
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Peter Hĺısta

Analysis of Real-World XML Queries

Department of Software Engineering

Supervisor of the master thesis: Doc. RNDr. Irena Holubová, Ph.D.

Study programme: Software Systems

Specialization: Software Engineering

Prague 2015

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 subsection 1 of
the Copyright Act.

In Prague date 4th December 2015 Peter Hĺısta

Název práce: Analýza reálných XML dotaz̊u

Autor: Peter Hĺısta

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: Doc. RNDr. Irena Holubová, Ph.D.

Abstrakt: Účelem této práce bylo shromáždit a analyzovat běžně použ́ıvané
XQuery programy.
Ke sběru dat z internetu je nejčastěji využ́ıván program zvaný crawler. Součást́ı
této práce byla analýza r̊uzných crawler̊u a výběr nejvhodněǰśıho z nich. Tento
crawler byl následně upraven tak, aby nevytěžoval servery, sb́ıral správná data a
bylo možné jeho činnost pozastavit. Před započet́ım sběru dat bylo nejprve nutné
určit, kde bude vhodné zač́ıt a jak dlouho by celý proces měl trvat. Data jsme po
stažeńı očistili, opravili a zvalidovali. Předmětem analýz bylo použ́ıváńı XQuery
jazyka a jeho gramatických konstrukt̊u (symbol̊u). Také jsme analyzovali XML
dokumenty použ́ıvané v XQuery programech a výstupy z XQuery programů.
Hlavńı př́ınosy práce jsou v množstv́ı stažených dat (v porovnáńı s jinými zdroji),
v stažeńı XML dokument̊u nad nimiž se dotazuj́ı, použit́ı Analyzeru na analy-
zováńı reálných XQuery programů a spouštěńı těchto reálných XQuery programů
nad jejich XML dokumenty.

Kĺıčová slova: crawler, analýza, reálńı XQuery, XQConverter, Analyzer

Title: Analysis of Real-World XML Queries

Author: Peter Hĺısta

Department: Department of Software Engineering

Supervisor: Doc. RNDr. Irena Holubová, Ph.D.

Abstract: The aim of this thesis was to gather and analyze the real-world XQuery
programs.
The data gathering process is usually performed using the crawler. Part of the
thesis was to analyze different crawlers and to choose the most suitable one. The
crawler was then modified, so it would not overload servers, gather the right data
and be able to pause. Before main gathering two problems had to be solved
– where to start the gathering and how long it will take. After the data were
gathered, they were cleaned, corrected and validated. The subject of the analysis
was usage of the XQuery language and its grammar symbols. We also analyzed
the XML documents used by XQuery programs and outputs from the XQuery
programs.
The main contribution of this thesis is the amount of the gathered data (in
comparison with other sources), as well as gathering XML documents which are
being queried, using Analyzer for analyzing the real-world XQuery programs and
running this real-world XQuery programs over gathered XML documents.

Keywords: crawler, analysis, real-world XQuery, XQConverter, Analyzer

I would like to thank my supervisor Doc. RNDr. Irena Holubová, Ph.D. for
helpful advices, reviews of thesis working versions and grammar corrections.

I would also like to thank my brother Igor for a lot of grammar corrections,
Jakub Stárka, Ph.D. for working version of Analyzer with the libraries, Jakub
Kúdela for helping with CommonCrawl specific problems and others for reading
this thesis and all their helpful comments.

Contents

Introduction 4
Outline . 4

1 Technologies and Terms 6
1.1 Internet Technologies . 6
1.2 Search Engine . 6
1.3 Characteristics of The Internet . 7
1.4 XML Family of Languages . 7
1.5 Lexical And Syntactical Analysis 9
1.6 XPath Versus XQuery . 9

2 Related Work 10
2.1 XML Analysis . 10
2.2 XSLT Analysis . 11
2.3 Historic XML Query Languages 11
2.4 SPARQL Analysis . 11
2.5 SQL Analysis . 12
2.6 XQuery Analysis . 13
2.7 Conclusion . 16

3 Occurrence of XQuery Programs 18
3.1 XQuery Use Cases . 18
3.2 XQuery Test Suite (XQTS) . 18
3.3 XQuery Benchmarks . 19
3.4 XQuery and Big Data . 19
3.5 Common Crawl . 19
3.6 Rest of The Internet . 20

4 Analyzer 21
4.1 Architecture . 22
4.2 Implemented Crawlers . 23
4.3 Analyzer Plug-ins . 24
4.4 XQuery Analysis Plug-in . 25
4.5 XQuery Converter . 25

4.5.1 Architecture of XQConverter 27
4.6 Summary . 28

5 Analysis of Web Crawlers 29
5.1 Crawler . 29

5.1.1 Crawler Types . 29
5.1.2 Crawler Policies . 30
5.1.3 Filters Used by Crawler 31

5.2 Existing Crawlers . 32
5.3 Chosen Crawler . 36

1

6 Seeds for Crawler 38
6.1 Seeds from the Web Search Engine 38
6.2 Google URL Result . 38
6.3 Seed File . 39

7 Modification of Selected Crawler 41
7.1 Basic Setting of Crawler . 41
7.2 Setting Crawler’s Filters . 42
7.3 Fixes of the Crawler . 44
7.4 Configuration File Loading . 45
7.5 Adding Seeds from File . 46
7.6 Recognizing XQuery Programs . 46

7.6.1 XML Documents Referenced in XQuery Programs 46
7.7 Saving the Found Data . 47
7.8 Saving Statistics . 47
7.9 Returning Downloaded Pages . 47
7.10 Final Architecture . 48

7.10.1 Making Crawler Library 49

8 Crawler Integration into Analyzer 50
8.1 XQuery Crawler Module . 50
8.2 Fixing Small Bugs . 51
8.3 Names of Used Components . 52

9 Data Gathering 53
9.1 Downloading Session . 53

9.1.1 Testing Sessions . 53
9.1.2 Download Summary . 54

9.2 Common Crawl . 54
9.2.1 MIME Counting . 54
9.2.2 URL Extracting . 56

9.3 Summary . 58

10 Analysis of Downloaded Data 59
10.1 Cleaning and Correcting Data . 59

10.1.1 Not XQuery Programs . 59
10.1.2 Lexical And Syntactical Errors 60
10.1.3 Correcting Programs . 62

10.2 Categorizing XQuery Programs 63
10.3 Analyzer Analyses . 65
10.4 XQuery Programs Analyses . 66

10.4.1 FLWOR Expresion . 67
10.4.2 XPath in XQuery Programs 69
10.4.3 Other Analyses . 70
10.4.4 XPath 2.0 Versus XQuery 1.0 72

10.5 Category XQuery Programs With XML Documents 72
10.6 XML Documents Analysis . 73
10.7 Summary . 74

2

Conclusion 75
Future Work . 77

Bibliography 81

List of Tables 82

List of Figures 83

Attachment 1 84

Attachment 2 85

Attachment 3 88

Attachment 4 95

3

Introduction

The Extensible Markup Language (XML) [58] is wide-spread nowadays. It defines
how to encode documents in a format that is both human and machine readable.
Although the design of XML focuses mainly on documents, it is widely used for
the representation of data structures.

There are many ways to obtain data from XML documents. We can obtain
them manually or use languages developed for this purpose, e.g. XML query
language (XQuery) [54] or XML Path Language (XPath) [41]. In case of larger
documents, or when merging more XML documents, the languages are more
suitable.

The real-world documents have already been analyzed couple of times. Since
XML documents are used and queried a lot, the analysis of a such queries and
even queries and the documents would be beneficial. Such analyses have not
been performed so far, though they can be useful for programmers of the queries
evaluators for optimization, and also for designers of the new languages used for
querying XML documents.

XPath expressions are mostly one line queries. XQuery queries usually have
more lines and are more complex. We will be using ‘XQuery program‘ as name for
XQuery query throughout this work. Since these programs tend to be complex,
it is highly probable these programs will be saved and used again.

One of the aims of this thesis is to download as many XQuery programs as
possible to find out which constructs are used. The next aim is to download
also XML documents used for querying. We assume that only a few XQuery
programs and none XML documents will be downloaded. Another assumption
is that there are no XQuery programs without query body, to be used as library
for other programs. Part of XQuery is XPath expressions and we expect that
the half of these XPath expressions will use predicates and in average they will
consist of two steps and will use only shortened types of axis. We also assume
that most of the built-in functions of XQuery 1.0 is used besides the functions
to work with time and date. The most frequently used function will supposedly
be function ‘fn:doc‘. We assume that around 10% of queries will be also possible
to be written in XPath 2.0 language, which is subset of language XQuery 1.0.
Supposedly clauses Where and Order by are used at least in the half of FLWOR
expressions. In the case of FLWOR expressions we also assume that the clause
For is used more frequently than Let. Nested FLWORs will not be very frequently
used. We do not think that we are going to find out some recursive functions.
Concerning operators in queries we thing that additive and multiplicative type
will occur the most.

The main aim of the thesis is to download as many real-world XQuery pro-
grams as possible and to compare the mentioned hypotheses with our results and
possibly download XML documents which are used in these XQuery programs.

Outline

First part of the thesis regards to terminology and technology connected with
XML documents, existing papers and works about the XQuery language and

4

querying over the real-world data in the other languages.
We further look at the places where we can find XQuery programs and how

are we going to download them. We suppose that we will use modified crawler
to download them from the Internet.

In the second part of the thesis we will take closer look at the process of getting
the real-world XQuery programs and eventually also the XML documents and
their analysis. Results of those analyses will be compared with the hypotheses in
the last part of the thesis and we will evaluate these hypotheses.

5

1. Technologies and Terms

This thesis is focused on crawling of the Internet. First part describes basic
terminology to make the further text more comprehensible.

1.1 Internet Technologies

The Internet is a worldwide system of interconnected computer networks. This
means the computer networks are connected throughout the world.

Every website on the Internet has its uniform resource locator1 and part of
URL is domain name. This name is translated by Domain Name System2 servers
to Internet Protocol3 address. There are 2 versions used at the present time on
the Internet IPv4 and IPv6, we will use both. The DNS servers can be overloaded
by request and it is called Denial of Service (DoS).

All the websites compose the World Wide Web4, also known as the ‘Web‘.
Here are all websites composed of web pages which we will crawl to search for
the data we need.

Web pages are hypertext documents and are written in the HyperText Markup
Language5.

Web pages consist of two main parts: body and head. The body contains the
web page structure and the header contains meta information. One of the meta
information is meta tag for crawlers.

This meta tag task is to help the crawler identify the content of the web page.
One of these meta tags is Multipurpose Internet Mail Extensions6 type and it
describes the content of the body.

To acquire a web page we must use the Hypertext Transfer Protocol7. This
protocol uses status codes for every request. Their form is XYZ where X is a
number from 1 to 5 and YZ is a two-digit number. For the purposes of this thesis
the relevant codes are 2YZ – Success, 3YZ – Redirection, 4YZ – Client Error
(especially 404 Not Found) and 5YZ – Server Error.

1.2 Search Engine

To be able to find some information on WWW in reasonable time we need search
engines. They are built out of several components:

crawler
Crawler is also known as robot, spider or bot and we will refer to it as the
crawler. It goes through IP addresses and downloads web pages assigned
to them. Usually it runs in multiple instances or threads.

1http://www.ietf.org/rfc/rfc1738.txt – URL
2http://www.ietf.org/rfc/rfc1035.txt – DNS
3http://tools.ietf.org/html/rfc791 – IP
4http://www.w3.org/ – WWW
5http://www.w3.org/TR/REC-html40/ – HTML
6http://www.ietf.org/rfc/rfc2045.txt and http://www.ietf.org/rfc/rfc2046.txt – MIME type
7http://tools.ietf.org/html/rfc2616 – HTTP

6

indexer
Indexer categorizes and adds the links to databases with their related key-
words or terms.

presenter
Presenter gets the search queries from users, searches the database and
provides the search results.

1.3 Characteristics of The Internet

The Internet is an international network of networks that consists of millions of
private, public, academic, business, and government networks. As such it has
some interesting characteristics. Some of them are:

Dynamic Data
The content of the Internet is dynamic. This is caused by many factors
like pages can be added or removed from servers, many sites have dynamic
content, etc. This is the reason why the data collected in different points
in times mostly differ.

Incorrect Data
Some documents found on the Internet may contain incorrect data.

Invisibility for Crawlers
Web crawlers cannot naturally search the whole Internet. Here are some of
the facts why it is not possible:

• For some documents there are no references from other web pages.

• Some documents can be acquired only with login information (user
name and password).

• There are advices on web domains for the crawlers what files and
directories should not be crawled.

Spider Traps
A spider trap is a set of web pages that can intentionally or unintentionally
cause a crawler to make an infinite number of requests [57]. Incorrectly
constructed crawlers can crash because of this. One of the examples is a
dynamic page with calendar. Crawler should avoid getting into these spider
traps.

1.4 XML Family of Languages

XQuery is a query and functional programming language that queries and trans-
forms collections of structured and unstructured data. It was mainly developed
to query over an XML documents and it has syntax for creating a new XML
document. It contains the XPath (for description see bellow) expression syntax
to address specific parts of an XML document. It has an SQL-like8 ‘FLWOR

8http://www.w3schools.com/sql/ – Structured Query Language

7

expression‘ for performing joins. The FLWOR expression is constructed from the
five clauses after which it is named: For, Let, Where, Order by, Return.

XML documents have a hierarchical structure and it can be interpreted as a
tree structure called XML tree. The root element of XML document is mandatory
and is also a root of XML tree. Many statistics are defined over this XML tree
like: depth, fan-in, fan out, etc.

With XML documents are related Document Type Definition (DTD) [7] which
are used for the validation of an XML document. A DTD is a collection of element
declarations of the form e → a, where e is an element name and a is its content
model, i.e. regular expression. This regular expression can be an empty content
model or a text content or a single element name or some combination of the
content models. One of the elements s is called start symbol. It matches over
root XML element. Now we can define depth of the content model:

• For the empty content model it is 0.

• For the text content it is 1.

• For the single element name it is 1.

• For the combination of the content models it is maximum from the depth
of the content models plus 1.

The depth of XML we can define as depth of the start symbol content model.
The content model is mixed when it contains definition for the combination

of the content models and the text content.
The element e fan-in is number of different existing parents for the element e

in the same document.
The element e fan-out is number of different existing children for the element

e in the same document.
The element e is recursive if exist element d in the same document that is

descendant of e and has the same name. Beside these XML-related languages they
exist also XML path language, XML Schema definition and extensible stylesheet
language transformation.

XML Path Language (XPath) [41] is a query language for selecting the nodes
from an XML document. XPath is going to be used for obtaining an analysis
from XML representation of XQuery program. XPath 1.0 contains fewer built-in
functions, it does not contain variables or iterations, etc. XPath 2.0 is reduced
XQuery 1.0. It cannot contain some of the XQuery grammar symbols. There
also exist navigational XPath 2.0. This fragment excludes the use of position
information, aggregation and built-in functions. Value comparisons are allowed.
Navigational XPath 2.0 is used for navigating in the XML tree and testing value
comparisons.

XML Schema Definition (XSD) [55, 34]specifies how to formally describe the
elements in an XML document.

Extensible Stylesheet Language Transformations (XSLT) [32] is a language for
transforming XML documents into other XML documents and it uses templates
for transformation.

There also exists another extension to XQuery language. It is called XQuery
Update Facility [43]. It brings new extension into XQuery grammar. In this
thesis we will not be analyzing these documents.

8

1.5 Lexical And Syntactical Analysis

Lexical analysis is the process of converting a sequence of characters into tokens.
Token is a meaningful sequence of characters specific for language.

Lexical scanner is a parser, which converts characters into tokens. Tokens are
passed to syntactic parser.

Lexical error means that lexical scanner found a character on place where it
should not be. This can be caused by one of 3 factors. First, there is a character
missing, second, there is an incorrect character or third, there is an excessive
character.

Syntactic parser creates a syntax tree from the tokens. This tree is also called
an abstract syntax tree (AST) and it is a tree representation of the abstract
syntactic structure of the source code. This must conform to the rules of a
formal grammar or a syntactic error occurs. Formal grammar is grammar (set of
rules) where the context is not given.

The Extended Backus–Naur Form (EBNF) is mentioned in thesis and it is a
family of meta syntax notations, any of which can be used to express a context-
free grammar.

1.6 XPath Versus XQuery

XPath 2.0 is a subset of XQuery 1.0, so we also want to search for XPath 2.0.
Because XPath are usually used as short queries they are not often put into files.

There is a method for distinguishing one language from the another.
The XPath expression to distinguish XPath 2.0 and XQuery 1.0 is [56]:

/Module/@version | //ModuleDecl | //Prolog | //LetClause |

//WhereClause | //OrderByClause | //ForClause/Type |

//ForClause/@posname | //QuantifiedExpr/InClauses/InClause/Type |

//Typeswitch | //Extension | //ValidateExpr | //OrderedExpr |

//UnorderedExpr | //Constructor

If the resulting hit count is zero, the analyzed file is written in XPath 2.0 and
also in XQuery 1.0. Otherwise it is only XQuery 1.0.

9

2. Related Work

In this chapter we are discussing existing approaches and tools for data analysis.
The data includes XML data, XQuery data, etc.

2.1 XML Analysis

In report [51] there are described extensive analyses of the real-world XML data.
These analyses resulted into the following statistical results:

• The first set, so-called global statistics, consisted of properties of XML
data such as the number of elements of various types, the number of at-
tributes, paths, depths and the portion of text in documents. In XSD and
DTD the depths are counted for each global element used in the sample
XML documents as a root element, for recursive elements the authors take
into account their lowest level(s) and an infinite level for expressing the
recursion.

• The second set, so-called depth statistics, consisted of the distribution
of depths per each category because the maximum and average depths are
known from global statistics. The authors claim that they cannot get similar
results for corresponding XSDs, because they are too much influenced by
recursion.

• The third set, so-called level statistics, focuses on distribution of ele-
ments, attributes, text nodes, and mixed contents per each level of XML
documents.

• The fourth set, so-called fan-out statistics, describes the overall distri-
bution of XML data, in other words the number of descendants of each
node.

• The fifth set, so-called fan-in statistics, is ‘inverse‘ to the previous fan-out
statistics. In other words the number of different ascendant of each node.

• The sixth set, so-called recursive statistics, deals with types and com-
plexity of recursion.

• The seventh set, so-called mixed-content statistics, analyzes the struc-
ture and complexity of mixed contents. The number of mixed-content ele-
ments is already known from global statistics, so these statistics are focus-
ing on average and maximum depth of mixed content and the percentage
of simple mixed-content elements.

• The eighth set, so-called DNA statistics, is focusing on a pattern called
DNA pattern. DNA pattern contains an arbitrary amount of trivial sub-
elements and just one complex sub-element, so-called degenerated branch.

10

• The ninth set, so-called relational statistics, is focusing on so-called rela-
tional pattern. This pattern is analyzed using a set of relational statistics.
There are two types of relational patterns – relational and shallow relational
– and also the statistics are computed separately for both.

• The last set, so-called schema statistics, completes the analyses with
analyzing XML schema specific constructs and their real exploitation.

The authors performed whole new analysis of XML documents. They focused
on large (contrary to previous works [42, 48]) number of various attributes, and
performed the analysis over aptly chosen various categories.

2.2 XSLT Analysis

In thesis [49] the author focuses on the XSLT language. The thesis is relatively
new, from 2012. The author used a simple method of getting seeds (using common
web search engine Google) and from these seeds he acquired about 20 000 files.
After the cleaning process there remained around 6 000 files, which were used as
an input for next phases.

The author divided all the XSLT documents into well arranged caterogies
and also defined a typical XSLT document. These documents were analyzed so
that an XSLT benchmark test would be created according to them. This is the
greatest contribution of this work.

Another strong point of the thesis is that the author showed how it is possible
to download the real-world data from the Internet and divide them into categories
that were analyzed.

2.3 Historic XML Query Languages

In paper [30] the authors compare five languages used for querying over XML
data. This paper is from the year 2000 and quite obsolete because at the time
the standard for the XQuery language did not exist.

The major part of the work is concentrated on the comparison of the languages
as of what constructs are present in them.

The current XQuery standard contains all constructs mentioned in this work.

2.4 SPARQL Analysis

SPARQL is a query language for RDF data [53]. This language consists of 4
different query types: ‘SELECT‘, ‘CONSTRUCT‘, ‘ASK‘ and ‘DESCRIBE‘.

The following two papers discuss its use over real-world data.
In paper [28] the authors are analyzing real-world data. They acquired the

access to two different sources of data and used them independently so they were
able to compare the results.

The first data source were DBpedia [6] server logs. DBpedia is a crowd-
sourced community effort to extract structured information from Wikipedia and

11

make this information available on the Web. These server logs consist of data
usage in the course of several months.

The second one is the Semantic Web Dog Food [17] which contains information
about authors and publications.

These sources provided 5 million queries from DBpedia and 2 million from
the Semantic Web Dog Food.

The results of analysis show that ‘SELECT‘ is the most frequent type of
query and is used in more than 95% of cases. Other types of queries (‘ASK‘,
‘CONSTRUCT‘, ‘DESCRIBE‘) are used rarely.

The authors also focused on joins. Only 4.25% of all queries contain joins. In
these queries the frequencies of joins are from 1 (in 2.66% of all queries), 2 (in
0.75% of all queries) up to 10 joins per query.

The work showed how real-world users create SPARQL queries. Authors
expect that their results are valuable for designers especially in the tasks of query
evaluation, planification and index construction.

In paper [29] the authors analyze RDF data streams. They created C-SPARQL
(Continuous SPARQL) as an extension of SPARQL that is capable of querying
RDF streams.

The data used by the authors were provided by the Social Network Glue.
They only had to create and implement simple tool to convert the data from
XML to RDF stream. They did not consider the ability to analyze the queries
because their aim was to obtain results from large number of data (potentially
endless stream of data).

2.5 SQL Analysis

In paper [39] the authors aim at discovering and preventing SQL injection attack
where SQL injection is a technique where malicious SQL statements are put into
entry field (for example entry field on web page) for execution.

The authors created a tool to detect and stop SQL injections. Four steps are
suggested for their tool in order to work:

Identify Hotspots
First, the application code has to be scanned for places where the code
enters the underlying database.

Build SQL-query Models
Second, each hotspot has to build a model that will represent all the possible
SQL queries that may be generated at that hotspot. In particular, an
SQL-query model is a non-deterministic finite-state automaton in which
the transition labels consist of SQL tokens (SQL keywords and operators),
delimiters and place holders for string values.

Instrument Application
Third, the tool has to be connected (runtime monitor) to the application
at every hotspot.

Runtime Monitoring
Finally, it checks the dynamically-generated queries against the SQL-query

12

model in the runtime. If a query is violating the model it is rejected and
reported.

The authors consider also the efficiency and they analyze it both theoretically
and practically. They claim that the overhead from using their tool is negligible
and their empirical evaluations confirm this.

The analysis of SQL queries in this paper consists of comparison of incoming
queries against the created statistical model in real-time.

2.6 XQuery Analysis

In the paper [38] the authors are focusing on transformations between two lan-
guages, XQuery and XSLT. They use different processors (programs) to run these
languages.

The authors use three technologies for description of translation from XSLT
to XQuery and vice versa:

• the slightly altered Extended Backus-Naur Form1

• the abstract syntax tree

• the attribute grammar

XSLT and XQuery have the same expressive power but they have some dif-
ferences. To overcome them the authors introduce additional transformational
steps. For example, an XQuery query can be nested in another query whereas
XSLT has templates.

The authors also introduce rules when these steps can be skipped, thus they
optimize the total translation time.

For translation of an XQuery program into an XSLT stylesheet the authors
use pre-processing and post-processing steps. They also attach various optimiza-
tions of these steps, since they are demanding. In some cases these steps can be
performed together.

Other steps are provided by the authors for translation of an XSLT stylesheet
into an XQuery program. Since XSLT is based on choosing templates, the authors
have to deal with their simulation in XQuery.

In the end the authors describe testing of queries in the original language and
translated queries. They are using the XMark benchmark [22] for these tests.
As expected, the execution time of translated queries is a little bit slower. The
optimizations suggested by the authors accelerates the execution times of the
translated query by 13%.

In the paper [27] the authors take 5 available benchmarks and analyze them.
However, this paper is from 2006 so it is relatively outdated. They point out that
the benchmarks use outdated XQuery dialect and they contain mistakes. This is
the reason why 4 of them are not used in the research articles, according to the
authors.

Next, approximately 1/3 of the queries contained errors (precisely 48 out of
163). The errors varied as follows:

1http://www.iso.org/iso/catalogue detail.htm?csnumber=26153 – EBNF

13

• 35 queries contained static errors – errors discovered during parsing the
XQuery queries.

• 11 queries contained dynamic type of errors – errors discovered during an
execution of the XQuery queries.

• 2 queries contained semantic errors – i.e. the queries return a (possibly
empty) sequence of items which does not correspond to the natural language
description of the query answer. Both semantic errors were caused by in-
caution.

The authors tried to express every single test query in XPath 2.0, XPath 1.0
and their parts like Navigational XPath 2.0 and Core XPath [35]. Navigational
XPath 2.0 does not use position information, aggregation and built-in functions.
Core XPath does not use position information, built-in functions and comparison
operators. In total, only 16 from 163 queries were genuine XQuery queries.

A well-chosen subset of tests provides the same information as the whole
benchmark set (and is not time consuming). So, the particular test queries were
checked whether they are redundant. Those queries which provided similar out-
puts were marked as redundant.

The performance similarity was defined by the authors as follows2:

qi ≡ qj ⇔
∀E,∀D |Func(gi, E,D)− Func(gj, E,D)| ≤ 15% · Func(gi,E,D)+Func(gj ,E,D)

2

The function Func counts the average time of query execution for each docu-
ment D using engine E. Query qi and qj are performance similar if for each query
engine E and for each document D, the difference in execution times of the two
queries is less than 15% of the average execution time of these two queries.

Note that the authors do not give any reasons for choosing 15%.
In the end, the authors focused on micro benchmark queries. They were

aware of joins being expensive operations and that there were heuristics which
effectively evaluated joins in other languages. XQuery is considered to be harder
to detect a join (because of its complexity), so they concentrated on the quality
of implementation of joins detection. For this task they created a set of queries
with different parameters:

Syntactic patterns

where form
Join where comparison of elements is done in Where Clause:

for $a in A, $b in B

where $a/@att1 = $b/@att2

return

($a/@att1, $b/@att2)

2formula is modified, because the authors made a mistake in it and because of its length

14

pred form (predicate form)
Join where comparison of elements is done in For Clause by filter:

for $a in A,

$b in B[$a/@att1 = ./@att2]

return

($a/@att1, $b/@att2)

if form
Join where comparison of elements is done in Return by If construct:

for $a in A, $b in B

return

if ($a/@att1 = $b/@att2)

then ($a/@att1, $b/@att2)

else ()

filter form
Join where comparison of elements is done in Return by filter:

for $a in A, $b in B

return

($a/@att1,$b/@att2)

[$a/@att1 = $b/@att2]

These are forms for the logically equivalent ways of expressing the same
value-based join. A value-based join is a join where the join condition is an
equality of attribute values.

Number of join conditions
The authors used from 1 to 3 conditions per query.

Boolean connectives
The authors used conjunctions and disjunctions to combine multiple join
conditions.

Join types
The authors considered three types of joins: simple (xs:integer), id/idref
chasing (xs:ID, xs:IDREF) and self-join.

Document-level equivalence classes
The query set is divided into several subsets containing queries that are
equivalent (have the same result). Two queries belong to the same equiv-
alence class if they have the same intermediate results (i.e. results of the
path expressions A and B) and final result.

In this paper, eleven various joins were used altogether (that means 44 dif-
ferent queries). By examining them the authors found out that engines were not
always able to detect the join, so for specific forms and other parameters they
got different execution times.

15

By this work the authors contributed to improving XQuery benchmarks (cor-
rected mistakes, detected redundant queries, ...). Note that only XMark was used
because other benchmarks contained errors.

In the paper [50] the authors took the benchmark queries and different database
systems and compared them. The paper is aimed at a detailed comparison of six
XQuery processors using available benchmark tests. These processors are three
stand-alone and three XML/XQuery database systems. For simplicity the au-
thors named both types ‘engines‘. They explain in detail all the problems they
encountered during extensive testing of these six engines.

Five freely distributed XQuery benchmark tests were used. Each test was run
n+1 times (in this study 3+1), the first run is used as a ‘warm-up‘.

Platform XCheck [26] was used to run given tests. It supports only one input
file for one query. For this purpose the authors created a single XML file which
consisted of the URIs of all documents of each multi-document benchmark. To
the each query was added a preamble to obtain the sequence of documents on-
the-fly.

The database systems required a running server so the authors decided to
solved this problem by starting the server before running the queries and stopping
it after performing of the queries. That means they put a command to start the
server at the beginning and a command to shut down the server at the end of
a query set. At one time only one engine was running. To preserve the same
conditions for all engines they also did not optimize any of the database systems.

62 queries out of 163 had to be fixed by the authors before using them. Despite
these fixes some queries were still returning syntactic or runtime errors.

The execution time was divided into five parts: query translation, query ex-
ecution, result serialization, document processing and communication. However,
some of the engines did not return all the values and in some cases the sum of the
parts was not equal to the total sum. The authors explained this difference as
the time spent on communication. In some cases the time returned by an engine
has exceeded the execution time. This was the reason why the authors said the
partial time could not be considered as reliable. This is also the main reason why
there is no ‘best‘ engine. So these results serve mainly for the engine developers
to fix the bugs.

This paper focused on engine installation, engine setting, fixing the bugs in
benchmark tests, running big numbers of test and their further presentation. The
aim was achieved. The authors provided several interesting ideas – for example
how to solve the problem of loading more files if it is possible to load only one
file. Considering the given number of tests the authors managed to maintain
obviousness.

2.7 Conclusion

The described papers analyze different languages. The first set analyzes XML,
DTD and XML Schema documents for their validation and complexion. Surpris-
ingly, neither DTD nor XML Schema are frequently used in real-world data.

The paper [30] provides an overview of languages we could use to query XML
data before XQuery language was standardized so this paper provides relatively
obsolete background.

16

The other two papers [28, 29] show how to perform an analysis of a query
language when used with real-world data. These two papers focus on an analysis
of the SPARQL language. The paper [39] which focuses on SQL queries analysis
shows the creation of the statistical model of queries and their sub-sequential use
in praxis using dynamic analysis.

The last three papers discuss the XQuery language. The first one describes
transformation of XQuery from and to XSLT. Since it is a difficult process, most
of the paper is about its heuristics. The second one evaluates XQuery benchmark
tests – their modification like bug fixing and reduction of unnecessary queries.
The last paper [50] is about XQuery engines and it describes a complicated process
of their comparison. It offers many tests and many results to interpret. To
perform the comparison it uses queries from XMark benchmark.

None of the listed papers discusses an analysis of real-world XQuery programs.
It would be interesting to gather real-world XQuery queries and detect the

join form they are using (according to paper [50] about comparison of XQuery
engines).

For engine developers it would be intriguing to determine which constructs of
XQuery are used frequently and which only seldom (it would make the process
of deciding which parts of engine should be optimized first easier).

Users would be aware of the most common mistakes made in XQuery language
and therefore it would be easier to avoid them.

The aim of this thesis is to gather real-world XQuery programs, XML docu-
ments referenced in them and analyze them.

17

3. Occurrence of XQuery
Programs

First, we need to obtain the input data for the analysis. We are starting the
search on the W31 website. It maintains most of the standards, including XQuery
standards, used on the web. In particular, there are Use Cases [33] and a Test
Suite [21] in the XQuery language section.

3.1 XQuery Use Cases

Use cases were created as examples of the real-world application of XQuery. The
authors sorted out 78 queries into these groups: experiences and exemplars (12),
queries that preserve hierarchy (6), queries based on sequence (5), access to re-
lational data (18), standard generalized markup language (11), string search (5),
queries using namespaces (8), recursive parts explosion (1) and queries which
exploit strongly typed data (12).

This is an example of a query from the group ‘queries based on sequence‘:
In the Procedure section of Report1, what Instruments were used in the second

Incision? Given Use Case query:

(: insert-start :)

declare variable $input-context external;

(: insert-end :)

for $s in doc("report1.xml")//section[section.title = "Procedure"]

return ($s//incision)[2]/instrument

Note that we are not going to include assumed output and input data because
of the length of input data. A bigger example is provided in Attachment 10.7.

The fact that all the queries have input data over which they query and also
relevant results to them is considered as an advantage. A disadvantage is that
we cannot use these queries since they are not real-world XML queries.

3.2 XQuery Test Suite (XQTS)

These queries are used to test correctness of implementations of XQuery. The
last version of XQTS2 contains over 19,000 test cases/samples. This Test Suite
also contains all the Use Case queries from the XQuery Use Case.

A fraction of all the queries are incorrect queries – to test, whether the im-
plementation of XQuery language can deal with errors.

Again, for our purposes we cannot use these queries as they are not real-world
XML queries.

1http://www.w3.org/ – The World Wide Web Consortium
2http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/ XQTS 1.0.3

18

3.3 XQuery Benchmarks

As example of this group we describe one specific benchmark. In Section 2.6
we mentioned XMark benchmark [22] which contains 20 queries. These queries
should make most of the simulation of real-world queries to reflect the real usage
of XQuery. However, the usage of the language is changing so they might not
reflect the reality. Again, for purposes of this thesis they are not real-world XML
queries.

3.4 XQuery and Big Data

A frequently discussed topic nowadays is so called Big Data. Big Data is high-
volume, high-velocity and/or high-variety information assets that demand cost-
effective, innovative forms of information processing that enable enhanced insight,
decision making, and process automation [2].

Oracle XQuery for Hadoop [14] is currently the only implementation of XQuery
language which works with Big Data. The Apache Hadoop software library is a
framework that allows the distributed processing of large data sets across clusters
of computers using simple programming models [9].

Hadoop MapReduce is one of the modules of Hadoop. It is a system for
parallel processing of large data sets. MapReduce program is composed of a Map
and Reduce procedures. Map procedure provides filtering and sorting and Reduce
procedure provides summary operation.

The Oracle XQuery for Hadoop is an extension for Hadoop which transforms
an XQuery program to MapReduce task.

However, the queries used by this program have limitations:

• The main XQuery expression must be one or more For, Let, Where, Order
by and Return (FLWOR) expressions.

• Each top-level FLWOR expression must have a For clause that iterates over
an Oracle XQuery for Hadoop collection function. This For clause cannot
have a positional variable.

• Each top-level FLOWR expression can have optional Let or Where clause.
Order by clause is not allowed.

Unfortunately, public examples of this kind of XQuery programs are not avail-
able. In order to obtain the data we would have to request it from corporations
which process Big Data with this tool, and that would be costly.

3.5 Common Crawl

Common Crawl [4] is an open repository of web crawled data that is universally
accessible and analyzable. The corpus contains petabytes of data collected over
the last 7 years. This huge data-pack contains raw web page data, extracted
metadata and text extractions [4].

XQuery programs are text files and so there is a high chance that this project
contains them.

19

The data is saved on Amazon servers and is available directly on the Internet
or via AWS3. AWS provides a function of running virtual computers for the
purpose of performing various analyses of the data saved with AWS. However,
the service for running virtual computers is paid.

This repository contains the data collected during various time periods (e.g.
August 2014) – so called snapshots. The data may be used as a benchmark for
tests e.g. whether we have found a reasonable number of publicly free XQuery
programs.

3.6 Rest of The Internet

And then there is the rest of the Internet. In order to be able to obtain the data
from the Internet we have to create a crawler which would crawl the individual
websites and search for XQuery programs. It is not a simple task since XQuery
programs are the text files with specific content. Part of the data can be found
using a file extension but in the rest of the cases we have to estimate whether it
might be an XQuery program using heuristics.

It also takes a great amount of resources and time to crawl the whole Internet.
That is why we can crawl only a part of it.

The following list sums up various places where XQuery programs might be
found nowadays:

• XQuery Use Cases [33]

• XQuery Test Suite [21]

• Benchmarks like XMark benchmark [22]

• Oracle XQuery for Hadoop [14]

• The rest of the Internet

• Common Crawl [4]

3https://aws.amazon.com/ – Amazon Web Services

20

4. Analyzer

This thesis requires a tool for XQuery programs analysis. The tool Analyzer [44]
seems to be a promising choice. This whole chapter discusses its features.

Analyzer is a framework for advanced data analysis. It was created at the
Charles University in Prague as a software project in 2009. The basic version of
Analyzer is using a system of plug-ins and in following years were also created
many new. It is designed to be able to analyze any kind of data under the
condition an adequate plug-in exists. However, the first kind of data analyzed
with this program were XML documents. In particular the following attributes
of XML documents were the subject of the analysis [46]:

• The size of the XML document e.g. in bytes, by the number of elements,
or by the number of attributes

• The maximum depth of the XML document (the longest path from the root
to a leaf)

• The distribution of various types of content models over different levels

• The recursion of elements

• The maximum and average element fan-outs

• The usage of XML Schema [55] versus DTD [7]

• The distinct element/attribute name usage

• The namespace usage

Next, the DTD data was a subject of analysis. In particular the following
statistics were evaluated [46]:

• The size of the DTDs, e.g. the number of declarations of elements, at-
tributes, notations, entities etc.

• The number of DTD specific declarations of element content (empty, any,
etc.)

• The number of DTD specific declarations of attribute optionality (#REQUIRED,
#IMPLIED, etc.)

• The usage of keys (ID, IDREF(s))

• The maximum, minimum and average depth of DTDs. Note that contrary
to the depth of an XML document, the DTD depth is calculated using the
number of rules of the grammar applied from the start symbol to the leaf
(PCDATA).

• The average and maximum fan-ins (the number of different existing parents
for a given node in a particular document) and fan-outs (the number of
different existing children for a given node in a particular document)

21

Then the XSD data was analyzed in a similar way as XML data because each
XSD is expressed in XML. Though the analysis was very similar, there were some
special measurements added to the XSD analysis [46]:

• The type specification (simpleType, complexType)

• Restriction and extension of existing types

• The content model of elements (sequence, choice, etc.)

• Element groups and attribute groups (group, attributeGroup)

Analyzer also analyzed XQuery data but only on the queries from the XQuery
Use Cases and the XQuery Test Suite as described in paper [46]. This paper
evaluates the occurrence of core elements of the language and occurrence of XPath
language axes used in the XQuery programs. It is just a demonstration that the
program works (correctly), since it correctly converts all valid XQuery programs
(programs without parser errors).

4.1 Architecture

As we can see in Figure 4.1, Analyzer framework consists of two separated levels.
The first level contains so called Shared Components – components shared
among all the projects. Analyzer can run simultaneously more projects each of
them analysing various datasets. Shared components are instantiated only once
in a running Analyzer application. The most important component is Launcher.
It is responsible for executing tasks (small units of computations). Graphical User
Interface (GUI) is a robust environment for creating projects, managing projects,
running analyses and browsing reports. Plug-ins are meant to have the analyzing
logic. Hence, for every type of analysis there must exist an appropriate plug-in.

The second level contains Project Components. These components are
used by each project independently. In other words, it is the part which provides
isolated environment for every project.

Figure 4.1: Architecture of Analyzer [46]

22

The project components are as follows:

Crawler
The crawler gathers data from the Internet.

Storage
The storage obtains the data (imports documents) from the file system. It
also saves data (results of analysis) to the same file system.

Repository
Repository is a local database for each project. All calculated analytical
data and the most of the configuration meta data are saved here.

Managers
Managers are responsible for creating, modifying and processing of the doc-
uments, collections (set of documents satisfying the same filtering criteria)
and reports.

4.2 Implemented Crawlers

In this thesis there will be needed the real-world data obtained from the Internet.
Analyzer obtains data in two different ways – from the local file system or by
downloading them using a crawler.

The first version of the program did not involve a crawler and the documents
were imported only from a local file system [57]. In the next version there were
two crawlers implemented into the Analyzer:

Simple Embedded Crawler
This Crawler was created from scratch using a simple Java mechanisms. It
works in the synchronous mode what means that the crawler always waits
for the response before sending another request. It is used only for searching
for the resources during the analysis.

The crawler is set to lower the load of the target server by using simple
serialization of the requests and the number of requests is limited to one
request per second.

Egothor Embedded Crawler
This Crawler was created as an adapter to the existing crawler from the
Egothor Project [36] programmed by Leo Galamboš and collective. The
behaviour of the original crawler was modified in the following way:

• The support for notifying about downloaded documents using a listen-
er was added.

• The reaction for external signalization was added to stop crawling
without the need of using the telnet.

• The support for URL injection without using the telnet was added.

Since then the Egothor Project released the new version – Egothor2 [31].

23

An adjusted Apache Nutch [1] crawler is also included in the Analyzer. This
one was implemented to automate the data collection process and download full
structures of XML documents. Additional improvements of the original Apache
Nutch [1] are as follows:

Improved address filtration
The crawler avoids unwanted protocols (e.g. mailto, javascript, etc.) and
file formats (e.g. PDF, MP3 etc.).

Altered document filtration
The crawler ignores excessively large HTML documents, assuming that they
are unlikely to contain any XML-related links.

Added whitelisting
Whitelisting apparently XML-related documents based on their reported
MIME type and a part of contents.

Added blacklisting
Blacklisting of unwanted documents. Note that due to the widespread er-
rors in the web content, the authors found blacklisting more efficient than
whitelisting.

Altered scoring mechanism
The crawler makes XML-related data more favourable in the download
queue.

Added XML-based documents parsing
Parsing XML-based documents and locating external references in them.

4.3 Analyzer Plug-ins

As we have mentioned, Analyzer is an universal analysis tool. For every kind of
data there is a special plug-in to analyze them. There are also plug-ins for other
functionalities in Analyzer. In particular, there are 8 predefined types of plug-ins:

detector
Detector recognizes the type of the processed document.

racer
Racer looks for outgoing links in a given document.

corrector
Corrector attempts to repair a content of a given document.

analyzer
Analyzer produces the results of the analysis for a given document.

collector
In order to be analyzed, all the data must be classified into collection. The
analyses are then made over particular collections. The collector classifies
the documents into collections of a given cluster.

24

provider
Provider creates reports by aggregating results of the documents in a col-
lection.

viewer
Viewer enables browsing of computed results over a document.

performer
Performer enables browsing of computed reports over a collection.

4.4 XQuery Analysis Plug-in

As we have mentioned, in this thesis we are especially interested in the plug-in
for XQuery analysis.

Figure 4.2: The structure of XQAnalyzer component [56]

Figure 4.2 shows the XQAnalyzer component of Analyzer created in thesis [56]
which enables to analyze XQuery programs. It consists of two parts. The XQuery
Converter gets an XQuery program and creates its XML representation. This
representation is then sent to an XPath processor together with XPath expression.
The final output is the number of XPath results.

4.5 XQuery Converter

XQuery Converter (XQConverter) is a part of XQAnalyzer. Not only this is
included as a plug-in for Analyzer but it is also an independent command line
program.

This tool creates an XML representation of an XQuery program. For illustra-
tion let us use the following simple example:

for $a in A

order by $a

return $a

From this example we get the following XQConverter output (an XML docu-
ment):

25

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Module type="main">

<QueryBody>

<FLWOR>

<TupleStream>

<ForClause varname="a">

<BindingSequence>

<Path initial-step="context">

<Step>

<Axis abbreviated="true" direction="forward"

kind="child">

<NameTest name="A"/>

</Axis>

</Step>

</Path>

</BindingSequence>

</ForClause>

</TupleStream>

<OrderByClause stable="false">

<OrderSpec>

<VarRef name="a"/>

</OrderSpec>

</OrderByClause>

<ReturnClause>

<VarRef name="a"/>

</ReturnClause>

</FLWOR>

</QueryBody>

</Module>

For better association of the original XQuery program to its XML repre-
sentation we used colors. All the elements of XML representation are mostly
self-explaining and described in Attachment 2 10.7.

The XQuery language is a complex language, hence the XQConverter cannot
be a simple program which calculates words. The following example illustrates
that the same word can have different meanings in different parts of the program:

for $for as for in "for" return <for/>

From this program where every for has a different meaning depending on the
position in the program [47] XQConverter creates the following XML representa-
tion:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Module type="main">

<QueryBody>

<FLWOR>

<TupleStream>

<ForClause varname="for">

26

<Type cardinality="one">

<AtomicType name="for"/>

</Type>

<BindingSequence>

<Literal quot-mark="double" type="string" value="for"/>

</BindingSequence>

</ForClause>

</TupleStream>

<ReturnClause>

<Constructor kind="direct" type="element">

<Name name="for"/>

</Constructor>

</ReturnClause>

</FLWOR>

</QueryBody>

</Module>

The first for is hidden in the element called ForClause. The second one is
a variable and it is included in the attribute called varname. The third one is
AtomicType, the fourth one is a string Literal and the last one is the Name of
the returned element.

In order to be able to include the syntax of XQuery language, the output of
XQConverter is respectively sophisticated (a more complex example is provided
in Attachment 3 10.7).

4.5.1 Architecture of XQConverter

Figure 4.3: Architecture of XQConverter component [56]

As we can see in Figure 4.3 the XQConverter component consists of tree parts.
The first one includes an XQuery lexical scanner. Such a component is

sufficient for calculating, e.g., the usage frequency of the individual words with a
given meaning.

However, the XQuery language constructs and their combinations are more
complex. To analyze them an XQuery parser is needed, too. By being con-
nected to a lexical scanner it is able to recognize the structure of the programs
according to the XQuery grammar [23].

27

The stream of the data goes into the scanner where it is transformed into
lexical tokens. The tokens form the input for the parser which instead of building
a syntax tree builds the XML representation of the given XQuery program.

This final XML document can be queried by a classical XPath/XQuery pro-
cessor for various statistical information.

4.6 Summary

Analyzer is an extensive program (it uses many libraries) and it is implemented
in Java version 1.6. The current Java version is 1.8, hence there is a possibility
that some of the used libraries will require updates due to arisen error corrections.
This can lead to highly time-consuming process without proper results.

If the errors after updating cannot be corrected, we can use an alternative
console version of XQConvertor and perform analyses over the created documents
using an XPath/XQuery processor.

28

5. Analysis of Web Crawlers

First of all we need to focus on data acquisition. In this chapter we will describe
the term crawler, various types of crawlers, functions of the crawler and pros and
cons of several specific crawlers.

5.1 Crawler

In general we have more options how to chose the optimal crawler for our purpose.

• It can be written from scratch. However such a decision has both positive
and negative aspects. The advantage is that crawler would exactly fit our
needs. On the contrary, it would take a lot of time to design the model,
program it, test and debug it.

• It can be chosen from existing crawlers and edited or extended to fit our
needs. This approach is less time-consuming so we can focus more on the
heuristics for crawling XML data and XQuery queries and not on the basics
of crawling the Internet in general. However, some modifications can be
more time consuming compared to programming them from a scratch. Also
a situation can rise where we would not be able to implement a feature
because of a bad crawler design.

We have decided for the second approach so, in order to choose the best
crawler for our purposes, we have analyzed and classified the existing crawlers.

5.1.1 Crawler Types

There are several criteria according to which we can classify crawlers. In partic-
ular, according to search methods there are depth first and breadth first method
crawlers. The depth first searching crawlers are generally called topical crawlers
or topic-directed crawlers. They are used for searching in the specific domain
like .cz, .net or they are used for searching for a particular topic like the sport
websites. These crawlers prefer depth first crawling of a website.

The breadth first searching crawlers are more frequent. These crawlers do not
depth-crawl the website but crawl as many websites as possible. This method
is suitable for parallelism and that is the reason why these crawlers often use
parallel processing. Parallelism on one computer is done by multi-threading or
by running more processes (running more crawlers simultaneously or running a
crawler with more threads). Parallelism on more computers is acquired by a
distributed web crawler.

A bottleneck for a crawler running on a single PC is CPU speed and the speed
of the network connection. A distributed web crawler shifts these bottlenecks to
local DNS server [57], because breadth first search generates a lot of requests
and can even create Denial of Service (DoS) on DNS server. DoS arises when a
computer or a network freeze, because they are overloaded by requests.

29

5.1.2 Crawler Policies

We can classify the crawlers according to their policies. The first one is selection
policy, i. e. the way how the crawlers choose web pages to download. We divide
them into the following groups:

Restricting the followed links
The crawler only downloads HTML pages. All the other MIME types are
ignored. It can be done using the HTTP HEAD request and afterwards
MIME type examination or by exploring the file extension in the URL
address.

Path-ascending crawling
The crawler examines the whole URL, from which it derives other URLs
which are crawled afterwards. For example, when given a seed URL of
http://www.w3.org/TR/2006/REC-xml-20060816/, it will attempt to crawl
/TR/2006/REC-xml-20060816/, /TR/2006/, /TR/ and /.

Focused crawling
This kind of crawler, also called topical crawler or focused crawler,
attempts to download web pages that have similar content. The similarity
means that the web pages contain similar words, collocations or identical
URL(s).

For example an academic-focused crawler crawls all academic resources.

The next, so-called re-visiting policy, relates to the fact that the Internet
incorporates a large quantum of data and, in addition, a lot of data is constantly
changing and new data appears. This is the reason why crawlers that are con-
stantly searching the Internet and saving new data are necessary. To be able to
effectively search over these data, an index is usually used. That means that a set
of terms is chosen from a web page for local saving in a database and indexing.

We say that index becomes out-dated when specific terms change, because the
web page changed. Therefore it is only rational to re-crawl the data and update
the current index. Crawlers using this policy can be divided to:

Uniform policy
All web pages are re-visited with the same frequency. However this policy
is not used very often.

Proportional policy
Web pages are re-visited according the estimated change frequency. The
web pages that change more often are crawled more frequently. The chal-
lenge is to set the crawling frequency in correspondence with the estimated
change frequency.

A crawler can naturally retrieve more data in a shorter time than a human
searcher. Unfortunately this can overload some websites. Consequently a kind
of etiquette must be followed during web crawling. A part of this problem is
solved by The Robots Exclusion Protocol [15], also known as ‘the robots.txt
protocol‘ or ‘Robots Exclusion Standard‘, based on the idea of giving information

30

about how to crawl the website from the website owner to the crawler. It is a file
that typically contains the information which directories not to crawl. They can
contain unimportant information about the website or they can contain so-called
spider traps. A spider trap is a set of web pages, that makes the crawler run
in the cycle and produces potentially infinite number of requests that leads to
crawler crash. The file is always located in the root directory of the website. The
Robots Exclusion Protocol can specify behaviour for every crawler independently.

The second type of such a strategy is so-called politeness delay. It is a delay
between requests to the same host which reduces the load on the servers. Too
many request in short time can disrupt normal website activity. This politeness
delay is sometimes specified in the Robots Exclusion Protocol, too.

The last type of policy is parallelization policy. The crawler can run on
a single PC as a single process with one search thread, However, this is very
ineffective. That is why crawlers are multi-threaded and multi-processor (they
can run on multiple computers). This speeds up the process of crawling of the
large number of web pages (because each thread or process search on different
website). However, the crawlers that run on more computers simultaneously must
coordinate their work. This kind of crawler is called a distributed web crawler.

5.1.3 Filters Used by Crawler

Except for the mentioned policies, specific filters for the unwanted data are re-
quired, too. This way the crawler can go through web pages and documents that
have higher probability to contain desired data.

Here are some of the filters used in crawlers:

Whitelist
A Whitelist contains rules, which define whether a given file should be
downloaded/accepted. These rules mostly consider the file type determined
either by file extension or MIME type. The rules can also consider what
content should contain the given file.

The more complex the rules are, the longer it takes to process each file and
the crawling process takes longer time. On the other hand, simple rules
may either filter out required files or download/accept a large number of
unwanted files.

However, in general we do not know how the downloaded files will look like,
we cannot effectively set the rules in advance [57].

Blacklist
On the other hand blacklist contains rules describing which files should
not be downloaded. In this case the rules are only based on observing the
file extensions and the MIME type.

This approach removes only unwanted files. For example when we search
for the text data we filter out all binary data.

Address filtration
Address filtration means that the addresses from a given list are not down-
loaded. Usually it is implemented as a list of URL prefixes that is checked

31

with the address to be downloaded. This can be extended also for partic-
ular protocols, so that for example the protocols different from HTTP are
filtered out.

Large documents
Large documents present a specific problem. These documents can take a
lot of memory during their parsing which can, in the worst-case scenario,
lead to program crash. That is the reason why we define the limit (size)
which separates large documents from others and filter them out. So we
have to define the limit which separates large documents from the rest.

5.2 Existing Crawlers

At present we can choose from many existing crawlers. We will focus on the most
popular ones and choose the most suitable candidate for our purposes. At the
end of the chapter we provide a summary of our findings.

Heritrix [45]
Heritrix is an open source project with extensible functionality and archival
features. It searches the web with the breadth first method and uses more
threads to perform the task. The authors claim that it is designed to respect
the Robots Exclusion Protocol and META robots tags1. It should also crawl
web pages without disrupting normal website activity. Some examples of
how to use Heritrix can be found in user guide on its website. It is written
in Java and is still updated frequently.

This crawler already has a lot of the required features. However to use
this crawler for obtaining XQuery programs, some modifications will be
necessary. For example the indexing and archival parts of Heritrix will
not be used, but recognizing possible XQuery programs part needs to be
implemented.

WebSPHINX [20]
Website-Specific Processors for HTML INformation eXtraction is a Java
class library and an interactive development environment for web crawlers
that browses and processes web pages automatically. It consists of two
parts. The Crawler Workbench is a graphical user interface that lets the
user configure and control the customizable web crawler. The WebSPHINX
class library has the following main features:

• The library contains multi-threaded web page retrieval in a simple
application framework.

• The library supports the Robots Exclusion Protocol.

• The library uses pattern matching, including regular expressions, Unix
shell wildcards, and HTML tag expressions.

However, it has some negatives. Firstly there is no mention about politeness
delays and, secondly, the project was abandoned in 2002.

1optional tags at the beginning of web page HTML code

32

JSpider [10]
JSpider is a highly configurable and customizable web crawler engine. Ac-
cording to its author it is a multi-thread crawler designed to crawl a small
number of sites. It respects the Robots Exclusion Protocol.

However, it contains some disorganized examples in the documentation and
can use only one seed. The last project activity is from 2003 (without stable
release).

WebLech [19]
The authors of WebLech created a full featured website download and mir-
ror site2 tool in Java which supports many features required to download
websites and emulate standard web browser behaviour as much as possi-
ble. It is a multi-threaded crawler and it can be both depth-first search
or breadth-first search type of the crawler. It also contains a kind of URL
filtering.

On the other hand, there is neither a mention about the Robots Exclusion
Protocol, nor about the politeness delays. It was abandoned in 2004.

Arachnid [52]
Arachnid is a Java-based web spider framework. It includes a simple
HTML parser object that parses an input stream which contains an HTML
content. Simple web spiders can be created by sub-classing of the Arachnid
and by adding a code called after each web page of a website is parsed. It
is a simple crawler with only one thread, no filters, no Robots Exclusion
Protocol and no politeness delay. The project is updated frequently. How-
ever the authors recommend to use it only for private use on local servers,
because it may put a large load on servers and even crash it.

JoBo [12]
JoBo is a simple program to download complete websites to a local com-
puter. Basically it is a web spider. The main advantage compared to the
other tools is that it can automatically fill in forms and also use cookies3

for session handling. It also features very flexible rules to limit the number
of downloads by URL, size and/or MIME type.

It is single-thread crawler and supports the Robots Exclusion Protocol and
the politeness delay is implemented.

Web-Harvest [18]
Web-Harvest is an opensource web data extraction tool written in Ja-
va. It uses well established techniques for text/XML manipulation such as
XQuery, Regular Expressions, etc.

It is a multi-threaded crawler but it does not support the Robots Exclusion
Protocol or politeness delay. The project was left at the stage of Beta
testing in 2010.

2A mirror site is a replica of an already existing website.
3An HTTP cookie is a small piece of data sent from a website and stored in a user’s web

browser while the user is browsing that website.

33

Crawler4j [37]
Crawler4j is a Java library which provides a simple interface for crawling
the web. This crawler is multi-threaded with the support for the file filters,
Robots Exclusion Protocol, and politeness delay. Version 3.5 is from 2013.

Ex-Crawler [40]
The Ex-Crawler project is divided into three sub-projects. The first one
is the Ex-Crawler server daemon. It is a web crawler written in Java. The
second part is the GUI and the third part is the web search engine. The
web search engine part is written in PHP.

The Ex-crawler server does not support the Robots Exclusion Protocol
and politeness delay. It is multi-threaded and can filter files according to
their extensions. The project was abandoned during alpha testing in 2010.

Bixo [3]
Bixo is an open source web mining toolkit. It uses Cascading4 and Hadoop
projects. It is a topical crawler, uses the Robots Exclusion Protocol and
politeness delay and it is a multi-threaded crawler. It is frequently updated.

Abot C# Web Crawler [25]
Abot is an open-source C# web crawler built for speed and flexibility. It
is based on events so you register your functions on these events. It is also
possible to create plugin for core interfaces to take control over the crawler.
It is a multi-threaded crawler and is kept up-to-date.

Scrapy [16]
Scrapy is a fast high-level screen scraping and web crawling framework,
used to crawl websites and extract structured data from their pages.

It does not support more threads but is possible to run more separated
spiders at once for faster download. It is written in Phyton and frequently
updated.

Larbin [13]
Larbin is a C++ crawler. It is multi-threaded but prefers using select5

instead of a lot of threads for efficiency purposes. It uses standard libraries
and can run on Linux. The bottleneck is speed. The faster the Internet
connection is the more web pages are crawled. It was created as a part of
the XYLEME project [24]. The XYLEME is XML-based learning content
management solution.

Larbin was not updated since 2003.

Egothor
Egothor was partially developed by the students of the Faculty of Mathe-
matics and Physics, Charles University in Prague. It can be configured as
a standalone engine, metasearcher, peer-to-peer HUB and can be used as a
library for an application that needs full-text search. Egothor version 1 is
integrated into the Analyzer 4.2. The latest version is 3.1.8 from 2014.

4http://www.cascading.org/ – Cascading is the proven application development platform for
building data applications on Hadoop.

5C function where execution of program waits till some data are written or read

34

Apache Nutch
Nutch is a highly extensible and scalable open source web crawler software
project from the Apache software family6.

It was already used in Analyzer as a crawler to download XML data 4.2.
This crawler is frequently updated.

Google Web API [8]
Google Web API officially ended on November 1, 2010. It was an interface
to access Google Web search through code. It also has a limitation on how
many requests per day can be done. So it is not suitable as a crawler for
our purpose. In Analyzer development it was used as a benchmark and test
suite.

Table 5.1 contains all the discussed crawlers and their key features. The col-
umn Language means programming language in which it is implemented. The
Parallelism column contains parallelization policy of crawler. The Filters col-
umn shows whether the crawler has a kind of filter. The Politeness delay refers
to if crawler waits some time before accessing the same website. The REP column
states if crawler has Robots Exclusion Protocol implemented. Easy extensibil-
ity represents the characteristic whether given crawler may be easily extended
to required functionality. Number of seeds shows maximum number of seeds
given to the crawler in the beginning. Support focuses on 3 aspects: Examples,
Documentation, Updates. This column represents whether the crawler is often
updated, fixed, whether it has detailed documentation, whether it has simple and
illustrative examples, or possibly the combination of these characteristics.

As we can see in this table, the multi-threaded crawlers are used frequently.
The crawling process is faster – they crawl more web pages in a shorter time
period. Also Filtering is common ability of crawlers. They need to optimize the
process – which web pages to crawl, and which to throw away. Politeness delay
and REP are not so common among crawlers. Not every crawler is designed for
crawling the web pages repeatedly. Without these features the crawler can crawl
much more web pages during a shorter time. We can also see that a half of the
analyzed crawlers are not meant to be easily extended, but they are focused on
specific process or they have a complicated code. At Number of seeds it is better
to start with a higher number, so that the process is faster in the beginning. It
is not slowed down by politeness delay during crawling the first website. Most of
these crawlers are assumed to be used in common, so they include documentation
or examples and the patches to fix them are released frequently.

6http://www.apache.org/

35

Name of
crawler

Lan-
guage

Paralle-
lism

Fil-
ters

Polite-
ness
delay

REP Easy
exten-
sibili-
ty

Num-
ber of
seeds

Sup-
port

Abot
C# Web
Crawler

C# Multi-
thread

Yes Yes Yes Yes
> 1

Yes

Apache
Nutch

Java Multi-
thread

Yes Yes Yes Yes
> 1

Yes

Arachnid Java Single-
thread

No No No No
> 1

Yes

Bixo Java Multi-
thread

Yes Yes Yes No
> 1

Yes

Crawler4j Java Multi-
thread

Yes Yes Yes Yes
> 1

Yes

Egothor2 Java Multi-
thread

No Yes Yes No
> 1

Yes

Ex-Crawler Java /
PHP

Multi-
thread

Yes No No No
> 1

No

Google Web
API

– – – – – – – –

Heritrix Java Multi-
thread

Yes Yes Yes Yes
> 1

Yes

JoBo Java Single-
thread

Yes Yes Yes No
> 1

No

JSpider Java Multi-
thread

Yes Yes Yes Yes
1

Yes

Larbin C++ Multi-
thread

Yes No Yes No
> 1

No

Scrapy Python More
processes

Yes Yes Yes No
> 1

Yes

Web-
Harvest

Java Multi-
thread

Yes No No No
> 1

No

WebLech Java Multi-
thread

No No No No
> 1

No

WebSPHINX Java Multi-
thread

Yes No Yes Yes
> 1

No

Table 5.1: Comparison of suitable crawlers

5.3 Chosen Crawler

From the discussed crawlers we primarily chose crawlers with parallelization poli-
cy (multi-threaded are preferred) and can have more than one seed. This assures
that the crawling process will not take a long time.

The chosen crawler also needs to be easy extensible. The Robot Exclusion
Protocol and the politeness delay are required too. We do not want to be banned
from some websites and be disallowed to crawl them again. Also we need to alter

36

searching to search for XQuery programs (specific data).
Crawler4j was chosen from the others because of its user-friendly interface,

parallelization policy and also because it contains a lot of desired functionality.
It is also kept up-to-date. This crawler does not have specific filters like blacklist,
whitelist, etc. and is up to the user to program the specific filters. The last task
is to create the component for Analyzer out of it. It is not a simple task. If
successful, Analyzer will have easier access to downloaded data. If not successful,
the crawler will run alone and obtained data will be imported into Analyzer from
the local hard-drive.

37

6. Seeds for Crawler

Every crawler we analyzed in the previous chapter requires a seed or seeds to
start the crawling process. In this chapter we are going to discus how to obtain
seeds as an input for the crawler.

6.1 Seeds from the Web Search Engine

The crawler usually starts with URL list of web pages to visit. These URLs are
called seeds.

The easiest way to obtain appropriate seeds is to use the most popular web
search engine. We have selected these web search queries for the task:

filetype:xq AND doc
This query was proposed in [57] where all types of XML data were collected.
It should find all files with .xq file extension.

filetype:xquery AND doc
This query is a derivation of the previous query, but this time the .xquery
file extension is required.

xquery version
This query is based on the fact that XQuery programs should contain
‘xquery version 1.0‘ on the first line.

FLWOR construct or other
Using XQuery language words increases a chance to gain more XQuery
programs from the Internet.

We should obtain enough seeds using these web search queries so that our
crawler can find enough programs which can be used as representative sample of
XQuery programs on the Internet.

6.2 Google URL Result

Google, one of the biggest search engines, has several ways of getting URLs for
given search query.

The most common way is via the Google website1.
For more skilled users there is another way using the Custom Search Google

API [5]. This is a programmer approach and it requires ‘developer api key‘ and
‘custom search engine id‘ to get started.

The last way is using Google knowledge graph. This is the only known way to
get all the results of google database for specific query. Unfortunately, the graph
for XQuery has not been created yet.

To extract the data from Google web page a program is needed. For example,
there is a commercial program called Outwit2. However, despite its simple user

1http://www.google.com
2http://www.outwit.com/

38

interface it requires some knowledge of how to use it. So we have decided that it
would be more efficient to write our own program scraper. It extracts URLs from
the given HTML Google web page. The scrapper is written in Java language.
We provide an HTML web page with Google URL results and it provides us with
the file of results of URLs with each URL on the separated line. The URL seed
we needed to extract from Google web page result is shown in following example:

...<h3 class="r">title_of_result<...

Note that there are limitations of the Google website search. There can be
only 100 results per web page and maximally 10 web pages of results with 100
results. That means maximally 1000 URL per search query.

Google query Omitted
results

Google results Gained results

filetype xq AND doc NO 80 80
filetype xq AND doc YES 2,910 728
filetype:xquery AND doc NO 30 30
filetype:xquery AND doc YES 1,700 268
‘xquery version‘ NO 22,000 154
‘xquery version‘ YES 22,000 811
xquery version NO 1,140,000 200
xquery version YES 1,140,000 772
filetype:xq NO 68 68
filetype:xq YES 441,000 981
filetype:xquery NO 61 61
filetype:xquery YES 5,100 577
for let where order by return NO 537,000,000 472

Together – – 5,202

Table 6.1: Google search results for queries

The table 6.1 shows us how many results (URLs) we got from the given search
queries. Column Omitted results explains whether we used the omitted results
option. Column Google results shows the number Google writes on the first
web page of results as how many results it has in its database. For the next
web page results it is in the most cases changed to a smaller number and it has
just informational value. And the last column Gained results is the sum of the
results we managed to extract from Google website for specific search query.

These data were collected 27th of June 2014.

6.3 Seed File

The easiest way to feed the URLs to the crawler is to put them into one file and let
the crawler load them all from it. For this purpose we used Windows Powershell
script to create one file with all the results, sorted and without duplicities:

Get-Content *.txt | Sort-Object -Unique | Set-Content input.txt

39

For better understanding the command ‘Get-Content‘ writes content of the
given file on standard output. The command ‘Sort-Object -Unique‘ sorts the
given string and removes duplicate ones. And the last command ‘Set-Content‘
writes the given content into specified file.

For crawler is better when seeds from the same website are not together so
we use Unix script to randomize the file lines:

cat seedfile.txt | ./unix-add-random-number-at-begin-of-line \

| sort -n | awk ’{print $2}’ > randomlines.txt

Program unix-add-random-number-at-begin-of-line is a simple shell script:

while read line; do

echo $RANDOM $line

done

We now have the file with 4,198 unique URLs with random positions in file
out of a total of 5,202 URLs.

40

7. Modification of Selected
Crawler

In Chapter 5 we chose the particular crawler. Now we need to modify it so we
can search for potential XQuery programs on the Internet. We will also create
library out of the crawler, so we can attach it to Analyzer.

In order to be able to compile under Java 1.8, errors in Java documentation1

had to be fixed first. We also had to manually install some libraries and let maven
download other libraries. Manually installed libraries were httpclient-4.2.3.jar,
je-4.0.92.jar, log4j-1.2.14.jar, tika-parsers-1.0.jar and junit-4.11.jar. We used IDE
NetBeans 8.0.2 to do so.

7.1 Basic Setting of Crawler

The Crawler4j has already implemented a lot of functions and features. In the
configurations we used these settings:

• Variable crawlStorageFolder sets the home directory for the crawler. The
crawler will store all its data there.

• Variable resumableCrawling sets, whether the crawler will be able to
resume its process right where it ended. When using this variable there is
an overhead because crawler needs to store which pages are being processed.
This overhead is tolerable.

• Variable maxPagesToFetch sets the number of pages after which the
crawler stops crawling. We have tried some runs and found out that af-
ter around 3,000,000 pages the crawling process is radically slowed down
because of response time of crawlers database of processed URLs. That is
why we set this variable to 5,000,000 pages.

• Variable userAgentString sets the identity of the crawler under witch it
present itself on websites. We use crawler4j for XQuery.

• Variable politenessDelay sets the milliseconds after which the crawler can
access the website again. In first runs we used 1,000 ms. After looking at
many robots.txt we realized that some pages uses restriction to 2 seconds.
That is why we set it to 2,000 ms.

• Variable maxTotalConnections sets the maximum value for active con-
nections from the crawler to the Internet at any moment in time. During
testing runs we run out of descriptors2. We had 10 threads and it was set
to 11, after this experience we set the value on unlimited descriptors and
the problem never occurred again. This is why there is no need to change
default value 100 connections.

1http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javadoc.html – JavaDoc
2opened connections and also opened files

41

• Variable maxDepthOfCrawling sets the maximum depth for crawling
process. By default it is unlimited, but because of spider traps it is better
to set it on some value. We have taken maximum value for asynchronous
crawlers used in Analyzer which is 20.

• Variable includeBinaryContentInCrawling defines if pages with MIME
type starting with application will be processed. Since XQuery programs
identifies as ‘application/xquery‘ [54], we used true.

• Value maxDownloadSize sets the maximum size of the downloaded and
processed file. This is the previously mentioned Large document filter. We
set this value on 524,288 (that represent 0,5 MB). There were two main
reasons for setting this value. First, the process of parsing big files means
using a lot of memory and we did not want to risk running out of memory
and, second, we assume that the majority of the XQuery programs have a
small file size.

We left the rest of the configurations set on default values because they are
not important for our project. Since the crawler is written in Java language it
runs on Java Virtual Machine3. JVM offers networking properties settings [11]
and we tried various values for these settings:

• We found out that the setting sun.net.spi.nameservice.nameservers
did not affect the use of the DNS server. Used DNS server was set by the
operation system and not by the java virtual machine from program.

• We decided to use the value false for the setting http.keepAlive. This
value means false means that the opened HTTP connections are closed
after one request and they cannot be used for the next request to the same
server.

We used this setting as a fail-safe mechanism if setting maxTotalConnec-
tions would not be taken into account.

Also if the crawler sends too many requests to different servers and runs
out of file descriptors, it must either wait for a long connection timeout or
go through its databases whether there are any URLs to crawl in active
connections. This would be too slow in case of a big database. On the
other hand, waiting for a timeout would be also ineffective. Both ways, it
would slow down the data collection.

Contrary to this option if the connection is closed right after processing of
the request, creating a new connection to the same server takes less time
than chosen politeness delay (no need to create a new connection to the
same server is the only case when ‘keep alive‘ would be useful).

7.2 Setting Crawler’s Filters

There are also filters in the crawler besides the basic settings. We used all the
filters mentioned in Section 5.1.3.

3http://docs.oracle.com/javase/specs/jvms/se7/html/index.html – JVM

42

Large documents filtering
It is set in the configurations.

Address and protocol filtering
It is implemented as two patterns.

Protocol filtering:

"(ftp|javascript|mailto|https).*"

This is a regular expression used for URL control – so that the beginning
of the URL does not contain unwanted protocols which the used crawler is
not able to handle.

Address filtering:

"https?\\://(facebook.com|www.like-news.us|www.w3.org).*"

This regular expression filters out the websites which are too extensive or
were marked as a threat by an anti-virus program or all XQuery programs
from them we already have.

Whitelist filter
It marks files supposedly being XQuery programs. It looks like this:

"[^\\?]+\\.xq(uery)?(\\?.*)?$"

This expression matches every URL that have file extension .xq or .xquery.

Blacklist filter
IT filters file extensions of files which the crawler will not even try to down-
load. It is the most extensive filter and it looks like this:

"[^\\?]+\\." //anything but question mark at beginning

//and then dot

+ "(css|js|ico|jar" //web files

+ "|bmp|gif|jpe?g|png|tiff?" //image files

+ "|mid|mp2|mp3|mp4|wav|wma|ogg" //audio files

+ "|avi|mov|mpe?g|ram|m4v|mkv|wmv|mod|flv|3gp" //video files

+ "|docx?|pps|pptx?|xlsx?" //office files

+ "|pdf|pdb|rtf|mobi|epub" //not wanted document files

+ "|zip|rar|z7|tar|gz" //compressed files

+ "|dll|so|bat|sh|bash" //dynamic libraries and script files

+ "|cp?p?|h|java|cs" //source code files

+ "|rm|smil|swf|exe" //other files

+ "|xml)" //we want XML documents only from XQuery program

+ "(\\?.*)?$"); //question mark and parameters at the end

//(optional)

43

At the end of each line there is a description of the file extensions described
in the given line. The special case is .xml. We want to download only XML
documents which are referenced in the potential XQuery programs so we
filter them from crawling and add them as the special seeds during process.
This way they are directly downloaded and have information about their
parent (potential XQuery program).

7.3 Fixes of the Crawler

After running the crawling process for a couple of times we noticed that the
politeness delay is malfunctioning. With 10 threads and configuration set to
1,000 ms it accessed the same website 10 times during 1,000 ms. So we modified
the behaviour of the implemented politeness delay. We added a dictionary as
a hash map where we saved the access times for added IP addresses (IPv4 and
also IPv6). The time of access was saved for all the IP addresses of the website.
This was realised through DNS translation of host domain name. By this we also
solved the problem of the different websites having the same IP address.

Here is the corrected code:

synchronized (mutex) {

//get the last time the crawler requested something

//from server(s) of that domain

lastFetchTime = dictionary.getValue(webUrl.getDomain());

//get the current time

long now = (new Date()).getTime();

//calculate the delay from the last access to that server(s)

long existingDelay = (now - lastFetchTime);

//if the politeness delay is required sleep

if (existingDelay < config.getPolitenessDelay()) {

//calculate for how long the sleep is needed

long newDelay = config.getPolitenessDelay();

newDelay -= existingDelay;

//put the new access time to that server(s)

//before sleep

long newAccessTime = lastFetchTime;

newAccessTime += config.getPolitenessDelay();

dictionary.add(webUrl.getDomain(), newAccessTime);

//finally sleep

Thread.sleep(newDelay);

}

//before a request put the access time to the dictionary

//(if newer time is already there, it will not overwritten)

44

dictionary.add(webUrl.getDomain(), (new Date()).getTime());

}

When asking for the last access time of the website the dictionary makes
DNS request to find all the IP addresses and it chooses the highest access time
associated with this IP addresses. If no IP address is present for a given domain
name, zero is returned.

When adding the last access time, the dictionary makes a DNS request to find
all the IP addresses and it saves this access time for all the addresses. If a record
of IP address is not present, it is created. If IP address’s access time is greater,
it is not overwritten.

To speed up the process, we clear the dictionary every time when it reaches
100,000 IP addresses. After the dictionary is cleared, it returns the actual time
plus politeness delay multiplied by the number of request for first ‘x‘ request.
The ‘x‘ represents the number of used threads for crawling. This ensures that the
politeness delay is constantly maintained.

This solution uses 3 identical DNS requests to access one web page. Since we
use our own cache DNS server this is not an issue for us. This way the cache
DNS server makes only one DNS request.

Also a nearby DNS server helped us to speed up the process. The ping between
the PC with the crawler and the DNS server was lower than 1 millisecond.

7.4 Configuration File Loading

We also added a simple loading of configurations from the file. If the file is not
present, the default values are used. One line can contain either a commentary
(starts with # or //) or ‘variable=value‘ setting. We distinguish 3 types of
variables:

• The value can be true or false. The respective variables are: resumable-
Crawling, includeHttpsPages, includeBinaryContentInCrawling, followRedi-
rects.

• The value can be a number without ‘.‘ and ‘,‘. The variables are:
maxDepthOfCrawling, maxPagesToFetch, politenessDelay, maxConnection-
sPerHost, maxTotalConnections, socketTimeout, connectionTimeout, max-
OutgoingLinksToFollow, maxDownloadSize, proxyPort.

• The values are taken as a whole string (must be in a correct form). The
variables are: folder, userAgentString, proxyHost, proxyUsername, proxy-
Password.

If a variable is not present in the configuration file the default value is used.
While adding more functionality, we also added 4 more configuration parameters:
numberOfThreads, xqueryCrawler, statisticsSaving, seedFile. NumberOfThreads
sets an integer value of how many crawling threads will crawler use. XQueryCrawler
sets if we will filter only possible XQuery program and their XML documents or
return every page. StatisticsSaving sets if we will save statistics about crawling
into the file after the crawling is paused or finished. And, finally, SeedFile sets a
path to the file where seeds for the crawler are provided.

45

7.5 Adding Seeds from File

We often needed to insert more than just few initial seeds. That is why we decided
to add this functionality, too. We also added an option to change the path to
the seed file from the configuration file. The seed file contains either a comment
(starts with #) or an URL on every line. We added a function that reads these
URLs and if they match the filter they are added to the download queue. After
each addition the crawler also downloads initial data (robots exclusion protocol),
that is why we also added politeness delay functionality here.

If the configuration file does not contain seed file path, the only seeds used by
the crawler are the ones inserted into it by the program code.

7.6 Recognizing XQuery Programs

The next functionality is to identify whether the crawled documents are XQuery
programs or not.

We used filters for this. We look for MIME type in Content Type part of the
HTML response header and if it matches this regular expression it goes to the
next phase:

"(application|text)/(xml|xquery|plain|html).*$"

In next phase we check whether it is an HTML page. We parse it and look for
a <pre> sections. If they contain xquery version, we mark them as a potential
XQuery programs. We also look for files that have extension .xq or .xquery as
recommends the W3C. These files are also marked as potential XQuery programs.
The last place we look for the potential XQuery programs are in the text files.
We search if they contain an xquery version. If so, we mark them as potential
XQuery programs. To sum it up, we are focussing on:

• file extensions .xquery or .xq

• HTML page <pre> sections with xquery version phrase

• text files with xquery version phrase

In order to be able to use the crawler also for the other searches, we added
an option into the configuration file. If it is true it checks whether downloaded
web pages are potential XQuery programs and the crawler returns only these
potential XQuery programs.

7.6.1 XML Documents Referenced in XQuery Programs

The XQuery program can contain links to various XML documents. These links
are in the doc() function, which parameter is an absolute or a relative path to
the XML documents.

First we need to parse the given links. Then we have to transform them to
absolute URLs and then put them into the crawler for download.

46

We want these XML documents to have information about their parent XQuery
program. That is why we put a reference to it when inserting these links into
crawler for download.

We also want to download these XML documents priorly so there will be no
URLs of the XML documents left in the download queue when we finish crawling.
That is why we add priority to the links.

Heuristics will not help us a lot when correcting the defective URLs to XML
documents. Every correction must be tested and we use politeness delay so every
testing would take more time and we would download less potential XQuery
programs. That is why we do not use heuristics for correcting XML documents
URLs and we rather try to find other XQuery programs.

7.7 Saving the Found Data

We need to save the downloaded data transparently, and in a way they would
not be overwritten. For definite differentiation of URLs crawler4j uses its own
document identification number (docID) which is assigned during the crawling
process. We use this docID to create an unique directory where we save all the
information about a given URL. This information includes given file, parsing
<pre> sections, downloaded XML documents and information about potentional
XQuery program. This information file name is docID.txt. It containts URLs,
Content Types, time and information on how many potential links on XML doc-
uments go from the saved XQuery program.

7.8 Saving Statistics

To monitor the crawling process we also added statistics to the crawler. This way
we can monitor the progress of crawling. We also added variable saveStatistis
(values true and false) to the configuration file. If there is the value true at the
beginning the crawler looks whether there is file statistics.txt. If file is found, it
loads from it the statistics from the previously paused crawling. When pausing
the crawler, it writes the current statistics into this file. The form of the statistics
is following: ‘statistics=value‘ as in the configuration file.

The statistics count the number of crawled web pages, the number of invalid
links, the number of potential XQuery programs and the number of downloaded
XML documents. Invalid links are specified as HTML status codes 404 Page not
found. The statistics calculations use locking so that different threads do not
increment it at the same time.

7.9 Returning Downloaded Pages

We added a new interface into the crawler:

public interface Crawler4jDownloadCallback {

public void downloaded(Page page);

}

47

This way the crawler can be used as a library and a program using it can
decide what to do with potential XQuery programs. We also added the following
function into the crawler controller so any class that wants to use the crawler
must use it:

void AddListener(Crawler4jDownloadCallback listener);

Also an implementation of function downloaded is needed. All the necessary
information of web pages including content is accessible through its parameter
class Page.

7.10 Final Architecture

In Figure 7.1 we can see UML 2 component diagram of the modified crawler. The
process of crawling is controlled by the component Controller. It starts and sets
all necessary components for crawling process. It can pause or stop crawling in
the middle of crawling process and resume it again.

The component ConfigurationLoader loads the configuration file or creates
default configurations.

The component SeedLoader reads the seed file and loads all the URLs into
the database. It respects politeness delay. During this process it excludes URLs
not matching the filters. Also it accesses the web pages and looks at robots
exclusion protocol.

The component FileSaver looks after saving of the XQuery programs without
conflicts. Also it manages that the downloaded XML documents are saved in the
same directory as their parent XQuery programs.

The component Fetcher provides downloading of web pages with given URLs.
This component contains the implementation of politeness delay, large documents
filter, black filter, protocol filter, address filter and administration of connections.
It also checks if the maximum of fetched URLs are not exceeded.

The component RobotsTxtServer contains functionality to automatically
download robots exclusion protocol for websites that are about to be crawled. It
evaluates if given URL can be downloaded.

The component Frontier saves all the URLs. Every URL is saved once under
unique docID. Also it provides the fetcher with a set of URLs for crawling.

The component Parser obtains the downloaded web page. If the downloaded
web page is a HTML page, it parses other URLs out of it.

The component WebCrawler provides functionality for obtaining URLs,
fetching web pages from these URLs, parsing this URLs and putting new URLs
from parsed web pages into database for further crawling.

The component XQueryCrawler is extension of WebCrawler and contains
functionality for picking up potential XQuery programs. Special links to XML
documents are parsed out of these programs and inserted into the database with
special priority.

Interface Crawler4jDownloadCallback serves as event for downloaded pages.
Any program using this Crawler can connect to this point and receive downloaded
pages.

48

Figure 7.1: Crawler component

7.10.1 Making Crawler Library

We wanted to use the crawler in Analyzer so we modified the crawler and created
the library out of it. However, we also created a stand-alone program with the
main function for its debugging. This stand-alone program simulates the Analyzer
function calls. We created an own class for this purpose. When compiling this
as library jar we make this class empty. In this class we added a control whether
the files exist for interaction with running program. If there is a specific file, the
process of crawling is stopped (and crawler saves the last data and turns itself
off) or the status is output (of how many pages where processed).

49

8. Crawler Integration into
Analyzer

In the previous chapter we created a library from the crawler. In this chapter we
will connect it to Analyzer.

First, we had to correct errors, so that we could compile Analyzer. We in-
stalled dependency junit4 plugin into IDE NetBeans 8.0.2 and we added all need-
ed dependencies to Analyzer’s modules with errors in IDE via ‘ADD MODULE
DEPENDENCY‘. We also corrected the number of dependency of
org.openide.util.lookup from ‘8.25.2‘ to ‘8.25.1‘. After these errors were corrected
we were able to build Analyzer and run it.

8.1 XQuery Crawler Module

First, we create XQuery Crawler module according to the already-created Egothor
Crawler module. The following interfaces need to be implemented:
AsynchronousCrawler and Crawler. Since we are going to use crawler4j, we
need to implement callback for downloaded pages Crawler4jDownloadCallback.

The following functions are in the mentioned interfaces:

• Function getAccessingMode returns what kind of crawler this is:
AccessModes.ASYNCHRONOUS_FLOODING. This means that it is a crawler
that runs in the background and returns more than one document because
it crawls through the Internet.

• Function getConfigurationSummary returns a string with information on
crawler’s settings.

• Two functions initialize are used for initialization of the crawler. The
path to the directory where crawler have its data is needed here. We have
not found out how to pass second path in this initialization, so the crawler
looks for the configuration file in the directory where Analyzer is running.
If it does not find out configuration file, the default settings are used.

• Function getConfiguration returns the list of settings for this module.
In our case we only set the directory, where the crawler is supposed to be
running. This directory cannot be change.

• Function exportConfiguration takes the settings and saves a relative path
from the project directory into the project file (manifest).

• Function start starts the crawling process. The crawling process is started
only if the crawler was initialized. The return value is true in this case.

• Function stop stops the crawler and waits till all its threads are stopped.
It always returns true.

• Function registerDocumentListener gets a listener which is added to the
list of listeners. These listeners are alerted when any page is downloaded.

50

• Function unregisterDocumentListener removes a listener from the list of
listeners.

• Function isScheduled returns the information whether the URL was added
to the download queue.

• Function isDownloaded should return the information whether the URL
was downloaded. We cannot distinguish reliably if the URL was already
downloaded or it is in a queue to be downloaded, that is why it returns the
same value as isScheduled function.

• Function injectURI passes the URL to the crawler to be downloaded.

• Function getLatestDownloaded gets the URL and returns the structure
which contains the link to specific file, in case a file with the given URL is
downloaded, otherwise it returns null.

• Function getAdditionalStorages returns the list of additional storages
which are used by the crawler.

• Function downloaded is called every time the crawler downloads a suitable
page. The page is saved to the storage with the required information and
all the listeners connected to given crawler are notified.

8.2 Fixing Small Bugs

We were not able to create a new project when we ran Analyzer for the first
time. We were getting the Null reference exception error. Using debugger
we found out that in the project-creating scenario the values of the project in
wizard windows are validated before they are saved from filled-in values. We
fixed the function validate in CustomWizardPanel.java, so in the beginning
it gets actual information from filled-in fields (function storeSettings). After
this minor modification we were able to go through all the wizard dialogues for
project creation. During project testing we tried to create a project with Eqothor
Crawler. We got error everytime Egothor tried to initialize itself. With a debugger
we found out that a bug is inside egothor library. Since it was already compiled
code, we could not fix it or hack it.

After implementing our own asynchronous crawler, we successfully created
a project. When we tried to create a download session, we got another error
– non-existing storage during creating a download session. We found out that
in the wizard for data download new instances are created but are not put into
managers. Therefore the given instances did not have identification numbers in
managers memory. If we, however, close the project and re-opened it (there is a
pop-up window, whether we want to repair the project) and then tried to create
a download session, the wizard was successfully finished.

After connecting the project to the launcher and starting up the launcher,
the download process did not start. The crawler did not have a configuration file
thus also no seed file. It also did not get URLs from the download session wizard.
When we corrected the crawler to get the seed file from the specific folder, it
started the crawling process but no downloaded pages got to Analyzer. Thus we

51

decided to let the crawler run separately, and then import downloaded potential
XQuery programs and XML documents into Analyzer.

8.3 Names of Used Components

All the plugins set their names and other information from file ‘Bundle.properties‘.
We fixed the information in the rest of the Analyzer plugins and this is how we
filled them in the XQueryCrawler’s module:

OpenIDE-Module-Name=XQuery Crawler

OpenIDE-Module-Display-Category=Asynchronous Crawler

OpenIDE-Module-Long-Description=\

Asynchronous crawler based on Crawler4j project\

(https://code.google.com/p/crawler4j/)

Figure 8.1: XQuery crawler in Analyzer

Figure 8.1 shows how it is presented in Analyzer.

52

9. Data Gathering

In this chapter we focus on obtaining potential XQuery programs and XML doc-
uments over which they query from the Internet. We also focus on the question
whether enough potential XQuery programs are downloaded.

9.1 Downloading Session

The modified crawler from Section 7.10 runs on computer Mac mid-2010 with the
following parameters: CPU Intel i5, RAM 12 GB, OS: OS X.

The previously mentioned limit of maximum processed web pages was set
to 5,000,000. The limitation came as inspiration from thesis [57]. Their crawler
processed approximately 6,000,000 pages. Out of this number 716,000 documents
were downloaded, what represents approximately 12%. Only 48,262 (less that 1%)
of the downloaded documents were XML-related.

We took this into account and we assumed that we will get maximally 5,000
XQuery programs (10% of their XML-related documents).

After 48 hours long downloading session our crawler saw over 8,000,000 dif-
ferent URLs and processed 325,954 URLs. That means that filters used in the
crawler filtered over 95% of unwanted URLs. From 325,954 URLs the crawler
identified and downloaded as a potential XQuery program 11,220 documents and
74 XML documents referred from them. These results exceeded our expectations,
though these numbers will be lower after filtering out invalid data. 50-90% of the
data is expected not to be an XQuery program or it will contain errors and thus
not be valid.

9.1.1 Testing Sessions

At the beginning we run test downloading sessions. The purpose of these tests
was to check the functionality of the crawler (both enhanced and original func-
tionality). These runs have the maximum pages to crawl set from 10,000 to
10,000,000 pages.

These sessions were run on two different machines. The first machine pa-
rameters were: CPU: Intel dual core 2,2GHz, RAM: 2GB, OS: Windows 7. The
second machine’s parameters were: CPU: AMD64 RAM: 2GB OS: FreeBSD.

As a summary we got Table 9.1 that describes the testing sessions. The
columns represent crawler option the maximum pages to process, the time lapse
of the session, how many pages the crawler processed and how many files it
downloaded.

As we can see, the limitation on 10,000 pages took longer time than 100,000
pages. The reason was that we used more seeds and many of them from the same
websites (the crawling process was slowed down by the politeness delay). That
is why we decided to randomize the order of loaded seeds in Chapter 6.

These sessions also set ground for values of crawler configuration, i.e. how
long it will crawl and how many XQuery programs it will possibly find.

53

Maximum pages to process Time Pages Downloaded files
10,000 5:40:02 10,000 1,827

100,000 4:33:24 100,000 2,144
5,000,000 23:42:00 2,975,398 3,351

10,000,000 132:00:00 8,238,827 8,501

Table 9.1: Testing download sessions

9.1.2 Download Summary

From 8,000,000 pages we got 11,220 potential XQuery programs and 74 XML
documents used in these programs. During the crawling we encountered around
3,500 broken links and nearly 40,000 other fails with downloading pages.

Most from downloaded documents (9,679) where with extension .xq or .xquery,
some were from HTML pages sections <pre> (1,524), a few were binary (14) and
only 3 where in text format files.

9.2 Common Crawl

We decided to compare our number of potential results with Common Crawl
potential results to evaluate and compare the number of found documents. That
is why we downloaded Common Crawl database from August 2015. This database
contains 1.81 billion web pages and offers 3 types of snapshots:

• WARC (Web ARChive) files which store the raw crawled data

• WAT (Web Archive Transformation) files which store computed metadata
for the data stored in the WARC

• WET (Web archive Extracted plain Text) files which store extracted plain
text from the data stored in the WARC

We chose the most extensive type, the WARC, and we downloaded approx-
imately 34,000 files with the size of 145 TB. To download and process this size
of data we used the MetaCentrum1 where we had 24 worker PCs and 3 manager
PCs with the following configuration: CPU: 2x 8-core Intel Xeon, RAM: 128 GB,
OS: Linux distribution. We ran Hadoop version 2.6.0 to process the data, with
two jobs described in the following subsections.

9.2.1 MIME Counting

URL content is mostly defined in MIME type, hence we decided to count the
number of MIME types present in the database. We created the following Java
programs for Hadoop:

Configuration conf = getConf();

Job job = Job.getInstance(conf, "WARCMimeCounter");

1https://metavo.metacentrum.cz/ – MetaCentrum Virtual Organization

54

job.setJarByClass(Main.class);

job.setNumReduceTasks(24);

Path inputPath = new Path(args[0]);

Path outputPath = new Path(args[1]);

FileInputFormat.addInputPath(job, inputPath);

FileOutputFormat.setOutputPath(job, outputPath);

job.setInputFormatClass(WARCFileInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(LongWritable.class);

job.setMapperClass(MapperImpl.class);

job.setCombinerClass(LongSumReducer.class);

job.setReducerClass(LongSumReducer.class);

Function setNumReduceTasks(24) sets the number of workers to 24 (number
of worker computers in the MetaCentrum. Functions setInputFormatClass and
setOutputFormatClass provide parsing of the input WARC files and outputs
text files. Functions setOutputKeyClass and setOutputValueClass set the type
of data to be extracted from the WARC files (for the implementation itself see
below) and function setReducerClass sets what is done with these extracted
data. In this case all data with the same key will be summed up together.

One more function is used here - setCombinerClass with the same parameter
as setReducerClass. It is an optimization for the MapReduce job and it ran
on the output of the map phase to minimize internal network communication
between workers.

In following code is implementation of mapper functions:

private final Text outKey = new Text();

private final LongWritable outVal = new LongWritable(1);

private final Pattern quotePattern = Pattern.compile("[\"\’]");

private final Pattern contentTypePattern = Pattern.compile(

"([Cc]ontent-[Tt]ype:[\\t]*)([^;\\s]+)(.*)*");

public void map(Text key, ArchiveReader value, Context context)

throws IOException {

...

if (!record.getHeader().getMimetype().equals(

"application/http; msgtype=response")) continue;

//Convenience function that reads the message into a raw byte array

String recordContent = new String(IOUtils.toByteArray(record,

record.available()));

55

//The HTTP header gives us valuable information about

//what was received during the request

String httpHeader = recordContent.substring(0,

recordContent.indexOf("\r\n\r\n"));

Matcher contentTypeMatcher = contentTypePattern.matcher(httpHeader);

if (!contentTypeMatcher.find()) continue;

String contentType = contentTypeMatcher.group(2);

contentType = quotePattern.matcher(contentType).replaceAll("");

contentType = contentType.toLowerCase();

outKey.set(contentType);

context.write(outKey, outVal);

...

}

Two patterns are used here. One matches quotation marks to remove them
from string and the other matches the header line of HTTP response with MIME
type content to extract MIME type from it.

A WARC record contains 3 parts, but we are only interested in the last one,
which contains the HTTP response itself. The first stated if filters out the first
2 unwanted parts. In the next step we took the header from HTTP response and
we found the information with ‘Content type:‘. The used matcher extracts MIME
type from it. Since sometimes the quotation marks are present at the beginning
and at the end of MIME type, these were removed by iquotePattern matcher.

This job ran for 8 hours and some of the results are in Table 9.2. We can see
that almost 2 billions are HTML pages. Compared to that only 9 millions are
stand-alone XML documents and there is no ‘application/xquery‘ MIME type.
Either there are no XQuery programs in this Common Crawl database or they
have a different MIME type. Since we found almost 3,000 different MIME types,
we suppose they use different MIME type.

MIME type Number of occurrences
application/xml 1,325,368
html 11,055
text/html 1,748,429,998
text/plain 3,403,590
text/xml 7,634,915
xml 5,551

Table 9.2: MIME types in Common Crawl August 2015

9.2.2 URL Extracting

One of the methods we used to select potential XQuery programs is by using file
extension. So we looked at individual URLs in Common Crawl and we selected
the URLs with file extension .xq or .xquery. The following Java program was
used for this extraction:

56

Configuration conf = getConf();

Job job = Job.getInstance(conf, "WARCUrlXqueryParser");

job.setJarByClass(Main.class);

job.setNumReduceTasks(24);

Path inputPath = new Path(args[0]);

Path outputPath = new Path(args[1]);

FileInputFormat.addInputPath(job, inputPath);

FileOutputFormat.setOutputPath(job, outputPath);

job.setInputFormatClass(WARCFileInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

job.setMapperClass(MapperImpl.class);

Compared to the previous program the parameter setOutputValueClass is
different. Instead of adding of the numbers we use an empty parameter so it
only outputs the result. Also we run only the mapper from the MapReduce job,
because we do not need to sum up results.

Implementation of mapper is following:

private final Text outKey = new Text();

private final NullWritable outVal = NullWritable.get();

private final Pattern urlXQueryPattern = Pattern.compile(

"(.*\\/)([^\\/]+\\.)(xq|XQ)(uery|UERY)?(\\?.*)?");

public void map(Text key, ArchiveReader value, Context context)

throws IOException {

...

String url = record.getHeader().getUrl();

//is it XQuery file?

if (!urlXQueryPattern.matcher(url).find()) continue;

//save URL

outKey.set(url);

context.write(outKey, outVal);

...

}

We created a pattern for matching the URLs with file extension .xq or
.xquery in urlXQueryPattern. We went through individual WARC entries and
we looked at URLs. If we found a match, we added the URL to the results.

57

Obtaining this list of URLs took 7 hours. It contains approximately 4,500
URLs. After manually going through them and filtering out duplicities only
approximately 200 URLs were left. After checking them out, only 40 led to an
XQuery program, whereas half of those led to W3C pages.

The filtered addresses were on following domains: ‘blakearchive.org‘ (book
search), ‘findingaids.loc.gov‘ (searching in the library of congress),
‘data.albankaldawli.org‘, ‘data.worldbank.org‘, ‘datos.bancomundial.org‘,
‘donnees.banquemondiale.org‘ and ‘api.worldbank.org‘ (bank-sector web pages).
In these cases the URL pointed to the internal website search engine and gained
the output based on parameters in the URL. The search engine itself could not
have been downloaded in any case. That is the reason why only 40 URLs lead to
XQuery programs in the Common Crawl database from August 2015.

9.3 Summary

We compared the numbers of potential XQuery programs from various sources in
order to find out whether we obtained enough potential XQuery programs. First,
we took the number of Google results from Chapter 6 for file extension .xq and
.xquery. Second, we took the number of Common Crawl results. Finally, we
compared both of them with the number found by our crawler. Table 9.3 shows
the comparison.

Source Results
Google 4,610
CommonCrawl 4,440
our crawler 9,679

Table 9.3: Comparision from various sources

We managed to obtain nearly 10,000 potential XQuery programs with exten-
sion .xq or .xquery. However, the real number of XQuery program is lower. We
predict that about 1,000 will be valid XQuery programs. However, it is still better
result if we compare it to thesis [57] where 50,000 XML-related documents were
collected and only a small amount of these documents were XQuery programs.

We also managed to obtain only 74 XML documents referenced in these po-
tential XQuery programs. Main reason for that is, that many references to XML
documents contains not URL but file path on some local file system.

58

10. Analysis of Downloaded Data

As we have mentioned in the previous chapter, we obtained around 11,000 files
using the modified crawler. In order to be able to perform the analysis, we need
to clean the data to get XQuery programs and their XML documents. Then we
categorize them and the programs will be ready for the analysis.

We import these programs to Analyzer and using XQConverter we try to count
some statistics over them. We analyze this statistics and make conclusions.

10.1 Cleaning and Correcting Data

The first step of cleaning the data was to remove duplicities from the poten-
tial XQuery programs. We removed 1,884 duplicate documents from the 11,220
downloaded documents. In particular, the Following duplicities occurred:

• Identical content of the <pre> sections on the same page.

• Different URLs leading to the same page (the parameters after character ?
were different).

During the process of removing duplicities we checked potential XQuery pro-
grams, which had downloaded XML documents with them and did not found any
duplicity at all.

In the next step we looked at how many of potential XQuery programs from
various sources are valid. Table 10.1 shows the summary of the initial valid and
invalid programs. The group of the invalid programs includes also many data
which are not XQuery programs.

We took a closer look at the data from Binary and Text group and we found
out that the data is either an XQuery program runtime dump, or a guide how to
write an XQuery program, or, in the third case, a meaningless data.

Type of Download All Valid Invalid
Binary 14 0 14
File extension 8,739 619 8,120
Pre section 550 223 327
Text 3 0 3

Together 9,336 842 8,491

Table 10.1: First validation results

10.1.1 Not XQuery Programs

Many of the downloaded data was invalid and we went through the individual
errors and looked at what had caused them. 176 errors out of 8,491 were syntactic
and the rest were lexical errors.

In the group of lexical errors were also incorrectly included the documents,
which were not XQuery programs (over half of them). The following list shows
what other data was included:

59

Forum responses
Many data from <pre> section came from web forums. These data have
many non XQuery language parts included in them without commentary
blocks. Also a lot of these cases have the program on one line in the middle
of <pre> section and lots of unwanted lines with various content around
them. Many of <pre> sections were actual e-mails as responses to problems
with the XQuery programs.

Licenses and Read-me files
Some licenses or read-me files contained some of XQuery grammar words.
There were approximately 20 of them.

Theatre plays and archives
Some of the files had the form of a theatre play or an archive file and
contained the XQuery grammar symbols. There were approximately 500 of
them.

XML data
There were also some XML documents not referenced from any downloaded
XQuery program and other XML-related files.

Short string
Circa 10 files contained only one random string on the first line.

Shell script
There were around 30 shell scripts to use an XQuery program or to change
a part of it in the data.

XQuery functions description
2 of the files were manuals of the XQuery language.

RFC
Around 10 RFC documents with reference to the XQuery 1.0 language were
present.

XQuery output
In many cases there were just outputs of the XQuery programs with some
description.

10.1.2 Lexical And Syntactical Errors

Next, we went through the files which looked like XQuery programs and had
parsing errors and we tried to find out what caused the errors. We had assumed
that most of the errors were caused by the human factor. The reason for this
assumption is that if the program contained more identical parts, the error would
be only in one of them. We assume that only one file was generated by a program,
because of the comment ‘generated content‘.

The following list contains many mistakes we found and a short comment
about how we think they occurred:

60

Illegal character ‘:‘
There was the start of a comment (: but no ending of the comment :).
In many cases there was no space between the variable $variable and the
assignment symbol :=. The parser requires a space between a variable name
and an assignment symbol.

Illegal character ‘)‘
There was no space between a variable and an end of function ‘)‘. We
assume that the ending character was included into the variable name and
we think this is what caused the error.

Illegal character ‘&‘
HTML symbols like start with character & and the parser does not
understand these symbols as one character. This mistakes occurred mostly
in the <pre> sections.

Illegal character ‘.‘
There were quotation marks "" inside other quotation marks "" without
escaping and the next character after second " happens to be ‘.‘. This
scenario also happened with other characters (which were after second ")
and created errors Illegal character ‘|‘ and Syntax error.

Illegal character ‘1‘
At the end of some functions there was just a number. We assume that
comma, as next function parameter, or operator character like + was for-
gotten.

Illegal character ‘v‘
Some XQuery programs included string ‘update value‘ which is not in the
standard XQuery language. This is a special extension of XQuery language
called XQuery Update Facility [43]. That is why the parser returned the
error. This scenario also happened with Illegal character ‘r‘ for string
‘update replace‘ and Syntax error for string ‘update insert‘.

Illegal character ‘r‘
This happened on the line with string ‘declare revalidation skip;‘.
Again this is not a part of the XQuery 1.0 language. Also the string
‘declare sequential‘ before the function declaration is not a part of the
XQuery 1.0 language and the parser returns Illegal character ‘s‘.

Illegal character ‘f‘
This happened because of the wrong function declaration. Instead of using
the keyword declare there was a word define and the parameters were
type name instead of name as type.

Syntax error
A lot of these errors were caused by forgotten characters like right bracket
and comma.

Some of them had the definitions of declarations in the wrong sequence.
For exampe, the variable declaration was before the namespace declaration
or the option declaration was before the module importation.

61

And many of them were the previously mentioned extensions of the XQuery
language.

10.1.3 Correcting Programs

We can try to correct some of these mistakes automatically. So we created a
program, that tries to repair invalid potential XQuery programs and if the result
is a valid XQuery program, the changes are saved. Also this program tries to
remove additional parts like HTML tag <pre> and replace HTML entities like
<, >.

The following list contains corrections made by the correcting program:

• The program searches for HTML tags <pre> and <code> and removes them.
Tag <code> is used on web forums like stacoverflow.com.

• The program searches for HMTL entities like &, <, >, ,
", ' and their numeric variations like &, etc.. The list of
the searched variations was based on the most frequent HTML entities in
the <pre> sections.

• The program searches at the beginning of the lines if there are > characters
or number: and removes them. Character > or more of them at beginning
of a line is used in e-mail responses and number: is used in some websites
to display the content of a file with the numbered lines.

• The program looks for places with invalid-like places and corrects the given
part. Specifically it looks for places where are whitespaces in the middle of
the assignment operator and it removes them, but only in case that it is not
a comment section like, e.g. (: ==== COMMENT === :). It also searches for
whitespaces in the middle of comment symbol, e.g. (: COMMENT :), and
removes them. In the comments it also searches for string (:) and adds
spaces so that the parser does not take it as the comment.

These modifications allowed us to correct 39 invalid and 190 valid documents.
In case of valid documents it mostly removed HTML tags <pre> and replaced
HTML entities.

Other errors were too difficult to create a simple correction rule, so we looked
manually at other potential XQuery program. To go through all the potential
XQuery programs and try to repair them was too time consuming, so we looked
only at potential XQuery programs with downloaded XML documents, i.e. po-
tentially the most interesting candidates for an analysis. 29 out of 67 were invalid
and the errors were also lexical and syntactical. We managed to correct 5 pro-
grams, whereas the rest contained mistakes we were not able to correct. The
following list contains what contained the files that were not corrected:

• The content of a directory

• Runtime dump of an XQuery program

• XQuery Update Facility constructs

62

• Only declared variables

• Combination of Spanish and English names of XQuery grammar symbols

• Some unrelated content

After cleaning and correcting the data there were 887 valid XQuery programs
and 26 XML documents referenced from them.

10.2 Categorizing XQuery Programs

Before we proceed to the data analysis, we need to categorize the data. The first
option to categorize was according to the data source, where we downloaded the
data from. There would be 4 categories: binary, file extension, <pre> section and
text. The disadvantage of this categorization is that the binary and text category
does not contain any valid program and most of valid programs are in the file
extension category.

The next option was to categorize the data according to the URL where the
data was downloaded. This would created 9 categories: ‘deri.org‘, ‘europa.eu‘,
‘gname.org‘, ‘googlecode.com‘, ‘ispras.ru‘, ‘politicalmashup.nl‘, ‘sourceforge.net‘,
‘stackoverflow.com‘ and the others. However, we could not get any interesting
data out of this categorization. Half of the categories contained diametrically
different programs and the characteristics of the category ‘others‘ were the same
as the characteristics of all the data together.

The third option was to the divide programs according to their origins, whether
they were written by the humans or generated by a program. However, this cate-
gorization was not possible, because we did not possessed this information. Only
one file had string ‘generated content‘ included in a comment.

The fourth option was to run the following java program over the given data:

private ArrayList<ArrayList<File>> groups =

new ArrayList<ArrayList<File>>();

private final float ENOUGHT_DIFF = 0.8f;

public void Count(File[] programs) {

for (File program : programs) {

if (groups.isEmpty()) {

groups.add(new ArrayList<File>());

groups[0].add(program);

continue;

}

boolean added = false;

for (group : groups) {

float diff = CountDiff(program, group[0]);

if (diff > ENOUGHT_DIFF) {

group.add(program);

added = true;

63

break;

}

}

if (!added) {

groups.add(new ArrayList<File>());

groups[groups.size() - 1].add(program);

}

}

}

This program takes all the file (XQuery programs) and builds group of pro-
grams accordingly. For each program it tries to compare it with group represen-
tative for each existing group and if it is similar enough it puts it in the group.
Otherwise a new group is created and program is made the group representative.

Also this idea has its difficulties. On one hand we get similar programs in
several categories, but there might be too many of them, or too few and the
programs in them would vary too much. It also depends on what programs
would be selected as a group representative. Hypothetically every program can
be compared to all the other programs but the computing time would rise from
linear to quadratic complexity, what makes 1,000 times longer time when there
are 1,000 programs.

It strongly depends on how we define similarity of 2 XML trees, such as if
we compare only the tree structure, or also name of the element, if we consider
attributes, etc. And finally it depends on how we set the threshold that says that
2 trees are similar or not.

As the very last option we decided to consider following three factors:

• Where was the program downloaded from?

• Is some referred XML documents downloaded?

• Does the program contain the grammar symbol QueryBody, i.e. is it a
library1?

Table 10.2 shows how the programs are categorized into 4 categories according
to these 3 factors. We found out that none of the programs downloaded from the
<pre> sections were library. We also found out that the programs downloaded
from the <pre> sections have not downloaded any XML documents.

Category With
XML

Library <pre> section File extension

Number of Programs 20 46 260 561

Table 10.2: Categories of XQuery programs

1XQuery program that does not contain QueryBody grammar symbol

64

10.3 Analyzer Analyses

In this part we will describe how we used the cleaned data as an input for the
Analyzer.

1. We clicked on the button ‘Create new project‘ and created a new project
using the following settings: the chosen name was default ‘Project1‘, no
crawler was selected (we already have data and we want to import them)
and pattern ‘.*‘ was used (we will not download data). The rest of settings
we used with default values.

2. We clicked on the button ‘Create new analysis‘ and first we chose ‘Universal
Analysis‘. We repeated this process for ‘XQuery Plugin Analysis‘ with these
settings:

• We select name ‘XQuery Grammar Symbols‘ and we inserted XPaths
for all the grammar symbols of XQuery language into XPath settings.

• We select a name ‘XQuery Interesting Analysis‘ and inserted XPaths
for various counts of statistics like recursive functions, external vari-
ables, number of nested FLWOR, number of XPath expresions with
Predicate, etc.

• We select a name ‘XQuery FLWOR Counts‘ and inserted XPaths for
various counts of ForClause and LetClause in the FLWOR grammar
symbol into XPath settings.

• We select a name ‘XQuery FLWOR Joins‘ and inserted XPaths for
various types of joins according to Section 2.6 into XPath settings.

• We select a name ‘XPath Steps‘ and inserted XPaths for various num-
bers of Step grammar symbols in the Path grammar symbol into
XPath settings.

• We select a name ‘XPath Axis‘ and inserted XPaths for various types
of Axis (also for their abbreviated forms) into XPath settings.

• We select a name ‘XPath BuiltIn Functions‘ and inserted XPaths for
all the XPath built-in functions together with the prefix ‘fn:‘ and also
without it into XPath settings.

All of these XPaths are listed in Attachment 4 10.7.

3. We clicked on the button ‘Create import session‘ and chose directory with
categorized XQuery programs.

4. We were warned that to start import we must connect the project to launch-
er so we clicked on the button ‘Attach to launcher‘ and waited till the import
was done (user log contained ‘Import session finished. Number of imported
files:887‘).

5. We clicked on the button ‘Close current chain‘ and Analyzer started to
compute the results over imported documents.

65

6. After the results were computed, we created five clusters using the button
‘Create new cluster‘. We named them ‘Category 1 With XML‘, ‘Category
2 Library‘, ‘Category 3 Pre Sections‘, ‘Category 4 XQuery‘ and ‘All Cate-
gories‘. For the first four categories we chose the filter ‘Resource tree filter‘
in which we set the specific directories according to our categories. For the
last cluster we did not select any filter.

7. After Analyzer finished ‘classifying documents‘ we closed each cluster (right
click on the cluster and from options select ‘Close cluster‘).

8. The results computed over the clusters can be viewed in the part ‘Available
performers‘ in each cluster.

We found out that the results over 260 files from <pre> category were not
computed. It was caused by the fact that their file extension was either web
extensions .htm, .html, .php, etc. or none. Using a Unix script we changed
their file extensions to .xq and repeated the process again:

ls | while read f; do mv "$f" "‘echo $f | cut -d’.’ -f1‘.xq"; done

This project can be found on the enclosed CD also with extracted results see
Attachment 1 10.7.

10.4 XQuery Programs Analyses

We started with observing the frequencies of various XQuery grammar symbols,
which are used frequently, and which are used hardly at all. The list of XQuery
grammar symbols and their description is provided in Attachment 2 10.7.

In Table 10.3 we can see the most frequently used XQuery grammar symbols,
that are not mentioned later in the analyses. In category <pre> section they are
used just a little, which is odd, because the category consist of 30% of all analyzed
programs.

From comparison grammar symbols only GeneralComp and ValueComp got
into this table. Contrary, NodeComp was in the least used group of symbols. It
occurred only 11 times in all programs.

From constructors grammar symbols only DirectConstructor got here.
ComputedConstructor occured only 340 times in all programs, what is 60-

times less then DirectConstructor. The interesting thing is, that it occurred
only 9 times in category With XML.

The least used grammar symbols of the XQuery language are
DefaultNamespaceDecl, OrderingModeDecl, EmptyOrderDecl,
CopyNamespacesDecl, DefaultCollationDecl, BaseURIDecl, SchemaImport,
ConstructionDecl, QuantifiedExpr (every), TypeswitchExpr,
IntersectExceptExpr, TreatExpr, CastExpr, NodeComp, ValidateExpr,
ExtensionExpr, OrderedExpr and UnorderedExpr. Their occurrence was only
in the 1% of all valid XQuery programs.
QuantifiedExpr (every) is alone in this group, because QuantifiedExpr (some)

had 2% of occurrences. We found out, that for sorting in XQuery language only
OrderByClause from FLWOR grammar symbol is used.

66

Grammar Symbols With
XML

Library Pre
Section

XQuery
Extension

All

NamespaceDecl 6 73 18 838 935
IfExpr 3 2,329 36 7,651 10,019
CastableExpr 0 382 0 1,276 1,658
GeneralComp 36 3,170 22 10,840 14,068
ValueComp 1 206 10 651 868
Literal 62 6,575 341 28,546 35,524
DirectConstructor 45 1,837 1,613 17,207 20,702

Table 10.3: XQuery grammar symbols

Interestingly the most occurrences of TypeswitchExpr grammar symbol was in
the category <pre> section, so the most of its occurrences were in the examples
on the Internet web pages and forums.

10.4.1 FLWOR Expresion

FLWOR Expression is the cornerstone in XQuery language. We will refer to
it as FLWOR. It consists of optional ForClause, LetClause, WhereClause and
OrderByClause and mandatory ReturnClause.

FLWOR With
XML

Library Pre
Section

Xquery
Extension

All

FLWOR Expression 31 1,097 104 6,176 7,408
ForClause 32 555 72 3,645 4,304
LetClause 44 2,948 160 16,122 19,274
WhereClause 12 188 10 1,346 1,556
OrderByClause 7 81 10 470 568

Table 10.4: FLWOR statistics

In Table 10.4 we can see that the only category where FLWOR is not used much
(considering the number of programs) is the <pre> section category. Interest-
ingly, FLWOR uses more frequently LetClause than ForClause. 3,379 FLWORs are
without the ForClause and only 1,687 are without LetClause. We assumed that
these numbers would be similar. It is also interesting that most of the FLWOR

occurs without WhereClause or OrderByClause. These clauses filter and sort
data before they are returned by ReturnClause.

In Table 10.5 we can see, that by far the most frequent are the FLWOR with
only one ForClause in all categories. Interestingly, more than one ForClause

occurs in only 240 cases. That means merging tables in one FLWOR is very rare.
Table 10.6 shows, that defined variables in LetClause in FLWOR are used often,

in one program it is over 80 LetClause in one FLWOR. In the category <pre> section
two FLWORs contained over 10 LetClause.

In Table 10.7 we can see, that FLWOR are also being nested. In seven cases it
is nested over 4 levels.

67

For Count With
XML

Library Pre
Section

Xquery
Extension

All

1 17 521 68 3,183 3,789
2 6 17 2 204 229
3 1 0 0 6 7
4 0 0 0 1 1
5 ... 10 0 0 0 1 1
11 ... 20 0 0 0 2 2

Table 10.5: For counts in FLWOR

Let Count With
XML

Library Pre
Section

Xquery
Extension

All

1 12 291 25 1,488 1,816
2 1 178 10 1,275 1,464
3 2 84 7 499 592
4 2 99 5 582 688
5 2 51 2 282 337
6 1 48 0 165 214
7 0 37 3 77 117
8 0 7 0 70 77
9 0 27 2 115 144
10 ... 90 0 34 2 236 272

Table 10.6: Let counts in FLWOR

FLWOR nested With
XML

Library Pre
Section

Xquery
Extension

All

2 times 3 133 9 695 840
3 times 0 19 7 49 75
4 times 1 0 0 31 32
5 and more times 0 0 0 7 7

Table 10.7: FLWOR nested levels

Join type With
XML

Library Pre
Section

Xquery
Extension

All

Where 1 17 6 42 66
Predicate 0 1 2 93 96
If 0 0 0 0 0
Filter 2 0 0 46 48

Table 10.8: FLWOR join 2 tables

In the paper [27] Authors thought about using various styles of writing the join
of 2 tables in XQuery. In Table 10.8 we can see how often which type is used. It is
interesting that the type using comparison on output using the IfExpr grammar
symbol is not used at all.

68

10.4.2 XPath in XQuery Programs

Next, we looked at the grammar symbol Path which is an XPath expression used
in XQuery programs. Every Path consists of zero to several steps. We counted
the number of steps for every Path in Table 10.9. As we can see the number of
steps through the categories behaves the same way. The most of them is with 2
steps and the highest number of steps is 10.

Number
of Steps

With
XML

Library Pre
Section

XQuery
Extension

All

1 16 802 26 4,110 4,954
2 63 1,318 101 7,343 8,825
3 52 819 69 3,702 4,642
4 4 163 8 1,577 1,752
5 7 90 5 925 1,027
6 0 17 3 183 203
7 0 5 0 141 146
8 0 0 2 14 16
9 0 0 0 8 8
10 0 0 0 2 2

Table 10.9: Path steps

Every step consists of 3 parts. The first is the axis, one of 13 defined axes, the
second is the node test and the last is the predicate. Some axes also have an abbre-
viated syntax. In Table 10.10 we can see used axes and their occurrences. Axes
that do not have abbreviated syntax are in the column Abbreviated marked
with ‘–‘.

The most frequently used axis is child, as expected. It is interesting that the
axis following and preceding are not used and contrary, the axis following-sibling
and preceding-sibling are used, though they are used seldom.

The other interesting thing is that the abbreviated form of self axis is not
used at all. Only abbreviated forms of axis are used in the category With XML.
Quite interestingly, in the category <pre> section most of axes were in the ab-
breviated form. Quite interestingly full names are used rarely.

In Table 10.11, we can see that Predicate grammar symbol is used in one of
the four Path grammar symbols. It is quite surprising, because we had expected
that half of Path grammar symbols uses Predicate grammar symbol. As expect-
ed, XPath expression in XQuery programs queries mostly over the elements or
the attributes and hardly over the text nodes.

XQuery 1.0, XPath 2.0 and XSLT 2.0 have library of built-in functions. These
functions are used for various purposes in programs. They work with strings,
integers, date and times, positions, document loading, etc. They have namespace
fn but they can also be used without it.

Table 10.12 shows all collected functions with or without namespace from
library of built-in functions. We have to mention that in the category XQuery
programs with XML documents there were only used three of these functions:
not, empty and, of course, doc.

69

Axis Abbreviated Full name All
ancestor – 12 12
ancestor-or-self – 8 8
attribute (@) 5,265 6 5,271
child () 22,540 608 23,148
descendant – 66 66
descendant-or-self (//) 3,457 0 3,457
following – 0 0
following-sibling – 25 25
parent (..) 945 4 949
preceding – 0 0
preceding-sibling – 24 24
self (.) 0 9 9
Summary 32,207 762 32,969

Table 10.10: Path axes names

With
XML

Library Pre
Section

Xquery
Extension

All

Path 142 3,214 214 18,050 21,620
Path with Predicate 17 949 36 4,083 5,085
Path query on element 102 1,748 95 11,702 13,647
Path query on attribute 14 991 44 4,208 5,257
Path query on text node 19 23 32 512 586

Table 10.11: Path statistics

In 260 programs from the category <pre> section only 7 doc function calls are
present and in 46 programs from the category library 184 calls are present.

We found out that in general, the functions using number, boolean and date

and time are not used in the XQuery programs. The only thing which is used
on a large scale are functions to work with string. Functions string-length

lower-case and concat are used the most. Function lower-case is more than
15-times more frequent than function upper-case.

As we have assumed the most frequent function is doc.

10.4.3 Other Analyses

One part of the language are also variables and functions. In Table 10.13 we can
see their usage frequency: how many times the variables were only declared and
never used, how much external variables there are, how much recursive functions
there are and how much of them are only defined.

Further we looked at the operators used in the XQuery programs. We divided
them into the three groups. The first group are the additive operators: addition
and subtraction. The second group are the multiplicative operators: multiply,
divide, modulo and integer division. The third group are the logical operators:
and and or. In Table 10.14 we can see the used operators and it shows that
most of them are the logical operators. Surprisingly the most of the operators in
the category <pre> section are the additive operators, that means on web pages,

70

Name Hits Name Hits
boolean 2 node-name 13
ceiling 3 normalize-space 327
concat 178 not 116
collection 44 number 22
contains 60 position 167
count 149 replace 25
data 49 resolve-QName 1
doc 2,118 resolve-uri 1
doc-available 4 QName 1
empty 27 starts-with 72
ends-with 16 string 489
error 1 string-length 391
exists 74 string-join 13
false 68 substring 12
index-of 42 substring-after 17
last 18 substring-before 42
local-name 330 tokenize 11
lower-case 291 true 31
matches 60 upper-case 19
name 932 year-from-dateTime 1
namespace-uri 22 zero-or-one 1
namespace-uri-for-prefix 1

Table 10.12: Built-in functions

Variable and Functions With
XML

Library Pre
Section

Xquery
Extension

All

Variable Declaration 5 488 1 1,311 1,805
Variable Reference 173 15,198 657 65,044 81,072
External Variable 0 0 1 275 276
Not Used Variable 0 142 0 92 234
Function Declaration 6 1,295 3 6,325 7,629
Function Call 79 9,175 472 52,231 61,957
Build In Function Call 30 872 29 5,330 6,261
Recursive Function 1 27 0 89 117
Only Function Declaration 0 603 1 157 1,104

Table 10.13: Variables and functions

mainly the additive operators are used.
In the next step we looked at how complicated is the output of the XQuery

programs. We were looking for simple outputs – not many changes in the data
processed by the XQuery program and for the complicated outputs – the data
processed by the XQuery programs were transformed.

When we consider XQuery grammar symbols like IfExpr, FunctionCall,
Typeswitch, etc. that can be used to transform the data in the complicated way
we get 410 programs that have the complicated output.

71

Operands With
XML

Library Pre
Section

Xquery
Extension

All

OrExpr 0 609 4 3,011 3,624
AndExpr 17 1157 1 3,332 4,507
AdditiveExpr 1 50 16 380 447
MultiplicativeExpr 0 22 6 158 186

Table 10.14: Operands statistics

If we try something similar with PathExpr and DirectConstructor as a sim-
ple output we get 259 programs because we think that the returns like this are
unlikely to create different data.

We focused on the more accurate outputs of the XQuery programs in the
following Section 10.5.

10.4.4 XPath 2.0 Versus XQuery 1.0

To find out which programs can be also written in XPath 2.0, we took the query
from Subsection 1.6 and changed it to:

/*[last() and not (/Module/@version or //ModuleDecl or //Prolog or

//LetClause or //WhereClause or //OrderByClause or

//ForClause/Type or //ForClause/@posname or

//QuantifiedExpr/InClauses/InClause/Type or //Typeswitch or

//Extension or //ValidateExpr or //OrderedExpr or

//UnorderedExpr or //Constructor)]

This way we filtered out the programs that do not contain any of these gram-
mar symbols. These programs are both XPath 2.0 queries and XQuery 1.0 pro-
grams.

The number of these programs is only 16.

10.5 Category XQuery Programs With XML Doc-

uments

We took a closer look at 20 XQuery programs with 26 XML documents. One by
one we tried to run them and eventually correct them in order to get results.

After programs and documents corrections we managed to run 13 programs
out of 20. The rest of them contained the following errors: could not import
schema, missing schema, undefined prefix, missing resources (twice), type error
(value does not match a required type as specified by the matching rules in
SequenceType Matching at element) and context item undefined (missing input
XML document). Missing resources gripped us and we found out that not all the
necessary XML documents had been downloaded. The XML documents existed
on given pages, but the crawler did not manage to download them.

In the next step we analyzed the outputs of the 13 programs. Mostly the
output was missing the root element (in five cases) in order to be qualified as a
well-formed XML document. In one case the output was only text. Transformed

72

data from more than 1 XML documents was the output in 4 programs. In one case
the output was very simple, only one element with text content. In one case the
XQuery program was used as sorter of the XML document using OrderByClause.

One program contained a link to XML documents using whole URL and the
program was able to run, whereas the XQuery processor downloaded given XML
documents from the Internet.

10.6 XML Documents Analysis

Our crawler downloaded 74 XML documents but after filtering out the invalid
XQuery programs with XML documents we had only 43 left. While going through
the rest of XML documents referenced from XQuery programs we found the
following errors:

• The content was the web page (it was in eight cases, from which four were
duplicates of the same web page and the other four were duplicates of the
other web page).

• The content was text document in nine cases.

We managed to repair one XML document, because its whole content was on
one line and line numbers were included. This gives us 26 XML documents. All
these documents are referred from XQuery programs found by the file extension
.xq or .xquery.

We also managed to correct one XML document to well-formed by replacing
special spaces between elements and attributes.

Figure 10.1: XML analysis results from Analyzer

73

In the next step we performed XML document analyses currently available in
the Analyzer. Figure 10.1 shows the usage of elements, attributes, text nodes,
etc. per level. As we can see, most of the content is present on second to fifth
level. We can also see that the maximum level is 18.

Analyzer also counted that those 26 documents contained 8,951 elements and
11,401 attributes altogether, i.e. more attributes were used. In 4 XML documents
the DTD was used. The smallest file has 15B and the largest has 398kB.

10.7 Summary

In the beginning of the chapter we focused on cleaning the data. We managed to
obtain 887 valid XQuery programs out of 11,220 potential XQuery programs and
we divided them into the 4 categories. These categories were based on multiple
factors: where we downloaded the document (web page or URL), what type it
is (library or query) and whether we managed to downloaded also related XML
documents over which it queries.

In the next step we performed analyses over these categories and evaluat-
ed these analyses. We managed to obtain much interesting knowledge. Also
we managed to find out the most common mistakes in XQuery programs and
approximately how many XQuery programs can be found on the Internet.

Further we put our minds to downloading XML documents used in XQuery
programs. We managed to download 74 of them, and, after the cleaning, we were
left with 26 documents. Thanks to them we were able to look at the outputs of
real-world XQuery programs. Since the file size was limited in the crawler and
no large XML documents were downloaded, it would be worth to run the crawler
with higher limit (i.e. filter for larger files) or with no limit on file size at all.

If we evaluate the ways of getting the XQuery programs from the various
sources, then <pre> section source turned out to be very interesting and beneficial.
After cleaning and correcting the data we were left with 260 programs, that
create 29% of the all analysed programs. Figure 10.2 shows us that we mainly
downloaded XQuery programs with extension .xquery from the Internet.

Figure 10.2: XQuery programs for file extension type of download

74

Conclusion

The aim of the thesis was to gather as many real-world XQuery programs as
possible and analyse them using the tool, Analyzer.

The output of the theoretical part was that no analysis of the real-world
XQuery programs has been performed so far, neither has been performed analysis
of XML documents used in the XQuery programs. We have found out that we
have to search the Internet for the real-world XQuery programs, so we have chosen
one crawler out of couple available, which we then used to find and to download
the XQuery programs.

The practical part of the thesis describes the process of modifying the crawler
so it would be able to distinguish potential XQuery programs and to download
them. Also it would be able to parse the links to XML documents, which it also
tried to download. We also added the functionality for searching for potential
XQuery programs on the web pages.

During modifying the crawler functionality we repaired bug in politeness delay.
Further we obtained over 4,000 URLs which were used as seeds (starting points)
for the crawler and we tried to implement the crawler into Analyzer. Since
Analyzer was not receiving the downloaded documents we decided to run the
crawler alone.

In the result we managed to download about 11,000 potential XQuery pro-
grams and 74 XML documents referred from these potential programs. In the
process crawler went through 8,000,000 URLs.

We checked up the number of potential XQuery programs using the Common-
Crawl project, which regularly downloads a big part of the Internet. According
to the data from July 2015 it found only 4,500 potential XQuery programs.

Downloaded data was then cleaned from the duplicities and non XQuery pro-
grams and we tried to correct a part of the invalid programs. We managed to
correct 39 programs using an algorithm and 5 programs were corrected manually.

In the end we had 887 valid XQuery programs and 26 well-formed XML
documents used in the 20 programs. We found out that most of the mistakes
were caused by human element. The most frequent one was space on the bad
place.

We divided these programs into the 4 categories according to the 3 differ-
ent criteria. The categories are: programs with XML documents, libraries, pre-
sections and the last category is file extensions. The dividing criteria for the
categories are: where were programs downloaded from (web page, URL, binary
data or text file), data type (with query body, or without it – library) and whether
we managed to download also XML documents related to these programs.

In the next part we used Analyzer tool for both XQuery programs and XML
documents analyses. The output of Analyzer was processed into 12 tables and 2
figures.

In general we can say, that there are not many XQuery programs on the
Internet and they do not use MIME type ‘application/xquery‘ recommended by
W3C. We assumed there are no programs without query body, which serve only
as libraries for the other documents, but out of 887 programs we found as much
as 46 of them.

75

Another assumption was that half of the used XPath expressions in XQuery
would contain a predicate and analyses have shown that only quarter of XPath
expressions contained a predicate. Generally we can say that XPath expressions
in XQuery programs use mainly shortened types of axes and have an average of 2
steps. We assumed that most of the built-in functions were used, but the analyses
revealed that less than half of them was used.

Functions for working with time and date are in general hardly used and the
most frequently used built-in function is fn:doc.

Another assumption was that only 10% of queries could be possible to be
written in XPath 2.0 language, but we found out that only 16 out of 887 were
possible to be written in XPath 2.0 (i.e. less than 2%). Assumption that clauses
Where and Order by are used at least in the half of FLWOR expressions but we
have found out they are used in less than quarter of them. We also assumed that
the clause For is more frequent than the clause Let, but in reality the clause Let
is 4-times more frequent. Nested FLWOR were expected to be used rarely, but
it was revealed that they are used in as much as 13% of the cases. Recursive
functions were expected not to occur at all, but analyses have shown that 2% of
declared functions were recursive. We expected most of the operators would be
additive or multiplicative type, but in result we can see, that logical operators
are 13-times more frequent than additive and multiplicative types altogether.

Interesting fact is that XQuery programs do not use MIME type ‘applica-
tion/xquery‘ on the Internet but rather ‘text/plain‘.

Programs with XML documents were run and we were looking at the results.
We managed to get the output of 13 programs. We have noticed that the outputs
are of a simple character.

We also analysed XML documents using the Analyzer tool and we found out
that 15% use DTD.

The contribution sum-up:

• We have shown that it is possible to download the real-world XQuery pro-
grams and XML documents which they query over.

• We have downloaded more potential XQuery programs than results from
CommonCrawl data or Google website.

• We have revealed the most common mistakes which occur in the real-world
XQuery programs.

• We managed to correct several mistakes in potential XQuery programs using
a created program.

• We have used Analyzer tool with XQConverter plug-in for analysis of the
real-world XQuery programs from thesis [56] and we have found out that it
functioned not only for the XQuery Test Suite but also for the real-world
XQuery programs.

• Using the Analyzer we have analyzed XML documents used in the XQuery
programs.

• We summed up the results of these analyses.

76

Future Work

The thesis could be expanded in several areas in the future:

• improving downloading of XML documents referred from XQuery programs
(try to download them from <pre> sections of the same page as a program
from <pre> sections is downloaded, canonize the link not to contain ‘.‘ or
‘..‘, add some heuristics for correcting bad URLs, etc.)

• creating a tool for correcting the invalid XQuery programs

• expanding the XQConverter with XQuery Update Facility

• implement loading the input URLs from a file in Analyzer

77

Bibliography

[1] Apache Nutch v. 1.8. URL https://nutch.apache.org/. [cit. 2014-03-26].

[2] Big Data Definition. URL http://www.gartner.com/it-glossary/

big-data. [cit. 2015-10-23].

[3] Bixo: A Web Mining Toolkit v. 0.9.1. URL http://openbixo.org. [cit.
2014-03-26].

[4] Common Crawl. URL https://commoncrawl.org/. [cit. 2015-10-11].

[5] Custom Search Google API. URL https://developers.google.com/

custom-search/. [cit. 2014-07-16].

[6] DBpedia. URL http://wiki.dbpedia.org/. [cit. 2015-05-24].

[7] Document Type Definition. URL http://www.w3.org/TR/2004/

REC-xml11-20040204/#NT-doctypedecl. [cit. 2014-07-26].

[8] Google Web Search API. URL https://developers.google.com/

web-search/. [cit. 2014-03-26].

[9] The Apache Hadoop. URL http://hadoop.apache.org/. [cit. 2015-10-23].

[10] JSpider v. 0.5.0. URL http://j-spider.sourceforge.net/. [cit. 2014-03-
26].

[11] Java 7 Networking Properties. URL http://docs.oracle.com/javase/7/

docs/technotes/guides/net/properties.html. [cit. 2014-07-16].

[12] JoBo v. 1.4. URL http://www.matuschek.net/software/jobo/index.

html. [cit. 2014-03-26].

[13] Larbin: Multi-purpose Web Crawler v. 2.6.3. URL http://larbin.

sourceforge.net/index-eng.html. [cit. 2014-03-26].

[14] Oracle XQuery for Hadoop. URL https://docs.oracle.com/cd/E49465_

01/doc.23/e49333/oxh.htm. [cit. 2015-10-11].

[15] The Robots Exclusion Protocol. URL http://www.robotstxt.org/orig.

html. [cit. 2015-05-30].

[16] Scrapy v. 0.22. URL http://scrapy.org/. [cit. 2014-04-02].

[17] Semantic Web Dog Food. URL http://data.semanticweb.org/. [cit. 2015-
05-24].

[18] Web-Harvest v. 2.0, . URL http://web-harvest.sourceforge.net/. [cit.
2014-03-26].

[19] WebLech URL Spider v. 0.0.4, . URL http://weblech.sourceforge.net/.
[cit. 2014-03-26].

78

https://nutch.apache.org/
http://www.gartner.com/it-glossary/big-data
http://www.gartner.com/it-glossary/big-data
http://openbixo.org
https://commoncrawl.org/
https://developers.google.com/custom-search/
https://developers.google.com/custom-search/
http://wiki.dbpedia.org/
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-doctypedecl
http://www.w3.org/TR/2004/REC-xml11-20040204/#NT-doctypedecl
https://developers.google.com/web-search/
https://developers.google.com/web-search/
http://hadoop.apache.org/
http://j-spider.sourceforge.net/
http://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html
http://docs.oracle.com/javase/7/docs/technotes/guides/net/properties.html
http://www.matuschek.net/software/jobo/index.html
http://www.matuschek.net/software/jobo/index.html
http://larbin.sourceforge.net/index-eng.html
http://larbin.sourceforge.net/index-eng.html
https://docs.oracle.com/cd/E49465_01/doc.23/e49333/oxh.htm
https://docs.oracle.com/cd/E49465_01/doc.23/e49333/oxh.htm
http://www.robotstxt.org/orig.html
http://www.robotstxt.org/orig.html
http://scrapy.org/
http://data.semanticweb.org/
http://web-harvest.sourceforge.net/
http://weblech.sourceforge.net/

[20] WebSPHINX: A Personal, Customizable Web Crawler v. 0.5, . URL http:

//www-2.cs.cmu.edu/~rcm/websphinx/. [cit. 2014-03-26].

[21] XML Query Test Suite 1.0. URL http://dev.w3.org/2006/

xquery-test-suite/PublicPagesStagingArea/. [cit. 2014-03-10].

[22] XMark – An XML Benchmark Project. URL http://www.xml-benchmark.

org/. [cit. 2015-05-17].

[23] XQuery grammar. URL http://www.w3.org/TR/xquery/#nt-bnf. [cit.
2015-06-01].

[24] XYLEME PROJECT. URL http://xml.coverpages.org/xyleme.html.
[cit. 2014-03-26].

[25] Abot C# Web Crawler v. 1.2.3. URL http://code.google.com/p/abot/.
[cit. 2014-04-02].

[26] Xcheck: a platform for benchmarking xquery engines. In In VLDB, pages
1247–1250, 2006.

[27] Loredana Afanasiev and Maarten Marx. An Analysis of XQuery Bench-
marks. Inf. Syst., 33(2):155–181, April 2008. ISSN 0306-4379. doi: 10.1016/
j.is.2007.05.002. URL http://dx.doi.org/10.1016/j.is.2007.05.002.
[cit. 2015-02-15].

[28] Mario Arias, Javier D. Fernández, Miguel A. Mart́ınez-Prieto, and Pablo
de la Fuente. An Empirical Study of Real-World SPARQL Queries. CoRR,
abs/1103.5043, 2011. URL http://arxiv.org/abs/1103.5043. [cit. 2015-
02-15].

[29] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della
Valle, and Michael Grossniklaus. Continuous Queries and Real-time Analysis
of Social Semantic Data with C-SPARQL. In SDoW2009, volume 520 of
CEUR Workshop Proceedings. CEUR-WS.org, 2009. URL http://ceur-ws.

org/Vol-520/paper02.pdf. [cit. 2015-02-15].

[30] Angela Bonifati and Stefano Ceri. Comparative Analysis of Five XML Query
Languages. SIGMOD Record, 29:2000, 2000. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.36.5716. [cit. 2015-02-15].

[31] W. Sherlock E. Nolan V. Sadlon M. Tamas K. Dufkova J. Podhorny
Ch. Christacopoulos, L. Galambos and M. Pirchala. Egothor2 v. 3.1.5. URL
http://www.egothor.org/cms/egothor2. [cit. 2014-03-26].

[32] J. Clark. XSL Transformations (XSLT) Version 1.0, November 1999. URL
http://www.w3.org/TR/xslt. [cit. 2014-07-26].

[33] D. Florescu M. Marchiori D. Chamberlin, P. Fankhauser and J. Ro-
bie. XML Query Use Cases, March 2007. URL http://www.w3.org/TR/

xquery-use-cases/. [cit. 2014-04-09].

79

http://www-2.cs.cmu.edu/~rcm/websphinx/
http://www-2.cs.cmu.edu/~rcm/websphinx/
http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/
http://dev.w3.org/2006/xquery-test-suite/PublicPagesStagingArea/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/
http://www.w3.org/TR/xquery/#nt-bnf
http://xml.coverpages.org/xyleme.html
http://code.google.com/p/abot/
http://dx.doi.org/10.1016/j.is.2007.05.002
http://arxiv.org/abs/1103.5043
http://ceur-ws.org/Vol-520/paper02.pdf
http://ceur-ws.org/Vol-520/paper02.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5716
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5716
http://www.egothor.org/cms/egothor2
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/

[34] A. Malhotra C. M. Sperberg-McQueen D. Peterson, S. Gao and H. S. Thomp-
son. XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes, April
2012. URL http://www.w3.org/TR/xmlschema11-2/. [cit. 2014-07-26].

[35] C. Koch G. Gottlob. Monadic queries over tree-structured data. pages
189–202. Logic in Computer Science, Los Alamitos, CA, USA, July 2002.
ISBN 0-7695-1483-9. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=1029828&tag=1. [cit. 2015-11-20].

[36] L. Galamboš and Others. Egothor v. 1.3. URL http://www.egothor.sf.

net/. [cit. 2014-03-26].

[37] Y. Ganjisaffar. Crawler4j v. 3.5. URL http://code.google.com/p/

crawler4j/. [cit. 2014-03-26].

[38] Sven Groppe, Jinghua Groppe, Niklas Klein, Ralf Bettentrupp, Stefan
Böttcher, and Le Gruenwald. Transforming XSLT stylesheets into XQuery
expressions and vice versa. Computer Languages, Systems And Structures,
37(2):76–111, 2011. ISSN 1477-8424. doi: http://dx.doi.org/10.1016/j.
cl.2010.11.001. URL http://www.sciencedirect.com/science/article/

pii/S1477842410000394. [cit. 2015-02-15].

[39] William G. J. Halfond and Alessandro Orso. Combining Static Analysis and
Runtime Monitoring to Counter SQL-injection Attacks. In Proceedings of
the Third International Workshop on Dynamic Analysis, WODA ’05, pages
1–7, New York, NY, USA, 2005. ACM. ISBN 1-59593-126-0. doi: 10.1145/
1082983.1083250. URL http://doi.acm.org/10.1145/1082983.1083250.
[cit. 2015-02-15].

[40] Y. Hoppe and G. Karpouzas. Ex-Crawler v 0.1.6. URL http://ex-crawler.

sourceforge.net. [cit. 2014-03-26].

[41] S. DeRose J. Clark. XML Path Language (XPath)Version 1.0, November
1999. URL http://www.w3.org/TR/xpath/. [cit. 2014-07-26].

[42] M. Kratky J. Kosek and V. Snasel. Struktura realnych XML dokumentu a
metody indexovani. In ITAT 2003 Workshop on Information Technologies
Applications and Theory, High Tatras, Slovakia, 2003. (in Czech).

[43] M. Dyck D. Florescu J. Melton J. Robie, D. Chamberlin and J. Simeon.
XQuery Update Facility 1.0, March 2011. URL http://www.w3.org/TR/

xquery-update-10/. [cit. 2014-11-26].

[44] J. Stárka M. Svoboda J. Schejbal, J. Sochna and I. Mlýnková. Analyzer - A
Tool for Batch File Analysis 1.0. URL http://analyzer.kenai.com/. [cit.
2013-11-08].

[45] P. Jack and N. Levitt. Heritrix v. 3.2.0. URL http://crawler.archive.

org/. [cit. 2014-03-26].

[46] Jan Sochna Jǐŕı Schejbal Irena Mlýnková Jakub Stárka, Martin Svoboda
and David Bednárek. Analyzer - A Complex System for Data Analysis.

80

http://www.w3.org/TR/xmlschema11-2/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1029828&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1029828&tag=1
http://www.egothor.sf.net/
http://www.egothor.sf.net/
http://code.google.com/p/crawler4j/
http://code.google.com/p/crawler4j/
http://www.sciencedirect.com/science/article/pii/S1477842410000394
http://www.sciencedirect.com/science/article/pii/S1477842410000394
http://doi.acm.org/10.1145/1082983.1083250
http://ex-crawler.sourceforge.net
http://ex-crawler.sourceforge.net
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://analyzer.kenai.com/
http://crawler.archive.org/
http://crawler.archive.org/

The Computer Journal, 55(5):590–615, October 2011. URL http://dx.

doi.org/10.1093/comjnl/bxr103. [cit. 2013-11-08].

[47] Irena Mlýnková Jǐŕı Schejbal, Jakub Stárka. XQConverter: A System for
XML Query Analysis. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6059805&tag=1. [cit. 2013-11-08].

[48] D. Barbosa L. Mignet and P. Veltri. The XML Web: a First Study. In WWW
’03, Proceedings of the 12th international conference on World Wide Web,
2:500–510, 2003. URL http://dl.acm.org/citation.cfm?doid=775152.

775223. [cit. 2015-11-20].

[49] V. Maš́ıček. XSLT Benchmarking. Master thesis, Charles University in
Prague, Czech Republic, 2012. URL https://is.cuni.cz/webapps/zzp/

detail/107772/?lang=en. [cit. 2015-02-15].

[50] Stefan Manegold. An Empirical Evaluation of XQuery Processors. Inf. Syst.,
33(2):203–220, April 2008. ISSN 0306-4379. doi: 10.1016/j.is.2007.05.004.
URL http://dx.doi.org/10.1016/j.is.2007.05.004. [cit. 2015-02-15].

[51] K. Pokorny J. Mlynkova, I. Toman. Statistical Analysis of Real XML Da-
ta Collections. Technical report, Charles University, Prague, Czech Re-
public, June 2006. URL http://www.ksi.mff.cuni.cz/~holubova/doc/

tr2006-5.pdf. [cit. 2013-11-08].

[52] R. Platt. Arachnid Web Spider Framework v. 0.4. URL http://arachnid.

sourceforge.net/. [cit. 2014-03-26].

[53] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF,
January 2008. URL http://www.w3.org/TR/rdf-sparql-query/. [cit.
2015-11-20].

[54] M. F. Fernández D. Florescu J. Robie S. Boag, D. Chamberlin and J. Siméon.
XQuery 1.0: An XML Query Language, December 2010. URL http://www.

w3.org/TR/xquery/. [cit. 2014-03-10].

[55] C. M. Sperberg-McQueen S. Gao and H. S. Thompson. XML Schema
Definition Language (XSD) 1.1 Part 1: Structures, April 2012. URL
http://www.w3.org/TR/xmlschema11-1/. [cit. 2014-07-26].

[56] J. Schejbal. A System for Analysis of Collections of XML Queries. Master
thesis, Charles University in Prague, Czech Republic, May 2010. URL http:

//www.ksi.mff.cuni.cz/~bednarek/dp/Schejbal.pdf. [cit. 2013-11-08].

[57] J. Sochna. Collecting XML Data and Meta-Data from the Internet. Master
thesis, Charles University in Prague, Czech Republic, May 2010. URL http:

//www.ksi.mff.cuni.cz/~bednarek/dp/Sochna.pdf. [cit. 2013-11-08] in
Czech.

[58] C. M. Sperberg-McQueen E. Maler T. Bray, J. Paoli and F. Yergeau. Ex-
tensible Markup Language (XML) 1.0, August 2006. URL http://www.w3.

org/TR/2006/REC-xml-20060816/. [cit. 2013-11-08].

81

http://dx.doi.org/10.1093/comjnl/bxr103
http://dx.doi.org/10.1093/comjnl/bxr103
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6059805&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6059805&tag=1
http://dl.acm.org/citation.cfm?doid=775152.775223
http://dl.acm.org/citation.cfm?doid=775152.775223
https://is.cuni.cz/webapps/zzp/detail/107772/?lang=en
https://is.cuni.cz/webapps/zzp/detail/107772/?lang=en
http://dx.doi.org/10.1016/j.is.2007.05.004
http://www.ksi.mff.cuni.cz/~holubova/doc/tr2006-5.pdf
http://www.ksi.mff.cuni.cz/~holubova/doc/tr2006-5.pdf
http://arachnid.sourceforge.net/
http://arachnid.sourceforge.net/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xmlschema11-1/
http://www.ksi.mff.cuni.cz/~bednarek/dp/Schejbal.pdf
http://www.ksi.mff.cuni.cz/~bednarek/dp/Schejbal.pdf
http://www.ksi.mff.cuni.cz/~bednarek/dp/Sochna.pdf
http://www.ksi.mff.cuni.cz/~bednarek/dp/Sochna.pdf
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/

List of Tables

5.1 Comparison of suitable crawlers 36

6.1 Google search results for queries 39

9.1 Testing download sessions . 54
9.2 MIME types in Common Crawl August 2015 56
9.3 Comparision from various sources 58

10.1 First validation results . 59
10.2 Categories of XQuery programs 64
10.3 XQuery grammar symbols . 67
10.4 FLWOR statistics . 67
10.5 For counts in FLWOR . 68
10.6 Let counts in FLWOR . 68
10.7 FLWOR nested levels . 68
10.8 FLWOR join 2 tables . 68
10.9 Path steps . 69
10.10Path axes names . 70
10.11Path statistics . 70
10.12Built-in functions . 71
10.13Variables and functions . 71
10.14Operands statistics . 72

82

List of Figures

4.1 Architecture of Analyzer [46] . 22
4.2 The structure of XQAnalyzer component [56] 25
4.3 Architecture of XQConverter component [56] 27

7.1 Crawler component . 49

8.1 XQuery crawler in Analyzer . 52

10.1 XML analysis results from Analyzer 73
10.2 XQuery programs for file extension type of download 74

83

Attachment 1

CD Content

The enclosed CD contains:

• In the directory chapter 3 is downloaded XQuery Test Suite version 1.0.3.

• In the directory chapter 4 is documentations of Analyzer, XQConverter
as console program and some translated XQuery programs with originals.

• In the directory chapter 5 is theoriginal sources files of the analyzed
crawlers.

• In the directory chapter 6 is the downloaded Google web pages with re-
sults, the program to extract URLs from them and the extracted URLs in
the text file.

• In the directory chapter 7 is the project of modified crawler.

• In the directory chapter 8 is Analyzer project with XQuery module.

• In the directory chapter 9 is crawler testing runs outputs, two projects for
Hadoop programs over CommonCrawl data and the outputs from this data
minings.

• In the directory chapter 10 is 3 java programs for correcting, clustering
and validating potential XQuery programs. Also outputs from crawling
the Internet are here. The XPaths used in Analyzer and the results from
Analyzer analyses are also here.

• In the directory text is the source files, images and pdf of this thesis.

84

Attachment 2

XQuery grammar symbols [56]

These symbols are used in the XQuery grammar and their modified form is used
in the XQConverter output. Particular symbols are therefore elements of the
XML representation of a given XQuery program. Each symbol is provide with a
short description.
AdditiveExpr – This symbol represents subtraction or addition operation.
AndExpr – This symbol represents logical expression and. It is true only if both
values are true.
BaseURIDecl – This symbol specifies the base URI property of the static con-
text. The base URI property is used when resolving relative URIs within a
module.
BoundarySpaceDecl – This symbol sets the boundary-space policy in the stat-
ic context, overriding any implementation-defined default.
CastableExpr – This symbol tests whether a given value is castable into a given
target type.
CastExpr – This symbol converts a value to a specific datatype.
ComputedConstructor – This symbol allows to create nodes alternatively.
ConstructionDecl – This symbol sets the construction mode in the static con-
text, overriding any implementation-defined default.
ContextItemExpr – This symbol evaluates to the context item, which may be
either a node or an atomic value.
CopyNamespacesDecl – This symbol sets the value of copy-namespaces mode
in the static context, overriding any implementation-defined default. Copy-
namespaces mode controls the namespace bindings that are assigned when an
existing element node is copied by an element constructor or document construc-
tor.
DefaultCollationDecl – This symbol sets the value of the default collation in
the static context, overriding any implementation-defined default.
DefaultNamespaceDecl – This symbol can be used in a Prolog to facilitate
the use of unprefixed QNames.
DirectConstructor – This symbol is a form of element constructor in which the
name of the constructed element is a constant.
EmptyOrderDecl – This symbol sets the default order for empty sequences in
the static context, overriding any implementation-defined default. This declara-
tion controls the processing of empty sequences and NaN values as ordering keys
in an order by clause in a FLWOR expression.
ExtensionExpr – This symbol consists of one or more pragmas, followed by an
expression enclosed in curly braces.
FLWORExpr – This symbol consists of 4 optional clauses (‘for clause‘, ‘let
clause‘, ‘where clause‘ and ‘order by clause‘) and 1 required clause (‘return
clause‘). The result of the FLWOR expression is an ordered sequence containing
the results of these evaluations, concatenated as if by the comma operator.
ForClause – This symbol generates an ordered sequence of tuples of bound vari-
ables, called the tuple stream.

85

ForwardAxis – This symbol represents one of these axis ‘child‘, ‘descendant‘,
‘attribute‘, ‘self‘, ‘descendant-or-self‘, ‘following-sibling‘, ‘following‘.
FunctionCall – This symbol consists of a QName followed by a parenthesized
list of zero or more expressions, called arguments.
FunctionDecl – This symbol specifies whether a function is user-defined or ex-
ternal. User-defined function, the function declaration includes an expression
called the function body that defines how the result of the function is computed
from its parameters. External functions are functions that are implemented out-
side the query environment.
GeneralComp – This symbol represents comparison using one of these symbols
‘=‘, ‘! =‘, ‘<‘, ‘<=‘, ‘>‘, ‘>=‘.
IfExpr – This symbol represents a condition. If the effective boolean value of the
test expression is true, the value of the then-expression is returned. If the effec-
tive boolean value of the test expression is false, the value of the else-expression
is returned.
InstanceofExpr – This symbol returns true if the value of its first operand
matches the SequenceType in its second operand.
IntersectExceptExpr – This symbol eliminates duplicate nodes from their re-
sult sequences based on node identity. The intersect operator takes two node
sequences as operands and returns a sequence containing all the nodes that occur
in both operands. The except operator takes two node sequences as operands
and returns a sequence containing all the nodes that occur in the first operand
but not in the second operand.
LetClause – This symbol generates an ordered sequence of tuples of bound vari-
ables, called the tuple stream.
Literal – This symbol represents different values as ‘xs:integer‘, ‘xs:decimal‘,
‘xs:double‘, ‘xs:untypedAtomic‘, ‘xs:string‘.
ModuleDecl – This symbol serves to identify a module as a library module. A
module declaration begins with the keyword module and contains a namespace
prefix and a URILiteral.
ModuleImport – This symbol imports the function declarations and variable
declarations from one or more library modules into the function signatures and
in-scope variables of the importing module.
MultiplicativeExpr – This symbol represents multiplication or division or mod-
ulo operation.
NamespaceDecl – This symbol declares a namespace prefix and associates it
with a namespace URI, adding the (prefix, URI) pair to the set of statically
known namespaces.
NodeComp – This symbol represents comparison using one of these symbols
‘is‘, ‘<<‘, ‘>>‘.
OptionDecl – This symbol serves as a particular option that will be recognized
by some implementations and not by others. The syntax is designed so that op-
tion declarations can be successfully parsed by all implementations.
OrderByClause – This symbol is used to reorder the tuple stream.
OrderedExpr – This symbol sets the ordering mode in the static context to
ordered for a certain region in a query.
OrderingModeDecl – This symbol sets the ordering mode in the static context,
overriding any implementation-defined default.

86

OrExpr – This symbol represents logical expression or. It is true if one of values
is true.
PathExpr – This symbol can be used to locate nodes within trees. A path ex-
pression consists of a series of one or more steps, separated by ‘/‘ or ‘//‘, and
optionally beginning with ‘/‘ or ‘//‘.
Prolog – This symbol is a series of declarations and imports that define the pro-
cessing environment for the module that contains the Prolog.
QuantifiedExpr – This symbol begins with a quantifier, which is the keyword
‘some‘ or ‘every‘, followed by one or more in-clauses that are used to bind vari-
ables, followed by the keyword ‘satisfies‘ and a test expression.
QueryBody – This symbol consists of an expression that defines the result of
the query.
RangeExpr – This symbol can be used to construct a sequence of consecutive
integers.
ReverseAxis – This symbol represents one of these axises: ‘parent‘, ‘ancestor‘,
‘preceding-sibling‘, ‘preceding‘, ‘ancestor-or-self‘.
SchemaImport – This symbol imports the element declarations, attribute dec-
larations, and type definitions from a schema into the in-scope schema definitions.
For each user-defined atomic type in the schema, schema import also adds a cor-
responding constructor function.
TreatExpr – This symbol can be used to modify the static type of its operand.
It does not change the dynamic type or value of its operand. Its purpose is to
ensure that an expression has an expected dynamic type at evaluation time.
TypeswitchExpr – This symbol represent switch condition. It has an expres-
sion enclosed in parentheses, called the operand expression. This is the expression
whose type is being tested. The remainder of the typeswitch expression consists
of one or more case clauses and a default clause.
UnaryExpr – This symbol represents unary plus or unary minus.
UnionExpr – This symbol eliminates duplicate nodes from their result sequences
based on node identity. It takes two node sequences as operands and return a
sequence containing all the nodes that occur in either of the operands.
UnorderedExpr – This symbol sets the ordering mode in the static context to
unordered for a certain region in a query.
ValidateExpr – This symbol can be used to validate a document node or an
element node with respect to the in-scope schema definitions.
ValueComp – This symbol represents comparison using one of these symbols
‘eq‘, ‘ne‘, ‘lt‘, ‘le‘, ‘gt‘, ‘ge‘.
VarDecl – This symbol adds the static type of a variable to the in-scope vari-
ables, and may also add a value for the variable to the variable values.
VarRef – This symbol is a QName preceded by a $-sign.
WhereClause – This symbol filters the tuple stream, retaining some tuples and
discarding others.

87

Attachment 3

Complex XQConverter example

We picked the following Use Case XQuery program out of the XQuery Test
Suite [21]. In XQuery Use Cases [33] it is located at Experiences and Exemplars
as last 12th query. Query stands for: Find pairs of books that have different titles
but the same set of authors (possibly in a different order).

(: insert-start :)

declare variable $input-context external;

(: insert-end :)

<bib>

{
for $book1 in $input-context//book,

$book2 in $input-context//book

let $aut1 := for $a in $book1/author

order by exactly-one($a/last), exactly-one($a/first)

return $a

let $aut2 := for $a in $book2/author

order by exactly-one($a/last), exactly-one($a/first)

return $a

where $book1 << $book2

and not($book1/title = $book2/title)

and deep-equal($aut1, $aut2)

return

<book-pair>

{ $book1/title }
{ $book2/title }

</book-pair>

}
</bib>

The following output was generated by the XQConverter (for better compre-
hension and orientation of the output, the output was separated into 8 parts, and
8 different colours were used to differentiate the parts).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<Module type="main">

<Prolog>

<VarDecl name="input-context">

<VarValue external="true"/>

</VarDecl>

</Prolog>

<QueryBody>

<Constructor kind="direct" type="element">

<Name name="bib"/>

88

<Content>

<String value="
"/>

<FLWOR>

<TupleStream>

<ForClause varname="book1">

<BindingSequence>

<Path initial-step="context">

<Step>

<VarRef name="input-context"/>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="descendant-or-self">

<KindTest kind="any-kind"/>

</Axis>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="child">

<NameTest name="book"/>

</Axis>

</Step>

</Path>

</BindingSequence>

</ForClause>

<ForClause varname="book2">

<BindingSequence>

<Path initial-step="context">

<Step>

<VarRef name="input-context"/>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="descendant-or-self">

<KindTest kind="any-kind"/>

</Axis>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="child">

<NameTest name="book"/>

</Axis>

</Step>

</Path>

</BindingSequence>

</ForClause>

<LetClause varname="aut1">

<BindingSequence>

89

<FLWOR>

<TupleStream>

<ForClause varname="a">

<BindingSequence>

<Path initial-step="context">

<Step>

<VarRef name="book1"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="author"/>

</Axis>

</Step>

</Path>

</BindingSequence>

</ForClause>

</TupleStream>

<OrderByClause stable="false">

<OrderSpec>

<FunctionCall name="exactly-one">

<Path initial-step="context">

<Step>

<VarRef name="a"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="last"/>

</Axis>

</Step>

</Path>

</FunctionCall>

</OrderSpec>

<OrderSpec>

<FunctionCall name="exactly-one">

<Path initial-step="context">

<Step>

<VarRef name="a"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="first"/>

</Axis>

</Step>

</Path>

</FunctionCall>

90

</OrderSpec>

</OrderByClause>

<ReturnClause>

<VarRef name="a"/>

</ReturnClause>

</FLWOR>

</BindingSequence>

</LetClause>

<LetClause varname="aut2">

<BindingSequence>

<FLWOR>

<TupleStream>

<ForClause varname="a">

<BindingSequence>

<Path initial-step="context">

<Step>

<VarRef name="book2"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="author"/>

</Axis>

</Step>

</Path>

</BindingSequence>

</ForClause>

</TupleStream>

<OrderByClause stable="false">

<OrderSpec>

<FunctionCall name="exactly-one">

<Path initial-step="context">

<Step>

<VarRef name="a"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="last"/>

</Axis>

</Step>

</Path>

</FunctionCall>

</OrderSpec>

<OrderSpec>

<FunctionCall name="exactly-one">

<Path initial-step="context">

<Step>

91

<VarRef name="a"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="first"/>

</Axis>

</Step>

</Path>

</FunctionCall>

</OrderSpec>

</OrderByClause>

<ReturnClause>

<VarRef name="a"/>

</ReturnClause>

</FLWOR>

</BindingSequence>

</LetClause>

</TupleStream>

<WhereClause>

<Operator class="logical" name="and">

<Operator class="logical" name="and">

<Operator class="comparison" name="precedes"

subclass="node">

<VarRef name="book1"/>

<VarRef name="book2"/>

</Operator>

<FunctionCall name="not">

<Operator class="comparison" name="equals"

subclass="general">

<Path initial-step="context">

<Step>

<VarRef name="book1"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

<NameTest name="title"/>

</Axis>

</Step>

</Path>

<Path initial-step="context">

<Step>

<VarRef name="book2"/>

</Step>

<Step>

<Axis abbreviated="true"

direction="forward" kind="child">

92

<NameTest name="title"/>

</Axis>

</Step>

</Path>

</Operator>

</FunctionCall>

</Operator>

<FunctionCall name="deep-equal">

<VarRef name="aut1"/>

<VarRef name="aut2"/>

</FunctionCall>

</Operator>

</WhereClause>

<ReturnClause>

<Constructor kind="direct" type="element">

<Name name="book-pair"/>

<Content>

<String value="
 "/>

<Path initial-step="context">

<Step>

<VarRef name="book1"/>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="child">

<NameTest name="title"/>

</Axis>

</Step>

</Path>

<String value="
 "/>

<Path initial-step="context">

<Step>

<VarRef name="book2"/>

</Step>

<Step>

<Axis abbreviated="true" direction="forward"

kind="child">

<NameTest name="title"/>

</Axis>

</Step>

</Path>

<String value="
 "/>

</Content>

</Constructor>

</ReturnClause>

</FLWOR>

<String value="
"/>

</Content>

93

</Constructor>

</QueryBody>

</Module>

94

Attachment 4

XPaths Used in Analyzer

These XPaths were used to create the analysis in program Analyzer. We list them
according to the groups in which they were used with the short description of the
group. Every XPath expression must be separated from others by semicolon when
inserting to Analyzer so we kept this formatting here, too.

The first group ‘XQuery Grammar Symbols‘ counts number of each XQuery
grammar symbols:

//FunctionDecl;

//QueryBody;

//FLWOR;

//ForClause;

//LetClause;

//WhereClause;

//OrderByClause;

//QuantifiedExpr[@quantifier="some"];

//QuantifiedExpr[@quantifier="every"];

//Typeswitch;

//IfExpr;

//Operator[@class="logical" and @name="or"];

//Operator[@class="logical" and @name="and"];

//Operator[@class="range"];

//Operator[@class="additive"];

//Operator[@class="multiplicative"];

//Operator[@class="set" and @name="union"];

//Operator[@class="set" and (@name="difference" or

@name="intersection")];

//Operator[@class="type-test" and @name="instance-of"];

//Operator[@class="type-cast" and @name="treat-as"];

//Operator[@class="type-test" and @name="castable-as"];

//Operator[@class="type-cast" and @name="cast-as"];

//Operator[@class="unary"];

//Operator[@class="comparison" and @subclass="general"];

//Operator[@class="comparison" and @subclass="value"];

//Operator[@class="comparison" and @subclass="node"];

//ValidateExpr;

//Extension;

//Path;

//Axis[@direction="forward"];

//Axis[@direction="reverse"];

//Literal;

//VarRef;

//ContextItem;

//OrderedExpr;

//UnorderedExpr;

95

//FunctionCall;

//Constructor[@kind="direct"];

//Constructor[@kind="computed"]

The second group ‘XQuery Interesting Analysis‘ counts number of different
statistics like recursive functions, external variables, number of nested FLWOR,
number of XPath expresions with Predicate, etc.:

//FunctionDecl[@name=descendant::FunctionCall/@name];

//FunctionDecl[not (//FunctionCall/@name=@name)];

/descendant::FLWOR[not (ancestor::FLWOR) and descendant::FLWOR and

not (descendant::FLWOR/descendant::FLWOR)];

/descendant::FLWOR[not (ancestor::FLWOR) and

descendant::FLWOR/descendant::FLWOR and

not (descendant::FLWOR/descendant::FLWOR/descendant::FLWOR)];

/descendant::FLWOR[not (ancestor::FLWOR) and

descendant::FLWOR/descendant::FLWOR/descendant::FLWOR and

not (descendant::FLWOR/descendant::FLWOR/descendant::FLWOR/

descendant::FLWOR)];

/descendant::FLWOR[not (ancestor::FLWOR) and

descendant::FLWOR/descendant::FLWOR/descendant::FLWOR/

descendant::FLWOR];

//FLWOR[not (*/ForClause)];

//FLWOR[not (*/LetClause)];

//ReturnClause[descendant::IfExpr or descendant::FunctionCall or

descendant::Constructor[@kind="computed"] or

descendant::Typeswitch];

//ReturnClause[child::Path or child::Constructor[@kind="direct"]];

//QueryBody[child::IfExpr or child::FunctionCall or

child::Constructor[@kind="computed"] or

child::Typeswitch];

//QueryBody[child::Path or child::Constructor[@kind="direct"]];

//Path[Step/Predicates];

//Path/Step[last()]/Axis[@kind!="attribute"]/NameTest;

//Path/Step[last()]/Axis[@kind="attribute"];

//Path/Step[last()]/Axis/KindTest[@kind="text"];

//VarDecl[not (@name=//VarRef/@name)];

//VarDecl/VarValue[@external="true"];

/*[last() and not (/Module/@version or //ModuleDecl or //Prolog or

//LetClause or //WhereClause or //OrderByClause

or //ForClause/Type or //ForClause/@posname or

//QuantifiedExpr/InClauses/InClause/Type or

//Typeswitch or //Extension or //ValidateExpr or

//OrderedExpr or //UnorderedExpr or

//Constructor)]

The third group ‘XQuery FLWOR Counts‘ counts number of ForClause and
LetClause in an one FLWOR:

96

//FLWOR[count(*/ForClause) = 1];

//FLWOR[count(*/ForClause) = 2];

//FLWOR[count(*/ForClause) = 3];

//FLWOR[count(*/ForClause) = 4];

//FLWOR[11 > count(*/ForClause) and count(*/ForClause) > 4];

//FLWOR[21 > count(*/ForClause) and count(*/ForClause) > 10];

//FLWOR[count(*/ForClause) > 20];

//FLWOR[count(*/LetClause) = 1];

//FLWOR[count(*/LetClause) = 2];

//FLWOR[count(*/LetClause) = 3];

//FLWOR[count(*/LetClause) = 4];

//FLWOR[count(*/LetClause) = 5];

//FLWOR[count(*/LetClause) = 6];

//FLWOR[count(*/LetClause) = 7];

//FLWOR[count(*/LetClause) = 8];

//FLWOR[count(*/LetClause) = 9];

//FLWOR[count(*/LetClause) = 10];

//FLWOR[21 > count(*/LetClause) and count(*/LetClause) > 10];

//FLWOR[31 > count(*/LetClause) and count(*/LetClause) > 20];

//FLWOR[41 > count(*/LetClause) and count(*/LetClause) > 30];

//FLWOR[51 > count(*/LetClause) and count(*/LetClause) > 40];

//FLWOR[61 > count(*/LetClause) and count(*/LetClause) > 50];

//FLWOR[71 > count(*/LetClause) and count(*/LetClause) > 60];

//FLWOR[81 > count(*/LetClause) and count(*/LetClause) > 70];

//FLWOR[91 > count(*/LetClause) and count(*/LetClause) > 80];

//FLWOR[count(*/LetClause) > 90]

The fourth group ‘XQuery FLWOR Joins‘ counts number of different ways of
writing of the join in FLWOR expression:

//FLWOR[WhereClause/Operator/@name="equals" and

WhereClause/Operator/descendant::VarRef/@name !=

WhereClause/Operator/descendant::VarRef/@name and

WhereClause/Operator/descendant::VarRef/@name =

ReturnClause/descendant::VarRef/@name];

//FLWOR[count(descendant::ForClause)>1 and

descendant::ForClause/descendant::Operator/@name =

"equals" and descendant::ForClause/descendant::Operator/

descendant::NameTest/@name =

ReturnClause/descendant::NameTest/@name];

//FLWOR[ReturnClause/IfExpr/TestExpression/Operator/@name

= "equals" and count(ReturnClause/IfExpr/TestExpression/

descendant::NameTest/@name) > 1 and

ReturnClause/IfExpr/TestExpression/descendant::NameTest/

@name = ReturnClause/IfExpr/ThenExpression/

descendant::NameTest/@name];

//FLWOR[ReturnClause/descendant::Predicates/Operator/@name =

"equals" and count(ReturnClause/descendant::CommaOperator/

descendant::NameTest/@name) > 1 and

97

ReturnClause/descendant::Predicates/descendant::NameTest/

@name = ReturnClause/descendant::CommaOperator/

descendant::NameTest/@name]

The fifth group ‘XPath Steps‘ counts number of Step grammar symbol in
Path grammar symbol:

//Path[count(Step) = 1];

//Path[count(Step) = 2];

//Path[count(Step) = 3];

//Path[count(Step) = 4];

//Path[count(Step) = 5];

//Path[count(Step) = 6];

//Path[count(Step) = 7];

//Path[count(Step) = 8];

//Path[count(Step) = 9];

//Path[count(Step) = 10];

//Path[count(Step) = 11];

//Path[count(Step) = 12];

//Path[count(Step) = 13];

//Path[count(Step) = 14];

//Path[count(Step) > 14]

The sixth group ‘XPath Axis‘ counts number of different Axis grammar sym-
bol in the abbreviated or full form:

//Axis[@kind="ancestor" and @abbreviated="true"];

//Axis[@kind="ancestor-or-self" and @abbreviated="true"];

//Axis[@kind="attribute" and @abbreviated="true"];

//Axis[@kind="child" and @abbreviated="true"];

//Axis[@kind="descendant" and @abbreviated="true"];

//Axis[@kind="descendant-or-self" and @abbreviated="true"];

//Axis[@kind="following" and @abbreviated="true"];

//Axis[@kind="following-siblibg" and @abbreviated="true"];

//Axis[@kind="namespace" and @abbreviated="true"];

//Axis[@kind="parent" and @abbreviated="true"];

//Axis[@kind="preceding" and @abbreviated="true"];

//Axis[@kind="preceding-sibling" and @abbreviated="true"];

//Axis[@kind="self" and @abbreviated="true"];

//Axis[@kind="ancestor" and @abbreviated="false"];

//Axis[@kind="ancestor-or-self" and @abbreviated="false"];

//Axis[@kind="attribute" and @abbreviated="false"];

//Axis[@kind="child" and @abbreviated="false"];

//Axis[@kind="descendant" and @abbreviated="false"];

//Axis[@kind="descendant-or-self" and @abbreviated="false"];

//Axis[@kind="following" and @abbreviated="false"];

//Axis[@kind="following-siblibg" and @abbreviated="false"];

//Axis[@kind="namespace" and @abbreviated="false"];

//Axis[@kind="parent" and @abbreviated="false"];

98

//Axis[@kind="preceding" and @abbreviated="false"];

//Axis[@kind="preceding-sibling" and @abbreviated="false"];

//Axis[@kind="self" and @abbreviated="false"]

The seventh group ‘XPath BuildIn Functions‘ counts number of calls of a
built-in function used in XPath expression (all lines starts with
//Path/descendant::FunctionCall and we only list predicates so it can be in
the readable form):

[@name="node-name" or @name="fn:node-name"];

[@name="nilled" or @name="fn:nilled"];

[@name="data" or @name="fn:data"];

[@name="base-uri" or @name="fn:base-uri"];

[@name="document-uri" or @name="fn:document-uri"];

[@name="error" or @name="fn:error"];

[@name="trace" or @name="fn:trace"];

[@name="number" or @name="fn:number"];

[@name="abs" or @name="fn:abs"];

[@name="ceiling" or @name="fn:ceiling"];

[@name="floor" or @name="fn:floor"];

[@name="round" or @name="fn:round"];

[@name="round-half-to-even" or @name="fn:round-half-to-even"];

[@name="string" or @name="fn:string"];

[@name="codepoints-to-string" or @name="fn:codepoints-to-string"];

[@name="string-to-codepoints" or @name="fn:string-to-codepoints"];

[@name="codepoint-equal" or @name="fn:codepoint-equal"];

[@name="compare" or @name="fn:compare"];

[@name="concat" or @name="fn:concat"];

[@name="string-join" or @name="fn:string-join"];

[@name="substring" or @name="fn:substring"];

[@name="string-length" or @name="fn:string-length"];

[@name="normalize-space" or @name="fn:normalize-space"];

[@name="normalize-unicode" or @name="fn:normalize-unicode"];

[@name="upper-case" or @name="fn:upper-case"];

[@name="lower-case" or @name="fn:lower-case"];

[@name="translate" or @name="fn:translate"];

[@name="escape-uri" or @name="fn:escape-uri"];

[@name="contains" or @name="fn:contains"];

[@name="starts-with" or @name="fn:starts-with"];

[@name="ends-with" or @name="fn:ends-with"];

[@name="substring-before" or @name="fn:substring-before"];

[@name="substring-after" or @name="fn:substring-after"];

[@name="matches" or @name="fn:matches"];

[@name="replace" or @name="fn:replace"];

[@name="tokenize" or @name="fn:tokenize"];

[@name="resolve-uri" or @name="fn:resolve-uri"];

[@name="boolean" or @name="fn:boolean"];

[@name="not" or @name="fn:not"];

[@name="true" or @name="fn:true"];

99

[@name="false" or @name="fn:false"];

[@name="dateTime" or @name="fn:dateTime"];

[@name="years-from-duration" or @name="fn:years-from-duration"];

[@name="months-from-duration" or @name="fn:months-from-duration"];

[@name="days-from-duration" or @name="fn:days-from-duration"];

[@name="hours-from-duration" or @name="fn:hours-from-duration"];

[@name="minutes-from-duration" or @name="fn:minutes-from-duration"];

[@name="seconds-from-duration" or @name="fn:seconds-from-duration"];

[@name="year-from-dateTime" or @name="fn:year-from-dateTime"];

[@name="month-from-dateTime" or @name="fn:month-from-dateTime"];

[@name="day-from-dateTime" or @name="fn:day-from-dateTime"];

[@name="hours-from-dateTime" or @name="fn:hours-from-dateTime"];

[@name="minutes-from-dateTime" or @name="fn:minutes-from-dateTime"];

[@name="seconds-from-dateTime" or @name="fn:seconds-from-dateTime"];

[@name="timezone-from-dateTime" or

@name="fn:timezone-from-dateTime"];

[@name="year-from-date" or @name="fn:year-from-date"];

[@name="month-from-date" or @name="fn:month-from-date"];

[@name="day-from-date" or @name="fn:day-from-date"];

[@name="timezone-from-date" or @name="fn:timezone-from-date"];

[@name="hours-from-time" or @name="fn:hours-from-time"];

[@name="minutes-from-time" or @name="fn:minutes-from-time"];

[@name="seconds-from-time" or @name="fn:seconds-from-time"];

[@name="timezone-from-time" or @name="fn:timezone-from-time"];

[@name="adjust-dateTime-to-timezone" or

@name="fn:adjust-dateTime-to-timezone"];

[@name="adjust-date-to-timezone" or

@name="fn:adjust-date-to-timezone"];

[@name="adjust-time-to-timezone" or

@name="fn:adjust-time-to-timezone"];

[@name="QName" or @name="fn:QName"];

[@name="local-name-from-QName" or @name="fn:local-name-from-QName"];

[@name="namespace-uri-from-QName" or

@name="fn:namespace-uri-from-QName"];

[@name="namespace-uri-for-prefix" or

@name="fn:namespace-uri-for-prefix"];

[@name="in-scope-prefixes" or @name="fn:in-scope-prefixes"];

[@name="resolve-QName" or @name="fn:resolve-QName"];

[@name="name" or @name="fn:name"];

[@name="local-name" or @name="fn:local-name"];

[@name="namespace-uri" or @name="fn:namespace-uri"];

[@name="lang" or @name="fn:lang"];

[@name="root" or @name="fn:root"];

[@name="index-of" or @name="fn:index-of"];

[@name="remove" or @name="fn:remove"];

[@name="empty" or @name="fn:empty"];

[@name="exists" or @name="fn:exists"];

[@name="distinct-values" or @name="fn:distinct-values"];

100

[@name="insert-before" or @name="fn:insert-before"];

[@name="reverse" or @name="fn:reverse"];

[@name="subsequence" or @name="fn:subsequence"];

[@name="unordered" or @name="fn:unordered"];

[@name="zero-or-one" or @name="fn:zero-or-one"];

[@name="one-or-more" or @name="fn:one-or-more"];

[@name="exactly-one" or @name="fn:exactly-one"];

[@name="deep-equal" or @name="fn:deep-equal"];

[@name="count" or @name="fn:count"];

[@name="avg" or @name="fn:avg"];

[@name="max" or @name="fn:max"];

[@name="min" or @name="fn:min"];

[@name="sum" or @name="fn:sum"];

[@name="id" or @name="fn:id"];

[@name="idref" or @name="fn:idref"];

[@name="doc" or @name="fn:doc"];

[@name="doc-available" or @name="fn:doc-available"];

[@name="collection" or @name="fn:collection"];

[@name="position" or @name="fn:position"];

[@name="last" or @name="fn:last"];

[@name="current-dateTime" or @name="fn:current-dateTime"];

[@name="current-date" or @name="fn:current-date"];

[@name="current-time" or @name="fn:current-time"];

[@name="implicit-timezone" or @name="fn:implicit-timezone"];

[@name="default-collation" or @name="fn:default-collation"];

[@name="static-base-uri" or @name="fn:static-base-uri"]

101

	Introduction
	Outline

	Technologies and Terms
	Internet Technologies
	Search Engine
	Characteristics of The Internet
	XML Family of Languages
	Lexical And Syntactical Analysis
	XPath Versus XQuery

	Related Work
	XML Analysis
	XSLT Analysis
	Historic XML Query Languages
	SPARQL Analysis
	SQL Analysis
	XQuery Analysis
	Conclusion

	Occurrence of XQuery Programs
	XQuery Use Cases
	XQuery Test Suite (XQTS)
	XQuery Benchmarks
	XQuery and Big Data
	Common Crawl
	Rest of The Internet

	Analyzer
	Architecture
	Implemented Crawlers
	Analyzer Plug-ins
	XQuery Analysis Plug-in
	XQuery Converter
	Architecture of XQConverter

	Summary

	Analysis of Web Crawlers
	Crawler
	Crawler Types
	Crawler Policies
	Filters Used by Crawler

	Existing Crawlers
	Chosen Crawler

	Seeds for Crawler
	Seeds from the Web Search Engine
	Google URL Result
	Seed File

	Modification of Selected Crawler
	Basic Setting of Crawler
	Setting Crawler's Filters
	Fixes of the Crawler
	Configuration File Loading
	Adding Seeds from File
	Recognizing XQuery Programs
	XML Documents Referenced in XQuery Programs

	Saving the Found Data
	Saving Statistics
	Returning Downloaded Pages
	Final Architecture
	Making Crawler Library

	Crawler Integration into Analyzer
	XQuery Crawler Module
	Fixing Small Bugs
	Names of Used Components

	Data Gathering
	Downloading Session
	Testing Sessions
	Download Summary

	Common Crawl
	MIME Counting
	URL Extracting

	Summary

	Analysis of Downloaded Data
	Cleaning and Correcting Data
	Not XQuery Programs
	Lexical And Syntactical Errors
	Correcting Programs

	Categorizing XQuery Programs
	Analyzer Analyses
	XQuery Programs Analyses
	FLWOR Expresion
	XPath in XQuery Programs
	Other Analyses
	XPath 2.0 Versus XQuery 1.0

	Category XQuery Programs With XML Documents
	XML Documents Analysis
	Summary

	Conclusion
	Future Work

	Bibliography
	List of Tables
	List of Figures
	Attachment 1
	Attachment 2
	Attachment 3
	Attachment 4

