account (full name, e-mail
address, or password). Go to Settings > Account settings, make the required
changes, and submit the form. The password is changed only if a new
password is entered.

69

 Change the appearance of the application. Go to Settings > User

interface and select one of the available application themes. The theme is
changed instantly without a need to submit the form. However, this preference
is bound to the currently used web browser on the currently used computer,
not to the user account, so it will persist if accessing AsM from a different
browser or computer.

 View errors that occured during the current session. Go to System > UI

error log and peruse the Error log table.

 Find the AsM project documentation. If not logged in, click the link in
the upper right corner of the screen. Otherwise, click the application name on
the top bar and find a link to the documentation in the last but one panel at the
bottom. If neither of these options work, try entering the following URL into
the address bar of your web browser: http://hon2a.wz.cz/asm/docs/.

 Access the dashboard. Click the application name on the top bar to show
the Home page. It shows some of the following information (based on user
role):

 solution rating totals for subscribed groups (student),

 number of pending assignments (student),

 number of uploaded solutions that are corrected but not yet confirmed
(student),

 number of solutions waiting to be rated (tutor),

 number of incoming subscription requests (tutor), and

 number of new errors in the system log since previous login
(administrator).

 Find out what needs to be done next. See "Access the dashboard" above.

 Go to a previously visited page. Use the browser buttons Back and

Forward browser buttons.

4.6.2 Student
 Subscribe to a homework group. Go to Student > Subscriptions and use the

add/request subscription (add) action in the Available subscriptions table.

 Open an assignment. Go to Student > Assignments and use the open

assignment (paper) action to view the assignment details.

70

http://hon2a.wz.cz/asm/docs/

 Submit a solution. Open an assignment (see above). It is possible to upload
the solution file using the form at the bottom of the page providing that no
other solution has been confirmed already and it is not past the deadline.
Submitting the form switches to the page with uploaded solutions.

 Confirm a solution. Go to Student > Submissions and use the confirm

submission (check) action. Only a corrected solution can be confirmed.
Confirming a solution marks it as ready for rating and prevents confirmation
of another solution to the same assignment.

 View solution rating. Go to Student > Submissions and check the Confirmed

submissions table. If the solution does not have a rating, it has not been rated
by the tutor yet.

 Unsubscribe from a homework group. Go to Student > Subscriptions and

use the cancel subscription (cross) action in Active and requested subscriptions

table.

 Download plug-in output based on an uploaded solution. Go to
Student > Submissions and use the download output (down arrow) action.

 Delete uploaded solution. Go to Student > Submissions and use the remove

submission (trash can) action. Confirmed solutions cannot be deleted.

4.6.3 Tutor
 Create a homework group. Go to Tutor > Groups, use the add group (thick

plus) action, and create the group. Before a group can be created, its parent
course has to exist. Marking a group as "public" means that any student will be
able to subscribe to it directly. Otherwise, students will have to request
permission to subscribe to the group.

 Allow (or deny) a request to subscribe to your private group. Go to
Tutor > Subscription requests to view all pending requests. Use the allow

subscription (check) or deny subscription (cross) to allow or deny the request,
respectively.

 Assign a problem to a homework group. Go to Tutor > Assignments, use

the add assignment (thick plus) action, and create the assignment. The
problem to be assigned is selected from the problems belonging to the
homework group's parent course.

 Rate a solution. Go to Tutor > Submissions, use the rate solution (tag) action,
select a rating, and submit the form.

71

 View student's ratings. Go to Tutor > User ratings. Ratings are shown in a
separate table for every homework group with students as rows and problems
as columns. Each table contains an additional column with the total rating.

 View assignments for a certain homework group. Go to Tutor > Groups

and use the show assignments for this group (calendar) action to view the table
of assignments filtered to show only the assignments belonging to that group.

 View ratings of students in a certain homework group. Go to Tutor >

Groups and use the show ratings of users in this group (person) action to view
the page with user ratings where all tables are collapsed except for the table
belonging to that group.

 Edit or delete a group. Go to Tutor > Groups. Use the edit group (pencil)

action and edit the group or use the remove group (trash can) action. Deleting
a group deletes all its assignments.

 Edit or delete an assignment. Go to Tutor > Assignments. Use the edit

assignment (pencil) action and edit the assignment or use the remove

assignment (trash can) action. Deleting an assignment deletes all solutions
submitted for this assignment.

4.6.4 Lecturer
 Create a lecture (course). Go to Lecturer > Lectures, use the add group

(thick plus) action, and create the lecture.

 Install a plug-in for automated correction. Go to Lecturer > Plugins, use

the add plugin (thick plus) action, and use the displayed form to upload the
plug-in. It is essential to test the plug-in before using it, because plug-ins
cannot be upgraded.

 Test a plug-in. Go to Lecturer > Plugin tests. Use the form on the bottom of
the page to upload the test input and start the test. Use the tables above the
form to keep track of the test and view results after the test is completed. Use
the download test input (up arrow) and download test output (down arrow)
actions to download the test input and plug-in output files, respectively.

 Create a problem. Go to Lecturer > Problems, use the add problem (thick
plus) action, and create the problem. Before a problem can be created, its
parent lecture has to exist. If a problem is supposed to use a plug-in for
automated correction, then the plug-in has to be installed as well.

72

 Upload an attachment. Go to Lecturer > Problems, use the add attachment

(thick plus) action, and create the attachment. Before an attachment can be
created, its parent lecture has to exist.

 Create a question. Go to Lecturer > Questions, use the add question (thick
plus) action, and create the question. Before a question can be created, its
parent lecture has to exist. If a question is supposed to use attachments, the
attachments have to be already uploaded as well.

 Create a test template. Go to Lecturer > Questions. Use the table filtering
and row selection to select the optional and mandatory questions, respectively.
Then fill in the test description and number of questions in the form below the
table and submit the form. Submitting the form switches to the page with test
templates. Note that the test description is used as a heading when printing
the generated tests.

 Generate a test. Go to Lecturer > Tests. Use the re-generate test (refresh)
action to generate a new test from a particular template. Note that the first test
is generated automatically when a template is created.

 Print a test. Go to Lecturer > Tests and use the print test (print) action to print
the test.

 View problems/questions/attachments/templates belonging to a
certain lecture. Go to Lecturer > Lectures and use the show problems/

questions/attachments/tests for this lecture (paper/dialog/contact/paper 2)
actions to view the tables of problems/questions/attachments/templates
filtered to show only the appropriate entities, respectively.

 Edit lecture description. Go to Lecturer > Lectures, use the edit lecture

(pencil) action and edit the lecture description.

 Edit a problem description or the configuration of the used plug-in.
Go to Lecturer > Problems, use the edit problem (pencil) action, and edit the
problem.

 Upload a new file for an existing attachment. Go to Lecturer >

Attachments, use the edit attachment (pencil) action, and edit the attachment.
The name of the attachment cannot be changed.

 Edit a question. Go to Lecturer > Questions, use the edit question (pencil)
action, and edit the question.

 Delete a lecture. Go to Lecturer > Lectures and use the remove lecture (trash
can) action. Deleting a lecture removes all data belonging to that lecture,
including problems, groups, assignments, and solutions.

73

 Delete a problem. Go to Lecturer > Problems and use the remove problem

(trash can). Deleting a problem deletes all assignments using that problem.

 Delete an attachment. Go to Lecturer > Attachments and use the remove

attachment (trash can) action. Deleting an attachment removes all questions
using that attachment.

 Delete a question. Go to Lecturer > Questions and use the remove question

(trash can) action. Deleting a question removes all templates using that
question.

 Delete a test template. Go to Lecturer > Tests and use the remove test (trash
can) action.

 Cancel running test or remove completed test results. Go to Lecturer >

Plugin tests and use the remove test (trash can) action.

4.6.5 System
 Create a user type. Go to System > User types, use the add user type (thick

plus) action, and create the user type by specifying the set of permissions.

 Create a user. Go to System > Users, use the add user (thick plus) action and
create the user.

 View system log. Go to System > System log and peruse the log table. Note

that the System log table may take long time to render.

 Edit or delete a user type. Go to System > User types. Use the edit user type

(pencil) action and edit the user type or use the remove user type (trash can)
action. Deleting a user type causes all users of that type to be assigned the
default user type STUDENT. Base user types STUDENT and ADMIN cannot be
deleted and the ADMIN type cannot be edited.

 Edit or delete a user. Go to System > Users. Use the edit user (pencil) action

and edit the user or use the remove user (trash can) action. Deleting a user
does not delete the entities owned by that user (e.g. lectures, groups).
However, it is currently impossible to set a new owner for them. The user
account with the username admin cannot be deleted and cannot have its user
type changed.

 Give a particular user certain permissions. Users cannot be given
permissions on individual basis, their permissions are determined by their
assigned user type. To change the user type of a particular user, edit that user
(see above).

74

4.7 Common Task Sequences
This section describes common work-flow patterns for all user roles.

4.7.1 Student
The first thing a student needs to do, is to subscribe to a homework group. After that
the usual student's work-flow is as follows.

1. Check the dashboard after every login to see if there are any pending
assignments.

2. If there is a pending assignment, find it in the table of assignments, view its
details, and create a solution.

3. Submit the solution and wait for its correction.

4. If the correction results fail to fulfill the expectations, delete the solution,
create another one, and go to the previous step. Otherwise confirm the
solution.

5. After some time, check the rating of the submitted solution (the tutor has to
rate it first).

4.7.2 Tutor
A tutor needs to create a homework group that can be subscribed to by students.
Then it is possible to assign problems to students in that group either all at once or
separately during the semester. Apart from that, the tutor needs to check the
dashboard regularly to see whether there are any pending subscription requests or
solutions to be handled. Subscription requests should be handled as a priority so
that the students would not miss any assignment deadlines. The rating of the
solutions does not have to be done immediately; however, all solutions should be
rated by the end of the semester.

4.7.3 Lecturer
At first, a lecturer has to create a lecture to be able to create problems or to generate
tests for that lecture. Problems as well as plug-ins needed by them can be added at
any time before they are to be assigned to the students. For test generation, a
lecturer has to create the test questions and optionally upload attachments to be
used by some of them. Only then can he create a test template and generate and
print tests based on that template. There are no repeated tasks that would require
handling by lecturers.

75

4.7.4 Administrator
An administrator has to create user accounts for lecturers and tutors (or just edit
their user accounts, if they registered themselves). He may periodically check the
dashboard for a notification about new system errors and view their details in the
system log if necessary.

76

5. Assignment Manager in the Wild
Based on very broad specifications, the implementation of Assignment Manager
took more than 1.5 years. Then it was released and tested for one semester on a
single course, XML Technologies, at MFF UK. During the development, quite a few
assumptions were made, which seemed perfectly obvious at the time from the
theoretical point of view. This chapter focuses on the differences between those
assumptions and the reality and on other information gathered during the live
testing.

5.1 Design for Reality
AsM development was heavily impacted by the fact that the main purpose of the
AsM project was to act as a school project and a basis for this work. The purpose of a
school project is to provide students with experience in developing a full-fledged
software product, which they may not have had previously (as it was in the author's
case). There are certain requirements imposed on the school projects to help the
students learn how to approach the development of such software product. The most
prominent requirement is the complete separation of the specification and
implementation phases, which should teach the student to perform an analysis and
to create specifications before starting the implementation. However, enforcing such
complete separation has certain drawbacks as well.

There is an important distinction between separating the specification phase in
the context of a single development cycle and separating it for the whole project. The
latter works under the assumption that the whole application can be correctly
designed beforehand and then implemented based on the completed design. This
assumption is not a problem as such but it becomes a problem when the project
development is supposed to be done by a single inexperienced developer. In this
particular case, the created specifications turned out to be both not specific enough,
allowing wide range of implementations, and too extensive, specifying much more
features than necessary. Especially the latter had a large impact on the project.

5.1.1 Users Real and Imaginary
AsM implementation was based on a generalized scenario describing the
management of homework assignments. This scenario used idealized actors
performing tasks at their level of responsibility and the implementation reflected
this by restricting users' access to the application accordingly. Additional restrictions
were added to promote fairness and transparency, e.g. the authors of solutions to be

77

rated were hidden and solution rating could not be changed. While this seemed
sensible during the specification and implementation phases, it proved objectionable
after the deployment.

The most important lesson resulting from the deployment of AsM is the discovery
that the users' priorities in the real world are different from their priorities in the
idealized scenario. Namely, the main drive behind the users' behavior seems to be
convenience. While the separation of the lecturer and the tutor reflects how creation
and assignment of homework problems work in reality, it proved to be meaningless
during the testing. In the observed case, it turned out to be most convenient for the
lecturer not to interact with the application at all, but delegate this task to the tutors
and interact with them instead. In addition, the tutors were given user accounts with
full privileges, again for the sake of convenience, so there was no need of the special
administrator role.

Over the testing period, even more restrictions had to be removed for the sake of
convenience. Rating solutions as anonymous turned out to be the most controversial
feature, because the tutors did not see any reason for it and wanted to be able to
communicate with individual authors of solutions before rating the solutions. Being
unable to change the rating of the solution after it was rated, was not appreaciated
either and had to be removed by a hot-fix because the tutors sometimes made a
mistake when rating a solution and needed a way to amend it.

The problems described above and others not mentioned arose from two
misconceptions. First, it was assumed that it was possible to design the application
by observing how the homework management works without such application and
attempting to simulate the same scenario within the application. With hindsight, the
problem with this approach is that adding the application to the scenario changes
the scenario completely. Rather than simulating the previous scenario, the
application needs to create a new one that is more convenient for all actors. Second,
it was assumed that it was possible to create the right design for the whole
application in advance and on one's own. Unfortunately, creating the design in
advance is unfortunately one of the constraints of a school project. Without this
constraint, it would be much better to apply an agile approach and to implement the
application iteratively based on user feedback. On the other hand, getting a
meaningful and representative user feedback repeatedly would pose the challenges
of its own.

Creating the design on one's own was not mandatory and it appeared to be
another step in the wrong direction. Instead, the first step of the design process
should have been to poll the potential users for opinions on what they would require
and/or expect from such application as AsM. It is essential for the developer to
recognize that he sees the application with different eyes than the potential user and
to have it in mind when he is asked to both design and develop the application.

78

5.2 Cost of Modularity and Complexity
Even during late phase of AsM development it became clear that the internal design
of AsM should have been focused on completely different features. Deploying AsM
for testing only further exposed this problem. The implementation of AsM had been
focused on modularity, on separating various application parts as much as possible
to allow extending or completely changing the individual parts. While this had
seemed like a good approach and the author had made a point of it both as an
exercise and out of misplaced perfectionism, quite the opposite proved true. Since
the AsM is ultimately only a school project, which is not very likely to ever reach a
wide audience and even less likely to be extended by other developers, the benefits of
modularity are doubtful. On the other hand, the cost of modularity turned out to be
very high.

While the modularity enables to perform certain substantial changes, e.g.
switching to a different database type, without much hassle, it makes all smaller
changes much more difficult. Adding a new feature almost always requires changes
on multiple levels separated from each other and extensions of interfaces between
them. For example, enabling to add a note to a solution when rating it would require
extending the database layout, applying this change in the abstract database layout
in the Core, changing or adding a database request, changing or adding a core
request, and extending the UI to reflect this change.

So it became apparent that the modularity should have been applied deliberately
and only where really necessary. By default, the implementation should have been as
simple as possible. Instead of aiming to create absolutely robust code, the focus
should have been put on other aspects, like the application's reliability. And again,
keeping it simple would be much easier using an iterative development pattern
rather than specifying everything in advance.

The arguments against modularity discussed above can be similarly applied to the
complexity of the scenario used as a model for AsM's functionality. Expanding the
scope of the model scenario to cover the homework management of a whole college
added a lot of complexity that was not really necessary. In this case, it is the
application design that should have been kept as simple as possible at the beginning
and extended iteratively. Unfortunately, due to the author's lack of experience or
lack of formal schooling in application design at the time of AsM creation, this was
an understandable mistake as well as a very expensive way to learn to keep the
design simple.

79

5.3 Testing and Reliability
The previous section explained why focusing on modularity was a bad idea
altogether. Its main results is that focusing on modularity made the author overlook
other aspects of the implementation, which later turned out to be significant. With
hindsight, the most notable of those were testing and reliability.

Developing software on one's own and without regular contact with users does
not force the developer to devote time to the creation of tests. As all the application
code is written by the same person, changes are made with full insight and a very
accurate notion of consequences. That makes it seem possible (with just a few rules
and a little discipline) to maintain application integrity by manually testing it after
each set of changes is made. However, as the project grows larger, the manual
testing gets progressively more difficult, which clearly shows a need for automated
testing. Automated testing would not only need time that was spent elsewhere (as
discussed above), but it would also need more detailed analysis and specifications so
that the units to be tested would have well-defined stable interfaces.

Live deployment showed that the need for more extensive testing is paramount,
because it is impossible to detect all bugs by manual testing, and because fixing the
bugs after the application has already been deployed is much more difficult.
Additionally, testing manually while creating hot-fixes for an already deployed
application puts even more strain on the developer, because it is essential to avoid
creating new bugs in the hot-fixes themselves. On the other hand, even the best unit
and integration tests cannot be 100% sure to reveal all problems either. Therefore, it
would be the best to also test the application on real users. This would need both an
iterative development pattern, allowing to release and to gather feedback after each
development cycle, as well as the set of willing application testers.

Automated testing is only one of the bases of application reliability. One of the
other important but often overlooked elements is the data safety. Any application
that is a sole owner and manager of valuable data should have backup capability to
prevent complete data loss in case of unforeseen circumstances, e.g. server failure.
Adding the backup capability to AsM would require more than only saving the
current state of the database. Certain files (at least plug-ins and confirmed but not
yet rated solutions) would have to be saved as well.

5.4 Dependencies and Maintenance
During its development, the AsM had been tested on a private local web server.
Having a web server fully dedicated to the application made it possible to make use
of its various features and add a few libraries, which made certain tasks unrelated to
the main application functionality possible or easier (e.g. sending e-mails or parsing

80

XML). The author's lack of experience with public projects led him to pay little
attention to the impact of adding such dependencies. An application designed for
users with no IT background, has to avoid having too many dependencies or to hide
them with automated installation process. AsM's installation process provides some
help by partially guessing and/or testing the configuration, but it does not cover the
necessary web server configuration and the installation of the required PEAR
libraries.

Another area that could be improved to better support the expected user-base is
the maintenance of the application. At the time of its deployment, AsM needed
active maintenance as the result of the lack of automated testing discussed in the
previous section. Since the application cannot be actively maintained by its author in
multiple instances, additional steps should be taken to completely remove the need
for regular maintenance.

Attempting to remove or hide dependencies and the need for maintenance is not
the only possible approach. AsM is designed to be usable in large scenarios (e.g. for
the whole school at once), which could give sufficient reason to have an IT specialist
maintaining it. Currently, the user manual contains sufficient information for such a
person to install the application. Additional documentation would have to be created
for all periodic maintenance tasks required from the AsM administrator.

5.5 Proposed Enhancements
The previous sections discuss some of the possible general enhancements for the
AsM. This section completes the chapter with an outline of a few potential specific
enhancements (features) that could also benefit AsM in its present state while being
smaller in scope. Some of the following enhancements were proposed by the AsM
users during the live deployment.

 Add "submission date" to the list of corrected solutions. Currently the
corrected solutions can be distinguished only by their success ratio and
correction results. This requires that users actively keep the number of
corrected solutions manageable by deleting the unsatisfactory ones. Adding
the date of submission would allow easy identification of solutions even when
there is a lot of them.

 Allow user-based column hiding in tables. This is an extension of the
previous enhancement. Instead of always providing users just with the data
that the author considered the most useful, AsM Core could provide all data
relevant to the query and the UI could let the users choose themselves which
data to display and which to hide. The current selection would remain as the
default.

81

 Allow adding notes when rating a solution. The fact that rating of a
solution is restricted to the number of awarded points, is an oversight in AsM
design. While it may seem that gaining points to pass the course requirements
is the point of submitting homework, the main point is actually learning from
mistakes in the submitted solutions. AsM needs to facilitate this goal by
allowing tutors to describe found mistakes in detail.

 Allow forgotten password recovery. Automated password recovery is one
of the features necessary for reducing AsM maintenance. It would be sufficient
to generate a new random password on demand and send it to the user's e-
mail address.

 Limit the number of uploads for a single assignment. Correcting large
amounts of solutions could become resource-demanding. Discouraging the
students from uploading too many incorrect solutions could be achieved by
limiting the number possible uploads of solutions for a single assignment.

 Improve the model of table display to support scaling. Another
oversight in the design is the lack of focus on data volume scaling. This is most
apparent in the implementation of the table element, which renders all its
contents and performs pagination, sorting, and filtering only by hiding certain
parts. Consequently, large amounts of data cause a long rendering of the table.
This could be remedied by performing selection functions on raw data and
rendering only the current selection.

 Allow server-side filtering. An extension to the previous enhancement
would be to move data selection functions to the server and to make the
selection commands part of the Core requests. However, such a modification
would be very costly, while there are only a few requests that could really
benefit from it (e.g. system log retrieval).

 Allow adding attachments to a problem. Problem descriptions could be
enhanced by allowing to add attachments to them, similarly to adding
attachments to test questions. The attachments could be either downloadable
or they could be displayed together with the problem description.

 Allow online solving of tests. Allowing the students to solve the tests
online would be quite a large enhancement but a highly useful one as well.
Creating an application for sophisticated test generation and for online testing
could be a goal for a thesis of its own.

 Enhance correction results returned by the plug-ins. AsM project
includes six correction plug-ins, which are not discussed in this work as a
result of being specific to the problems they correct. These plug-ins use various
external libraries to cope with parsing of XML, DTD, XSLT, and other XML-
related formats, and they finally pass the error messages that were received

82

from the library validation functions on to the users. Unfortunately, live
testing showed that such error messages are not always very user-friendly.
Additional analysis would be necessary to determine whether it is possible to
improve error intelligibility in those cases. It is important to note that even
though using external libraries is a necessity, they may not always be error-free
themselves. Adding work-arounds for known library bugs or at least reporting
them as plug-in runtime errors instead of correction results, is essential if the
plug-ins are to be really useful.

83

84

Conclusion
The objective of this work was to create an application that would serve as an online
platform for the management of homework assignments. Specifically, it was
required to provide means for the creation and assignment of homework problems,
for handing in solutions, for automated correction of solutions, and for their manual
rating. Additionally, it was required to facilitate the automated generation of tests
from prepared sets of test questions. These objectives are met by the Assignment
Manager application implemented as a part of this work.

The Assignment Manager is a web-based application that can be deployed on any
Apache web server after appropriate server configuration. It is split into two parts,
the Core and User Interface, which were developed using different technologies,
namely PHP and JavaScript. It is controlled solely through the user interface, which
can be accessed using any standard-compliant web browser. All required features
are included in the core functionality with the exception of automated correction
which can be added using external plug-ins. The automated correction is completely
optional, as proposed in the Introduction.

Meeting of the described objectives was verified by live deployment of the
Assignment Manager at the MFF UK during a single semester. The application's
performance was satisfactory and the deployment provided valuable feedback and
commentary on decisions made during the implementation. The comparison of the
live deployment feedback with the original assumptions is discussed in this work as
well and forms an important part of it.

Assignment Manager is designed with high degree of modularity, which makes
several parts independent on the main application. Therefore, these parts can be
used or published separately as for example the presentation elements used in AsM
User Interface. Moreover, this work also deals with the problem of documenting a
project that uses multiple programming languages. The solution presented here can
be applied elsewhere as well.

85

86

Bibliography
[1] CodEx – The Code Examiner [online]. 2008 [cit. 2011-11-20]. CodEx – Design

Manual. Available from WWW: <http://codex2.ms.mff.cuni.cz/project/doc/
manual.pdf>.

[2] Assignment Manager – Home [online]. 2009, last updated 2010 [cit.
2011-11-20]. Assignment Manager Documentation. Available from WWW:
<http://hon2a.wz.cz/asm/docs/>.

[3] PHP: Hypertext Processor [online]. 2001, last updated Sun Nov 20 15:02:56
2011 UTC [cit. 2011-11-20]. PHP: Documentation. Available from WWW:
<http://www.php.net/docs.php>.

[4] Ecma International [online]. 2011 [cit. 2011-11-20]. ECMAScript Language
Specification. Available from WWW: <http://www.ecma-international.org/
publications/files/ECMA-ST/Ecma-262.pdf>.

[5] jQuery: The Write Less, Do More, JavaScript Library [online]. 2010 [cit.
2011-11-20]. jQuery: The Write Less, Do More, JavaScript Library. Available
from WWW: <http://jquery.com/>.

[6] PHP: Hypertext Processor [online]. 2001, last updated Nov 2011 [cit.
2011-11-20]. Type Hinting. Available from WWW:
<http://cz.php.net/manual/
en/language.oop5.typehinting.php>.

[7] Apache HTTP Server version 2.2 [online]. 2011 [cit. 2011-11-20]. Apache
Module mod_rewrite. Available from WWW: <http://httpd.apache.org/docs/
2.2/mod/mod_rewrite.html>.

[8] EDWARDS, Dean. A Base Class for JavaScript Inheritance [online]. 2006
[cit. 2011-11-20]. A Base Class for JavaScript Inheritance. Available from
WWW: <http://dean.edwards.name/weblog/2006/03/base/>.

[9] WELIE, Martin van. Welie.com – Patterns in Interaction Design [online].
2008 [cit. 2011-11-20]. Accordion. Available from WWW: <http://
www.welie.com/patterns/showPattern.php?patternID=accordion>.

[10] Wikipedia, the free encyclopedia [online]. 2003, last updated Nov 2011 [cit.
2011-11-20]. Model–view–controller. Available from WWW: <http://
en.wikipedia.org/wiki/Model–view–controller>.

[11] Architecture of the World Wide Web, Volume One [online]. 2004 [cit.
2011-11-20]. Fragment identifiers. Available from WWW: <http://
www.w3.org/TR/webarch/#fragid>.

87

http://www.w3.org/TR/webarch/#fragid
http://www.w3.org/TR/webarch/#fragid
http://www.w3.org/TR/webarch/#fragid
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.welie.com/patterns/showPattern.php?patternID=accordion
http://www.welie.com/patterns/showPattern.php?patternID=accordion
http://www.welie.com/patterns/showPattern.php?patternID=accordion
http://dean.edwards.name/weblog/2006/03/base/
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/
http://cz.php.net/manual/en/language.oop5.typehinting.php
http://cz.php.net/manual/en/language.oop5.typehinting.php
http://cz.php.net/manual/
http://jquery.com/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/
http://www.php.net/docs.php
http://hon2a.wz.cz/asm/docs/
http://codex2.ms.mff.cuni.cz/project/doc/manual.pdf
http://codex2.ms.mff.cuni.cz/project/doc/manual.pdf
http://codex2.ms.mff.cuni.cz/project/doc/

[12] Object Oriented Design [online]. [cit. 2011-11-20]. Observer pattern. Available
from WWW: <http://www.oodesign.com/observer-pattern.html>.

[13] ASM Plugin Framework Project [online]. 2010 [cit. 2011-11-20]. ASM Plugin
Framework Project. Available from WWW: <http://hon2a.wz.cz/asm/docs-
java/>.

[14] phpDocumentor Manual [online]. 2000 [cit. 2011-11-20]. phpDocumentor
Tutorial. Available from WWW: <http://manual.phpdoc.org/
HTMLframesConverter/default/>.

[15] Doxygen [online]. 1997, last updated Aug 2011 [cit. 2011-11-20]. Documenting
the code. Available from WWW: <http://www.stack.nl/~dimitri/doxygen/>.

[16] Apache HTTP Server version 2.2 [online]. 2011 [cit. 2011-11-20]. Apache Core
Features. Available from WWW: <http://httpd.apache.org/docs/current/
mod/core.html>.

[17] Cloanto Implementation of INI File Format [online]. 2009, last updated Jun
2010 [cit. 2011-11-20]. Cloanto Implementation of INI File Format. Available
from WWW: <http://www.cloanto.com/specs/ini/>.

[18] MLÝNKOVÁ, Irena. Technologie XML (PRG036) - cvičení, LS 2011 [online].
2011 [cit. 2011-11-20]. Technologie XML (PRG036) - cvičení, LS 2011.
Available from WWW: <http://www.ksi.mff.cuni.cz/~mlynkova/prg036/
indexCV.html>.

[19] Extensible Markup Language (XML) 1.0 (Fifth Edition) [online]. 2008 [cit.
2011-11-29]. Extensible Markup Language (XML) 1.0 (Fifth Edition). Available
from WWW: <http://www.w3.org/TR/2008/REC-xml-20081126/>.

[20]Hypertext Transfer Protocol – HTTP/1.1 [online]. 1999 [cit. 2011-11-29].
Hypertext Transfer Protocol – HTTP/1.1. Available from WWW:
<http://www.w3.org/Protocols/rfc2616/rfc2616.html>.

[21] Document Object Model (DOM) [online]. 1995, last updated 2005 [cit.
2011-11-29]. Document Object Model (DOM). Available from WWW:
<http://www.w3.org/DOM/>.

[22]XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition)
[online]. 2000, last updated Aug 2002 [cit. 2011-11-29]. XHTML™ 1.0 The
Extensible HyperText Markup Language (Second Edition). Available from
WWW: <http://www.w3.org/TR/xhtml1/>.

[23]Introducing JSON [online]. 2006 [cit. 2011-11-29]. Introducing JSON.
Available from WWW: <http://www.json.org/>.

[24]PEAR – PHP Extension and Application Repository [online]. 2011 [cit.
2011-11-29]. PEAR Manual. Available from WWW: <http://pear.php.net/
manual/en/>.

88

http://pear.php.net/manual/en/
http://pear.php.net/manual/en/
http://pear.php.net/
http://www.json.org/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/DOM/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.ksi.mff.cuni.cz/~mlynkova/prg036/indexCV.html
http://www.ksi.mff.cuni.cz/~mlynkova/prg036/indexCV.html
http://www.ksi.mff.cuni.cz/~mlynkova/prg036/
http://www.cloanto.com/specs/ini/
http://httpd.apache.org/docs/2.2/configuring.html
http://httpd.apache.org/docs/2.2/configuring.html
http://httpd.apache.org/docs/current/
http://www.stack.nl/~dimitri/doxygen/
http://www.phpdoc.de/
http://www.phpdoc.de/
http://manual.phpdoc.org/
http://hon2a.wz.cz/asm/docs-java/
http://hon2a.wz.cz/asm/docs-java/
http://www.oodesign.com/observer-pattern.html

[25]KLENSIN, J. Simple Mail Transfer Protocol [online]. 2008 [cit. 2011-11-29].
Simple Mail Transfer Protocol. Available from WWW: <http://tools.ietf.org/
html/rfc5321>.

[26]Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification [online].
2011 [cit. 2011-11-29]. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification. Available from WWW: <http://www.w3.org/TR/CSS21/>.

[27] Berners-Lee T. Uniform Resource Locators (URL) [online]. 1994 [cit.
2011-11-29]. Uniform Resource Locators (URL). Available from WWW:
<http://www.ietf.org/rfc/rfc1738.txt>.

89

http://www.ietf.org/rfc/rfc1738.txt
http://www.w3.org/TR/CSS21/
http://pear.php.net/manual/en/
http://pear.php.net/manual/en/
http://tools.ietf.org/

90

List of Abbreviations
AJAX Asynchronous JavaScript and XML, a set of technologies

used to create asynchronous web applications

AMS assignment manager software fitting the role described in
Section 1.1.1

AsM Assignment Manager application implemented as a part of
this work

CodEx Code Examiner application (see [1])

CSS Cascading Style Sheets, a style sheet language used to
describe the look and formatting of a document written in a
markup language such as HTML or XHTML (see [26])

DOM Document Object Model, a representation of objects in
XHTML documents used by scripting languages to access
and manipulate those objects (see [21])

GET the GET method supported by the HTTP protocol, used for
retrieving data from the web server

HTML HyperText Markup Language used for creating web pages

HTTP Hypertext Transfer Protocol, a networking protocol used for
communication between a web server and a web browser
(see [20])

ID identification number

IDE integrated development environment, an application
providing a comprehensive set of tools for software
developers

INI INI file format, a standard for simple configuration files (see
[17])

IT information technology

JAR Java Archive, a file format extended from ZIP used for
distribution of applications/libraries written in Java

JSON JavaScript Object Notation, an open standard for text
representation of simple data structures (see [23])

MFF UK Faculty of Mathematics and Physics of Charles University in
Prague

MVC model-view-controller, a software architecture pattern used
to separate the application logic from the display logic (see

91

[10])

PEAR PHP Extension and Application Repository, a system for
distribution of reusable PHP components (see [24])

PHP PHP: Hypertext Preprocessor programming language (see
[3])

PHP CGI the PHP preprocessor of content returned by a web server in
response to a HTTP request

PHP CLI a PHP preprocessor that can be used directly from the
command-line independently on a web browser

PHPDoc PHP documentation standard (see [14])

POST the POST method supported by the HTTP protocol, used for
sending data to the web server as part of the request

SMTP Simple Mail Transfer Protocol, a standard concerned with
e-mail communication (see[25])

UI user interface in general or AsM User Interface specifically

URL Uniform Resource Locator, a format for addressing an
internet resource (see [27])

XHTML Extensible HyperText Markup Language, an application of
XML offering functionality similar to that of HTML (see
[22])

XML Extensible Markup Language, a set of rules for creating
documents with added logical structure (see [19])

ZIP ZIP file format used for data compression and archiving

92

List of Figures
1.1 Actors in a homework assignment scenario. .. 6

1.2 Test generation actions. .. 7

3.1 Course management entities and their relationships. 18

3.2 Entities used for test generation and their relationships. 21

3.3 Interaction between database layers during a database request. 29

3.4 Table element mock-up. ... 32

3.5 Form element mock-up. ... 35

3.6 Main UI layout. ... 37

3.7 Content page grouping. .. 38

4.1 Pre-login layout. ... 63

4.2 Main application layout. ... 63

4.3 Navigation menu. ... 64

4.4 Table. .. 65

4.5 Form. ... 67

4.6 Error dialog. ... 68

4.7 Error panels. ... 68

4.8 Icon names. .. 69

93

94

Attachments

A. List of Files
The attached CD contains the Assignment Manager application built and ready for
installation as well as the source files. It also contains six plug-ins for automated
correction of homework problems belonging to the XML Technologies course at
MFF UK. Additionally, it contains the AsM project documentation generated by
Doxygen, including the User Manual. The included documentation has been
generated from the current version of source files (AsM 0.6.2), but the User Manual
section covers only the features included in the version deployed on MFF UK (AsM
0.5.5). See the following sections of this thesis for descriptions of the automated test
generation feature added in AsM o.6: Section 3.3.7, Section 3.4.4, and Section 4.6.4.
Finally, the CD contains the digital version of this thesis. The descriptions of the
most important files and folders follow.

asm-0.6.2.zip the full AsM application, ready for installation

asm-0.6.2-lite.zip the AsM application without the documentation, ready for
installation

docs/index.html the index file of the AsM project documentation (open in a
web browser to access the full documentation)

plugins/ correction plugins for the homework assigned at the XML
Technologies course (each ZIP archive is a valid plug-in
accepted by the AsM application)

src/ AsM source files

src/core/ AsM Core source files

src/docs/ the source files of the documentation framework and the
special documentation pages (the User Manual, etc.)

src/install/ AsM Installer source files

src/web/ AsM UI source files

thesis.pdf this thesis

95

	Introduction
	1. Management of College Course Homework and Tests
	1.1 Extended Homework Assignment Scenario
	1.1.1 Basic Terminology
	1.1.2 Actors

	1.2 Automated Generation of Tests

	2. Code Examiner
	2.1 Lecturer & Tutor vs. Group Owner
	2.2 Fully Automated Correction
	2.3 Notable Similarities

	3. Inside the Assignment Manager
	3.1 Used Technologies
	3.2 System Breakdown and Interaction
	3.3 Core
	3.3.1 Tasks
	3.3.2 User Session
	3.3.3 User Account
	3.3.4 User Permissions
	3.3.5 Courses, Groups, Problems, and Assignments
	3.3.6 Solutions and Their Correction
	3.3.7 Attachments, Questions, Templates, and Tests
	3.3.8 Core Request Handling
	3.3.9 Errors
	3.3.10 Error Logging
	3.3.11 Plug-in Launching
	3.3.12 File Management
	3.3.13 Sending E-mails
	3.3.14 Configuration
	3.3.15 Database
	3.3.15.1 Database Request Layer
	3.3.15.2 Abstract Query Layer
	3.3.15.3 Database Adapter Layer
	3.3.15.4 Data Structure

	3.3.16 Requirements

	3.4 User Interface
	3.4.1 Presentation Elements
	3.4.2 Table Element
	3.4.3 Form Element
	3.4.4 Layout and Content
	3.4.5 Visual Design
	3.4.6 Model-view-controller Pattern
	3.4.7 Widgets
	3.4.8 User Session
	3.4.9 Navigation and Browser History
	3.4.10 Display Components
	3.4.11 Data Retrieval and Storage
	3.4.12 Events
	3.4.13 Error Reporting

	3.5 Plug-ins
	3.5.1 Tasks
	3.5.2 Plug-in Format
	3.5.3 Communication Contract
	3.5.4 PHP Plugin Framework

	3.6 Installer
	3.6.1 Install
	3.6.2 Upgrade

	3.7 Documentation

	4. How to Use he Assignment Manager
	4.1 User Roles
	4.2 Installation and Configuration
	4.2.1 Requirements
	4.2.2 Installation
	4.2.3 Configuration

	4.3 User Interface Layout
	4.4 Control Elements
	4.4.1 Table
	4.4.2 Form

	4.5 Error Reporting
	4.6 How to ...
	4.6.1 Common Tasks
	4.6.2 Student
	4.6.3 Tutor
	4.6.4 Lecturer
	4.6.5 System

	4.7 Common Task Sequences
	4.7.1 Student
	4.7.2 Tutor
	4.7.3 Lecturer
	4.7.4 Administrator

	5. Assignment Manager in the Wild
	5.1 Design for Reality
	5.1.1 Users Real and Imaginary

	5.2 Cost of Modularity and Complexity
	5.3 Testing and Reliability
	5.4 Dependencies and Maintenance
	5.5 Proposed Enhancements

	Conclusion
	Bibliography
	List of Abbreviations
	List of Figures
	Attachments
	A. List of Files

