
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Roman Betík

Automatic Generation of Synthetic XML
Documents

Department of Software Engineering

Supervisor of the master thesis: Doc. RNDr. Irena Holubová, Ph.D.

Study programme: Software Systems

Specialization: Software Engineering

Prague 2015

I would like to thank my supervisor Doc. RNDr. Irena Holubová, Ph.D. for leading
my work. Then I would like to thank RNDr. Jakub Yaghob, Ph.D. for creating
virtual servers that I used during my experiments. I would also like to thank my
family, especially my parents and sister, my colleagues and my girlfriend Veronika
for all the support during my studies.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date signature of the author

Název práce: Automatické generování umělých XML dokumentů

Autor: Roman Betík

Katedra: Katedra softwarového inženýrství

Vedoucí diplomové práce: doc. RNDr. Irena Holubová, Ph.D.

Abstrakt: Cílem této práce je prozkoumat možnosti a omezení v generování
umělých XML a JSON dokumentů používaných v oblasti Big Data. První část
práce zkoumá vlastnosti nejpoužívanějších XML generátorů, Big Data a JSON
generátorů a porovnává jejich vlastnosti. Další část práce popisuje návrh vlast-
ního algoritmu na generování semistrukturovaných dat. Hlavní zaměření algo-
ritmu je paralelní vykonávání procesu generování se zachovaním možností na
kontrolu obsahu generovaných dokumentů. Generátor umožňuje využít vzorky
skutečných dat v procesu generování dat umělých a je také schopen automaticky
generovat jednoduché odkazy mezi výstupními dokumenty ve formátu JSON.
Poslední část práces poskytuje výsledky experimentů s generátorem při testování
databáze MongoDB, popisuje jeho přínos a porovnává ho s jinými řešeními.

Klíčová slova: XML, JSON, Big Data, generátor, testování, benchmark, umělá
data, NoSQL

Title: Automatic Generation of Synthetic XML Documents

Author: Roman Betík

Department: Department of Software Engineering

Supervisor: doc. RNDr. Irena Holubová, Ph.D.

Abstract: The aim of this thesis is to research the current possibilities and limi-
tations of automatic generation of synthetic XML and JSON documents used in
the area of Big Data. The first part of the work discusses the properties of the
most used XML data generators, Big Data and JSON generators and compares
them. The next part of the thesis proposes an algorithm for data generation of
semistructured data. The main focus of the algorithm is on the parallel execution
of the generation process while preserving the ability to control the contents of
the generated documents. The data generator can also use samples of real data in
the generation of the synthetic data and is also capable of automatic creation of
simple references between JSON documents. The last part of the thesis provides
the results of experiments with the data generator exploited for the purpose of
testing database MongoDB, describes its added value and compares it to other
solutions.

Keywords: XML, JSON, Big Data, generator, testing, benchmark, synthetic data,
NoSQL

Contents

Introduction 2

1 Definitions 4
1.1 XML Definitions . 4
1.2 JSON and BSON . 6

2 Big Data Introduction 8
2.1 NoSQL Databases . 8

2.1.1 Key-value Databases . 9
2.1.2 Document Databases . 9
2.1.3 Column-Family Databases 9
2.1.4 Graph Databases . 10

2.2 Common Big Data Terminology 10
2.2.1 Horizontal and Vertical Scaling 10
2.2.2 Strong and Eventual Consistency 11
2.2.3 High Availability . 11
2.2.4 Automatic Scaling . 11
2.2.5 Sharding . 11
2.2.6 Cluster . 11
2.2.7 Replication . 12

3 Data Generation 13
3.1 Parallel Data Generation Framework 13
3.2 Big Data Generator Suite . 14
3.3 DataGenerator . 14
3.4 JSON Data Generators . 14

3.4.1 json-generator.com . 15
3.4.2 generatedata.com . 15
3.4.3 Mockaroo . 15
3.4.4 MongoDB-Datasets . 16
3.4.5 Summary of Big Data and JSON Data Generators 18

3.5 XML Data Generators . 20
3.5.1 XMark Benchmark . 20
3.5.2 XOO7 Benchmark . 22
3.5.3 XMach-1 Benchmark . 24
3.5.4 Michigan Benchmark . 26
3.5.5 ToXgene Data Generator 28
3.5.6 Complex-Structured XML Data Generator 31
3.5.7 <oXygen/> XML Editor 33
3.5.8 Liquid XML Studio 2013 35
3.5.9 Altova XMLSpy . 36
3.5.10 Eclipse . 37
3.5.11 Microsoft Visual Studio 38
3.5.12 Summary of XML Data Generators 38

1

4 MongoDB 41
4.1 Key Features of MongoDB . 41
4.2 CRUD Operations in MongoDB 41

4.2.1 Read Operations . 42
4.2.2 Write Operations . 43

4.3 Aggregation in MongoDB . 45
4.3.1 Aggregation Pipeline . 45
4.3.2 Map-Reduce . 46
4.3.3 Single Purpose Aggregation Operations 46

4.4 Indices in MongoDB . 46
4.4.1 Index Types . 46

4.5 Replication in MongoDB . 49
4.6 Sharding . 49

4.6.1 Data Partitioning . 50
4.7 Database References . 50

5 Data Generator Architecture and Implementation 52
5.1 Possible Solutions for the Architecture 52
5.2 Design of the Architecture . 53

5.2.1 JsonGenerator.Master.Window 54
5.2.2 JsonGenerator.Master.Generator.Client 54
5.2.3 The Data Generator and Schema Analyzer 54
5.2.4 Data Store . 54
5.2.5 The Architecture Summary 55

5.3 Design and Implementation Details 55
5.3.1 Technologies . 55
5.3.2 Templates . 55
5.3.3 Schema Inferring . 56
5.3.4 Data Generation . 57
5.3.5 Task Delegation and Parallelism 61

5.4 Implementation Summary . 63

6 Data Generator User Manual 64
6.1 JsonGenerator.Master.WindowApp 64
6.2 Installation . 65
6.3 Configuration . 66

7 Experiments 68
7.1 Test Cases . 68

7.1.1 Test Queries . 72
7.1.2 Testing Environment . 73

7.2 Test Results . 77
7.2.1 Generation of 1 000 000 Documents 77
7.2.2 Generation of 8 000 000 Documents 80

7.3 Additional Tests . 82
7.4 Encountered Difficulties . 83
7.5 Test Summary . 86

2

8 Conclusion 90
8.1 Future Work . 92

Bibliography 93

List of Tables 100

List of Figures 101

List of Listings 103

Appendices 104

A DVD Contents 105

B XMark Data Generator DTD 106

3

Introduction
The original aim of this thesis was to analyze existing XML [1] data generators,

their options and limitations. The main target of the work was a proposal of
custom XML data generator with the focus on the main structural properties of
XML data like the number of elements, number of attributes, fan-out etc. This
generator should have had a set of simple configuration options which affected the
generated data. However, we have found out that semi-structured data in XML
or JSON [2] format is currently popular especially in the area of Big Data [3]. In
addition, there are not many data generators for this type of workloads, so we
changed our focus to this new and challenging area.

Nowadays, the computer systems of many companies work with very large
data sets. This is mostly due to the fact that this data is being gathered and gen-
erated by cheap and information-capturing mobile devices, software logs, cameras,
satellites, different sensors, users of social media and networks and many more.
This introduced many new problems into how this data is stored, processed,
searched, transferred, visualized etc. The term Big Data is closely connected to
NoSQL databases which are used as data stores.

In our context of semi-structured data we especially focus on document da-
tabases. Document databases are one of NoSQL [4] database types. They store
data in the form of semi-structured or structured documents, in formats like XML
or JSON. Usual use cases for these databases include event logging, e-commerce
applications, real-time analytics, content management systems and many more.
Document databases are currently popular storage type for many new applica-
tions. There are several implementations and the developers must choose which
one they are going to use in their solution. They usually involve large data sets
which affects the performance of the system.

Testing such systems usually involves using some type of test data. It can
be either the real-world data from a similar system or synthetically generated
data. Obtaining real-world data is often difficult due to its size and/or privacy
concerns. Synthetic data generation is then often the only option. Therefore, we
are going to analyze all the suitable XML data generators, Big Data and JSON
data generators and describe their options, advantages and disadvantages. Our
main focus, however, will be generation of documents in JSON format. We will
ten study and demonstrated the abilities and advantages of the generator using
MongoDB database. This particular database is currently popular in the Big
Data area and it is also a good candidate where to test our solution. We will also
describe options how to extend our results to other formats or databases.

Data generation of large data sets involves a new set of challenges. Many of
the currently available data generators do not scale well to produce data sets
in parallel. We will also describe a method which uses existing data to produce
synthetic data of larger proportions. We will also investigate available options in
the generation of references between JSON documents. Last, but not least, we
will create an experimental version of the data generator and test this solution
on a cluster of servers to show its capabilities.

4

Aim of this Thesis
We have two aims in this thesis. The first one is to analyse existing data

generators (XML, JSON and also special Big Data generators). Many of these
are a part of some benchmark. We want to describe the properties of each of these
data generators and compare them mutually.

Currently available data generators capable of producing structured docu-
ments are in most cases web applications and therefore not suitable for genera-
tion of bigger data sets. Data generators for Big Data in general focus only on
selected specific use cases and cannot generate different data sets without com-
plex configurations or reprogramming. Therefore, the main aim of this thesis is
to propose a solution for Big Data generator producing documents for document
databases, in our case MongoDB. The data generator should be able to run in
parallel on multiple servers and be able to produce different volumes of data at
different data generation rates. It should make it easy to customize the contents
of the generated data.

After describing the proposed solution we want to show how this data gen-
erator can be used in practice via experiments and how it compares to other
available solutions.

Structure of the Document
Chapter 1 contains the definitions of the most important terms used throughout
the rest of the text.

Chapter 2 contains the introduction to Big Data, NoSQL databases and related
terminology.

Chapter 3 contains the analysis of the existing Big Data, JSON and XML data
generators.

Chapter 4 contains description of the MongoDB database.

Chapter 5 discusses the architecture of the proposed solution and implementation
details of the data generator.

Chapter 6 describes the user interface of the data generator, its installation, usage
and configuration options.

Chapter 7 contains the description of the experiments we executed, the results
and their meaning.

Chapter 8 summarises the work and proposes some improvements and ideas that
can be further explored.

5

1. Definitions
This chapter contains descriptions of the most important terms and constructs

which we use throughout the thesis. Most of the XML definitions are from [6].

1.1 XML Definitions
The XML (Extensible Markup Language) [1] is a markup language that defines

rules for encoding documents in human and machine-readable format. The design
goals for XML were simplicity, generality and usability across the Internet. It is
defined by the World Wide Web Consortium in XML 1.0 Specification [1]. XML
format is commonly used as an interchange data format.

Definition 1. An XML document is a finite ordered tree T = (Σ, N,E, r) where
Σ is a finite alphabet, N is a set of nodes, E is a set of edges and r ∈ N is a
special node called root node (element). Each node has an associated type which
can be element, attribute, text, processing instruction or comment. Nodes with
type of either element or attribute have a node label l from the alphabet Σ which
is called element or attribute name. For simplicity, we refer to nodes with types
element or attribute simply as element or attribute.

Sometimes we refer to tree T as XML tree.

Listing 1 contains a short example of an XML document. The root element
is restaurant_menu which contains all other elements. Example of an attribute
with the name id is on the element menu_item. Text content ’Hamburger’ has
element name, for example.

 <?xml version="1.0"?>
 <!DOCTYPE restaurant_menu SYSTEM "menu.dtd">
 <restaurant_menu>
 <menu_item id="1">
 <name>Hamburger</name>
 <price>250 CZK</price>
 <description>
 Beef hamburger, served on crispy bun with fresh vegetables, Cheddar cheese
 and bacon, accompanied by home-made french fries.

 </description>
 <calories>1200</calories>
 </menu_item>
 <!-- Comment: other items were omitted -->
 </restaurant_menu>

Listing 1: Example of an XML document

Figure 1.1 shows the simplified view of the corresponding XML tree for the
XML document shown in Listing 1. It shows elements, comments and text con-
tents.

Definition 2. A DTD (Document Type Definition) is a collection of declarations
in the form e→ α where e ∈ ε is the name of an element and α is its content model
(which is a regular expression over ε). The content model α of an element e is

6

Figure 1.1: XML tree example

α = ε | text | f | (α1, α2, ..., αn) | (α1|α2|...|αn) | β∗ | β+ | β?. ε is empty content
model, text is text content, f means single element, "," means concatenation of
content models, "|" means union of content models. "*", "+", "?" mean zero or
more, one or more, optional occurrence (of content model β). One of the element
names s ∈ ε is called a start symbol.

Listing 2 shows the DTD for the XML document shown in Listing 1. There are
two ways to reference a DTD in XML document. It is either by using the internal
DTD declaration where DTD is inside the XML file or by using an external DTD
declaration where the DTD is declared in an external file. Both ways are described
in [9]. Our example shows the contents of the file menu.dtd which is referenced
in XML document in Listing 1.

 <!ELEMENT restaurant_menu (menu_item+)>
 <!ELEMENT menu_item (name, price, description, calories)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT price (#PCDATA)>
 <!ELEMENT description (#PCDATA)>
 <!ELEMENT calories (#PCDATA)>

 <!ATTLIST menu_item id ID #REQUIRED>

Listing 2: DTD example

Definition 3. Content model α is called mixed when α = (α1 | ... | αn | text)∗ |
(α1 | ... | αn | text)+ where n ≥ 1 and for i: 1 ≤ i ≤ n content model αi 6=
ε ∨ αi 6= text.

An element is called mixed-content element when its content model is mixed.

There is an example of mixed-content element in Listing 3. Element descrip-
tion contains text and element bold with another text in it.

7

 <restaurant_menu>
 <menu_item id="1">
 <!-- ... -->
 <description>
 Beef hamburger, served on <bold>crispy</bold> bun with fresh vegetables,
 Cheddar cheese and bacon, accompanied by home-made french fries.
 </description>
 </menu_item>
 <!-- ... -->

 </restaurant_menu>

Listing 3: Example of element with mixed content

1.2 JSON and BSON
JSON [2] (JavaScript Object Notation) is a data-interchange format. It is easy

to read and write for humans and also easy to parse and generate for computers. It
is based on a subset of the JavaScript Programming Language, Standard ECMA-
262 [73].

JSON is based on two basic structures: a collection of key-value pairs and
an ordered list of values (array). These structures are universal and almost all
modern programming languages support them in some form.

JSON supports the following basic types: Number, String, Boolean, Array,
Object and null. Listing 4 shows a simple example of JSON document which
consists of several fields (or keys). The type of values of the fields first_name,
last_name and email is String. The type of the value of the Address field is Object
and favourite_colours field has an Array value type.

 {
 "first_name": "John",
 "last_name": "Doe",
 "address": {
 "street": "High Street",
 "city": "Rome",
 "state": "Italy"
 },
 "email": "john.doe@email.com",

 "favourite_colours": ["blue", "red", "green"]
 }

Listing 4: JSON example

JSON is promoted [5] as a low-overhead alternative to XML and XML doc-
uments can be converted into JSON (and vice-versa). Listing 5 shows the same
structure as in Listing 4 expressed in XML.

BSON [74] (Binary JSON) is a binary-encoded serialization of JSON-like
documents. BSON contains extensions that allow it to represent data types that
are not a part of JSON (e.g. BSON has a date type and BinData type. Other
types available in BSON include string, textttinteger (32- or 64-bit), double,
date, byte array (BinData), boolean, null, BSON object, BSON array.

BSON is designed to have minimum spatial overhead which is useful for net-
work transfers. However, BSON representation can sometimes be bigger than the

8

 <person>
 <first_name>John</first_name>
 <last_name>Doe</last_name>
 <address>
 <street>High Street</street>
 <city>Rome</city>
 <state>Italy</state>
 </address>
 <email>john.doe@email.com</email>

 <favourite_colours>
 <colour>blue</colour>
 <colour>red</colour>
 <colour>green</colour>
 </favourite_colours>
 </person>

Listing 5: JSON example in XML format

corresponding JSON file. This is due to another design goal which is traversabil-
ity. BSON contains additional data like length of strings or sub-objects which
makes traversal faster. This property is vital for databases like MongoDB [45] for
which this is the storage and network transfer format. BSON is also designed to
be fast to decode and encode.

Listing 6 shows very simple JSON document and the Listing 7 its BSON
representation.

 {"hello": "world"}

Listing 6: JSON syntax

 \x16\x00\x00\x00 // total document size
 \x02 // 0x02 = type String
 hello\x00 // field name
 \x06\x00\x00\x00world\x00 // field value
 \x00 // 0x00 = type EOO (’end of object’)

Listing 7: BSON representation

9

2. Big Data Introduction
Big Data is a relatively new term that emerged around year 2000. There is no

formal definition yet. This term is usually used for data sets that are so large that
common software tools and methods are unable to work with them effectively in
acceptable time and new tools and forms of processing are required. There is a
proposal of the formal definition in [3] which defines Big Data as follows:

"Big Data represents the Information assets characterized by such
a High Volume, Velocity and Variety to require specific Technology
and Analytical Methods for its transformation into Value."

In terms of size Big Data currently ranges from terabytes to petabytes and
even more (the upper bound is not restricted). However, this size increases from
year to year. There are also techniques and technologies that allow us to dive into
large, diverse and complex data sets, e.g. NoSQL databases, cloud computing
etc. Examples of Big Data sources are various logs, data from sensors, various
scientific data, social media data, medical records, surveillance data, data from
e-commerce applications and many others. These types vary widely, however in
all cases, this data holds valuable information for the owner of the data.

There are four basic characteristics of Big Data (4 V properties) [72]: volume,
variety, velocity and veracity. Volume is the size of the data. This determines its
value and potential and also whether it can be considered as Big Data. Variety
of data deals with various formats, types, forms and structures of data. These
can be from unstructured, semi-structured to structured data. Velocity of Big
Data talks about the speed at which the data is being generated and processed.
Veracity of Big Data deals with uncertainty in data. The quality of the data can
vary greatly. This can be due to inconsistencies, ambiguities or incompleteness of
the data which depends on the veracity of the source of the data.

The following sections describe basic database types used for Big Data and
explain some additional Big Data terminology.

2.1 NoSQL Databases
Traditional technologies like relational database management systems are usu-

ally not able to handle the size and velocity of Big Data which resulted in new
technologies for batch processing and interactive processing of such data.

One of these technologies are NoSQL databases which are used for interactive
processing of very large data sets. It provides mechanisms for storage and retrieval
of data that is modeled in other ways than traditional relations. There is no single
formal definition and the definitions vary. It is often characterized [4] as next
generation databases mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable (which means to add more
nodes to a system, e.g. new computers to a distributed system where load is
distributed among all the nodes). These systems usually do not provide full ACID
(atomicity, consistency, isolation, durability) properties but provide distributed
and fault-tolerant architecture.

10

There are several data models used in NoSQL systems. These are different in
key-value, document, column-family and graph databases. The first three models
are oriented on aggregates. An aggregate is a unit of related data with complex
structure. This data we usually want to treat as one unit. Relational database
management systems and graph databases are aggregate-ignorant. This allows
different views on data easily but at the higher computational costs.

In the following paragraphs we will describe each category of NoSQL database
types briefly.

2.1.1 Key-value Databases

This is the simplest type of NoSQL databases. It provides a simple hash table
addressed via a primary key. We would model it with two columns, e.g. ID and
VALUE in relational database. ID column stores the key and the VALUE contains
the associated value. It supports only basic operations like getting the value for
the specified key, inserting the value for a key and a deletion of such key-value
pair. Its simplicity provides great performance and is highly scalable, however it
does not support complex queries.

The representatives of this type of NoSQL database are Riak [40], Redis [41],
MemcachedDB [42], Hamster DB [43], Project Voldemort [44] etc.

This type of database is commonly used for storing session information, user
profiles and preferences, shopping cart data etc. It is fast, as it works with a single
object that contains all the information.

2.1.2 Document Databases

The main concept of this type of NoSQL database are documents which are
stored, retrieved and managed. Documents are usually in XML or JSON for-
mat and thus have hierarchical tree structures self-describing the contents. We
usually expect them to be similar but not exactly the same (the schema might
differ). Document databases contrast strongly with relational databases which
are strongly typed during the database creation. Every instance of the data has
the same format as the other and it is often difficult to change this. Document
databases get the type information from the data itself. They store the related
data together and allow every instance of the data to be different. This property
makes it easier and more flexible to deal with changes.

The representatives of this type of NoSQL databases are MongoDB [45], Ra-
venDB [47], CouchDB [46], OrientDB [48] etc.

Document databases are useful for event logging, content management sys-
tems, blogging platforms, e-commerce applications, real-time analytics and more.

2.1.3 Column-Family Databases

This type of database is column-oriented. Column family is a collection of
similar rows. Each row is a collection of columns associated with a key, i.e. it
is a tuple (key-value pair), where the key is mapped to a value that is a set of
columns. Column is a basic unit which consists of a triple: name-value pair and
a timestamp. Column families are groups of related data that is often accessed

11

together. In relational databases, a column family would be a table, each key-
value pair being a row. In relational databases, each row must have the same
columns whereas in column-family databases, this is not the case.

The representatives of this type of NoSQL databases are Google Cloud Bigtable [49],
Apache HBase [50], Apache Cassandra [51], Hypertable [52], Amazon SimpleDB [53]
etc.

Column-family databases are suitable for event logging, content management
systems, blogging platforms etc.

2.1.4 Graph Databases

Graph databases store entities and relationships between them. Basic concepts
are nodes (instances of objects) and edges (correspond to relationships between
nodes). Nodes have properties (like name) and edges have types (like ’is a friend
of’). In a relational database we can model a single type of relationship whereas
adding a new type of relationship requires many changes in existing schema.
Nodes in graph databases can have many different types of relationships. The
number of these relationships is not limited and relationships can be easily added
or removed.

The representatives of this type of NoSQL database are Neo4j [54], Infinite-
Graph [55], OrientDB [48], FlockDB [56], etc.

Graph databases are suitable for connected data like social networks. Another
area where this type of database is useful are routing, dispatch and location-based
services. They can also be used for recommendation engines.

2.2 Common Big Data Terminology
There are several important common terms used in the Big Data world. We

also often refer to them in the rest of the thesis. The explanation of the most
important ones is included in the following paragraphs.

2.2.1 Horizontal and Vertical Scaling

Large data sets and high query rates can exceed the capacity of a single
machine, either the CPU, RAM or disk drives. There are two basic approaches
to mitigating these issues: vertical and horizontal scaling.

Vertical scaling adds more CPUs, RAM and disk drives to increase the ca-
pacity of the system. However, this scaling has its limitation. Systems with many
CPUs and large amounts of RAM are disproportionately more expensive than
smaller systems. In practice, there is also a maximum capability for vertical scal-
ing.

Horizontal scaling divides the data sets over multiple hosts. Each host is
an independent physical database. All these hosts compose a logical database.
Horizontal scaling reduces the amount of data each host has to store and also
reduces the number of operations it has to handle. Thus it is possible to store
and handle very large data sets using this approach. This is the reason why
this method is used in databases that store large datasets. Horizontal scaling
has also its disadvantages. For example adding many inexpensive computers to

12

a cluster might mean additional licensing costs, additional power consumption,
large footprint in datacenter, increased management complexity or issues with
throughput and latency between the nodes.

2.2.2 Strong and Eventual Consistency

Large datasets often span over multiple nodes and are also replicated to ensure
high availability of the system. Data modifications are a common scenario and
desired property of a database system is for all data readers to see the same data.
Strong consistency guarantees that after an update, all accesses to the changed
value will return the same value. Achieving this property in practice, however, is
difficult since there are many computers and network systems involved.

Eventual consistency [7] is a model of consistency used in distributed com-
puting to achieve high availability. It informally guarantees that if there are no
more updates to the given data item, eventually all accesses to it will return
the last updated value. A system that has achieved this state is usually said to
have converged or achieved replica convergence. Eventual consistency is a weak
guarantee and is often criticized because it does not guarantee safety. System
that is eventually consistent can return any value before it converges. However,
these inconsistencies must be tolerated mainly for two reasons: the improvement
of read and write performance and cases where a majority model makes the part
of the system unavailable.

2.2.3 High Availability

High availability is a characteristic of a system or a component that is in
operational state for a desirably long length of time. This property is is achieved
through elimination of single points of failures, e.g. by adding redundancy. It
is also necessary to ensure reliable crossover from the the failed entity to the
operational one and that also means being able to detect the failure has occurred.

2.2.4 Automatic Scaling

Automatic scaling is the ability to add or remove capacity based on the actual
usage without human intervention.

2.2.5 Sharding

Sharding is a database scalability technique that partitions very large data
sets into smaller parts called shards. These smaller parts are usually located on
independent database servers. These smaller parts are usually faster and more
easily managed. One of the benefits if this technique is that is allows to scale out
the database to potentially very large data sets.

2.2.6 Cluster

Cluster is a set of loosely or tightly connected computers working together.
A cluster might often be viewed as a single system. The main reason a cluster is

13

used is to improve the computational, data storage capacity of the system or to
increase the availability.

2.2.7 Replication

Replication is an act of sharing information to ensure consistency between
redundant resources (either software or hardware components). Replication is
usually done to improve reliability, fault-tolerance or accessibility of the resources.

In database systems, the replication usually involves data synchronization
across multiple servers (i.e. creates multiple copies of the same data). This pro-
vides redundancy and increases availability of the data. Replication protects
database from the loss of a server and allows recovery from hardware failures
or service interruptions. Sometimes it even increases read capacity.

A replica is one copy of the replicated resource, e.g. copy of the database.

14

3. Data Generation
As the amounts of data generated and captured daily increases, new challenges

for processing such huge amounts of data arise. New technologies and products
were developed to make it possible to work with these big and complex data
sets. Naturally, it is necessary to have also systems that compare these software
products. Big Data benchmarks for comparing and performance testing of these
systems were developed, are still under development or researched.

In order to test the Big Data systems using benchmarks, it is often necessary
to use data sets similar to those used in production systems. One of the options
is to use real-world data sets as workload inputs. However, obtaining these data
sets is often difficult due to confidentiality of the data. Another issue is that these
data sets have a fixed size and thus it would be difficult to alter it for various types
of test scenarios. One of the problems is also how to transfer such huge volumes
of data via the Internet (downloading terabytes, petabytes or even bigger volume
of data might take quite a long time).

The obvious idea to solve this problem is to use a synthetically generated data
based on real-world data. Optimal data generator should keep the 4 V properties
of Big Data: (1) high volume of data and various (2) velocities can be generated;
(3) different varieties of data sources should be supported and the (4) veracity of
the original data should be preserved.

Currently there are two Big Data generators (frameworks) which we will de-
scribe in the following sections. The first one is called Parallel Data Generation
Framework (PDGF) [57] and the second one is called Big Data Generator Suite
(BDGS) [58].

We focus on document databases in this thesis, therefore we will also include
a description of several JSON and XML data generators.

3.1 Parallel Data Generation Framework
The Parallel Data Generation Framework (PDGF) [57] is a flexible, generic

data generator capable of generating large amounts of relational data. It is imple-
mented in Java and is fully platform-independent. PDGF uses parallel random
number generation for independent data generation which enables parallel data
generation needed for large data sets.

PDGF was originally built for relational data. However, it contains a post-
processing module that enables mappings to other data formats like XML. PDGF
was used as data generator in the BigBench big data analytics benchmark [60].
PDGF was used for data generation of semi- and unstructured data sources.

The data is specified in two XML configuration files: the schema configuration
and generation configuration. The schema configuration file specifies the schema
of the generated file similar to the relational schema. The generation configuration
contains additional post-processing options like data formatting, table merging
and splitting, etc.

15

3.2 Big Data Generator Suite
Big Data Generator Suite (BDGS) [58] is a scalable data generator suite which

contains six data generators for three data types (structured, semi-structured and
unstructured) and three data sources (text, graph and table data).

BDGS preserves the 4 V properties of the data. Data generators in BDGS
are designed for various application classes (search engine, e-commerce, social
network). BDGS is implemented as a component of the BigDataBench [61], which
is an open-source Big Data benchmarking project.

4 V properties of the generated data are preserved in the following manner: (1)
the volume of the data can be adjusted via a configuration of each data generator;
(2) different velocities can be achieved by deploying various numbers of parallel
data generators; (3) different kinds of data generators produce a variety of data
sets which have different types and sources; (4) synthetic data is generated based
on real-world data sets which preserves the data veracity.

Data generation in BDGS uses small real-world data sets. The Wikipedia
entries, Google Web Graph, Facebook Social Graph are used for unstructured
data. E-commerce transaction data is used for structured data. Amazon Movie
Reviews and Personal Resumes are used for semi-structured data.

The generator uses fixed data sources and consists of multiple data generators
each of which has different properties and usage. There are six data generators
implemented in BDGS, each belonging to one of the following types: Text Gener-
ator, Graph Generator and Table Generator. All the data generators from BDGS
are written in C++ for Linux environment.

3.3 DataGenerator
This data generator [59] is a Java library for systematically producing large

volumes of data. This framework is designed to produce large data sets very
quickly (TB in minutes according to their website). It is designed to help with
the generation of patterns based on a given model. It is not a random data
generator. It supports parallel execution either locally (using separate threads)
or it can be distributed to multiple nodes.

There are several steps during the data generation. First, it is necessary to
create a model for the data generation. Then it is necessary to write Java appli-
cation that calls the library which loads the model, executes the generation and
uses a writer for the generated patterns.

The data model is expressed in SCXML [84] (State Chart eXtensible Markup
Language). The data is represented as states which can set output variables to
certain values. The transitions optionally contain conditions where the user can
control the data values.

3.4 JSON Data Generators
Document databases usually use JSON data format for the documents. We

reviewed several data generators capable of creating synthetic JSON documents.

16

Most of them are online tools so their usage is limited to manual interaction. We
are going to briefly describe the following generators:

• json-generator.com [62]
• generatedata.com [63]
• mockaroo.com [64]
• MongoDB-Datasets [65]

3.4.1 json-generator.com

This web application [62] is a personal project of Vazha Omanashvili. It allows
the user to specify a template using special tags and this template is transformed
into JSON document. This template must contain a valid JavaScript. The tool
provides several template tags for various data types, e.g. integer, floating, bool,
date, lorem, company, country, street, etc. It is possible to generate even larger
files, these can be downloaded from the web page. The application also contains
useful manual for each of the templates so writing a custom template is easy.

An example of the template is shown in Listing 8. The resulting document is
shown in Listing 9.

This application is not open source and it is currently not possible to deploy
it to another server and extend or modify it.

3.4.2 generatedata.com

This is another web application [63] for data generation. It can create various
output types, whereas JSON is one of the options. Other options include CSV,
Excel, HTML, SQL, XML and others. The data is generated using a table where
it is possible to specify columns and their data types. There are several built-in
data types the user can choose from. The limit of this application is that it is
not possible to nest the records and only flat structure can be created (like in
relational databases).

The online application is a demo version of the application that can be down-
loaded and deployed to custom server. It is a script written in JavaScript, PHP
and MySQL.

3.4.3 Mockaroo

This web application [64] is similar to generatedata.com in the sense that it
is capable of generating only flat structure. Its primary function is to generate
realistic data for relational databases. It also contains various custom data types
(more than 80) and supports generation of strings based on regular expressions.
This tool can generate various output formats as well, e.g. CSV, SQL, JSON,
DBUnit XML. The web application has a public REST API which can be called
for data generation. This service is limited to 200 requests per day for free version,
more requests per day are payed.

17

 [
 ’{{repeat(1, 1)}}’,
 {
 _id: ’{{objectId()}}’,
 index: ’{{index()}}’,
 name: ’{{firstName()}} {{surname()}}’,
 gender: ’{{gender()}}’,
 email: ’{{email()}}’,
 phone: ’+1 {{phone()}}’,

 address: ’{{integer(100, 999)}} {{street()}}, {{city()}}, {{state()}},
 {{integer(100, 10000)}}’,
 about: ’{{lorem(1, "paragraphs")}}’,
 tags: [
 ’{{repeat(7)}}’,
 ’{{lorem(1, "words")}}’
],
 friends: [
 ’{{repeat(3)}}’,
 {
 id: ’{{index()}}’,
 name: ’{{firstName()}} {{surname()}}’
 }
],
 greeting: function (tags) {
 return ’Hello, ’ + this.name + ’! You have ’ + tags.integer(1, 10)
 + ’ unread messages.’;
 },
 favoriteFruit: function (tags) {
 var fruits = [’apple’, ’banana’, ’strawberry’];
 return fruits[tags.integer(0, fruits.length - 1)];
 }
 }
]

Listing 8: JSON Generator sample

3.4.4 MongoDB-Datasets

MongoDB-Datasets [65] is an open source Node.js [66] application designed
to generate data based on a template (which is similar to the template used
in json-generator.com). Node.js is a platform built on V8 JavaScript Engine [67].
MongoDB-Datasets is therefore written in JavaScript and exploits this in its tem-
plates. The template is a JSON document with the parts written in JavaScript.
Simple example is shown in Listing 10. This template defines 4 fields to be gen-
erated. The values for those fields can be any primitive data types (boolean,
number, array, object). When the value is a string (as in our example), it is
possible to specify a JavaScript expression which gets evaluated during the data
generation. This expression is surrounded by double curly braces: {{ expression

}}. Random data generation is achieved using additional libraries that produce
random data: change.js [68] and faker.js [69].

The example in Listing 10 uses built-in counter() function for the _id field
which increases its value every time it is evaluated. The next two fields use func-
tions from the Chance library and the last one uses built-in function to sample a
value from the enumerated values. Other options and capabilities of the templates

18

 [
 {
 "_id": "5592dcd636f9a1dc697702e7",
 "index": 0,
 "name": "Cruz Wynn",
 "gender": "male",
 "email": "cruzwynn@imkan.com",
 "phone": "+1 (989) 401-2133",
 "address": "109 Clifford Place, Belgreen, Marshall Islands, 2271",

 "about": "Consequat ea cillum cupidatat Lorem aliquip reprehenderit
 nisi officia veniam id dolor commodo. Qui occaecat officia tempor
 sit dolor fugiat velit deserunt et eu magna culpa aliqua proident.\r\n",
 "tags": [
 "officia",
 "ex",
 "in",
 "anim",
 "ullamco",
 "laborum",
 "non"
],
 "friends": [
 {
 "id": 0,
 "name": "Colon Wilcox"
 },
 {
 "id": 1,
 "name": "Jenkins Rice"
 },
 {
 "id": 2,
 "name": "Nielsen Malone"
 }
],
 "greeting": "Hello, Cruz Wynn! You have 1 unread messages.",
 "favoriteFruit": "banana"
 }
]

Listing 9: JSON Generator result

can be found in [65].

 {
 "_id": "{{counter()}}",
 "name": "{{chance.name()}}",
 "phones": [3, "{{chance.phone()}}"],
 "title": "Software {{util.sample([’Engineer’, ’Programmer’])}}"
 }

Listing 10: Simple template for MongoDB-Datasets generator

MongoDB-Datasets is invoked from the command line and can generate any
number of documents based on the supplied template. These documents can be
saved to a file or printed to standard output (or piped to other application).

19

This data generator is very similar to json-generator.com. Its big advantage
is that it is possible to invoke it locally as opposed to json-generator.com. This
generator is therefore more suitable for testing with large data sets. However, in
its current implementation, there are also some drawbacks. It is not multithreaded
which limits its usage on multiprocessor environments. Another drawback is that
the implementation outputs generated documents inside a JSON array either to
a file or to a standard output and not to MongoDB directly. Therefore, it is
necessary to alter the application itself or build another application which would
use MongoDB-Datasets as a module.

3.4.5 Summary of Big Data and JSON Data Generators

PDGF [57] data generator focuses on relational data, requires two configura-
tion files and can generate large amounts of data. Its advantage is also that it is
platform-independent. BDGS [58] data generator focuses on selected specific use
cases and uses six different data generators for specific types of data. It preserves
the 4V properties of the generated data as well. The last described big data gen-
erator [59] is a general Java framework which requires additional programming
which makes it the least usable despite its speed, in our opinion.

JSON data generators currently known to us can be divided into two groups:
web applications and a standalone application. Web applications are not suitable
for the generation of large data sets. They can be used only for generation of
small sample documents. This makes them unusable for Big Data generation.
Applications belonging to this category are json-generator.com [62], generate-
data.com [63] and mockaroo.com [64]. MongoDB-Datasets [65] is a standalone
application and can be used for generation of large data sets only if there is ad-
ditional work done (e.g. changes in its source code to support multithreading,
additional applications for storage of generated data etc.). The usage pattern of
these generators (i.e. templates) is, in our opinion, simple and effective.

Selected properties of the described data generators are compared in Table 3.1.

20

PDGF BDGS Data Generator json-
generator.com generatedata.com mockaroo.com MongoDB-

Datasets
Source code
available

Not to our
knowledge yes yes no yes no yes

Programming
language Java C++ Java unknown PHP and

JavaScript unknown JavaScript

User inter-
action mode Unknown command line depends on the

application web application web application web applica-
tion command line

Input pa-
rameters

2 XML con-
figuration
files

depends on
the data
generator,
usually con-
figuration
file

SCXML model JSON template
Data set specifi-
cation in the web
interface

Data set
specification
in the web
interface

JSON tem-
plate

Primary fo-
cus

Generation
of large
data sets of
relational
data

Generation
of large data
sets while
preserving
the 4 V
properties

Producing
large volumes
of data

Generation of
sample JSON
documents

Generation of
test data in
various formats

Generation of
realistic test
data

Generation of
test data for
MongoDB

Table 3.1: Summary of Big Data and JSON data generators

21

3.5 XML Data Generators
There are various XML data generators available at the present moment.

Some are simple and some are quite complex. Many of them are a part of a more
complex solution (for instance many XML benchmarks contain their own XML
data generator).

We found several data generators which have different properties and usage.
As the first step, we will have a closer look at a data generator xmlgen which is
a part of the XMark benchmark [12]. The next one will be the genxml tool from
the XOO7 benchmark [17]. Then we will describe the XMach1 generator [21],
the generator used in the Michigan benchmark [22], the data generator from the
ToXgene [27]. Then we will describe a solution called Complex-structured XML
data generator [31]. The next group of data generators are generators found in
different editors or applications whose primary function is not XML data gener-
ation. These applications are <oXygen/> XML Editor [32], Liquid XML Studio
2013 [34], Altova XMLSpy [36], Eclipse [38] and Microsoft Visual Studio [39].

Every section briefly describes the data generator (or benchmark, if applicable)
and for each of the generators there is a brief summary which answers the following
questions:

• Is there a source code available for the XML data generator?
• What is the programming language of the data generator? What are the

platforms for which this program is available?
• It is a command line program or does it have some kind of user interface?
• How many input parameters are there? Is it easy to use?
• What is the primary focus of the data generator?
• Is there a predefined schema for the output XML documents?
• Is it possible to alter this schema?
• Is it possible to scale the resulting XML documents in a simple manner?

After this summary we add also notes specific to the current data generator,
if appropriate.

3.5.1 XMark Benchmark

XMark benchmark [12] provides a framework to test the abilities of an XML
database to cope with different query types that are typical in real-world sce-
narios. This benchmark aims to help both the implementors and users to com-
pare various XML databases. The benchmark also offers a set of queries where
each query targets a different part of the XML query processor. There are 20
XQuery [14] queries [12] which focus on various parts of XML query processor,
e.g. exact match, ordered access, casting, regular expressions, aggregations, joins,
sorting etc. This XML benchmark belongs to one of the most commonly used
XML benchmarks [13].

Data Generator from XMark Benchmark

The XML data generator called xmlgen is very simple, with very few options
to change (the following paragraph describes all the options it offers). It produces

22

XML document(s) with predefined content (which was set by its authors). The
DTD that can be generated by xmlgen (or downloaded here [16]) describes an
Internet auction. Complete DTD is shown in Listing 52 in Appendix B. The text
nodes are generated from the most frequently occurring words in the works of
Shakespeare. The default document size is about 150MB (when scaling factor is
set to 1).

According to the website of the data generator [15] the main features of
the data generator are the following:

• Generation of well-formed, valid and meaningful XML data.
• Efficient, scalable generation of XML documents the size of several GB.
• Observing of referential constraints concerning ID/IDREF pairs.
• Low, constant memory requirements, independent of the size of the gener-

ated document.

XML Data Generator Parameters

The data generator has the following options which affect the generated doc-
ument:

• scaling factor of the document : 0 - produces the minimal file, 1 - produces
the default size (about 150MB), it can be set to any float number

• name of the output file
• whether to use doctype preamble
• number of elements a single file should contain - it can split the document

into smaller chunks

Other options are for debugging or profiling purposes. The generator is avail-
able as a binary for Windows, Linux, Solaris and IRIX platforms.

Data Generator Summary

• The source code is available.
• It is written in C, available for Windows, Linux, Solaris, IRIX.
• It is a command line program.
• The usage is very simple, there are only four input parameters and they all

are easy to understand.
• The generator focuses on the generation of well-formed, valid and mean-

ingful XML data while keeping low memory requirements even for large
documents.

• The DTD for the output documents is available.
• It is not possible to alter the schema of the output documents (without

altering the source code of the application).
• It is possible to scale the output documents via input parameter.

This data generator is simple; the user cannot change the structure of the
generated data which simplifies the process a lot. Basically the only thing a user
can affect is the size of the document. This data generator is therefore not very
useful for usage scenarios where a different structure is needed or desired. Despite
this fact it is one of the commonly used [13].

23

3.5.2 XOO7 Benchmark

XOO7 benchmark [17] is an XML version of original OO7 benchmark [19]
for object-oriented database management systems. It was enriched with rela-
tional, document and navigational queries that are specific and critical for XML
databases. The data generator called genxml which is part of the benchmark
is able to generate data sets for the benchmark according to the user-defined
parameters. The authors of this benchmark proposed three types of data sets
(small, medium, large) with predefined values for the parameters of the data gen-
erator. This benchmark also contains 18 XQuery queries [18] divided into three
groups: traditional database queries (joins, aggregation, sorting, etc.), naviga-
tional queries (exploiting references and links) and document queries (focusing
on element ordering).

XML Data Generator from XOO7 Benchmark

The XML data generator genxml used in the XOO7 benchmark is slightly
more complex than the data generator from the XMark benchmark. There is
a configuration file which controls several aspects of the generated XML docu-
ments, such as depth of the document tree, fan-out or amount of textual data.
This generator also uses a predefined DTD [20], its complete listing is shown in
Listing 11.

XML Data Generator Parameters The parameters in the configuration file
are related to the structure of the generated document. The whole description of
the generated data and each of the elements mentioned in the configuration file
is in [18]. The configuration file contains the following parameters:

• NummAssmPerAssm: specifies the number of assembly elements inside an
assembly element (either Complex or Base)

• NumCompPerAssm: specifies the number of Composite elements inside the
assembly element

• NumCompPerModule: specifies the number of unique CompositePart ele-
ments per Module

• NumAssmLevels: specifies the number of nested assembly elements (there
are NumAssmLevels - 1 levels of ComplexAssembly elements and then one
BaseAssembly element)

• NumAtomicPerComp: specifies the number of unique Atomic elements per
CompositePart

• NumConnPerAtomic: specifies the number of connections per Atomic ele-
ment (the total number of connections inside the CompositePart element is
equal to NumAtomicPerComp * NumConnPerAtomic)

• DocumentSize: length of the contents of the Document element inside the
CompositePart element

• ManualSize: length of the contents of the Manual element

It is possible to control the number of elements at various levels inside the
document tree which then also influences the total document size. Textual content
stays always the same, only the length changes according to the set parameters.

24

 <!ELEMENT Module (Manual, ComplexAssembly)>
 <!ATTLIST Module MyID NMTOKEN #REQUIRED
 type CDATA #REQUIRED
 buildDate NMTOKEN #REQUIRED>
 <!ELEMENT Manual (#PCDATA)>
 <!ATTLIST Manual MyID NMTOKEN #REQUIRED
 title CDATA #REQUIRED
 textLen NMTOKEN #REQUIRED>
 <!ELEMENT ComplexAssembly (ComplexAssembly+ | BaseAssembly+)>

 <!ATTLIST ComplexAssembly
 MyID NMTOKEN #REQUIRED
 type CDATA #REQUIRED
 buildDate NMTOKEN #REQUIRED>
 <!ELEMENT BaseAssembly (CompositePart+)>
 <!ATTLIST BaseAssembly
 MyID NMTOKEN #REQUIRED
 type CDATA #REQUIRED
 buildDate NMTOKEN #REQUIRED>
 <!ELEMENT CompositePart (Document, Connection+)>
 <!ATTLIST CompositePart MyID NMTOKEN #REQUIRED
 type CDATA #REQUIRED
 buildDate NMTOKEN #REQUIRED>
 <!ELEMENT Document (#PCDATA | para)+>
 <!ATTLIST Document MyID NMTOKEN #REQUIRED
 title CDATA #REQUIRED>
 <!ELEMENT para (#PCDATA)>
 <!ELEMENT Connection (AtomicPart, AtomicPart)>
 <!ATTLIST Connection type CDATA #REQUIRED
 length NMTOKEN #REQUIRED>
 <!ELEMENT AtomicPart EMPTY>
 <!ATTLIST AtomicPart MyID NMTOKEN #REQUIRED
 type CDATA #REQUIRED
 buildDate NMTOKEN #REQUIRED
 x NMTOKEN #REQUIRED
 y NMTOKEN #REQUIRED
 docId NMTOKEN #REQUIRED>

Listing 11: XOO7 Data Generator DTD

Runtime parameters specify the name of the configuration file, the name of
the output file and the number of the Module elements to generate (it appends
this number to the root element and also sets it as an id of this element).

The data generator is provided as a source code written in C. In order to
run it on an OS X 10.8.2 we had to modify the source code, mostly correcting
the compilation errors which originated due to the age of the code. After these
corrections were done, we were able to run the data generator successfully.

Data Generator Summary

• The source code is available.
• It is written in C, it should be possible to run it on any platform with C

runtime.
• It is a command line program.
• There are eight input parameters in the configuration file, quite confusing.

We did not find the proper documentation for these parameters.

25

• It seems that this generator is tailored only for the benchmark itself with
no further usage.

• DTD of the output documents is available.
• It is not possible to alter the schema of the output documents (without

altering the source code itself).
• It is possible to scale the output documents via the configuration file (al-

though there is not one single argument for this purpose).

3.5.3 XMach-1 Benchmark

Xmach-1 [21] is a multi-user benchmark focused on evaluating the perfor-
mance of XML data management systems. The previously described benchmarks
assumed single-user approach. The benchmark allows to identify advantages and
shortcomings of various XML data management approaches.

The benchmark is based on a web-oriented usage scenario (idea of a web
application). It has four parts: XML database, application servers, loaders and
browser clients. The application servers interact with the backend XML database
and serve to process XML documents. The loaders load and alter various XML
data in the database using the application servers. Browser clients retrieve and
query the stored XML data.

This benchmark contains a data generator and XQuery queries too. This data
generator can produce schema-based documents (where the documents conform
to a pre-defined DTD) or the schema-less documents (however the structure of
the XML documents is the same, the difference is that the DTD is not stored in
the XML database). There is also a directory of the stored XML documents.

There are 8 XQuery queries in this benchmark and also 3 operations that
manipulate with the data. The queries are similar to the ones found in previous
benchmarks, e.g. text retrieval query, navigation through document tree, sort-
ing, counting, joins etc. Data manipulation involves inserting a document to the
database, deleting it from the database and update of the information in the
directory entry of stored documents.

The XML database is firstly populated with an initial number of documents
and then the benchmark is executed.

XML Data Generator from XMach-1 Benchmark

This XML data generator is also quite simple. The generated documents are
valid against a predefined DTD which is shown in Listing 12. As we mentioned
earlier, even the schema-less documents conform to this DTD.

The structure of the generated XML document represents a document with
chapters, sections, paragraphs and so on. We will discuss the various parameters
that can be set to alter the generated output in the following section.

Every document in the benchmark has a unique URL and document id. URL
consists of three host elements and one to four path elements. The result conforms
to the following regular expression:

ahost{1-3}. bhost{1-(N/100)}. chost{1-5}/[apath{1-3}/

[bpath{1-3}/[cpath{1-3}]]] NAME

26

 <!ELEMENT documentXX (titleXX, chapterXX+) >
 <!ATTLIST documentXX
 author CDATA #IMPLIED
 doc_id ID #IMPLIED >
 <!ELEMENT titleXX (#PCDATA) >
 <!ELEMENT chapterXX (author?, headXX, sectionXX+) >
 <!ATTLIST chapterXX
 id ID #REQUIRED >
 <!ELEMENT author (#PCDATA) >

 <!ELEMENT sectionXX (headXX, paragraph+, sectionXX*) >
 <!ATTLIST sectionXX
 id ID #REQUIRED >
 <!ELEMENT headXX (#PCDATA) >
 <!ELEMENT paragraph (#PCDATA | link)* >
 <!ELEMENT link EMPTY >
 <!ATTLIST link
 xlink:type (simple) #FIXED "simple"
 xlink:href CDATA #REQUIRED>

Listing 12: XMach-1 Data Generator DTD

Curly braces contain range numbers, square brackets denote optional parts,
’.’ and ’/’ are separators. N is the initial number of documents in the database.

Textual data comes from a list of the 10,000 most common English words.
These words are chosen randomly using the Zipf’s law [28] and appended together.

XML Data Generator Parameters The configuration is specified using a
configuration file. There are the following parameters:

• number of sections per document : 5 - 150
• number of paragraphs per section: 1 - 15
• number of sentences per paragraph: 2 - 30
• number of words per sentence: 3 - 30
• probability of having an author attribute/element : 0.5
• number of words per head or title element : 2 - 12
• probability of having a phrase within a sentence: 0.01
• probability of having a link element within a paragraph: 0.05
• number of documents per DTD : 2 - 100

Data Generator Summary

• The source code is available.
• It is written in Java, available for any platform capable of running Java.
• It is a command line program.
• There are nine input parameters which are quite simple and easy to under-

stand.
• The XML generator focuses on generating the document which has a pre-

determined structure.
• DTD is available.
• Is it not possible to alter the schema of the output documents (without

altering the source code of the application).

27

• Is it possible to scale the resulting documents via input parameters.

This generator seems to have the same single purpose usage as previously de-
scribed generators. It is possible to change the various aspects of the structure,
however it is not possible to change the overall structure (there is always a doc-
ument which has paragraphs which has sentences etc.). This limits its usage in
general.

3.5.4 Michigan Benchmark

The Michigan Benchmark [22] represents a different kind of benchmark. The
previous benchmarks and XML data generators focused on a specific application
or domain whereas the Michigan Benchmark is a so called micro-benchmark.
Its purpose is to test the impact of the basic query operations (selections, joins,
aggregations etc.) on the performance of the tested XML systems. The previously
mentioned benchmarks provide a good measure of the tested system performance
against data sets (and queries) in their target XML application. However, it
is difficult to use these results for a different domains and applications. This
benchmark tries to overcome this shortcoming.

This benchmark consists of a data set and a set of queries. The data set is
created according to an XML Schema (XSD) which is shown in Listing 13. The
selection queries are divided into 4 groups [23]: simple selection queries, value-
based join queries, pointer-based join queries and aggregate queries. The rest of
the queries consists of update queries (insertion, deletion, load, etc.).

XML Data Generator from Michigan Benchmark

XML data generator in the Michigan Benchmark generates a data set which
focuses on two structural parameters important to tree structures: depth and
fan-out. The approach used in the data generator creates one big data set that
contains various combinations of these two parameters at different levels of the
tree. This way the benchmark can be run on a single document or on a part
of this document and these results can be then compared. The basic data set
has the depth of 16 and the fan-out differs at each level according to predefined
parameters (details can be found in [24]).

The document scaling in this generator is achieved by keeping the tree-depth
constant for all scaled versions, the difference is in the fan-out of the nodes at a
few specific levels (levels 5-8).

The schema of the generated data is specified in XSD shown in Listing 13.

String Data Generation An interesting point about this data generator is
the way how it generates its string attributes and elements. The data generator
uses synthetically generated strings. It creates a pool of a specific number of syn-
thetic words which are then divided into 16 buckets (with exponentially growing
bucket occupancy). That means that the bucket i has 2i words. The words con-
tain information about the bucket to which they belong and the word number
in the bucket. As an example, "15twentynineB14" means that this is the 1,529th
word from the 14th bucket. The last bucket contains words derived from words

28

 <?xml version="1.0"?>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.eecs.umich.edu/db/mbench/bm.xsd"
 xmlns="http://www.eecs.umich.edu/db/mbench/bm.xsd"
 elementFormDefault="qualified">
 <xsd:complexType name="BaseType" mixed="true">
 <xsd:sequence>
 <xsd:element name="eNest" type="BaseType" maxOccurs="unbounded">
 <xsd:key name="aU1PK">

 <xsd:selector xpath=".//eNest"/>
 <xsd:field xpath="@aUnique1"/>
 </xsd:key>
 <xsd:unique name="aU2">
 <xsd:selector xpath=".//eNest"/>
 <xsd:field xpath="@aUnique2"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="eOccasional" type="OccasionalType" minOccurs="0">
 <xsd:keyref name="aU1FK" refer="aU1PK">
 <xsd:selector xpath="../eOccasional"/>
 <xsd:field xpath="@aRef"/>
 </xsd:keyref>
 </xsd:element>
 </xsd:sequence>
 <xsd:attributeGroup ref="BaseTypeAttrs"/>
 </xsd:complexType>
 <xsd:complexType name="OccassionalType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="aRef" type="xsd:integer" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:attributeGroup name="BaseTypeAttrs">
 <xsd:attribute name="aUnique1" type="xsd:integer" use="required"/>
 <xsd:attribute name="aUnique2" type="xsd:integer" use="required"/>
 <xsd:attribute name="aLevel" type="xsd:integer" use="required"/>
 <xsd:attribute name="aFour" type="xsd:integer" use="required"/>
 <xsd:attribute name="aSixteen" type="xsd:integer" use="required"/>
 <xsd:attribute name="aSixtyFour" type="xsd:integer" use="required"/>
 <xsd:attribute name="aString" type="xsd:string" use="required"/ >
 </xsd:attributeGroup>
 </xsd:schema>

Listing 13: XML Schema of the Michigan Benchmark Data Set

in other buckets by adding the suffix "ing" so the entire vocabulary is kept at
roughly 30,000 words. The whole algorithm is described in more detail in [25].

XML Data Generator Parameters The data generator is available as a
source code for Unix and Windows. The program is written in C++, however it
is already outdated. When we tried to compile this data generator, we encountered
compilation errors which had to be corrected. The main problem was the usage
of old standard libraries. After correcting these errors we were able to run the
data generator and test it. The program options are as follows [26]:

29

• -sf=scale factor: Valid scale factors are {0.1, 1, 10, 100}, [default = 1]

• -n=doc name: Set document file name, [default =′ doc′]

• -s | -S: Turn off schema support [default = on]

• -c | -C: Turn off element content printed out [default = on]

• -d | -D: Turn on DTD support [default = off]

• -v | -V: Turn on verbose message printing [default = off]

• -h | -H: Print available options

Data Generator Summary

• The source code is available.
• It is written in C++, available for UNIX and Windows.
• It is a command line program.
• Low number of input parameters and those are easy to understand.
• Focuses on two structural parameters: depth and fan-out.
• XSD is available.
• It is not possible to alter the schema of the output XML document (without

altering the source code).
• It is possible to scale the resulting XML document via the input parameter.

This data generator produces a bit different data when compared to the data
generated from the previously described generators. It contains subtrees with
different properties (mainly fan-out) which can be used as separate documents
for testing. On the other hand, the names of the elements in the document are
predefined and user cannot change this.

3.5.5 ToXgene Data Generator

ToXgene is a template-based generator for large, consistent collections of XML
documents. This generator was developed as a part of the ToX [29] project. ToX
is a heterogeneous repository for XML data and metadata being developed at the
Database Group of the University of Toronto. ToXgene was developed to enable
its users to create data fast and to produce quite complex XML content. The
main features [27] are:

• Generation of complex XML content
• Use of skewed distributions
• Element sharing
• Integrity constraints
• Modularity
• Reuse of existing data
• Extensibility
• Scalability

This generator uses its own language for template specification called TSL
(Template Specification Language). TSL is a subset of XML Schema [10] notation
with annotations for specifying certain properties of the data to be generated
(e.g. value distributions, CDATA vocabulary etc.). This generator is much more
complex than any other generator we described so far.

30

ToXgene Template Specification Language

The basis for this language is XML Schema. It is enriched with different
annotations which specify how to generate documents, special types, elements,
probability distributions of occurrences of elements and attributes. They also de-
fine element sharing, integrity constraints and some randomness in the structure
of the data.

Basic blocks of TSL are types and genes [30]. A type specifies a valid XML
content (either a simple or complex type), an example can be seen in Listing 15.
There is a declaration of the departmentType which consists of element depart-
ment. This element contains one child element classes and two attributes (name
and employees). Values of these attribute are generated using a gibberish string
generator and exponential distribution generator respectively.

A gene is a specification of either an element (an element gene) or an attribute
(an attribute gene) and contains a name and a type. In Listing 15 the specification
of the element department is an element gene. The specification of the attribute
name is an attribute gene.

Some randomness in generated data can be brought in by the probability dis-
tributions. These can be specified by separate annotations and referenced later
via their names. These distributions can be used to determine the number of el-
ements and attributes, the length of strings and to generate numbers. ToXgene
now supports uniform, normal, exponential and log-normal distributions. It also
supports user-defined discrete distributions, where the user provides all the pos-
sibilities with their respective probabilities. An example in Listing 14) shows the
declaration of the exponential distribution which can be used for generation of
numerical values. This generator is referenced in Listing 15.

Element sharing is another interesting feature of ToXgene. It is possible to
share elements within or across documents. This feature can be used to generate
XML documents that share the same contents and can be joined by these values
later. Element sharing is achieved by using the tox-lists (list declaration can be
seen in Listing 16 and its usage in Listing 17). This is a special annotation which
specifies shared data. These lists can be then queried using another annotation.

Irregular structures can be specified using the if-then-else statements or using
a "lottery" statement (an example of tox-alternatives is shown in Listing 18).
Another way to generate irregular structure is to use element recursion in the
genes.

 <tox-distribution name="d1" type="exponential" mean="4" minInclusive="2"
 maxInclusive="10" />

Listing 14: Distribution Declaration in TSL

Extending ToXgene

ToXgene was created with extensibility in mind. It is possible to extend it
by providing custom simpleType generators. There is an interface that has to be
implemented. It can also be coupled with external tools to read and store lists
from files.

31

 <complexType name="departmentType">
 <element name="department" minOccurs="5" maxOccurs="15">
 <complexType>
 <element name="classes" type="classType"/>
 <attribute name="name">
 <simpleType name="nameType">
 <restriction base="string">
 <tox-string type="gibberish" maxLength="50" />
 </restriction>

 </simpleType>
 </attribute>
 <attribute name="employees">
 <simpleType name="employeesType">
 <restriction base="float">
 <tox-number tox-distribution="d1" />
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 </complexType>

Listing 15: Type Declaration in TSL

 <tox-list name="courseList">
 <element name="course" minOccurs="20" maxOccurs="20">
 <complexType>
 <element name="id" type="idType" />
 <element name="title">
 <simpleType>
 <restriction base="string">
 <tox-string type="text" minLength="10" maxLength="20" />
 </restriction>

 </simpleType>
 </element>
 </complexType>
 </element>
 </tox-list>

Listing 16: List Declaration in TSL

Data Generator Summary

• The source code is not publicly available.
• It is written in Java.
• It is a command line program.
• There are several input parameters, however they are intuitive. The difficult

part is in writing the TSL template.
• It focuses on generation of large, consistent collections of synthetic XML

documents.
• The schema is set by user in the TSL template.
• Altering the schema is possible, simply by editing the template.
• Document scaling must be done inside the template.

32

 <complexType name="classType">
 <element name="class" minOccurs="1" maxOccurs="20"
 tox-distribution="classesDistribution">
 <complexType>
 <tox-scan path="[courseList/course]" name="a">
 <element name="title" type="string">
 <tox-expr value="[$a/title]" />
 </element>
 <element name="id" type="string">

 <tox-expr value="[$a/id]" />
 </element>
 </tox-scan>
 </complexType>
 </element>
 </complexType>

Listing 17: List Usage in TSL

 <tox-alternatives>
 <tox-option odds="70">
 <element name="required">
 <simpleType>
 <restriction base="string">
 <tox-value>true</tox-value>
 </restriction>
 </simpleType>
 </element>

 </tox-option>
 <tox-option odds="10">
 <element name="optional">
 <simpleType>
 <restriction base="string">
 <tox-value>true</tox-value>
 </restriction>
 </simpleType>
 </element>
 </tox-option>
 </tox-alternatives>

Listing 18: Random Structures in TSL

This data generator overcomes all the shortcomings of the previously described
generators. It is very general and can produce almost any structure the user
wants. It is possible to create very simple structures and also very complex ones.
Creating the TSL template, however, is not very easy and it can take some time
to learn the language itself. We encountered some problems when debugging the
template. After some experimenting we were able to create a simple template
which produced an XML document we wanted.

3.5.6 Complex-Structured XML Data Generator

Paper [31] describes an XML data generator which has several input param-
eters affecting the resulting document. As the author states, the main purpose
of this approach is to generate XML data sets which can have widely varying

33

characteristics by changing the input parameters.
This generator can be used to generate synthetic XML data that resembles real

data, however this is not its goal. The XML documents are created by generating
a tree, a so-called path tree, which represents the structure of the data. The
generator then assigns element names to this tree and specifies the frequency
distribution of the XML elements. This information is then used to generate the
resulting XML document. However it omits generation of attributes.

Element Name and Value Generation

The generator uses a different method for generating tag names. It simply
uses letters A, B, C, ..., Z, AA, AB, AC, etc. For element values, it uses similar
approach, in generates words tw1, tw2, tw3, etc.

Data Generator Parameters

The input parameters include the following:

• the number of XML documents to generate
• the total number of text words to generate in all the documents
• the total number of distinct text words to generate
• the Zipfian skew parameter of the text word distribution
• the number of levels in the path tree
• the minimum and maximum number of children for nodes at every level

(except the lowest level)
• parameters affecting the direct and indirect recursion, number of repeated

tag names among internal path tree nodes and among leaf nodes of the path
tree

• the total number of XML elements to generate
• the skew parameter of frequencies of the path tree nodes
• the parameter affecting the non-determinism of the generated data

Data Generator Summary

• Source code is not available
• Unknown, probably not implemented
• User interaction: not applicable.
• More than 10 input parameters which are intuitive.
• Focus on generation of documents with widely varying characteristics.
• No schema available.
• No schema available - it is not possible to change it.
• Scaling is achieved via the input parameters.

We do not have a working code which implements this proposed algorithm
however it seems to be an interesting way to generate documents. It uses simple
input parameters which then affect the output of the generation to a large extent.
That means the structure is not set beforehand but the user can affect it simply
by changing some input parameters.

34

3.5.7 <oXygen/> XML Editor

<oXygen/> XML Editor [32] is one of the most advanced XML editors avail-
able. It supports many XML technologies and offers editors for plain XML, XML
Schema, XSL/XSLT, WSDL, RelaxNG, XQuery, JSON etc. The comprehensive
list of its features can be found in [33]. One of the features of this suite is an
XML generator. This generator is XML Schema based which means the user sup-
plies file with his desired schema, modifies the generator properties and runs the
generator.

Data Generator Parameters

Parameters of this generator are set using a graphical user interface. It is
divided into three main parts: schema, options and advanced.

Schema

• URL: path to the XML Schema file
• Namespace: namespace of the selected schema
• Root Element : selection of the root element from all the candidates for root

element
• Output folder : path where the generated instances are saved
• Filename prefix and Extension: names of the generated instances are created

using the prefix, number and the extension
• Number of instances : number of instances to generate

Options

• Namespace/Element table: allows to set a namespace for each element name
and it is possible to further customize generation attributes using the fol-
lowing options:

– Generate optional elements : when this is checked, all elements are gen-
erated, including the optional ones

– Generate optional attributes : when this is checked, all attributes are
generated, including the optional ones

– Values of elements and attributes : controls the content of generated
elements and attributes with the following choices:

∗ None: no content is generated
∗ Default : inserts a default values which depends on the data type
of the particular element or attribute, however type restrictions
are ignored. The default value can be either the data type name
or an incremental name of the attribute or element.

∗ Random: inserts a random value depending on the data type of
the particular element or attribute

– Preferred number of repetitions : sets the preferred number of repeating
elements related with minOccurs and maxOccurs facets.

∗ If the value set is between minOccurs and maxOccurs, then this
value is used

35

∗ If the value set is less than minOccurs, then the minOccurs is used
∗ If the value set is greater than maxOccurs, the the maxOccurs is

used
– Maximum recursion level : when there is a recursion, this sets the max-

imum allowed depth of the same element
– Choice strategy: sets the strategy used in case of xs:choice or substi-

tutionGroup elements:
∗ First : the first branch of the xs:choice or the head element of the
substitutionGroup is always used

∗ Random: a random branch of xs:choice or a substitute element or
the head element of a substitutionGroup is used

– Generate the other options as comments : it is possible to generate
other choices or substitutions as comments so that they can be later
uncommented and used

– Load/export settings : saves/loads the settings
– Element values : this allows to add custom values for particular el-

ements; if there are more than one value, the values are randomly
selected

– Attribute values : this allows to add custom values for particular at-
tributes; in case of more than one value, random values is selected

Advanced

• Use incremental attribute/element names as default : if checked, the value
of an element or attribute starts with the name of that element or attribute,
e.g. for element a the generated values are a1, a2, etc. If not checked, the
value is the name of the type of that element or attribute, e.g. string, integer,
etc.

• Maximum length: the maximum length of string values generated for ele-
ments and attributes

• Discard optional elements after nested level : optional elements that exceed
this specified level are not generated anymore

Data Generator Summary

• Source code is not available, it is a commercial tool
• Written in Java, binaries available for Windows, Mac OS X and Linux, also

available as a plugin for Eclipse
• The whole application has a graphical user interface, the data generator is

available as a command line tool as well
• Input parameters are simple and well described in the application
• The primary focus of the generator is to create sample documents from the

provided XML Schema file
• Output XML documents entirely rely on the input XML Schema file and

set parameters
• Output document schema corresponds to the input XML Schema file (how-

ever there are special cases when this is not true)

36

• Scaling of the generated files is achieved by altering the parameters of the
generator; the scaling is not direct, i.e. there is no parameter like total
number of elements or size in bytes etc.

3.5.8 Liquid XML Studio 2013

Liquid XML Studio [34] is an advanced graphical XML development environ-
ment. It comes in two editions (Starter and Designer) which slightly differ in their
capabilities. The more advanced version contains graphical editor fox XML files,
XML Schema files, WSDL files and text editors for XPath, XQuery, DTD, CSS,
XDR and more. Full list of its features can be found here [35].

One of its features is also a data generator. This generator uses an XML
Schema file as the main input. The parameters are then set via wizard. The first
step is the schema file section, then the root element. The next step is the setup
of the basic options. The last step involves the namespace options.

Data Generator Parameters

The options are set using a graphical wizard. The available options are:

• Root element : first step offers the list of all the possible root elements in
the schema file and lets the user to select one

• Include a ’schemaLocation’ attribute: when checked then the schemaLoca-
tion or noNamespaceSchemaLocation attribute is added to the root element

• Force the creation of optional entities to a depth of : whenever there is an
element with minOccurrs 0 or an attribute with use=optional, there is a
50% chance that this entity will appear in the resulting XML; this option
forces the appearance of these entities until the nesting depth reaches this
value, then the chance this optional entity appears is 50%

• Stop creating optional items after a depth of : this options prevents the
appearance of optional entities in the resulting document after the depth
reaches this value

• Generate attributes for <xs:anyAttribute>: when checked the generator cre-
ates attributes for elements with this specification

• Generate elements for <xs:any>: when checked the generator creates ele-
ments when it encounters this declaration in the schema file

• Namespace options : controls the default namespace of the generated XML
document and also the namespace aliases used in the document

Data Generator Summary

• Source code is not available, it is a commercial tool
• Requires .NET Framework, binaries are available only for Windows, it is

also available as a plugin for Microsoft Visual Studio
• The whole application has graphical user interface, including the data gen-

erator
• There are few input parameters which are simple
• Primary focus of the generator is to create example documents from the

provided XML Schema file

37

• Output XML documents entirely rely on the input XML Schema file and
set parameters

• Output document schema corresponds to the input XML Schema file (how-
ever there are special cases when this is not true)

• Scaling of the generated files is achieved by altering the parameters of the
generator; the scaling is not direct, i.e. there is no parameter like total
number of elements or size in bytes etc.

3.5.9 Altova XMLSpy

Altova XMLSpy [36] is an XML editor for modeling, editing, transforming
and debugging XML-related technologies. It has a support for XSLT, XPath,
XQuery, SOAP, WSDL, XBRL, JSON, Office Open XML etc. More detailed list
of features can be found in [37]. Its XML editor also contains a sample document
generator. It is possible to generate sample XML files either from DTD or XSD.

When generating sample from XML Schema file or DTD, the user can alter
the following options:

• Choice generation - it is possible to select among three options:

– First branch of choice
– All branches of choice
– Branch of choice with the smallest number of elements

• Number of repeatable elements : it is possible to specify how many elements
should be generated for repeatable elements

• General generation options - each of these is a checkbox when user can
check the desired options:

– Generate non-mandatory elements
– Generate non-mandatory attributes
– Fill elements with data
– Fill attributes with data
– Treat element content of nillable elements as non-mandatory
– For elements with an abstract type, try to use a non-abstract type for

xsi:type

• Schema assignment : user can choose whether the generated document con-
tains path to its schema (either absolute, relative or no path)

• Usage of manually added sample values : it is possible to use manually added
sample values, if available and these can be selected randomly, sequentially
or using the first value; facet window enables user to manually specify some
sample values for each element which can have text value, generator then
can use these values and create more realistic samples

• Root selection: user can select the desired root element for the generated
document

Data Generator Summary

• Source code is not available, it is a commercial tool
• Written in C++ and designed only for Microsoft Windows

38

• Whole application has graphical user interface, including the data generator
• There are few input parameters which are simple
• Primary focus of the generator is to create sample documents from the

provided XML Schema or DTD file
• Output XML documents entirely rely on the input XML Schema file and

on the preset parameters
• Output document schema corresponds to the input XML Schema file
• Scaling of the generated files is achieved by altering the parameters of the

generator; the scaling is not direct, i.e. there is no parameter like total
number of elements or size in bytes etc. The scaling is not very flexible, the
only option that alter the size of the generated document is the number of
repeatable elements and this is a single number for the whole document.

3.5.10 Eclipse

Eclipse [38] is a multi-language integrated development environment for many
programming languages and has a rich plug-in system which allows customization.
One of the features is a simple data generator which is capable of creating sample
documents from DTD files or from XML Schema files. The generation process
is straightforward. The whole process starts with opening the DTD or XSD file,
right-clicking on it and choosing Generate -> XML File... from the context menu.
Then it is possible to change the following options:

• Root element : user can select from the list of elements eligible as root ele-
ments

• Create optional attributes : if checked, optional attributes get generated
• Create optional elements : if checked, optional elements get generated; there

is also an option to limit the depth for optional elements
• Create first choice of required choice: if checked, the first element from choice

gets selected during generation
• Fill elements and attributes with data: if checked, generator creates data for

elements and attributes
• Namespace Information: it is possible to select prefixes for various names-

paces

The similar options are available when the generation is based on DTD file
(except the namespace options).

Data Generator Summary

• Source code is available
• Written mostly in Java, runs on Windows, Mac OS X, Linux
• Whole application has graphical user interface, including the data generator
• There are only few input parameters which are simple
• Primary focus of the generator is to create example documents from the

provided XML Schema or DTD file
• Output XML documents entirely rely on the input XML Schema file and

set parameters

39

• Output document schema corresponds to the input XML Schema file
• Scaling of the generated files is achieved by altering the parameters of the

generator; the scaling is not direct, i.e. there is no parameter like total
number of elements or size in bytes etc.

3.5.11 Microsoft Visual Studio

Microsoft Visual Studio [39] is another integrated development environment
we analyze. It is a mature application used for various purposes. It can be used
for application development ranging from console applications, through classic
desktop applications, web applications, mobile applications to name just a few.
It also has an XML editor and is capable of data generation. This data generator
is only XML Schema based and offers no options to customize the output. Its
sole purpose is to generate a sample from the schema so the user can validate the
schema is correct.

3.5.12 Summary of XML Data Generators

In this chapter we described several data generators with different approaches
to data generation. Many of them use a predefined schema and change only the
text content or the number of elements in the result. The majority of these data
generators are not very well suited for the purpose of using these data sets as
input for testing any application working with XML. Two exceptions are the
ToXgene and the Complex-structured XML data generator. ToXgene is capable
of creating almost any XML data and, therefore, it is the best from this point of
view. Complex-structured XML data generator can also produce different data
sets, however it must be altered in some way to offer a greater power to the user.
Our solution will be based on ideas used in this data generator.

The rest of the described solutions has XML data generation as a secondary
function. They accept an XML schema as an input and they produce sample
XML documents based on a set of predefined parameters (which are different for
each solution). These applications differ mainly in what parameters they provide
for the user to change. Tables 3.2 and 3.3 contain the summary of described XML
data generators.

40

XMark XOO7 XMach-1 Michigan Bench-
mark ToXgene

Complex-
structured gener-
ator

Source code
available yes yes yes yes no no

Programming
language

C (Windows,
Linux, Solaris,
IRIX)

C Java C++ (Unix, Win-
dows) Java unknown

User interac-
tion mode command line command line command line command line command line not applicable

Input param-
eters

4 input parame-
ters, easy to un-
derstand

8 input parame-
ters, confusing

9 simple parame-
ters

2 simple input pa-
rameters

main input is
template in TSL

more than 10 in-
tuitive input pa-
rameters

Primary focus

generation of
well-formed, valid
and meaningful
XML data

generation of
data sets for the
benchmark

generation of
data for the
benchmark with
predetermined
structure

data generation
focused on depth
and fan-out

generation of
large, consistent
collections of
synthetic XML
documents

generation of
documents with
widely varying
characteristics

Output
schema

DTD of the gen-
erated XML is
available

DTD of the gen-
erated XML is
available

DTD of the gen-
erated XML is
available

XSD of the gen-
erated XML is
available

schema is created
by the user

schema not avail-
able

Output
schema alter-
ation

not possible not possible not possible not possible
no single schema,
template affects
the output

schema not avail-
able

Document
scaling

possible via input
parameters

possible indi-
rectly via input
parameters

possible via input
parameters

possible via the
input parameter

possible inside
the template

possible via input
parameters

Table 3.2: Summary of XML data generators

41

oXygen XML Editor Liquid XML Studio
2013 Altova XMLSpy Eclipse Microsoft Visual Stu-

dio
Source code
available no no no yes no

Programming
language Java Unknown (requires

.NET Framework) C++ (Windows) Java C++

User interac-
tion mode

graphical user inter-
face

graphical user inter-
face

graphical user inter-
face

graphical user inter-
face

graphical user inter-
face

Input param-
eters

simple input param-
eters, easy to under-
stand

simple input param-
eters, easy to under-
stand

simple input param-
eters, easy to under-
stand

simple input param-
eters, easy to under-
stand

no parameters

Primary focus
generation of sample
documents from the
schema

generation of sample
documents from the
schema

generation of sample
documents from the
schema

generation of sample
documents from the
schema

generation of sample
documents from the
schema

Output
schema

output document
schema corresponds
to the input schema

output document
schema corresponds
to the input schema

output document
schema corresponds
to the input schema

output document
schema corresponds
to the input schema

output document
schema corresponds
to the input schema

Output
schema alter-
ation

via input schema via input schema via input schema via input schema via input schema

Document
scaling

possible indirectly
via input parameters

possible indirectly
via input parameters

possible indirectly
via input parameters

possible indirectly
via input parameters not possible

Table 3.3: Summary of XML data generators #2

42

4. MongoDB
MongoDB [45] is an open-source, document database. It provides high per-

formance, high availability and automatic scaling. MongoDB stores documents
which are data structures composed of key and value pairs. The documents are
JSON objects stored in BSON format. The fields (keys) in documents may have
values that are other documents, arrays, arrays of documents etc. Listing 19 shows
a simple document that can be stored inside MongoDB.

 {
 "_id": 1,
 "first_name": "John",
 "last_name": "Doe",
 "address": {
 "street": "High Street",
 "city": "Rome",
 "state": "Italy"
 },

 "email": "john.doe@email.com",
 "age": 30,
 "favourite_colours": ["blue", "red", "green"]
 }

Listing 19: MongoDB document example

4.1 Key Features of MongoDB
There are several advantages of documents. Documents (can also be seen as

objects) correspond to data types in many programming languages. Embedded
documents reduce the need for expensive joins. The schema of the documents is
dynamic so the users can modify their structure as they wish.

High performance is achieved via support for embedded data models which
reduces I/O activity in database system and also by indexing. In order to support
high availability, MongoDB provides replication facilities called replica sets. These
provide automatic failover and data redundancy. Finally, automatic scaling is
achieved using a function called automatic sharding. This distributes data across
a cluster thus providing a horizontal scalability. Replica sets can also provide
eventually-consistent reads.

4.2 CRUD Operations in MongoDB
MongoDB stores all its data in the form of documents. These documents

associate keys with values, e.g. dictionaries, hash maps, associative arrays etc.
Every document in MongoDB is stored in BSON format. These documents are
stored in collections. A collection is a group of similar documents.

43

4.2.1 Read Operations

Read operations or queries retrieve data from the database. In MongoDB,
results of queries are documents selected from a collection of documents. As usual,
queries contain conditions identifying the documents to return. MongoDB also
offers an option to specify projections that specify which fields from documents
to return. This way it is possible to limit the amount of transferred data.

MongoDB provides a db.collection.find() method for queries. It is possible
to specify both the query criteria and projections as parameters. Optionally, it
is possible to specify limits, skips and it is also possible to sort the result. The
result of the method is a cursor to the matching documents. Listing 20 contains
a sample query. This query looks for documents which have the field last_name

equal to Doe and the favourite_colours array contains red and blue, and the age
field has the value between 30 and 40 (including 30 and 40). It returns only the
field first_name. Results are sorted in descending order by the age field and the
query returns only 10 documents.

 db.people.find(
 {
 last_name: "Doe",
 favourite_colours: { $all: ["red", "blue"] },
 age: {$gte : 30, $lte: 40}
 }, // query criteria
 { first_name: 1 } // projection
).sort({’age’: -1}) // sorting in descending order
 .limit(10) // cursor modifier

Listing 20: Sample query

Queries in MongoDB always target a single collection. The order of documents
is not defined unless there is a sort modifier specified. There is also a special
method db.collection.findOne() that returns a single document.

There are many query selectors and operators available in MongoDB. They
can be divided by their type. The following list summarizes the available options:

Comparison operators

• $eq - matches values equal to the specified value
• $gt - matches values greater than the specified value
• $gte - matches values greater than or equal to the specified value
• $lt - matches values less than the specified value
• $lte - matches values less than or equal to the specified value
• $ne - matches values not equal to the specified value
• $in - matches any values specified in an array
• $nin - matches none of the values specified in an array

Logical operators

• $or - joins clauses with a logical OR
• $and - joins clauses with a logical AND

44

• $not - inverts a query clause
• $nor - joins clauses with a logical NOR

Element operators

• $exists - matches documents that have the specified field
• $type - selects documents where a field has the specified type

Evaluation operators

• $mod - modulo operation
• $regex - selects documents where values match a specified regular expression
• $text - performs text search
• $where - matches documents that satisfy a JavaScript expression or a full

JavaScript function

Geospatial operators

• $geoWithin - selects geometries within a bounding GeoJSON geometry
• $geoIntersects - selects geometries that intersect with a GeoJSON geom-

etry
• $near - returns geospatial objects in proximity to a point (requires a geospa-

tial index)
• $nearSphere - returns geospatial objects in proximity to a point on a sphere

(requires a geospatial index)

Array operators

• $all - matches arrays that contain all elements specified in the query
• $elemMatch - selects documents where an element in the array field matches

all the specified $elemMatch conditions
• $size - selects documents where the array field has a specified size

MongoDB offers four projection operators:

• $ - projects the first element in an array that matches the condition
• $elemMatch - selects the first element in an array that matches the specified

$elemeMatch condition
• $meta - projects the score of the document assigned during the $text oper-

ation
• $slice - limits the number of projected elements from an array (supports

skips and limits)

4.2.2 Write Operations

Write operation is an operation in MongoDB that creates or modifies data.
Write operations also target a single collection. Every write operation is atomic
at the level of a single document.

45

MongoDB offers three basic write operations: insert, update and remove. No
insert, update or remove operation can affect more than one document atomi-
cally. Update and remove operations use the same syntax for specifying which
documents to alter.

Insert operation in MongoDB is done via calling the db.collection.insert()

method. This method adds new documents to a collection. Listing 21 shows an
example of the insert method call. Every document in MongoDB contains _id

field which must be a unique identifier within a collection. If the users adds new
document without this field, MongoDB adds one and populates it with a unique
ObjectId (ObjectId is a 12-byte BSON type that guarantees uniqueness within
the collection).

 db.people.insert(
 {
 "first_name": "Jane",
 "last_name": "Doe",
 "address": {
 "street": "Low Street",
 "city": "Budapest",
 "state": "Hungary"
 },

 "email": "jane.doe@email.com",
 "favourite_colours": ["green"]
 }
)

Listing 21: Sample insert in MongoDB

Update operation in MongoDB is performed using the db.collection.update()
method. This method accepts a criteria which determines which documents to
update and also contains the update action. There is also an update option af-
fecting the behaviour of the update, e.g. multi option which causes updates of
multiple documents. Listing 22 contains an example of the update operation.
Update operation method affects only a single document by default. To update
multiple documents, it is necessary to set the multi option to true.

 db.people.update(// specifies the collection and operation
 { "last_name": { $eq: "Doe"} }, // search criteria
 { $set: { "favourite_colours": ["black"] } }, // update action
 { multi: true } // update option
)

Listing 22: Sample update in MongoDB

Another option available for update() method is upsert. This option (if set
to true) specifies that if no documents match the query portion of the update,
the update operation should create a new document. Otherwise it updates the
matching documents.

In MongoDB, there is a method called db.collection.remove() for deletion of
specified documents from a collection. This method also accepts a query criteria
which specifies which documents to remove. Listing 23 contains an example of
the remove operation in MongoDB. Default behaviour of the remove() method is

46

to remove all documents matching the query criteria. It is also possible to set a
flag to remove only a single document. This flag is called justOne.

 db.people.remove(// specifies the collection and operation
 { "last_name": "Doe" } // search criteria
)

Listing 23: Sample delete in MongoDB

Write Concern

Write concern [91] in MongoDB describes the kind of guarantee that Mon-
goDB provides when reporting the result of the write operation. The strength of
this write concern determines the level of the guarantee. Write operations with
weak write concern return quickly but in case of a failure, these operations might
not get persisted.

There are 4 levels in MongoDB:

• Unacknowledged : MongoDB does not acknowledge the receipt of write op-
erations.

• Acknowledged : MongoDB confirms the receipt of the write operation and
applies the change to the in-memory view of data. This is the default write
concern in MongoDB.

• Journaled : MongoDB acknowledges the write operation only after commit-
ting the data to the journal thus ensuring the ability to recover the data
after shutdown or power interruption.

• Replica Acknowledged : this level concerns replica sets. With replica acknowl-
edged write concern, there is a guarantee that the write operation propa-
gates to additional members of the replica set.

4.3 Aggregation in MongoDB
Aggregation is an operation that processes data records and returns some

computed results. There are several aggregation operations available in MongoDB
and we will briefly describe the options. Aggregations in MongoDB use collections
of documents as inputs and return one or several documents as output.

There are several options for aggregation. There is a framework called aggrega-
tion pipeline in MongoDB, map-reduce operations and single purpose aggregation
operations. All these options can be used for data processing.

4.3.1 Aggregation Pipeline

Aggregation pipeline [75] is data aggregation framework based on the con-
cept of data processing pipelines. All the input documents enter the processing
pipeline where there are performed various transform operations which create an
aggregated output.

Aggregation pipeline consists of multiple stages. Every document is being
transformed as it passes these stages. A method for aggregation pipeline in Mon-
goDB is called db.collection.aggregate().

47

4.3.2 Map-Reduce

Map-Reduce [76] is a data processing style that works with large data sets ag-
gregating them into smaller results. MongoDB provides the mapReduce command
for this type of aggregation. This processing operation consists of two phases:
map and reduce. Let us consider an example of the mapReduce operation (taken
from [76]) in Listing 24.

 db.orders.mapReduce(
 function() { emit(this.cust_id, this.amount); }, // map function
 function(key, values) { return Array.sum(values) }, // reduce function
 {
 query: { status: "A" }, // query
 out: "order_totals" // output
 }
)

Listing 24: Sample map-reduce operation in MongoDB

The map operation is applied to documents matching the query. The map
operation emits key-value pairs. If there are multiple values for the same key, the
reduce operation is applied. This reduce phase sums the values of the amounts.
The result is stored in the output collection.

4.3.3 Single Purpose Aggregation Operations

In addition to aggregation pipeline and map-reduce operation, MongoDB con-
tains a number of single-purpose aggregation operations [77]. These are applied
over a collection of documents returning some result. The operations available
are: count(), distinct() and group().

4.4 Indices in MongoDB
Efficient execution of queries in MongoDB is achieved by using indices. With-

out them, the database has to perform a collection scan, i.e. iterating through
every document and selecting the documents matching the query. With index,
MongoDB can limit the set of documents it has to go through.

Indices in MongoDB are defined at the collection level. Indices can be specified
for any field or sub-field of the documents in the collection. They store the value
of field or fields, ordered by the value of the field. This ordering supports effi-
cient equality matches and range-based queries. MongoDB can also return sorted
results using the ordering saved in the index.

4.4.1 Index Types

There are several index types in MongoDB for different types of data and
queries.

48

Default Index

Every collection has an index on the _id field which exists for every document
in a collection.

Single Field Index

MongoDB supports a user-defined index (ascending or descending) on a single
field of a document. The sort order of the index key does not matter in this case
because MongoDB can traverse this index in both directions.

An index is created using a createIndex method on a specific collection, an
example is in Listing 25.

 db.people.createIndex({ "first_name" : 1 })

Listing 25: Singe field index creation example

Compound Index

Another type of user-defined index is compound index which is defined on
multiple fields. The order of fields in this index is significant. Listing 26 shows
creation of index for fields first_name (ascending - 1) and last_name (descending
- -1). The index contains information for documents sorted first by the values of
first_name field and within each value of the first_name sorted by the last_name
field. This order of fields is important for sorting, queries matching on all the
index fields, as well as for matching based on the prefixes of the index.

 db.people.createIndex({ "first_name" : 1, "last_name" : -1 })

Listing 26: Compound index creation example

Compound indices can be used also for queries on the prefixes of the index.
In our example, the index can also be used for queries on the first_name field
alone. If the index contained more than two fields, queries on all the prefixes of
the compound index would be supported by this index.

Multikey Indices

MongoDB supports indices on fields that hold an array value. These indices
are called multikey [78] and can be constructed over arrays that hold scalar val-
ues and also nested documents. For multikey index creation, the same method
db.collection.createIndex() is used. Listing 27 shows a multikey index creation
which is the same as for other index types.

 db.people.createIndex({ "favourite_colours" : 1})

Listing 27: Multikey index creation example

49

Compound multikey indices have a limitation that each indexed document
can have at most one indexed field with an array value.

Geospatial Indices

MongoDB offers three types of indices for geospatial data [79]. There is a
2dsphere index for queries calculating geometries on an earth-like sphere. For flat
surfaces, there is a 2d index. The last index type for geospatial data is a special
index optimized for small areas called geoHaystack index. The creation of these
index types also uses the db.collection.createIndex() method with additional
fields specified during the index creation.

Text Indices

There is also a support for text search inside string content in documents
in MongoDB. This is achieved using a text index type [80]. This type of index
can be used on any field with string value or with an array of string values. The
collection, however, can have at most one text index. The creation of text index
is similar to previous cases, only the text literal is used for indexed field, as shown
in Listing 28.

 db.people.createIndex({ "notes" : "text"})

Listing 28: Text index creation example

For cases when documents contain highly unstructured data, there is an option
to index all fields with string content. This is done using the wildcard text indices.
The syntax for this type of index is shown in Listing 29.

 db.people.createIndex({ "$$**" : "text"})

Listing 29: Wildcard text index creation example

Hashed Indices

The last type of index in MongoDB is hashed index [81]. This type of index
maintains entries with hashes of the indexed field values. The hashing function
collapses embedded documents and computes a hash value for the entire docu-
ment. Multikey indices (for arrays) are not supported. Hashed indices support
sharding (for more information on sharding, see Section 4.6) a collection using a
hashed shard key. It is not possible to create compound indices that have hashed
index fields and it is not possible to create unique constraint on a hashed index.
The creation of the hashed index is shown in Listing 30.

 db.people.createIndex({ "last_name" : "hashed"})

Listing 30: Hashed index creation example

50

4.5 Replication in MongoDB
MongoDB supports data replication [82]. In MongoDB, a replica set is a group

of mongod instances that all contain the same data. One instance is the primary
one. This primary instance receives all write operations. The rest of the instances
(secondaries) receive the operations from the primary which they apply to the
data so that they have the same data set. This replication is done asynchronously.

If the primary instance does not communicate with other members of the
replica set for more than ten seconds, the replica set tries to select another mem-
ber of the set to be the primary. This is how the automatic failover is done in
MongoDB.

4.6 Sharding
Sharding is a method for storing data across multiple servers. MongoDB uses

this technique to support storage of very large data sets and high throughput.

Figure 4.1: Sharded collection in MongoDB

Horizontal scaling, or sharding, divides the data sets over multiple hosts, or
shards. Every single shard is an independent database. These shards together
compose a logical database. An example is shown in Figure 4.1 (taken from [83]).

This approach has several advantages. It reduces the number of operations
each shard handles as the number of them grows. This means that the whole
cluster can increase its capacity and throughput horizontally. Sharding also re-
duces the amount of data each shard stores as the number of shards in a cluster
grows.

Sharded cluster in MongoDB has three main components: shards, query routers
and config servers. Shards are data stores. Each shard can be represented by a
replica set. Query routers are components that clients communicate with. Query
routers processes the operations from clients, direct them to shards and return

51

results back to clients. Config servers are metadata stores of the cluster. It con-
tains mappings of data set to the shards. Query routers use this metadata to
target operation to the right shards. There are exactly three config servers for
production clusters.

4.6.1 Data Partitioning

Data distribution among shards is done using the shard key at the collection
level. Shard key is either an indexed field (single or compound) that exists in
every document in the collection. MongoDB divides the values of the shard key
into chunks and these chunks are then distributed evenly across the shards. Divi-
sion into chunks is done either using the range-based partitioning or hash-based
partitioning.

In range-based partitioning, the whole data set is split into parts that are
determined by the shard key values, i.e. to which range of all the values the keys
fit. For example, for numeric shard key, the whole key space is divided into several
non-overlapping ranges. Each key then belongs to exactly one of these ranges. In
this partitioning scheme, documents with close shard key values are likely to be
in the same chunk.

In hash-based partitioning a hash of the value of the field is computed. Mon-
goDB then uses these hashes to create chunks. In this case, when two documents
have close shard key values, they are unlikely to be part of the same chunk. This
creates more random distribution of the data in the cluster.

New data or new server additions can cause imbalances in data distribution,
i.e. one shard contains significantly more data than the others. MongoDB resolves
this using two processes: splitting and balancing. More about these processes can
be found in MongoDB manual [83].

4.7 Database References
There is no support for joins in MongoDB. Data in MongoDB is usually

stored in denormalized state or it is stored with related data in documents. This
removes the need for joins. However, there are cases when the storage of related
information in separate documents makes sense.

MongoDB supports two methods for creating relationships between docu-
ments [71]:

• Manual references where the application saves the _id field of one docu-
ment in another document as a reference. In the example in Listing 31 we
insert an address into addressBook collection and we are using its _id field
when inserting the information about the person. If we want to retrieve this
referenced document later, the application has to run an additional query
to get the referenced document.

• DBRefs are references from one document to another using the value of
the _id field of the referenced document, collection name, and, optionally,
its database name. The application must also resolve these references by
performing additional queries. However, many drivers have helper methods

52

to create queries that retrieve these references. These drivers do not auto-
matically resolve DBRefs into documents. An example of how this reference
looks in a document is shown in Listing 32.

 original_id = ObjectId()

 db.addressBook.insert({
 "_id": original_id,
 "street": "Diagonal Alley",
 "city": "London"
 })

 db.people.insert({

 "name": "Ron",
 "address_id": original_id
 })

Listing 31: Random field definition

 {
 "_id" : ObjectId("1236aaf64aed4daf9f1ab771"),
 // .. other fields
 "address" : {
 "$ref" : "addressBook",
 "$id" : ObjectId("1236bc054aed3d169e2ab155"),
 "$db" : "people"
 }
 }

Listing 32: DBRef example

53

5. Data Generator Architecture and
Implementation

One of the aims of this thesis is to design and implement a data generator
for document databases. This data generator should be able to generate large
amounts of documents for a document database - in our case - MongoDB. We
chose this database due to its popularity and maturity. There are also many tools,
libraries and resources available for this database system.

The proposed data generator should have the following properties:

• The data generator will be able to to generate large data sets in parallel,
i.e. on multiple computers concurrently.

• Data sets will consist of large numbers of small JSON documents (i.e. several
kB).

• The data generator will be able to generate references between documents.
• It will be possible to change the number of generated documents.
• It will be possible to change the schema of the generated documents.
• It will be possible to use an existing set of JSON documents as a base for

data generation.
• The usage of the generator should be easy.

5.1 Possible Solutions for the Architecture
In the following paragraphs we will discuss the options for the data generator

and the decisions we made during the design phase.
We designed the proposed data generator with the analysis of existing data

generators in mind. We considered different approaches to data generation, their
options, capabilities and we based parts of our solution on some of their properties
and ideas which we considered useful.

Our aim is to generate documents for MongoDB which natively use JSON
format. Despite this we also considered many XML data generators as well. The
XML format can be easily transformed into JSON. Therefore it should be possible
to generate XML documents and transform them to JSON format at the final
stage of data generation.

The XML data generators we analyzed used either predefined fixed struc-
tures (schemas) for their outputs or a schema in XSD format. The fixed schema
approach is not suitable for our requirements. It has its usage for specialized
benchmarks as we described in Chapter 3.

The approach used in the ToXgene [27] data generator is more suitable for our
requirements. It can generate basically any structure including very complicated
ones. However, the TSL format is quite complicated and might discourage the
potential users from using it.

The idea of basing the data generation on templates, on the other hand, seems
very useful. The user can express the desired schema as closely as he wants and
the template more or less resembles the output. We found this idea also in other
data generators (specifically in JSON data generators).

54

JSON generators we analyzed use templates as well. Three of them (json-
generator.com, generatedata.com and Mockaroo) are web applications which makes
them unusable for parallel data generation. However, they also use a template-
based approach. MongoDB-Datasets application uses similar approach as json-
generator.com, but it is not a web application and there is also the source code
available.

Data stored in document databases usually do not have a fixed schema. It
is possible and it is usually the case that there are different documents stored
together (in one collection in MongoDB). However, these documents are very
often similar, i.e. there is a common set of attributes they all share. For example,
when we store information about users, there are some required fields we have for
every user but there are also some optional ones, like e.g. interests or favourite
movies which we do not require the user to type in, so there is no need to save
them if they are missing.

Based on these observations we decided to generate JSON data directly as this
is natively used in MongoDB. We also decided to use the template-based approach
used in MongoDB-Datasets application mostly due to its expressive power and
simplicity for the users. These templates are very similar to the generated data
so creating them is easy and moreover, we also designed a way to create this
template automatically if the user has some representative documents.

However, this generator could potentially be used also for XML data genera-
tion via the transformation of JSON documents to XML documents. We did not
pursue this approach but it is a possibility.

5.2 Design of the Architecture
The required properties also influenced how we designed the overall architec-

ture of the data generator. The first property requires parallel execution but not
only within a single application but across possibly many computers. The gener-
ation of references requires some form of communication between the instances
of the data generator and this can be solved in many different ways.

The data generator we designed and implemented is called JsonGenerator.
We will describe its main components in the following paragraphs and explain
how it helps to achieve the required properties.

Figure 5.1: Main components of the proposed data generator

55

The main components of the JsonGenerator are shown in Figure 5.1.

5.2.1 JsonGenerator.Master.Window

The main role in the data generator has the component called JsonGenerator.-

Master.Window (we will use the term Master from now on) which coordinates
the data generation and it is also a main interaction point for the user. It is a
place where the data generation process starts and where the properties of the
data generation process are configured. It also shows the progress of the data
generation.

5.2.2 JsonGenerator.Master.Generator.Client

The component called JsonGenerator.Master.Generator.Client (Client from
now on) is an application which will run on every server responsible for data
generation. That means that there will be multiple instances of this application
running at the same time. The role of this application is to receive tasks from the
Master and delegate it to actual data generator and then notify the Master about
the results.

5.2.3 The Data Generator and Schema Analyzer

The actual data generator and schema analyzer component (we will refer to
it simply as data generator component) is also present in multiple instances and
has one-to-one relationship with the Client application. That means that every
instance of the Client application uses its own instance of the data generator
component. This component performs the data generation and also infers the
schema from the collection of existing documents.

From the standpoint of the architecture, it would be better to have the Client
and data generator as one component, because it is logically one component (this
is the reason why we use the one-to-one relationship between them). However,
due the technologies we later chose for the implementation we had to separate
this into two separate modules.

This component could be implemented also in such a way that the output is
not only JSON but also XML or similar format. This would require a module
that would transform the generated data to the required format.

5.2.4 Data Store

An important part of the data generator is the MongoDB database. This
database is used as a storage place for input documents and also for the generated
documents. This decision allows us to implement the references between docu-
ments without a special communication protocol between individual instances of
the generator.

However, this decision directly limits our ability to test another database.
There is a solution to this problem. It is necessary to abstract the interface to
the database so we can perform the lookup for references independently of the
datastore we use. This same solution can be applied to the document saving
stage. The document saving stage can also be solved using another method. The

56

output of the data generator can be a file. Then it is possible to write a program
which imports the files into the database. It could also perform all the necessary
transformations of the generated documents to the format specific for the used
database.

5.2.5 The Architecture Summary

How this architecture fulfills the required properties? The fact that the gen-
erator can run on several computers means the data generation is parallel. Usage
of the MongoDB database as a storage place enables us to use this for the gen-
eration of references (see Section 4.7). The user will input the number of desired
documents in the Master component and this will be used for the data generation
process as a parameter. We did not describe the data generation process yet but
it will be possible to change the schema of the resulting documents via a template
(see Section 5.3.2).

5.3 Design and Implementation Details
We described the overall structure of the data generator. Now we are going

to focus on the specific parts more closely.

5.3.1 Technologies

The Master application is written in C# for the .NET 4.5.1 [87] platform. It
is an application with simple user interface which controls the server part of the
generator, data generation and schema inferring.

The Client application is written also in C#. It is a console application, be-
cause users do not have to interact with it. For our testing purposes we used it
as a standalone application. For regular usage we would suggest to deploy it as a
Windows service.

The Node.js data generator and schema analyzer is written in JavaScript and
can run as an independent console application or can be hosted in different servers.

5.3.2 Templates

JsonGenerator uses templates as an input for data generation. These are the
same templates as used in the described MongoDB-Datasets application. We are
not going to describe them as they are already described in Chapter 3 and there
is also a detailed documentation available online [65].

However, there are additional options we added to the templates for the
JsonGenerator. The original template specifies only how the document should
look like, we added additional meta data for the generator so that it knows where
to store the generated data. This is necessary for the case when the generator
generates data using multiple templates and the user would have to add a map-
ping between the templates and collections inside MongoDB. Listing 33 shows
this meta data. This is written as the value of the field _$db.

These settings instruct the data generator where to save the results of the
data generation. This structure can be extended if the data generator needed

57

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "people"
 },
 "firstName": "{{ chance.first() }}",
 // ...rest of the template...

 }

Listing 33: Meta data in template

additional data during the data generation phase. This structure is not written
to the output document. This is also true for any other field that starts with the
characters _$.

5.3.3 Schema Inferring

Writing a template for data generator can be sometimes a tedious work. When
there are already some existing documents present, we can infer their schema and
generate the template automatically. This template can be then further fine-tuned
manually.

Our solution uses a small Node.js application called mongodb-schema [85].
This application produces a probabilistic schema for a collection inside MongoDB.
Figure 5.2 depicts the class diagram of the data structure it produces (the figure
is taken from [85]).

The inferred information includes the names and types of all the fields and
also the probability of field being included in the document. There are also all
possible values stored that were present in the scanned documents.

These classes correspond to parts of the JSON document, e.g. Field class
contains information about one field. This field can have different types which
are expressed as separate classes.

We use this inferred information to construct a new template in the format
suitable for MongoDB-Datasets. This template construction involves the genera-
tion of the right data generator for each of the fields. JSON has only basic types
like number, boolean and string, so it is not directly possible to transform the
inferred data type into the right data generator. For instance, only the possibilites
we have for string fields are basically limitless. We can use any function from the
Chance [68] or faker.js [69] library. These libraries can produce various random
data types. These include names of people, words, sentences, various dates like
birthdays, numbers, URLs and many more. If we included additional libraries or
written custom string generators to the data generator, it would also be possible
to use them.

Our implementation uses chance.word() for string types, chance.floating()
with min and max values specified for numeric types (or chance.integer() if all
the present values in scanned documents were integers). Similarly, for boolean
types we use chance.bool(), for dates faker.Date.recent() and finally ObjectID-

(chance.hash({length: 12})) for objectid type.
It is possible to include additional logic in this template generator which would

58

Figure 5.2: High-level view of the class interaction in mongodb-schema

be capable of detecting various data types using regular expressions, machine
learning or similar methods.

Other possible improvement we did not implement is to generate coniditons
for optional fields based on the analyzed data. Out algorithm adds template for
every field so the generated documents always include the union of all fields
present in the sample set. Our implementation leaves this step to user which can
add additional conditions for optional elements.

Listing 34 contains one sample document from the collection of similar doc-
uments. After the schema of the document has been inferred, our application
creates a result as shown in Listing 35. All string fields contain the word() gener-
ator from Chance library. For numeric types, the template contains corresponding
data types based on the data found in the source documents. For instance, the
field pop has been identified as an integer with values between 0 and 65046.

Our implementation limits the number of analyzed documents to 1000. This
constant can be easily changed to any other desired number.

5.3.4 Data Generation

As we have mentioned, the data generator is written in JavaScript using
Node.js framework. It uses a template from which it constructs an in-memory
representation of the document, i.e. parses the JSON template and constructs
the tree structure of JavaScript objects which also contains the part of the tem-

59

 {
 "_id" : "01002",
 "city" : "CUSHMAN",
 "loc" : [
 -72.5156499999999940,
 42.3770170000000020
],
 "pop" : 36963,
 "state" : "MA"

 }

Listing 34: Sample document to analyze

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "zips",
 "targetDb": "local",
 "targetCollection": "zips"
 },
 "_id": "{{chance.word()}}",
 "city": "{{chance.word()}}",

 "loc": [
 "{{_$config}}",
 {
 "size": [
 2,
 2
]
 },
 "{{chance.floating({min: -73, max: 46})}}"
],
 "pop": "{{chance.integer({min: 0, max: 65046})}}",
 "state": "{{chance.word()}}"
 }

Listing 35: Example of the generated template

plate written inside the double curly braces {{}}. These parts of the template are
compiled into evaluable JavaScript functions using the underscore.js library [70].
It is therefore possible to inject any kind of JavaScript code into template if the
data generator references those functions.

Current implementation supports only functions from Chance and faker.js
libraries and utility methods that are part of the generator.

The use of JavaScript and this particular type of template evaluation enables
further enhancements of the capabilities of the data generator without changes
in the core of the data generator.

The following list summarizes the capabilities of the data generator:

• The data generator can generate basic JSON data types.
• The data generator can generate random data using third party random

data generators.
• The data generator provides type conversion specifically for MongoDB (Date,

Number, ObjectID, Timestamp) so the generated value stored in MongoDB

60

is not just string.
• It is possible to use this keyword in template expressions to reference other

generated values.
• It is possible to hide or show fields based on a JavaScript expression.
• It provides the following utility methods:

– _$size - the total number of generated docs in the current run
– _$index - the index of the current document, starting from 0
– counter([id], [start], [step]) - the underlying counts are accessi-

ble anywhere in the outmost document so that it is possible to use the
same counter consistently regardless of its position

∗ id - the index of the counter to use, default is 0
∗ start - the first count, default is 0
∗ step - increment of each count, default is 1

– util.sample(list, [n]) - chooses n items from the supplied list of
values (used in arrays)

We included some of the various options available in templates in Listing 36.
The example contains a usage of basic type, random data type, type conversion,
usage of the keyword this and the field visibility.

 {
 "basicType" : true, // boolean
 "randomSentence" : "{{ faker.Lorem.sentence() }}", // string
 "typeConversion" : {
 "randomDate" : "{{ Date(chance.date()) }}", // this will become
 // ISODate() in MongoDB
 },
 "this" : {
 "ten": 10,

 "eleven": "{{ Number(this.ten + 1) }}" // this will produce 11
 },
 "fieldVisibility" : {
 "speed": "{{ util.random(40, 200) }}",
 "warning": "Slow down! {{ hide(this.speed < 130) }}"
 // hides the warning if the speed is under 130
 }
 }

Listing 36: Various options in template

Current implementation generates documents either directly to MongoDB or
it can save it to files on disk where each line contains a single JSON document.
This format can be easily imported into MongoDB with their mongoimport tool.
Each of the generated files has different size based on the random number that
the client generator chose during the generation process. It would be possible to
have this constant but we decided to leave it random so it would behave exactly
the same as in the case the output is database.

Document References

The JSON format does not support references to other documents natively.
However, MongoDB offers two methods we have already described in Section 4.7.

61

MongoDB website [71] suggests the use of manual references. Therefore, these
references are also supported in our data generator.

MongoDB-Datasets does not support the generation of the references between
documents so we had to add this implementation to the node.js application. We
created a module Reference with function LinkDocument which can be used as
shown in Listing 37.

 {{ ObjectID(reference.LinkDocument(’referenced DB’, ’referenced collection’) }}

Listing 37: Linking documents

The data generator then chooses a random document from the referenced
collection and writes its ObjectId to the referencing document.

In order to support the random document selection, target collection must
have a special field rnd defined in its template as shown in Listing 38. If the
collection was not being generated using this data generator, it is possible to
update the documents manually by adding this field with random numeric values
(64-bit integers).

The method we described so far will generate references to the whole collec-
tion. If we wanted to limit the set of documents which get referenced, it is possible
to alter the generation of the rnd field so that this field is hidden based on some
arbitrary condition. Then the data generator chooses only from this restricted
set of documents. An example of this is also shown in Listing 38, where the rnd

field is hidden for people with the title ’Ing.’ so candidates for references will not
include these people.

 {
 "rnd" : "{{NumberLong(chance.natural()}}"
 // ... the rest of the template
 // or optional rnd field
 "rnd": "{{NumberLong(chance.natural())}}{{ hide(this._$title == ’Ing.’) }}",
 "_$title": "{{ util.sample([’Ing.’, ’Mgr.’, ’Bc.’, ’MuDr.’, ’JuDr.’, ’’]) }}"
 }

Listing 38: Random field definition

JsonGenerator supports the generation of references only when it is used with
MongoDB. Output to files requires that the template contains no references.

JsonGenerator does not support automatic infering of the references between
documents when analyzing existing data sets. There is no standard way how
references are implemented in JSON documents so only a heuristic method can
be used. We suggest the method as described in the following paragraph.

Inferring References First, the user specifies which collections he wants to use
for the analysis. The algorithm would analyze each collection. For each collection,
the algorithm would mark every field with ObjectId type as a possible candidate
for a document reference. Then for each document in the collection and each
candidate field it would try to get the document with the corresponding _id

from all the other collections in the analyzed set. If all of the ObjectIds (or a

62

majority) would point to the same collection, the algorithm would assume this is
a reference to that particular collection. Corresponding reference in the template
would be created. The user could then verify this result and correct it manually,
if necessary.

5.3.5 Task Delegation and Parallelism

The important part of our work was to enable parallel data generation. We
wanted to have independent data generation units which could be run in many
instances. These have to be somehow managed and hence our data generator
would have one main control part. We decided to use this as a data generation
coordinator.

Then we had to solve the problem of how we would control these data gen-
eration units. It is possible to implement custom protocols to send messages and
tasks to workers or use a message passing library like MPI.NET [88]. We wanted
only a simple mechanism for message passing so we decided to abandon special-
ized libraries for parallel programs for the purposes of our testing implementation.
Another reason was that MPI.NET has not been updated since 2008.

Instead we used a framework for cross-platform interprocess communication
called Eneter Messaging Framework [89] which offers several message passing
mechanisms and is easy to use. It supports not only the .NET Framework but
also Java, Windows Phone, Mono, Android and Javascript platforms.

Supported protocols are for example TCP, WebSocket, HTTP, UDP, Shared
Memory, Named Pipes etc. There are also several routing mechanisms available,
e.g. Message Bus, Broker, Dispatcher, Router, Load Balancer etc.

We used the broker service to create a publish-subscribe model where clients
subscribe to the server and notify it that they are ready to receive tasks. The
server then sends messages to all the clients at once for simplicity. The task
delegation is solved in application layer.

The whole process has the following steps (it is also shown in simplified form
in Figure 5.3 as a sequence diagram):

• The Master application starts (the server) and creates the broker.
• Client applications start and subscribe to several messages that the broker

sends. These include the request for the data generation, the hello world
message (for testing purposes) and the template synchronization message.
The template synchronization is a convenient way to copy the templates to
all the client data generators, otherwise the user would have to copy them
manually.

• The Master application is informed about the subscribed clients and keeps
the list of them.

• Client applications wait for incoming messages.
• When the user of the data generator starts the data generation process and

wants to generate 1 000 000 documents (it is necessary to specify the batch
size, i.e. the number of documents each client application will generate as
a single task), the following happens:

– The Master creates a queue of tasks based on the total number of
documents and the batch size. For example, if we are generating 1

63

000 000 documents and the batch size is set to 100 000 documents,
the Master application creates 10 tasks which are then distributed to
the connected clients in the way that depends on the speed of the
Client application. If one instance of the Client application runs on a
faster server with more CPU cores, it finishes the task sooner and can
start processing the next task sooner. The Master sends only 1 task
to a client at once. Only after the client responds that the task has
been finished, it receives another task to process. This mechanism was
implemented to prevent the overload of the Client. Another reason was
that it is difficult to predict what computing power there is available
for the Client and we might end up waiting for the slowest one.

– Client application registers the task and creates even smaller tasks for
the Node.js data generator. MongoDB has an insertion limit of 1000
documents in one batch so we implemented the Client application so
that it assigns a random number of documents to a single Node.js data
generator with a predefined maximum (we used 10 000 in our tests).
Each client application sends as many tasks to Node.js generator as
there are CPU cores available. Node.js data generator is implemented
so that it creates the same number of worker threads as there are CPU
cores. This way we can utilize the most of the CPU.

– After all the tasks have been finished by the Node.js data generator,
the Client application generates a response for the Master application
and informs it the task has been finished.

– The Master application receives this response and if there are any
unfinished tasks, it removes one from the queue and assigns it to this
Client application.

– This process is repeated until there are no more tasks to process and
the data generation process ends.

Figure 5.3: Diagram of task delegation in Json Generator

64

5.4 Implementation Summary
In this chapter we described the architecture of our data generation and

also some of the implementation details. The following list summarizes the main
points:

• We created a data generator that can run on multiple servers in parallel
and is therefore capable to increase its data generation rate at the expense
of adding additional hardware.

• The data generator is capable of infering the schema from the set of existing
documents which it transforms to the template that can be then used for
data generation.

• The data generation possibilities are very broad due to the use of the JSON
templates and random data generation libraries capable of producing vari-
ous data types.

• The data generator is also capable of creating simple manual references
between the documents.

• The data generator can output the data directly to MongoDB or to text
files saved on disk.

65

6. Data Generator User Manual
This chapter contains information about the user interface of the JsonGener-

ator, its installation, usage and configuration options.

6.1 JsonGenerator.Master.WindowApp
JsonGenerator.Master.WindowApp is the main control point of the JsonGener-

ator. It is a window application with simple controls which allow users to generate
templates from collections in MongoDB and also start the data generation pro-
cess. Figure 6.1 shows the first tab of the application. It is possible to start
and stop the server component of the generator, see the list of connected client
generators and also send the Hello world message (which is intended only as a
communication test).

Figure 6.1: Server tab of JsonGenerator

The Input Settings tab shown in Figure 6.2 is divided into two sections. The
top part contains the list of databases from the currently connected MongoDB.
After the database is selected, the list underneath contains all the collections. It
is possible to check some of them and generate their schema, which also generates
the template and saves it to the location specified in Template location box. The
Sync button synchronizes the templates to all the connected clients. Is copies all
the files with json file extension from the current computer to all the connected
clients. Before it copies the templates, it also deletes all json files previously
present in that folder.

The Data Generation Settings part of the tab controls the options for data
generation. It is possible to specify the total number of documents to generate,
the batch size and the target of the data generation (which is either database
or a directory). If there are multiple templates present in the Template location
during the generation process, every template in this location is used for data
generation sequentially and the settings specified in the application are applied
again. That means that if we specify to generate 1 000 000 documents, the data

66

Figure 6.2: Input Settings tab of JsonGenerator - template generation

generator will generate 1 000 000 documents for each of the found templates.
Figure 6.3 shows the case when data generation is chosen.

Figure 6.4 shows the application while the data generation is in progress.
The status bar shows the duration of the last operation on the left side. The
next information is the name of the currently processed template, estimated re-
maining time for the generation using the current template, average time for one
batch and the number of remaining tasks (batches) in the format #RemainingTasks
(#CurrentlyExecutingTasks) #TotalTasks. The last information shows the elapsed
time of the data generation process for the current template. All this information
is reset after data using each template is generated.

The last tab shows only log information, e.g. messages from the client gener-
ators were received, duration of the data generation etc.

6.2 Installation
To install the JsonGenerator.Master.WindowApp application, simply copy the

binary files present on the attached DVD to the desired location. The application
requires .NET 4.5.1 installed on the machine as a prerequisite. The same steps are
required for the JsonGenerator.Master.Generator.Client application. The Node.js
data generator and the schema analyzer requires the installation of the Node.js
framework. For development of the JavaScript part, we also had to install Python
2.7. All the used libraries and software is also included on the attached DVD. We
also included all the scripts we used for automatic deployment on our cluster.

67

Figure 6.3: Input Settings tab of JsonGenerator - data generation

6.3 Configuration
The configuration of the .NET applications is stored in their .config files. For

JsonGenerator.Master.WindowApp it is the file JsonGenerator.Master.WindowApp-
.exe.config. Listing 39 shows all available configuration options with the descrip-
tion.

 <appSettings>
 <!-- template folder chosen after application startup -->
 <add key="DefaultTemplateFolder" value="C:\Projects\JsonGenerator\Templates\"/>
 <!-- output folder chosen after application startup -->
 <add key="DefaultOutputFolder" value="C:\Projects\JsonGenerator\Templates\Output\"/>
 <!-- server port -->
 <add key="server.port" value="8091"/>
 </appSettings>

Listing 39: Configuration options for JsonGenerator.Master.WindowApp

68

Figure 6.4: Actual data generation performed during our experiments

 <appSettings>
 <!-- address of the node.js server -->
 <add key="node.js.server.address" value="http://localhost:8081"/>
 <!-- address of the master application -->
 <add key="master.server.ipAddress" value="tcp://10.3.4.110:8091/" />
 <!-- default batch size maximum -->
 <add key="default.batchSize" value="10000" />
 <!-- maximum duration in ms for which the client generator
 waits in case of timeout from node.js before it performs next

 call to node.js server -->
 <add key="node.js.sleepTime" value="60000" /> <!-- 1 minute -->
 <!-- timeout for REST call to node.js server -->
 <add key="restCall.timeout" value="1500000"/> <!-- 25 minutes -->
 </appSettings>

Listing 40: Configuration options for JsonGenerator.Master.Generator.Client

69

7. Experiments
JsonGenerator can generate various JSON documents by using templates. In

this chapter we show an example of how this generator can be used in conjunction
with MongoDB and what it enables us to test. There are, of course, many other
ways how to use this data generator.

Our goal in the experiments was to generate different amounts of data for
manually written templates. We wanted to see how the varying size influences
the performance of several queries we wrote depending on different settings of
indices, sharding etc. We were also interested how the number of deployed client
generators affects the data generation speed.

We also compare the data generation directly to MongoDB with the data
generation to files (7.3).

We performed all the commands and queries using the Robomongo [90] ap-
plication. It is an open-source MongoDB management tool available for multiple
platforms (Windows, Linux, Mac OS X).

7.1 Test Cases
We created 3 different templates which model a database of people, their

phones and messages sent between them. We decided to create these templates
manually because the template builder included in the data generator does not
produce different random data generators for various text values.

We also created one template to generate a collection of documents that model
a blogging platform. The last template we created models log data. Each of these
templates corresponds to one collection. The following list summarizes the gen-
eration templates:

• people: various personal information about a person, see Listing 41; this
template generates the biggest documents from our set of templates.

• phones: information about phones with the reference to the owner which
points to the collection people, see Listing 42; this template was created to
test the generation of references and what impact they have on MongoDB
performance.

• messages: messages between people, again with the reference to the collec-
tion people, see Listing 43; this template has two references and we are
interested how it affects the generation performance.

• cms: template for blogging platform where different types of content are
stored in the same collection, see Listing 44; this template was created to
generate data that could be used in production environment (blog) and we
created few sample queries for it.

• logs: template for event log data, see Listing 45; this template simulates
log data as they could be created in a production environment.

70

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "people"
 },
 "rnd": "{{NumberLong(chance.natural())}}",
 "_$title": "{{ util.sample([’Ing.’, ’Mgr.’, ’Bc.’, ’MuDr.’, ’JuDr.’, ’’]) }}",

 "title": "{{ this._$title }}{{hide(this._$title == ’’)}}",
 "firstName": "{{chance.first()}}",
 "lastName": "{{chance.last()}}",
 "fullNameWithTitle": "{{ this.title + ’ ’ + this.firstName + ’ ’ + this.lastName }}",
 "dateOfBirth": "{{Date(chance.birthday())}}",
 "e-mail": "{{chance.email()}}",
 "web": "{{chance.domain()}}",
 "address": {
 "street": "{{chance.street()}}",
 "city": "{{chance.city()}}",
 "zip": "{{chance.zip()}}",
 "country": "{{chance.country({ full: true })}}"
 },
 "twitter": "{{chance.twitter()}}",
 "bodyTemperature": "{{ Number(chance.floating({min: 35, max: 42, fixed: 2})) }}",
 "warning": "Too hot! {{ hide(this.bodyTemperature < 38) }}",
 "personality": {
 "favorites": {
 "number": "{{Number(chance.d100())}}",
 "city": "{{chance.city()}}",
 "radio": "{{chance.radio()}}"
 },
 "violence-rating": "{{Number(chance.d6())}}"
 },
 "friends" : ["{{_$config}}", { "size": [5, 25] }, {
 "name": "{{chance.name()}}",
 "phones": ["{{_$config}}", {}, "{{chance.phone()}}"]
 }]
 }

Listing 41: Template for people collection

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "phones"
 },
 "rnd": "{{NumberLong(chance.natural())}}",
 "model": "{{faker.company.companyName()}}",

 "price": "{{Number(faker.commerce.price())}}",
 "phoneNumber": "{{chance.phone()}}",
 "owner": "{{ ObjectID(reference.LinkDocument(’results’, ’people’)) }}"
 }

Listing 42: Template for phones collection

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "messages"
 },
 "from":"{{ ObjectID(reference.LinkDocument(’results’, ’people’)) }}",
 "to": "{{ ObjectID(reference.LinkDocument(’results’, ’people’)) }}",

 "message": "{{ chance.paragraph() }}",
 "date": "{{ Date(faker.date.past()) }}"
 }

71

Listing 43: Template for messages collection

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "cms",
 "targetDb": "test",
 "targetCollection": "cms"
 },
 "nonce": "{{ObjectID(chance.hash({length: 12}))}}",
 "metadata": {

 "type": "{{ util.sample([’basic-page’, ’blog-entry’, ’comment’, ’photo’]) }}",
 "section": "{{ chance.state() }}",
 "slug": "{{chance.word()}}",
 "title": "{{chance.sentence()}}",
 "created": "{{ Date(faker.date.past()) }}",
 "author": {
 "_id": "{{ ObjectID(reference.LinkDocument(’results’, ’people’)) }}"
 },
 "tags": ["{{_$config}}", { "size": [5, 10] }, "{{ util.sample([’abstract photography’,
 ’architectural detail’,’architecture photography’,’astrophotography’,’candid shot’,
 ’food photography’,’glamour photography’,’landscape photography’,’macro photography’,
 ’pet photography’,’portrait photography’,’rural photography’,’sport photography’,
 ’still life photography’,’street photography’,’urban photgraphy’,’wildlife photography’,
 ’back view’,’front view’,’profile’,’side view’,’bokeh’,’lens zoom’,’light trail’,
 ’long exposure’,’panning’,’panorama’,’reflection’,’silhouette’,’star trail’,
 ’vignette’,’close-up’,’environmental’,’full body’,’headshot’,’upper body’,’landscape’,
 ’portrait’,’exterior’,’in-car’,’interior’,’studio’,’black and white’,’color image’,
 ’platinotype’,’selenium toning’,’sepia toning’]) }}"],
 "detail": { "text": "{{chance.paragraph()}}" }
 }
 }

Listing 44: Template for cms collection

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "logs"
 },
 "datetime": "{{ Date(faker.date.past()) }}",
 "process": "{{chance.word({syllables: 3})}}",

 "eventDescription": "{{ chance.sentence() }}",
 "duration": "{{ Number(chance.integer({min: 1, max: 500000})) }}",
 "version": "{{ Number(chance.integer({min: 1, max: 100})) }}",
 "level": "{{ util.sample([’Debug’, ’Info’, ’Warning’, ’Error’, ’Fatal’]) }}",
 "keywords": ["{{_$config}}", {"size": [5, 10]}, "{{ chance.word({syllables: 3}) }}"],
 "processId": "{{ Number(chance.natural({min: 1, max: 65536})) }}",
 "threadId:": "{{ Number(chance.natural({min: 1, max: 65536})) }}",
 "computer": "{{ chance.ip() }}",
 "user": "{{ chance.fbid() }}"
 }

Listing 45: Template for logs collection

We defined 4 different test configurations which alter the creation of collec-
tions, sharding settings and indices. The following list summarizes these different
scenarios:

• Test 1 : All the collections are created without any indices except the rnd

field in people collection for random document selection. Sharding is not
enabled which means that all the data will be stored on a single server.
Listing 46 includes the commands that were used to create the collections
in MongoDB for this test.

72

• Test 2 : All the collections are created the same way as in Test 1. Sharding is
enabled using the _id field as the shard key. See Listing 47 for the commands
used for this test.

• Test 3 : All the collections were created as in previous cases but we also
included hashed indices on their _id fields. Sharding is enabled using these
fields as shard key with the option hashed. This option should give a random
distribution of data across the shards and we are interested if this affects
either the generation process or the query performance. See Listing 48 for
the commands used for this test.

• Test 4 : All the collections are created the same way as in previous cases.
There are several indices created for various fields to suit the some of the
test queries for each collection. Sharding is enabled on hashed _id fields.
See Listing 49 for full commands.

After completion of the data generation for each number of documents and
each test, we drop all the collections and create them again. For each generated
data set size we executed the queries only once because it does not matter whether
the data was created using 1, 2 or 3 instances of the data generator.

 db.createCollection("people");
 db.people.createIndex({rnd: 1});
 db.createCollection("phones");
 db.createCollection("messages");
 db.createCollection("cms");
 db.createCollection("logs");

Listing 46: Create commands for Test 1

 db.createCollection("people");
 db.people.createIndex({rnd: 1});
 db.createCollection("phones");
 db.createCollection("messages");
 db.createCollection("cms");
 db.createCollection("logs");

 sh.shardCollection("test.people", {"_id": 1})
 sh.shardCollection("test.phones", {"_id": 1})

 sh.shardCollection("test.messages", {"_id": 1})
 sh.shardCollection("test.cms", {"_id": 1})
 sh.shardCollection("test.logs", {"_id": 1})

Listing 47: Create commands for Test 2

Each of these tests is performed using 1, 2 and 3 worker generators and for
each number of generators we generated 1 000 000 documents for every collection
and then we repeated the same process with 8 000 000 documents (as an example
of a bigger data set). These numbers were chosen based on our preliminary tests
of the data generator with regards to our testing environment.

For every test we measured the generation time, the amount of the generated
data and the average object size in database. We also calculated the average data
generation rate.

73

 db.createCollection("people");
 db.createCollection("phones");
 db.createCollection("messages");
 db.createCollection("cms");
 db.createCollection("logs");

 db.people.createIndex({rnd: 1});
 db.people.createIndex({_id: "hashed"});
 db.phones.createIndex({_id: "hashed"});

 db.messages.createIndex({_id: "hashed"});
 db.cms.createIndex({_id: "hashed"});
 db.logs.createIndex({_id: "hashed"});

 sh.shardCollection("test.people", {"_id": "hashed"})
 sh.shardCollection("test.phones", {"_id": "hashed"})
 sh.shardCollection("test.messages", {"_id": "hashed"})
 sh.shardCollection("test.cms", {"_id": "hashed"})
 sh.shardCollection("test.logs", {"_id": "hashed"})

Listing 48: Create commands for Test 3

7.1.1 Test Queries

For every test and every size of the data set we executed the queries shown in
Listing 50 three times and measured the execution time. Following list describes
these queries:

• QP1: Finds people with the firstName equal to a certain value. This query
contains only one filtering condition and we are interested how the indexing
(on/off) and sharding (on/off) affects its performance.

• QP2: Finds people with the title equal to a certain value. This query was
chosen because title field is optional.

• QP3: Finds people with 10 friends. This query was chosen to test the per-
formance in the case where the field is an array.

• QP4: Finds people with the field bodyTemperature greater than or equal to a
certain value. This query was chosen because it queries for a range of values.

• QP5: Finds documents having the field address.country with a certain value.
This query was chosen because it filters documents based on a field inside
an object field.

• QM1: Finds messages sent from a certain person. This query and the next
query were selected to test query performance on ObjectId fields.

• QM2: Finds messages sent to a certain person.
• QPh1: Finds phones with the price between the specified boundaries.
• QC1: Finds documents having all the specified metadata tags. This query

tests the query performance when filtering on the contents of an array field.
• QC2: Finds the 10 most recent blog entries. This query was selected because

it represents a common query in a blogging system.
• QL1: Finds the 1000 most recent log entries for the specified date range. This

query was also selected because it is a common query for event logs.

74

 db.createCollection("people");
 db.createCollection("phones");
 db.createCollection("messages");
 db.createCollection("cms");
 db.createCollection("logs");

 db.people.createIndex({rnd: 1});
 db.people.createIndex({_id: "hashed"});
 db.people.createIndex({firstName: 1, lastName: 1});

 db.people.createIndex({title: 1});

 db.phones.createIndex({_id: "hashed"});
 db.phones.createIndex({price: 1});

 db.messages.createIndex({_id: "hashed"});
 db.messages.createIndex({from: 1});
 db.messages.createIndex({to: 1});

 db.cms.createIndex({_id: "hashed"});
 db.cms.createIndex({’metadata.tags’: 1});
 db.cms.createIndex({’metadata.created’: 1});
 db.cms.createIndex({’metadata.type’: 1});

 db.logs.createIndex({_id: "hashed"});
 db.logs.createIndex({datetime: -1});
 db.logs.createIndex({level: 1});

 sh.shardCollection("test.people", {"_id": "hashed"})
 sh.shardCollection("test.phones", {"_id": "hashed"})
 sh.shardCollection("test.messages", {"_id": "hashed"})
 sh.shardCollection("test.cms", {"_id": "hashed"})
 sh.shardCollection("test.logs", {"_id": "hashed"})

Listing 49: Create commands for Test 4

7.1.2 Testing Environment

The testing environment we used was composed of 12 virtual servers with the
following attributes:

• 3 x application server (App1, App2, App3): each with 12 cores (Intel Xeon
@ 2.13GHz), 4GB RAM, Windows Server 2012 R2

• 3 x MongoDB configuration server (Config1, Config2, Config3): each with
2 cores (Intel Xeon @ 2.2GHz), 2GB RAM, Windows Server 2012 R2

• 2 x MongoDB query router (Query1, Query2): each with 2 cores (Intel Xeon
@ 2.67GHz), 2GB RAM, Windows Server 2012 R2

• 4 x MongoDB database server (Shard1, Shard2, Shard3, Shard4): each with
4 cores (Intel Xeon @ 2.2GHz), 16GB RAM, Windows Server 2012 R2

The deployment was based on the architecture proposed by the authors of
MongoDB [86]. This architecture is depicted in Figure 7.1. The diagram of our
actual testing environment is shown in Figure 7.2. Every worker created 12 in-
dependent threads and each of these threads was generating data and writing it
directly to the database in batches of 1000 documents (which is a limit imposed

75

 QP1: db.getCollection(’people’).find({firstName: ’Walter’}).explain("executionStats")
 QP2: db.getCollection(’people’).find({title: ’Ing.’}).explain("executionStats")
 QP3: db.getCollection(’people’).find(
 {friends: {$size: 10 }}).explain("executionStats")
 QP4: db.getCollection(’people’).find(
 {bodyTemperature: {$gte: 38}}).explain("executionStats")
 QP5: db.getCollection(’people’).find(
 {’address.country’: ’Czech Republic’}).explain("executionStats")

 QM1:db.getCollection(’messages’).find(
 {’from’: ObjectId("55b625c008f843ac53a53ae9")}).explain("executionStats")
 QM2: db.getCollection(’messages’).find(
 {’to’: ObjectId("55b625c008f843ac53a53ae9")}).explain("executionStats")

 QPh1: db.getCollection(’phones’).find(
 {’price’: {$lte : 400, $gte: 200 }}).explain("executionStats")

 QC1: db.getCollection(’cms’).find(
 {’metadata.tags’: { $all: [’portrait’, ’landscape’, ’exterior’]}})
 .explain("executionStats")
 QC2: db.getCollection(’cms’).find(
 {’metadata.type’:’blog-entry’})
 .sort({’metadata.created’:-1})
 .limit(10).explain("executionStats")

 QL1: db.getCollection(’logs’).find(
 {’datetime’: {$gte: ISODate("2015-07-01T00:00:00.000Z"),
 $lt: ISODate("2015-07-27T00:00:00.000Z")},’level’:’Error’})
 .sort({’datetime’:-1}).limit(1000).explain("executionStats")

Listing 50: Test queries used in the experiment

by MongoDB). That means that we were able to generate data at most in 36
threads at the same time.

Servers App1, App2 and App3 hosted the Client application together with
the Node.js data generator and schema analyzer. We controlled and monitored
the data generation proces from the App1 server where we executed the Master
application.

The rest of the servers were all part of the MongoDB cluster and we did not
modify it during the tests. We used MongoDB version 3.0.4. All insert operations
used acknowledged write concern [91].

76

Figure 7.1: Sharded cluster architecture

77

Figure 7.2: Testing deployment diagram

78

7.2 Test Results
This section summarizes the results of the data generation we performed on

our testing environment. During all these tests, the maximum batch size in the
JsonGenerator.Master.Generator.Client application was set to 10 000.

Before we show the results, we are going to summarize the tests we performed:

• Test 1 : The purpose of this test was to generate several collections in Mon-
goDB. There were no custom indices created (except one on rnd field) and
sharding was disabled. That means all the data was stored on a single server.
All the operations and queries were services by a single mongod instance.
We were interested in the data generation speed rate and how the server
responds to the queries depending on the size of the generated data and the
type of the query.

• Test 2 : This test differs from Test 1 in that we enabled sharding for all
the generated collections using the field _id as the sharding key. We were
again interested in the data generation speed rate and the performance of
the queries.

• Test 3 : This test used hashed indices for _id fields and used this as a shard
key. Hashed shard key should enforce random distribution of data across
the shards and we were again interested how this affected our generator and
the performance of the queries.

• Test 4 : The last test we performed used additional indices that we created
for some of the queries we then executed. We were interested in how the
creation of the indices affected the data generation performance and also
the query performance.

7.2.1 Generation of 1 000 000 Documents

Figure 7.3 summarizes the generation of 1 000 000 documents using a single
client generator (i.e. 12 threads). Figure 7.4 shows the results for the case when
two client generators were running (i.e. 24 threads) and Figure 7.5 shows the
same results for three client generators (i.e. 36 threads). We used the same scale
on the y axis so the generation times can be compared visually.

It is obvious that addition of another client generator increased the data gener-
ation rate. The biggest difference was between using 1 and 2 client generators (the
data generation was approximately twice as fast). Addition of another client data
generator sometimes even made it worse as it probably overloaded the database.
There were cases where it did improve the generation rate but it was not very
significant.

Sharding and indices influenced the data generation rate slightly when it
slowed down the data generation in majority of our tests.

Data Generation Rate

Table 7.1 contains the computed generation rates for each test we performed
while generating 1 000 000 documents. The maximum rate at which the data gen-
erator was able to produce data was around 10MB/s (1 generator, 12 threads).

79

people phones messages cms logs
0

200

400

600

800

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.3: 1 000 000 documents, 1 client generator

people phones messages cms logs
0

200

400

600

800

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.4: 1 000 000 documents, 2 client generators

When the generation process included also references, this rate dropped signifi-
cantly - in some cases even under 1MB/s.

Additional generator (additional 12 threads) raised the maximum capacity
to almost 20MB/s. It also improved the generation with references - it roughly
doubled this rate. The third data generator did not improve the overall data
generation speed. In some cases, it was even worse.

We also monitored the load on the database server and it seemed that 2
generators were enough to fully load it.

80

people phones messages cms logs
0

200

400

600

800

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.5: 1 000 000 documents, 3 client generators

Collection
Name

of
genera-

tors
Test 1 [kB/s] Test 2 [kB/s] Test 3 [kB/s] Test 4 [kB/s]

people 1 7909.96 8675.53 8523.13 11442.72
phones 1 1082.66 889.3 687.86 671.9
messages 1 1266.35 1114.56 310.93 993.93
cms 1 2509.14 2485.38 2034.24 2137.06
logs 1 3391.48 3658.4 2924.32 3447.86
people 2 20593.85 15706.42 15096.75 17707.92
phones 2 2230.02 1508.87 1323.54 1271.07
messages 2 2997.97 2149.78 2009.67 1909.62
cms 2 6122.13 4542.10 4504.3 3792.91
logs 2 6734.01 6276.57 6445.93 6935.54
people 3 19700.85 20447.12 21470.02 21005.17
phones 3 2186.95 433.42 1604.74 1206.18
messages 3 3328.29 2476.22 2223.03 1841.14
cms 3 6282.85 5082.09 4981.60 4814.65
logs 3 6270.25 5342.91 7959.14 5678.19

Table 7.1: Data generation rates for 1 million documents

Query Performance

We measured the execution of the sample queries we created and already de-
scribed. Summarization of the measured values is present in Figure 7.6, Figure 7.7,
Figure 7.8 and Figure 7.9.

If we compare the query performance between Test 1 and Test 2, we can see
that the sharding helped to speed up the query execution time. It was roughly
twice as fast. Query performance measured after Test 3 also showed overall im-
provement. An interesting finding, however, is that queries we executed after Test

81

4 were slower in cases when there were no indices created for the queries. Query
execution times for fields which were indexed were much faster (the bar in graph
is almost not visible).

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

500

1,000

1,500

2,000

2,500
ex
ec
ut
io
n
ti
m
e
[m

s]

Run 1 Run 2 Run 3

Figure 7.6: Query performance, 1 000 000 documents, Test 1

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

500

1,000

1,500

2,000

2,500

ex
ec
ut
io
n
ti
m
e
[m

s]

Run 1 Run 2 Run 3

Figure 7.7: Query performance, 1 000 000 documents, Test 2

7.2.2 Generation of 8 000 000 Documents

The next part of the test was to repeat the whole testing process again with
the increased number of documents. We used 1, 2 and 3 instances of the client
data generator.

82

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

500

1,000

1,500

2,000

2,500

ex
ec
ut
io
n
ti
m
e
[m

s]

Run 1 Run 2 Run 3

Figure 7.8: Query performance, 1 000 000 documents, Test 3

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

500

1,000

1,500

2,000

2,500

ex
ec
ut
io
n
ti
m
e
[m

s]

Run 1 Run 2 Run 3

Figure 7.9: Query performance, 1 000 000 documents, Test 4

Graphs in Figure 7.10, Figure 7.11 and Figure 7.12 show an improvement in
data generation time when 2 and 3 client data generators were used. It is also
obvious that turning on the sharding had a positive impact on data generation
which involved references between documents. In other cases the data generation
rate was almost identical.

Data Generation Rate

Table 7.2 contains the computed generation rates for each test we performed
while generating 8 000 000 documents. The maximum rate at which the data gen-

83

erator was able to produce data was around 10MB/s (1 generator, 12 threads).
When the generation process included also references, this rate dropped signifi-
cantly - in some cases even under 1MB/s.

Additional generator (additional 12 threads) raised the maximum capacity
to almost 18MB/s. It also improved the generation with references - it roughly
doubled this rate. The third data generator improved the data generation speed
in some cases (collection people, around 30% increase) but overall it was not
significant.

We also monitored the load on the database server and it seemed that 2
generators were enough to fully load it again.

Collection
Name

of
genera-

tors
Test 1 [kB/s] Test 2 [kB/s] Test 3 [kB/s] Test 4 [kB/s]

people 1 10985.87 11256.17 10376.65 10555.90
phones 1 370.76 881.27 799.05 795.45
messages 1 437.79 1308.48 1191.40 1172.61
cms 1 925.74 2948.31 2699.86 2495.79
logs 1 2859.65 4875.22 3869.69 2795.47
people 2 18329.13 18740.57 18157.37 15406.84
phones 2 683.22 1689.13 891.12 1258.59
messages 2 870.48 2155.16 1785.5 1654.41
cms 2 1878.01 4711.63 3855.71 3239.07
logs 2 5477.69 7930.85 4997.10 3648.84
people 3 24721.83 23491.77 23265.31 22982.75
phones 3 711 1916.84 819.21 1012.84
messages 3 1078.68 2861.74 2362.22 1966.26
cms 3 2478.05 5884.23 5179.5 4192.38
logs 3 10934.73 8157.5 6593.96 4689.78

Table 7.2: Data generation rates for 8 million documents

7.3 Additional Tests
As a final test, we were interested in data generation performance when gener-

ating small and large files and also how it depends on its target place, i.e. whether
we save results to MongoDB or to files.

We performed the generation using 1, 2 and 3 client generators again. We
used template logs for small files and a new template we called people_large

(see Listing 51) for larger files. We generated 10 000 000 files to MongoDB using
the settings of the Test 3 (i.e. hashed indices and sharding using the hashed index).
The results of our measurements are shown in Figure 7.17 for the template logs.
Figure 7.18 contains the results for the people_large template. During all these
tests, the maximum batch size in the JsonGenerator.Master.Generator.Client ap-
plication was set to 5 000 due to available RAM on our application servers.

Our tests shown that the data generation to files is slightly faster than the
data generation directly to MongoDB. However, if we wanted to use the generated

84

people phones messages cms logs
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.10: 8 000 000 documents, 1 client generator

people phones messages cms logs
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.11: 8 000 000 documents, 2 client generators

files in database, we would have to import it anyway, which would take some time.
This method could also be used if the target database was not MongoDB.

When using 3 client generators, the overall generation time improved as well.
However, when we generated data to files, the generation time was even shorter,
as is obvious from the chart.

7.4 Encountered Difficulties
During our experiments we encountered problems with the performance of

MongoDB.

85

people phones messages cms logs
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

ge
ne
ra
ti
on

ti
m
e
[s
]

Test1 Test2 Test3 Test4

Figure 7.12: 8 000 000 documents, 3 client generators

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

50

100

150

200

250

300

ex
ec
ut
io
n
ti
m
e
[s
]

Run 1 Run 2 Run 3

Figure 7.13: Query performance, 8 000 000 documents, Test 1

Our data generator can possibly run on many servers concurrently. We ex-
ecuted it on 1 to 3 servers at the same time. When there were 3 instances of
the data generator running concurrently during Test 2, we were able to overload
the database so it often did not respond even after 10 minutes, which was our
initial timeout for HTTP requests set in Node.js servers. We later increased this
timeout to 20 minutes. We found out that if we generated the first collection and
let the database redistribute the data, then our data generator did not overload
the database. We also restarted query router servers which also seems to help.
We did not observe this behaviour in any other tests.

Our suggestion for this problem would be to generate one collection at a time,

86

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

20

40

60

80

100

120

ex
ec
ut
io
n
ti
m
e
[s
]

Run 1 Run 2 Run 3

Figure 7.14: Query performance, 8 000 000 documents, Test 2

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

2

4

6

8

10

ex
ec
ut
io
n
ti
m
e
[s
]

Run 1 Run 2 Run 3

Figure 7.15: Query performance, 8 000 000 documents, Test 3

mostly when there is a template with generation of references.
Another option we tried was to change the write concert during inserts. With

acknowledged write concern (i.e. mongod confirms that it received the write oper-
ation and applied the change to the in-memory view of data), the performance of
the insertion deteriorated when using more data generators. After clean startup
of the database, the insertion performance remained similar until all the available
RAM on the shards was filled up. After that we observed longer response times
from MongoDB. When we changed the write concern to unacknowledged (i.e.
mongod does not confirm the receipt of write operations), the data generator was
not being slowed down by the database that much. For example the insertion of

87

QP1 QP2 QP3 QP4 QP5 QM1 QM2 QPh1 QC1 QC2 QL1
0

20

40

60

80

100

ex
ec
ut
io
n
ti
m
e
[s
]

Run 1 Run 2 Run 3

Figure 7.16: Query performance, 8 000 000 documents, Test 4

10 000 000 documents with acknowledged write concern using 2 data generators
took almost twice as long as when the write concern was set to unacknowledged.
However, the database was performing inserts and was moving data even after
the data generation ended.

7.5 Test Summary
Our experiments showed us the limits of the implemented data generator.

We compared the performance of different numbers of instances of the client
worker generators under various conditions. Since our data generator can scale
horizontally, we were able to test the limits of the database as well. References
between documents proved to be a performance hog. This part of the generator
is a good candidate for optimizations. A simple example of such optimization
could be limiting the number of documents that are used in references which is
possible, as we have shown in Listing 38.

We also tested the performance of MongoDB with and without the sharding
enabled and we found out that sharding indeed improves the overall performance.
It also helps with the query performance. The biggest positive impact on query
performance had indices. In most of the cases, the presence of indices slowed
down the data generation rate slightly which is understandable due to additional
computations the database has to do.

If we wanted to execute similar tests with the generators already available,
it would be almost impossible. To the best of our knowledge, currently there is
no solution that can be deployed in the similar manner and that could generate
structures based on a JSON template either generated automatically or written
manually. Many of the XML data generators simply were not created for this type
of usage scenario. None of them can run on a cluster and scale like our solution.
Similarly, described JSON data generators are web applications and these are not

88

 {
 "_$db": {
 "sourceDb": "local",
 "sourceCollection": "test",
 "targetDb": "test",
 "targetCollection": "people"
 },
 "bodyTemperature": "{{Number(chance.floating({min: 35, max: 42, fixed:2}))}}",
 "warning": "Too hot! {{ hide(this.bodyTemperature < 38) }}",

 "array" : ["{{_$config}}", { "size": [5, 50] }, {
 "name": "{{chance.name()}}",
 "accounts": ["{{_$config}}", {}, "{{faker.finance.accountName()}}"]
 }],
 "longText" : "{{ faker.lorem.paragraphs(10) }}",
 "web" : {
 "color": "{{chance.color()}}",
 "domain": "{{chance.domain()}}",
 "email": "{{chance.email()}}",
 "fbid": "{{chance.fbid()}}",
 "googleanalytics": "{{chance.google_analytics() }}",
 "hashtag": "{{chance.hashtag() }}",
 "ip": "{{chance.ip() }}",
 "ipv6": "{{chance.ipv6() }}",
 "klout": "{{chance.klout() }}",
 "twitter": "{{chance.twitter() }}",
 "url" : "{{chance.url()}}"
 },
 "commerce" : {
 "color": "{{faker.commerce.color()}}",
 "department": "{{faker.commerce.department()}}",
 "productName": "{{faker.commerce.productName()}}",
 "price": "{{faker.commerce.price()}}",
 "productAdjective": "{{faker.commerce.productAdjective()}}",
 "productMaterial": "{{faker.commerce.productMaterial()}}",
 "product": "{{faker.commerce.product()}}"
 },
 "company" : {
 "suffixes":"{{faker.company.suffixes()}}",
 "companyName":"{{faker.company.companyName()}}",
 "companySuffix":"{{faker.company.companySuffix()}}",
 "catchPhrase":"{{faker.company.catchPhrase()}}",
 "bs":"{{faker.company.bs()}}",
 "catchPhraseAdjective":"{{faker.company.catchPhraseAdjective()}}",
 "catchPhraseDescriptor":"{{faker.company.catchPhraseDescriptor()}}",
 "catchPhraseNoun":"{{faker.company.catchPhraseNoun()}}",
 "bsAdjective":"{{faker.company.bsAdjective()}}",
 "bsBuzz":"{{faker.company.bsBuzz()}}",
 "bsNoun":"{{faker.company.bsNoun()}}"
 }
 }

Listing 51: Template for large people collection

suitable for testing large datasets like we performed.
Big Data generators like PDGF [57] or BDGS [58] can scale horizontally and

generate data in parallel. It was one of the goals in their design. However, they
lack the simplicity in how to change the structure of the generated data, they

89

1 generator 2 generators 3 generators
0

200

400

600

800

1,000

1,200

1,400

ge
ne
ra
ti
on

ti
m
e
[s
]

MongoDB Files

Figure 7.17: 10 000 000 documents, logs template

focus on specific use cases and also lack the inferring abilities. Their advantage is
also their data generation speed. Experiments done for BDGS used one node with
two 2.4GHz Intel Xeon E5645 processors (i.e. 12 threads) and 32GB RAM with
8X1TB disk. Their data generation rates ranged from 34MB/s (Facebook Data
Set) to up to 78MB/s (Amazon Data Set). Our data generator could generate data
at a maximum rate around 22MB/s (with 24 threads). However, at most cases
it was slower. This could be affected also by the performance of the hardware on
which we executed the tests. We used virtual servers and we observed performance
issues with disks. This was beyond our control. However, if one wanted to improve
the data generation speed with hardware, we suggest the usage of dedicated SSD
drives for the database.

The last set of tests we performed were defined to compare the effect of Mon-
goDB on data generator in case of smaller and larger documents. We were also
interested how the data generation rate depends on the target of the data gen-
eration, i.e. whether it is MongoDB or files on the disk. We found out that the
data generation of smaller files is slower and it is also slower when the output
is MongoDB. This suggests the use of more smaller shards if the desired target
place is MongoDB. If the target is not MongoDB, we recommend using the data
generation to files and using an import tool of the desired database.

We also found out that write concern for inserts had an impact on the per-
formance of inserts from the point of the data generator. Unacknowledged write
concern provides better performance for the data generator but does not ensure
the data will be written to disk. However, for the duration of the data generation,
this might not be an issue.

90

1 generator 2 generators 3 generators
0

2,000

4,000

6,000

8,000

ge
ne
ra
ti
on

ti
m
e
[s
]

MongoDB Files

Figure 7.18: 10 000 000 documents, people_large template

91

8. Conclusion
The first aim of the thesis was to perform a research of the currently available

methods in synthetic data generation for semi-structured documents. We focused
on XML and JSON format and we also described 3 Big Data generators.

For the XML format, we found several data generators from which the major-
ity was a part of an XML benchmark. In general, there are four distinct methods
for data generation in the generators we investigated. The simplest one is gener-
ation of documents with predefined properties and contents which can be found,
for example, in the generator from XMark benchmark [12]. The most complicated
approach is present in ToXgene [27]. It uses its own language for definition of the
data to generate. This solution is very capable and powerful. It can generate large
and mainly very different XML documents. Its main advantage is, however, its
capability to handle very small details in the generation process. We consider this
to be its biggest disadvantage too. It is because to be able to define such details,
it is necessary to learn this language. The next approach is in the data genera-
tor called Complex-structured XML data generator [31]. It first generates a tree
structure according to the set of parameters and then assigns artificially created
element names and textual values. The last found approach uses schema with a
small set of parameters to generate sample XML documents. This approach can
be found for example in <oXygen/> XML Editor [32] or Altova XMLSpy [36].

For the JSON format, we found three web applications ([62], [63] and [64]) and
one Node.js application [65]. They all use similar method for data generation. The
user specifies the output in the form of the template which is then transformed
into the resulting documents.

The remaining data generators focus on Big Data (PDGF [57], BDGS [58] and
DataGenerator [59]). They focus either on relational data (PDGF), on a specific
usage scenarios (BDGS) or require additional programming and creation of the
model (DataGenerator). None of these tools provides an easy way to generate
large amounts of semi-structured documents with an arbitrary contents. They
are all designed to produce data in parallel and can scale horizontally unlike all
the other XML or JSON data generators we mentioned.

Our second target was to propose our own algorithm which would focus on Big
Data generation for document databases, in our case MongoDB. The generator
should be able to run in parallel on multiple servers producing different volumes
of data at different data generation rates. The next property we wanted was the
ability to infer schema of an existing set of documents and automatic creation of
a template for our data generator. We also wanted an ability to create references
between the generated documents.

We discussed several options how to design an architecture of such a data
generator. We chose an existing solution [65] which we modified for our desired
purposes. The main advantage of this solution are the templates in which the user
can specify the structure of the documents and he can also use various random
data generators to create realistic data. One of the main challenges we faced was
to make this single-threaded data generator into a multi-threaded one which could
be scaled across several nodes of a cluster (i.e. horizontally). We achieved this by
dividing the data generator into two main parts - server and client. The server

92

part is responsible for the division and delegation of the work into smaller tasks
to the connected clients. We accomplished this by using a simple communication
protocol based on a publisher-subscriber model.

When implementing a functionality to reuse existing data sets for data gen-
eration, we used an existing tool [85] which creates a probabilistic schema of the
collection of documents in MongoDB. We transformed this information into a
template which can be further manually adjusted or directly used for data gener-
ation in our generator. We implemented only simple mappings between the found
data types and random data generators in the template as these can be added
later.

MongoDB does not support joins in its queries. The idea in document databases
is to have the data in one place. For the cases when this is not possible, there are
two options for referencing other documents: manual and DBRefs. The authors
of MongoDB suggest the usage of manual references and therefore we focused
on this area. We added a special syntax to the templates which defines the tar-
get database and collection of the reference. During the data generation phase,
the data generator looks up random documents from the specified collection and
saves their _id fields to the generated document. This also requires an addition
of a special attribute to the referenced collection which enables quick selection of
the random document.

The next part of the thesis describes the experiments we performed using
the created data generator and MongoDB. We created five different templates to
model a simple schema where we store information about people, their phones
and messages between them. Additional two templates modeled a simple blogging
platform and an event log. These were created so that we could analyze the
performance of the data generator when generating documents with and without
the references under 4 different conditions regarding indices and sharding. We
performed these test using 1, 2 or 3 servers generating data. The size of the data
sets we generated were set to 1 000 000 and 8 000 000 documents. We measured
the duration of the data generation process and also the size of the resulting data
so that we could calculate the data generation rate. The last test we performed
was designed to compare the performance of the data generation when the result
is saved directly to MongoDB and when it is saved to files on the disk.

Our test results showed us that sharding in MongoDB improved the insert and
query performance of the database. We also found out that in our environment,
the best number of client generators was 2. Additional generator often overloaded
the database and caused timeouts. Query performance was improved when we
added appropriate indices which we anticipated. These indices also slowed down
the generation process but it was insignificant in general. We also showed that
MongoDB was slowing down the data generation process. When we generated the
same number of documents and saved them to files, the generation process took
shorter amount of time.

In general, we showed how the data generator can be used for testing and that
to the best of our knowledge there are no similar solutions that could be used with
the same small amount of effort. The data generator can create large numbers of
JSON documents with an arbitrary content, at various speeds depending on the
number of nodes it runs on. It can also help with creation of the template when
the user has a sample data available. It is also possible to create links between

93

the generated data.

8.1 Future Work
There are few areas in which our solution can be improved. First of all, our

implementation is a prototype which focuses on the core of the problems (i.e. data
generation, references, parallelism), less on the overall usability of the application
in terms of the user interface etc. For production environment, these issues should
be resolved.

Regarding functionality, we observed slow downs of the data generation pro-
cess due to massive amount of insertions which our testing MongoDB could not
handle. It would be possible to add an additional module which would only im-
port the generated data asynchronously with regards to the data generation.
Currently it is possible to do this manually. It would be also good to improve the
data generation rates when the data generator creates references as these create
additional load on MongoDB (as we have proven in our experiments).

Other area where the data generator could be improved is the support for ad-
ditional document databases and formats like XML. At the moment, it is possible
to convert the generated data manually, however an automatic approach would
be preferred.

Another interesting area would be to further investigate and optimize the
JavaScript data generator to improve its overall performance.

94

Bibliography
[1] Extensible Markup Language (XML) 1.0 (Fifth Edition). World Wide Web

Consortium, 2013. Available from: http://www.w3.org/TR/REC-xml/.

[2] JSON. ECMA-404 The JSON Data Interchange Standard, 2015. Available
from: http://json.org/

[3] A. De Mauro; M. Greco; M. Grimaldi: What is big data? A consensual
definition and a review of key research topics. AIP Conference Proceedings
1644: 97-104, Madrid, Spain, 2015. Available from: http://scitation.aip.
org/content/aip/proceeding/aipcp/10.1063/1.4907823

[4] NoSQL Databases. 2015. Available from: http://nosql-database.org/

[5] JSON: The Fat-Free Alternative to XML. json.org, 2015. Available from:
http://www.json.org/xml.html

[6] I. Mlynkova, K. Toman, J. Pokorný: Statistical Analysis of Real XML Data
Collections. Technical report 2006/5. Charles University, Prague, Czech Re-
public, June 2006, 43 pages. Available from: http://www.ksi.mff.cuni.cz/
~mlynkova/doc/tr2006-5.pdf

[7] Vogels, W.: Eventually consistent. Communications of the ACM 52:
40. 2009. Available from: http://dl.acm.org/citation.cfm?doid=1435417.
1435432

[8] U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, Y. G. Li: Efficient XML Data
Management: An analysis. Proceedings of the Third International Con-
ference on E-Commerce and Web Technologies, p. 87–98, 2002, Springer-
Verlag, London, UK.

[9] Introduction to DTD. W3Schools, 2013. Available from: http://www.

w3schools.com/dtd/dtd_intro.asp

[10] XML Schema Definition Language (XSD). World Wide Web Consortium.
2012. Available from: http://www.w3.org/TR/xmlschema11-1/

[11] XML Schema Definition Tool. Microsoft Developer Network (MSDN). 2012.
Available from: http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=

vs.110).aspx

[12] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse: XMark: a benchmark for XML data management, VLDB ’02
Proceedings of the 28th international conference on Very Large Data Bases,
p. 974–985, 2002, Hong Kong, China.

[13] I. Mlýnková: XML Benchmarking: Limitations and Opportunities, technical
report no. 2008/1, Charles University, 23 pages, 2008. Available from: http:
//www.ksi.mff.cuni.cz/~holubova/doc/tr2008-1.pdf

95

http://www.w3.org/TR/REC-xml/
http://json.org/
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4907823
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4907823
http://nosql-database.org/
http://www.json.org/xml.html
http://www.ksi.mff.cuni.cz/~mlynkova/doc/tr2006-5.pdf
http://www.ksi.mff.cuni.cz/~mlynkova/doc/tr2006-5.pdf
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3schools.com/dtd/dtd_intro.asp
http://www.w3.org/TR/xmlschema11-1/
http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.110).aspx
http://www.ksi.mff.cuni.cz/~holubova/doc/tr2008-1.pdf
http://www.ksi.mff.cuni.cz/~holubova/doc/tr2008-1.pdf

[14] XQuery 1.0: An XML Query Language (Second Edition), World Wide Web
Consortium, 2011. Available from: http://www.w3.org/TR/xquery/.

[15] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R.
Busse. XMark - An XML Benchmark Project: xmlgen - The Benchmark
Data Generator. Centrum voor Wiskunde en Informatica (CWI), Ams-
terdam, 2003. Available from: http://www.xml-benchmark.org/generator.
html.

[16] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark - An XML Benchmark Project: DTD of XMark Bench-
mark Data Generator. Centrum voor Wiskunde en Informatica (CWI), Am-
sterdam, 2003. Available from: http://www.ins.cwi.nl/projects/xmark/

Assets/auction.dtd.

[17] S. Bressan, M. L. Lee, Y. G. Li, B. Wadhwa, Z. Lacroix, U. Nambiar, and
G. Dobbie. The XOO7 Benchmark. 2002. Available from: http://www.comp.
nus.edu.sg/~ebh/XOO7.html.

[18] S. Bressan, M. L. Lee, Y. G. Li., Z. Lacroix, U. Nambiar. The XOO7 XML
Management System Benchmark, Technical Report. National University of
Singapore and Arizona State University. 2002. Available from: http://www.
comp.nus.edu.sg/~ebh/XOO7/download/XOO7_TechReport.pdf.

[19] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 Benchmark.
SIGMOD Record (ACM Special Interest Group on Management of Data),
22(2):12–21, 1993.

[20] The XOO7 Benchmark - DTD of XOO7 Benchmark Data Generator. Na-
tional University of Singapore, 2013. Available from: http://www.comp.nus.
edu.sg/~ebh/XOO7/download/Module.DTD.

[21] T. Bohme and E. Rahm. XMach-1: A Benchmark for XML Data Man-
agement. Database Group Leipzig, 2002. Available from: http://dbs.

uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html.

[22] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark. Department of Electrical Engineering and Com-
puter Science, The University of Michigan, 2006. Available from: http:

//www.eecs.umich.edu/db/mbench/description.html.

[23] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark - Queries. Department of Electrical Engineering
and Computer Science, The University of Michigan, 2006. Available from:
http://www.eecs.umich.edu/db/mbench/description.html#queries.

[24] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark - Data Set Description. Department of Electri-
cal Engineering and Computer Science, The University of Michigan, 2006.
Available from: http://www.eecs.umich.edu/db/mbench/description.html#
dataSet.

96

http://www.w3.org/TR/xquery/
http://www.xml-benchmark.org/generator.html
http://www.xml-benchmark.org/generator.html
http://www.ins.cwi.nl/projects/xmark/Assets/auction.dtd
http://www.ins.cwi.nl/projects/xmark/Assets/auction.dtd
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7/download/XOO7_TechReport.pdf
http://www.comp.nus.edu.sg/~ebh/XOO7/download/XOO7_TechReport.pdf
http://www.comp.nus.edu.sg/~ebh/XOO7/download/Module.DTD
http://www.comp.nus.edu.sg/~ebh/XOO7/download/Module.DTD
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html
http://www.eecs.umich.edu/db/mbench/description.html
http://www.eecs.umich.edu/db/mbench/description.html
http://www.eecs.umich.edu/db/mbench/description.html#queries
http://www.eecs.umich.edu/db/mbench/description.html#dataSet
http://www.eecs.umich.edu/db/mbench/description.html#dataSet

[25] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark - Generation of the String Attributes and Ele-
ments. Department of Electrical Engineering and Computer Science, The
University of Michigan, 2006. Available from: http://www.eecs.umich.edu/
db/mbench/description.html#3.3.

[26] K. Runapongsa, J. M. Patel, H. V. Jagadish, Y. Chen, and S. Al-Khalifa.
The Michigan Benchmark - Instructions to build the data generator.. De-
partment of Electrical Engineering and Computer Science, The University
of Michigan, 2006. Available from: http://www.eecs.umich.edu/db/mbench/
cgi/downloads/installWin.html.

[27] ToXgene - the ToX XML Data Generator. University of Toronto, 2005.
Available from: http://www.cs.toronto.edu/tox/toxgene/.

[28] Weisstein, Eric W. Zipf’s Law. MathWorld – A Wolfram Web Resource.
Available from: http://mathworld.wolfram.com/ZipfsLaw.html

[29] Toronto XML Server. University of Toronto, 2002. Available from: http:
//www.cs.toronto.edu/tox/.

[30] D. Barbosa, A. Mendelzon, J. Keenleyside, K. Lyons. ToXgene: An exten-
sible template-based data generator for XML. In Proceedings of the Fifth
International Workshop on the Web and Databases (WebDB 2002). Madi-
son, Wisconsin - June 6-7, 2002. Available from: http://www.cs.toronto.
edu/tox/toxgene/docs/ToXgene.pdf

[31] A. Aboulnaga, J. F. Naughton, C. Zhang: Generating Synthetic Complex-
Structured XML Data. In WebDB’01: Proc. of the 4th Int. Workshop on
the Web and Databases, pages 79-84, Washington, DC, USA, 2001.

[32] <oXygen/> xml editor. SyncRO Soft SRL, 2013. Available from: http://
www.oxygenxml.com/

[33] <oXygen/> XML Feature Matrix. SyncRO Soft SRL, 2013. Available from:
http://www.oxygenxml.com/xml_editor/feature_matrix.html

[34] Liquid Xml Studio. Liquid Technologies, 2013. Available from: http://www.
liquid-technologies.com/xml-studio.aspx

[35] Liquid XML Studio Edition Comparison. Liquid Technologies, 2013. Avail-
able from: http://www.liquid-technologies.com/xml-studio.aspx?view=

editions

[36] Altova XMLSpy XML Editor. Altova, 2013. Available from: http://www.
altova.com/xmlspy.html

[37] Altova XMLSpy Edition Comparison. Altova, 2013. Available from: http:
//www.altova.com/xmlspy/editions/

[38] Eclipse Home Page. The Eclipse Foundation, 2013. Available from: http:
//www.eclipse.org/

97

http://www.eecs.umich.edu/db/mbench/description.html#3.3
http://www.eecs.umich.edu/db/mbench/description.html#3.3
http://www.eecs.umich.edu/db/mbench/cgi/downloads/installWin.html
http://www.eecs.umich.edu/db/mbench/cgi/downloads/installWin.html
http://www.cs.toronto.edu/tox/toxgene/
http://mathworld.wolfram.com/ZipfsLaw.html
http://www.cs.toronto.edu/tox/
http://www.cs.toronto.edu/tox/
http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene.pdf
http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene.pdf
http://www.oxygenxml.com/
http://www.oxygenxml.com/
http://www.oxygenxml.com/xml_editor/feature_matrix.html
http://www.liquid-technologies.com/xml-studio.aspx
http://www.liquid-technologies.com/xml-studio.aspx
http://www.liquid-technologies.com/xml-studio.aspx?view=editions
http://www.liquid-technologies.com/xml-studio.aspx?view=editions
http://www.altova.com/xmlspy.html
http://www.altova.com/xmlspy.html
http://www.altova.com/xmlspy/editions/
http://www.altova.com/xmlspy/editions/
http://www.eclipse.org/
http://www.eclipse.org/

[39] Microsoft Visual Studio. Microsoft, 2013. Available from: http://www.

microsoft.com/visualstudio

[40] Riak KV. Basho Technologies, 2015. Available from: http://basho.com/

products/riak-kv/

[41] Redis. Redis.io, 2015. Available from: http://redis.io

[42] MemcacheDB. MemcacheDB.org, 2015. Available from: http:

//memcachedb.org

[43] Hamster DB. Christoph Rupp, 2015. Available from: http://hamsterdb.com

[44] Project Voldemort. Project Voldermort - A distributed database, 2015.
Available from: http://www.project-voldemort.com/voldemort/

[45] MongoDB. Mongo DB, Inc., 2015. Available from: https://www.mongodb.org

[46] Apache CouchDB. The Apache Software Foundation, 2015. Available from:
http://couchdb.apache.org

[47] RavenDB. Hibernate Rhinos, 2015. Available from: http://ravendb.net

[48] OrientDB. Orient Technologies LTD, 2015. Available from: http://

orientdb.com/orientdb/

[49] Google Cloud Bigtable. Google, 2015. Available from: https://cloud.

google.com/bigtable/

[50] Apache HBase. The Apache Software Foundation, 2015. Available from:
http://hbase.apache.org

[51] Apache Cassandra. The Apache Software Foundation, 2015. Available from:
http://cassandra.apache.org

[52] Hypertable. Hypertable Inc., 2015. Available from: http://hypertable.org

[53] Amazon SimpleDB. Amazon Web Services, Inc., 2015. Available from: http:
//aws.amazon.com/simpledb/

[54] Neo4j. Neo Technology, Inc., 2015. Available from: http://neo4j.com

[55] infiniteGraph. Objectivity Inc., 2015. Available from: http://www.

objectivity.com/products/infinitegraph/

[56] FlockDB. Github, Inc., 2015. Available from: https://github.com/twitter/
flockdb

[57] Rabl, Tilmann and Jacobsen, Hans-Arno: Big Data Generation. Speci-
fying Big Data Benchmarks. WBDB 2012, LNCS 8163. Springer Berlin
Heidelberg, pp. 20-27, 2014. Available from: http://dx.doi.org/10.1007/
978-3-642-53974-9_3

98

http://www.microsoft.com/visualstudio
http://www.microsoft.com/visualstudio
http://basho.com/products/riak-kv/
http://basho.com/products/riak-kv/
http://redis.io
http://memcachedb.org
http://memcachedb.org
http://hamsterdb.com
http://www.project-voldemort.com/voldemort/
https://www.mongodb.org
http://couchdb.apache.org
http://ravendb.net
http://orientdb.com/orientdb/
http://orientdb.com/orientdb/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
http://hbase.apache.org
http://cassandra.apache.org
http://hypertable.org
http://aws.amazon.com/simpledb/
http://aws.amazon.com/simpledb/
http://neo4j.com
http://www.objectivity.com/products/infinitegraph/
http://www.objectivity.com/products/infinitegraph/
https://github.com/twitter/flockdb
https://github.com/twitter/flockdb
http://dx.doi.org/10.1007/978-3-642-53974-9_3
http://dx.doi.org/10.1007/978-3-642-53974-9_3

[58] Ming, Zijian and Luo, Chunjie and Gao, Wanling and Han, Rui and Yang,
Qiang and Wang, Lei and Zhan, Jianfeng: BDGS: A Scalable Big Data
Generator Suite in Big Data Benchmarking. Advancing Big Data Bench-
marks. WDBD 2013, LNCS 8585. Springer Internation Publishing Switzer-
land, pp. 138-154, 2014. DOI: 10.1007/978-3-319-10596-3 11 Available from:
http://dx.doi.org/10.1007/978-3-319-10596-3_11

[59] DataGenerator, version 2.1. 2015. Available from: http://finraos.github.
io/DataGenerator/

[60] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, H.A. Jacobsen:
BigBench: Towards an industry standard benchmark for big data analytics.
In: Proceedings of the ACM SIGMOD Conference (2013). Available from:
http://dl.acm.org/citation.cfm?id=2463712

[61] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang,
Yongqiang He, WanlingGao, Zhen Jia, Yingjie Shi, Shujie Zhang,
Cheng Zhen, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu: Big-
DataBench: a Big Data Benchmark Suite from Internet Services. The
20th IEEE International Symposium On High Performance Computer
Architecture (HPCA-2014), February 15-19, 2014, Orlando, Florida,
USA. Available from: http://prof.ict.ac.cn/BigDataBench/wp-content/

uploads/2013/10/Wang_BigDataBench.pdf

[62] V. Omanashvili: JSON GENERATOR, 2015. Available from: http://www.
json-generator.com/

[63] B. Keen: generatedata.com, version 3.1.4, 2015. Available from: http://www.
generatedata.com/

[64] Mockaroo. Mockaroo, LLC. 2015. Available from: https://www.mockaroo.
com/

[65] MongoDB-Datasets. Github, 2015. Available from: https://github.com/

mongodb-js/datasets

[66] Node.js. Node.js Foundation, 2015. Available from: https://nodejs.org/

[67] V8 JavaScript Engine. Google, 2015. Available from: https://code.google.
com/p/v8/

[68] Chance. Victor Quinn, 2015. Available from: http://chancejs.com/

[69] Faker.js. Matthew Bergman &Marak Squires, Github, 2015. Available from:
https://github.com/FotoVerite/Faker.js

[70] Underscore. 2015. Available from: http://underscorejs.org/

[71] Database References. MongoDB, Inc., 2015. Availabe from: http://docs.
mongodb.org/manual/reference/database-references/

[72] The Four Vś of Big Data. IBM Big Data & Analytics Hub, IBM, 2015. Avail-
able from: http://www.ibmbigdatahub.com/infographic/four-vs-big-data

99

http://dx.doi.org/10.1007/978-3-319-10596-3_11
http://finraos.github.io/DataGenerator/
http://finraos.github.io/DataGenerator/
http://dl.acm.org/citation.cfm?id=2463712
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2013/10/Wang_BigDataBench.pdf
http://prof.ict.ac.cn/BigDataBench/wp-content/uploads/2013/10/Wang_BigDataBench.pdf
http://www.json-generator.com/
http://www.json-generator.com/
http://www.generatedata.com/
http://www.generatedata.com/
https://www.mockaroo.com/
https://www.mockaroo.com/
https://github.com/mongodb-js/datasets
https://github.com/mongodb-js/datasets
https://nodejs.org/
https://code.google.com/p/v8/
https://code.google.com/p/v8/
http://chancejs.com/
https://github.com/FotoVerite/Faker.js
http://underscorejs.org/
http://docs.mongodb.org/manual/reference/database-references/
http://docs.mongodb.org/manual/reference/database-references/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data

[73] ECMAScript 2015 Language Specification. Ecma International, Geneva,
2015. Available from: http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-262.pdf

[74] BSON. Specification Version 1.0, 2015. Available from: http://bsonspec.
org/spec.html

[75] Aggregation Pipeline in MongoDB. MongoDB, Inc., 2015. Available from:
http://docs.mongodb.org/manual/core/aggregation-pipeline/

[76] Map-Reduce in MongoDB. MongoDB, Inc., 2015. Available from: http://
docs.mongodb.org/manual/core/map-reduce/

[77] Single Purpose Aggregation Operations. Mongo DB, Inc.,
2015. Available from: http://docs.mongodb.org/manual/core/

single-purpose-aggregation/

[78] Multikey Indexes in MongoDB. MongoDB, Inc., 2015. Available from: http:
//docs.mongodb.org/manual/core/index-multikey/

[79] Geospatial Indexes in MongoDB. MongoDB, Inc., 2015. Available from:
http://docs.mongodb.org/manual/applications/geospatial-indexes/

[80] Text Indexes in MongoDB. MongoDB, Inc., 2015. Available from: http:

//docs.mongodb.org/manual/core/index-text/

[81] Hashed Indexes in MongoDB. MongoDB, Inc., 2015. Available from: http:
//docs.mongodb.org/manual/core/index-hashed/

[82] Replication in MongoDB. MongoDB, Inc., 2015. Available from: http://
docs.mongodb.org/manual/core/replication-introduction/

[83] Sharding in MongoDB. MongoDB, Inc., 2015. Available from: http://docs.
mongodb.org/manual/core/sharding-introduction/

[84] State Chart XML (SCXML): State Machine Notation for Control Abstrac-
tion. W3C Proposed Recommendation 30 April 2015. World Wide Web
Consortium, 2015. Available from: http://www.w3.org/TR/scxml/

[85] mongodb-schema. Github, 2015. Available from: https://github.com/

mongodb-js/mongodb-schema

[86] Production Cluster Architecture. MongoDB, Inc., 2015.
Available from: http://docs.mongodb.org/manual/core/

sharded-cluster-architectures-production/

[87] .NET Framework 4.5. Microsoft Developer Network. Available from: http:
//msdn.microsoft.com/en-us/library/vstudio/w0x726c2.aspx

[88] MPI.NET: High-Performance C# Library for Message Passing. The
Trustees of Indiana University, 2015. Available from: http://www.osl.iu.
edu/research/mpi.net/

100

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://bsonspec.org/spec.html
http://bsonspec.org/spec.html
http://docs.mongodb.org/manual/core/aggregation-pipeline/
http://docs.mongodb.org/manual/core/map-reduce/
http://docs.mongodb.org/manual/core/map-reduce/
http://docs.mongodb.org/manual/core/single-purpose-aggregation/
http://docs.mongodb.org/manual/core/single-purpose-aggregation/
http://docs.mongodb.org/manual/core/index-multikey/
http://docs.mongodb.org/manual/core/index-multikey/
http://docs.mongodb.org/manual/applications/geospatial-indexes/
http://docs.mongodb.org/manual/core/index-text/
http://docs.mongodb.org/manual/core/index-text/
http://docs.mongodb.org/manual/core/index-hashed/
http://docs.mongodb.org/manual/core/index-hashed/
http://docs.mongodb.org/manual/core/replication-introduction/
http://docs.mongodb.org/manual/core/replication-introduction/
http://docs.mongodb.org/manual/core/sharding-introduction/
http://docs.mongodb.org/manual/core/sharding-introduction/
http://www.w3.org/TR/scxml/
https://github.com/mongodb-js/mongodb-schema
https://github.com/mongodb-js/mongodb-schema
http://docs.mongodb.org/manual/core/sharded-cluster-architectures-production/
http://docs.mongodb.org/manual/core/sharded-cluster-architectures-production/
http://msdn.microsoft.com/en-us/library/vstudio/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/vstudio/w0x726c2.aspx
http://www.osl.iu.edu/research/mpi.net/
http://www.osl.iu.edu/research/mpi.net/

[89] Cross-platform framework for interprocess communication. Ondrej Uzovic,
2015. Available from: http://www.eneter.net/index.htm

[90] Robomongo: Shell-centric cross-platform MongoDB management tool. Par-
alect, 2015. Available from: http://robomongo.org/

[91] Write Concern. MongoDB, Inc., 2015. Available from: http://docs.

mongodb.org/manual/core/write-concern/

101

http://www.eneter.net/index.htm
http://robomongo.org/
http://docs.mongodb.org/manual/core/write-concern/
http://docs.mongodb.org/manual/core/write-concern/

List of Tables
3.1 Summary of Big Data and JSON data generators 19
3.2 Summary of XML data generators 39
3.3 Summary of XML data generators #2 40

7.1 Data generation rates for 1 million documents 79
7.2 Data generation rates for 8 million documents 82

102

List of Figures
1.1 XML tree example . 5

4.1 Sharded collection in MongoDB 49

5.1 Main components of the proposed data generator 53
5.2 High-level view of the class interaction in mongodb-schema 57
5.3 Diagram of task delegation in Json Generator 62

6.1 Server tab of JsonGenerator . 64
6.2 Input Settings tab of JsonGenerator - template generation 65
6.3 Input Settings tab of JsonGenerator - data generation 66
6.4 Actual data generation performed during our experiments 67

7.1 Sharded cluster architecture . 75
7.2 Testing deployment diagram . 76
7.3 1 000 000 documents, 1 client generator 78
7.4 1 000 000 documents, 2 client generators 78
7.5 1 000 000 documents, 3 client generators 79
7.6 Query performance, 1 000 000 documents, Test 1 80
7.7 Query performance, 1 000 000 documents, Test 2 80
7.8 Query performance, 1 000 000 documents, Test 3 81
7.9 Query performance, 1 000 000 documents, Test 4 81
7.10 8 000 000 documents, 1 client generator 83
7.11 8 000 000 documents, 2 client generators 83
7.12 8 000 000 documents, 3 client generators 84
7.13 Query performance, 8 000 000 documents, Test 1 84
7.14 Query performance, 8 000 000 documents, Test 2 85
7.15 Query performance, 8 000 000 documents, Test 3 85
7.16 Query performance, 8 000 000 documents, Test 4 86
7.17 10 000 000 documents, logs template 88
7.18 10 000 000 documents, people_large template 89

103

List of Listings
1 Example of an XML document 4
2 DTD example . 5
3 Example of element with mixed content 6
4 JSON example . 6
5 JSON example in XML format 7
6 JSON syntax . 7
7 BSON representation . 7
8 JSON Generator sample . 16
9 JSON Generator result . 17
10 Simple template for MongoDB-Datasets generator 17
11 XOO7 Data Generator DTD . 23
12 XMach-1 Data Generator DTD 25
13 XML Schema of the Michigan Benchmark Data Set 27
14 Distribution Declaration in TSL 29
15 Type Declaration in TSL . 30
16 List Declaration in TSL . 30
17 List Usage in TSL . 31
18 Random Structures in TSL . 31
19 MongoDB document example . 41
20 Sample query . 42
21 Sample insert in MongoDB . 44
22 Sample update in MongoDB . 44
23 Sample delete in MongoDB . 45
24 Sample map-reduce operation in MongoDB 46
25 Singe field index creation example 47
26 Compound index creation example 47
27 Multikey index creation example 47
28 Text index creation example . 48
29 Wildcard text index creation example 48
30 Hashed index creation example 48
31 Random field definition . 51
32 DBRef example . 51
33 Meta data in template . 56
34 Sample document to analyze . 58
35 Example of the generated template 58
36 Various options in template . 59
37 Linking documents . 60
38 Random field definition . 60
39 Configuration options for JsonGenerator.Master.WindowApp . . . 66
40 Configuration options for JsonGenerator.Master.Generator.Client 67
41 Template for people collection . 69
42 Template for phones collection . 69
43 Template for messages collection 69
44 Template for cms collection . 70
45 Template for logs collection . 70

104

46 Create commands for Test 1 . 71
47 Create commands for Test 2 . 71
48 Create commands for Test 3 . 72
49 Create commands for Test 4 . 73
50 Test queries used in the experiment 74
51 Template for large people collection 87
52 XMark Data Generator DTD . 107

105

Appendices

106

A. DVD Contents
This thesis contains an attached DVD with binaries of JsonGenerator, source

code of JsonGenerator, documentation generated from the source code and an elec-
tronic version of this document. We also included the configuration files and other
scripts we used in experiments from Chapter 7.

The disc contains the following directories:

• SourceCode – contains the complete source code in the form of solution in
Visual Studio 2013

• Documentation – contains documentation generated from comments in the source
code

• Binaries – contains the executable binaries of JsonGenerator with all re-
quired dependencies

• Test Data – contains configuration files used in our experiments and also
various helper scripts

• Thesis – contains this text in PDF format

107

B. XMark Data Generator DTD
 <!ELEMENT site (regions, categories, catgraph, people, open_auctions,
 closed_auctions)>
 <!ELEMENT categories (category+)>
 <!ELEMENT category (name, description)>
 <!ATTLIST category id ID #REQUIRED>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT description (text | parlist)>
 <!ELEMENT text (#PCDATA | bold | keyword | emph)*>
 <!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

 <!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>
 <!ELEMENT emph (#PCDATA | bold | keyword | emph)*>
 <!ELEMENT parlist (listitem)*>
 <!ELEMENT listitem (text | parlist)*>

 <!ELEMENT catgraph (edge*)>
 <!ELEMENT edge EMPTY>
 <!ATTLIST edge from IDREF #REQUIRED to IDREF #REQUIRED>

 <!ELEMENT regions (africa, asia, australia, europe, namerica, samerica)>
 <!ELEMENT africa (item*)>
 <!ELEMENT asia (item*)>
 <!ELEMENT australia (item*)>
 <!ELEMENT namerica (item*)>
 <!ELEMENT samerica (item*)>
 <!ELEMENT europe (item*)>
 <!ELEMENT item (location, quantity, name, payment, description, shipping,
 incategory+, mailbox)>
 <!ATTLIST item id ID #REQUIRED
 featured CDATA #IMPLIED>
 <!ELEMENT location (#PCDATA)>
 <!ELEMENT quantity (#PCDATA)>
 <!ELEMENT payment (#PCDATA)>
 <!ELEMENT shipping (#PCDATA)>
 <!ELEMENT reserve (#PCDATA)>
 <!ELEMENT incategory EMPTY>
 <!ATTLIST incategory category IDREF #REQUIRED>
 <!ELEMENT mailbox (mail*)>
 <!ELEMENT mail (from, to, date, text)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT to (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT itemref EMPTY>
 <!ATTLIST itemref item IDREF #REQUIRED>
 <!ELEMENT personref EMPTY>
 <!ATTLIST personref person IDREF #REQUIRED>

 <!ELEMENT people (person*)>
 <!ELEMENT person (name, emailaddress, phone?, address?, homepage?,
 creditcard?, profile?, watches?)>
 <!ATTLIST person id ID #REQUIRED>
 <!ELEMENT emailaddress (#PCDATA)>
 <!ELEMENT phone (#PCDATA)>
 <!ELEMENT address (street, city, country, province?, zipcode)>
 <!ELEMENT street (#PCDATA)>
 <!ELEMENT city (#PCDATA)>

108

 <!ELEMENT province (#PCDATA)>
 <!ELEMENT zipcode (#PCDATA)>
 <!ELEMENT country (#PCDATA)>
 <!ELEMENT homepage (#PCDATA)>
 <!ELEMENT creditcard (#PCDATA)>
 <!ELEMENT profile (interest*, education?, gender?, business, age?)>
 <!ATTLIST profile income CDATA #IMPLIED>
 <!ELEMENT interest EMPTY>
 <!ATTLIST interest category IDREF #REQUIRED>
 <!ELEMENT education (#PCDATA)>
 <!ELEMENT income (#PCDATA)>
 <!ELEMENT gender (#PCDATA)>
 <!ELEMENT business (#PCDATA)>
 <!ELEMENT age (#PCDATA)>
 <!ELEMENT watches (watch*)>
 <!ELEMENT watch EMPTY>
 <!ATTLIST watch open_auction IDREF #REQUIRED>

 <!ELEMENT open_auctions (open_auction*)>
 <!ELEMENT open_auction (initial, reserve?, bidder*, current, privacy?,
 itemref, seller, annotation, quantity, type, interval)>
 <!ATTLIST open_auction id ID #REQUIRED>
 <!ELEMENT privacy (#PCDATA)>
 <!ELEMENT initial (#PCDATA)>
 <!ELEMENT bidder (date, time, personref, increase)>
 <!ELEMENT seller EMPTY>
 <!ATTLIST seller person IDREF #REQUIRED>
 <!ELEMENT current (#PCDATA)>
 <!ELEMENT increase (#PCDATA)>
 <!ELEMENT type (#PCDATA)>
 <!ELEMENT interval (start, end)>
 <!ELEMENT start (#PCDATA)>
 <!ELEMENT end (#PCDATA)>
 <!ELEMENT time (#PCDATA)>
 <!ELEMENT status (#PCDATA)>
 <!ELEMENT amount (#PCDATA)>

 <!ELEMENT closed_auctions (closed_auction*)>
 <!ELEMENT closed_auction (seller, buyer, itemref, price, date, quantity,
 type, annotation?)>
 <!ELEMENT buyer EMPTY>
 <!ATTLIST buyer person IDREF #REQUIRED>
 <!ELEMENT price (#PCDATA)>
 <!ELEMENT annotation (author, description?, happiness)>

 <!ELEMENT author EMPTY>
 <!ATTLIST author person IDREF #REQUIRED>
 <!ELEMENT happiness (#PCDATA)>

Listing 52: XMark Data Generator DTD

109

	Introduction
	Definitions
	XML Definitions
	JSON and BSON

	Big Data Introduction
	NoSQL Databases
	Key-value Databases
	Document Databases
	Column-Family Databases
	Graph Databases

	Common Big Data Terminology
	Horizontal and Vertical Scaling
	Strong and Eventual Consistency
	High Availability
	Automatic Scaling
	Sharding
	Cluster
	Replication

	Data Generation
	Parallel Data Generation Framework
	Big Data Generator Suite
	DataGenerator
	JSON Data Generators
	json-generator.com
	generatedata.com
	Mockaroo
	MongoDB-Datasets
	Summary of Big Data and JSON Data Generators

	XML Data Generators
	XMark Benchmark
	XOO7 Benchmark
	XMach-1 Benchmark
	Michigan Benchmark
	ToXgene Data Generator
	Complex-Structured XML Data Generator
	<oXygen/> XML Editor
	Liquid XML Studio 2013
	Altova XMLSpy
	Eclipse
	Microsoft Visual Studio
	Summary of XML Data Generators

	MongoDB
	Key Features of MongoDB
	CRUD Operations in MongoDB
	Read Operations
	Write Operations

	Aggregation in MongoDB
	Aggregation Pipeline
	Map-Reduce
	Single Purpose Aggregation Operations

	Indices in MongoDB
	Index Types

	Replication in MongoDB
	Sharding
	Data Partitioning

	Database References

	Data Generator Architecture and Implementation
	Possible Solutions for the Architecture
	Design of the Architecture
	JsonGenerator.Master.Window
	JsonGenerator.Master.Generator.Client
	The Data Generator and Schema Analyzer
	Data Store
	The Architecture Summary

	Design and Implementation Details
	Technologies
	Templates
	Schema Inferring
	Data Generation
	Task Delegation and Parallelism

	Implementation Summary

	Data Generator User Manual
	JsonGenerator.Master.WindowApp
	Installation
	Configuration

	Experiments
	Test Cases
	Test Queries
	Testing Environment

	Test Results
	Generation of 1 000 000 Documents
	Generation of 8 000 000 Documents

	Additional Tests
	Encountered Difficulties
	Test Summary

	Conclusion
	Future Work

	Bibliography
	List of Tables
	List of Figures
	List of Listings
	Appendices
	DVD Contents
	XMark Data Generator DTD

