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1. Introduction

An undo and redo functionality is today a common feature of various interactive
applications and systems. Many users can not imagine an editor without this
support. It is essential for new users, who can explore various features of an
application without being afraid of destroying the data. Accidental mistakes can
be fixed in magnitude of seconds, just by pressing the undo button.

Most of today’s applications use a very simple model - all user’s actions are
stored in a history stack. Only the most recent action may be undone and this
is usually done by performing an inverse operation. Such an action is marked
as undone and the user may redo it or undo the previous action. When a new
action is invoked, all actions to redo are discarded.

This simple model, commonly known as linear undo model, is sufficient in
many applications. Its simplicity is a big advantage - most of the users are
familiar with it and they expect such behavior. The result of undo or redo
operation may be easily predicted and also the physical implementation is not
very complex using command design pattern [10]. This pattern divides user’s
actions to a series of discrete steps, which can be later reversed (undone).

But there are environments, where this approach may not be sufficient to fulfill
user’s needs [6]. If there are non-trivial dependencies among actions - for instance
when one document is being edited simultaneously on multiple workspaces or one
object is being modified from different perspectives - the simple linear undo model
may not be user-friendly.

The other challenging task is to implement a model, which allows a user
to undo any action at any time - so-called selective undo. This feature can
greatly save user’s time, but its results tend to be unpredictable and it is hard to
implement it even in simple environments.

1.1 Aims of this Thesis

This thesis aims to explore possibility of undo/redo management in such a com-
plex environment and create an algorithm, which allows the user to undo any
command at any time in this environment. The algorithm will have to deal with
documents spread over several workspaces and it will have to successfully manage
correct undoing of actions, which are dependent on each other.

The algorithm will be then implemented in the DaemonX [12] - a framework
for data modeling developed at the Faculty of Mathematics and Physics of the
Charles University in Prague. Its main purpose is to provide a set of tools to
model a modeling language (also known as meta-modeling), mechanism for data
propagation among various modeling languages and common runtime environ-
ment. Each modeling language can be then implemented as a solitaire plug-in
which runs in the framework’s common runtime environment. One document in
DaemonX may consists of several diagrams, each possibly in a different modeling
language. This fact has brought unexpected difficulties during implementation
of undo/redo functionality, because linear undo model was slow and results were
not sufficient for effective work with the framework.

The motivation for the thesis is not only to solve this problem in the DaemonX
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framework, but it is a need for general algorithm, which would be able to provide
selective undo functionality in non-trivial environments.

1.2 Structure of the Thesis

Chapter 2 discusses undo and redo operations generally. It briefly goes through
history and gives a few examples of not so obvious usage of these operations.
It points out in which situation undo/redo is meaningful, when its presence is
important for the user and what it really brings to the user.

Chapter 3 defines basic terms and properties, which are used later in the
thesis.

Chapter 4 defines a common undo model and summarizes the current state of
the art. Several real-world undo models based on the command design pattern
are presented with an emphasis on non-linear undo models, which are much more
challenging, than simple linear undo.

Chapter 5 analyzes issues connected with selective undo and submits several
solutions how these issues can be solved or at least avoided.

Chapter 6 presents three algorithms - Extended linear undo model, Cascade
selective undo model and the combined undo model - which are capable to
maintain undo/redo management in environments with multiple workspaces. The
last two of them also offer the possibility of selective undo.

Chapter 7 presents the DaemonX framework, shows real-world implementa-
tion of the Combined undo model and presents achieved results.

Chapter 8 summarizes the content of the thesis and suggests possible future
work.
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2. Overview of Undo and Redo
Operations

2.1 History of Undo and Redo Operations

The operation of undo is as old as the computer itself. Even the ENIAC,
which is considered to be the first general-purpose electronic computer [7], had a
mechanism, how to get back to previous points along the solution of a nonlinear
differential equation. It created a set of system checkpoints and also provided a
mechanism, how to get back to these checkpoints [13].

In those days, the undo (and redo) had a bit different purpose than today.
The machine time was far more expensive and so programmers’ mistakes also
cost much more. The undo in this form was more likely a debugger, which could
speed up the programming, but it meant one important thing - the computer is
to a certain extent tolerable to operators’ (users’) mistakes.

The other old reference to an undo operation dates back to 1976. The
document Behavioral issues in the use of interactive systems [15] discusses, how
should a machine interact with the user. The scope of the document is very wide,
but there is one important idea: “It would be quite useful to permit users to
’take back’ at least the immediately preceding command (by issuing some special
’undo’ command).” In this case, the undo operation is targeted to the common
users of system and its purpose is to make computer usage easier.

2.2 Undo and Redo Today

An implementation of undo and redo operation can be today found almost in each
application, where user’s task is to create a document1 using various functions
of application. But there are also other scenarios, which are not so obvious,
probably because no “undo“ and “redo“ buttons are present:

• Undelete a file on a filesystem. This example may have 2 meanings:

1. Many of today’s operating systems, like Microsoft Windows or some
distributions of GNU/Linux, support a “trash bin”, which is a special
folder to which all files, which the user deletes, are moved. Later on,
these files may be recovered back to their original state. This folder
is a special kind of history buffer. The user typically has to explicitly
call action ”empty the bin” which deletes the content of the bin (and
the user is asked, whether s/he really wants to do it).

2. An attempt to recover a file from a filesystem, which was lost due
to previous deletion. Deletion of a file does not necessary mean that
file is lost and cannot be recovered. Many filesystems delete only the
information that a file exists but the content of file is still present until
it is finally rewritten by another file. Using special tools, files which

1The word “document” means any user’s work, which is built up using the application. It
can be for example a text file, bitmap image, uml project,...
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are still not rewritten can be found and recovered and some operating
systems (e.g. BSD Unix [1]) even support a system call to do this.
Despite the fact, that there is no explicit history buffer, the user is
able to undo some of the latest operations.

• Some filesystems have a so-called “journal”, which can be seen as a log of
actions, which modify the filesystem. The information about these actions
are firstly written into a journal and after this, actions are performed on the
filesystem itself. When there is a crash during the action performance, it is
possible to recover the filesystem into state before the action was performed
and filesystem remains in a consistent state. So the journal serves as a
history buffer; it holds necessary information to undo the operation.

• When a user changes some vital properties (screen resolution, video output,
device driver to use) of an application or the operating system, it may
happen that the computer becomes unaccessible. In these situations the
user often has to confirm these changes once more after they are applied - if
the changes are not confirmed until specific timeout runs out, the original
state is restored. Consequently, in this case history buffer has only one
entry.

These examples illustrate, that undo and redo operations are not present only
in various editors but the user may encounter these operations even during work
with the operating system itself and he/she may not even notice it. However, the
main domain for undo and redo implementation is still various document editing
applications.

2.3 Importance of Undo/Redo Operations

The examples in the previous section together with a typical usage of undo/redo
can briefly denote the importance of undo and redo operations in today’s systems
and applications. The main advantage for the user is the easy recovery from
unintentional state of her/his document or system.

The simple fact, that a user is able to undo consequences of his/her action
brings:

• Exploration of the application by trying different functions (“What happens
when I push this button? “). Each change can be taken back, so the user
is less hesitant to try powerful and perhaps unfamiliar operations.

• Unintentional mistakes can be solved quickly (a cat walks over a keyboard
and the document is almost lost).

• Possibility to experiment with document format, style and layout (”Take a
look, how the text will look with this font.”)
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3. Definitions

In this chapter some basic terms are defined. The definitions are general and they
will be defined more precisely for each scenario later.

3.1 Constructs and Views

For the purpose of this thesis we suppose, that the user works with objects called
constructs. It is a general object, product of user’s work. Each has a unique
identifier (id), set of properties and views.

Property may be considered as a simple (key, value) pair.
View is a visualization of the construct to the user. One construct may have

several views, each showing the construct from a different perspective. In many
situations, one view is sufficient, but there are situations, when a different view
of the properties may be useful. The view is usually used for changing the data
properties of the construct - it may provide various widgets used by the user. This
principle is more deeply described by architecture pattern Model-View-Controller
[16].

Sometimes it can be useful to introduce a special property with key type. All
constructs with the same value of the type property share also the set of keys of all
other properties. We say that such a constructs are of the same type. Although
it is only syntactic sugar, it simplifies environments where constructs are used for
data description or directly as a data storage.

Example 1. Construct can be:

• A letter in a text document. One letter is a construct and the user creates
new constructs by typing on the keyboard. Properties of such a constructs
are for example the ASCII value, position in a text, font,.... Product of
user’s work is then a text document, which is a set of constructs.

• Any object of UML modeling language. In the editor, which uses UML mod-
eling language[11], any object (UML class, UML relation) can be considered
as a construct.

• A shape in an image editor. Simple image editor can represent all objects
on the screen as a constructs. Properties can be dimensions, color,...

Construct with several views is described in Figure 3.1.

3.2 Construct Pool and Workspace

All constructs created during work reside in a data structure called construct
pool. This data structure can be implemented in various ways (array, linked list,
hashmap,...) and it is up to the programmer of the system, which implementation
suits best to his/her needs. One system may also have more than one construct
pool.
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Construct
ID = cons1
Type = Car

Properties
Manufacturer
  = Škoda
Model 
  = Octavia
Color 
  = red

Views
BoxView
CarColorView

pos_x = 25
pos_y = 38
width = 100
height = 100

CAR

pos_x = 56
pos_y = 754
facing = left

Škoda
Octavia

Škoda Octavia

Figure 3.1: Example of construct with two views

One application may also have several workspaces. A workspace is a place,
where the user performs his/her modifications of constructs. Various workspaces
may share one construct pool.

Example 2. For our purposes, the workspaces may be:

• In a text editor, each opened document can be considered as a separate
workspace with own construct pool.

• In a graphical editor, each image is a separate workspace.

• In a designer of diagrams, each diagram can be a separate workspace.

3.3 Commands

Undo or redo of an action would not be possible, if there was not a mechanism
how to delimit and pick exactly one action. In other words, the whole user’s
work should be a series of discreet steps. These steps are called commands and
they follow the command desing-pattern [10]. Each command is a separate unit
of action, which can be either executed or undone and stored in a data structure
for later use.

A command represents one action from user’s perspective, so it is undivisible
for the user. If the user wants to undo a command, he/she must undo the
whole command or nothing. But from application perspective the command does
not have to be undivisible. Consider situation depicted in Figure 3.2. It shows
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simple diagram in UML modeling language [11] with three classes (boxes) and
two connections (lines with arrows). The user decides, that there is no need for a
common superclass Vehicle and so the class is destroyed. Destruction of this class
also means destruction of both generalizations, leading from inherited classes to
the Vehicle class. For the user, this is one action - he/she only cares about class
destruction and dependencies of other constructs should be solved automatically.
Also the undo should be performed in the way, that not only class Vehicle but
also all its connections will be restored. But for the application, situation is
not so simple - it must destroy three objects, which are three actions from its
perspective.

Figure 3.2: Three uml classes with connections

For this reason a so-called atomic command is introduced. An atomic com-
mand is an atomic action from application part of view and typically it is used to
create, destroy or modify one construct or its property. “Composite commands”
may then serve as containers for atomic commands.

3.3.1 Commands Ordering

The ordering of commands enables to distinguish in which order commands should
be undone or redone. Ordering can be local (only one history buffer is involved,
often implicit by commands’ position in the stack) or global (among all commands
in application).

Command C1 is older than command C2 if and only if C1 is predecessor of
C2. It means, that C1 was originally executed before C2 was executed.

Command C1 is younger than command C2 if and only if it is not older.
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Since equality is not defined, it should be always possible to determine, which
command is younger.

3.3.2 Extending Command Structure

By definition, the structure of a command does not carry much information for
algorithms, which have to deal with it. To enable some interesting features of
undo models, command structure can be extended:

• A simple incremental counter can be added to the command structure. The
value of this field is “global” among all commands in the environment. The
first command has this number set to zero and the value for each subsequent
command is computed as a value of this variable in previous command
incremented by 1. From the value of this counter, the chronological order
of two commands can be simply determined, even if commands do not share
same stack.

• Each command can carry the information about the construct(s) it affects.
This is useful, when causal dependencies among various commands need to
be taken into account.

• Special redo method. A common command has typically two methods,
which actually perform some changes on the model - execute() and undo(),
but in some cases, it is good to distinguish between the first execution and
the subsequent executions.

3.4 History Logging

There are generally two ways, how the history may be logged:

• The history is logged as a series of document states and a model describes
the way, how to move from one state to another. [13]

• The history is logged as a series of operations (similar to commands) and
undo is performed as appending an inverse operation to the history buffer.
[17]

The first one is memory consuming (each state of document is saved) and
because there is generally no system of dependencies among various states, it us
harder to support more advanced features of undo models like selective undo.

For this reason, this thesis deals only with the second choice - the executed
commands are stored in a data structure called history buffer. Implementation of
history buffer depends on the used undo model, but in most of today’s applications
it is a simple LIFO1 container.

1Last In First Out
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3.5 Dependencies Among Commands

In simple environments, commands are usually independent of each other. These
environments typically do not allow the user to modify created constructs and
also it is not allowed to derive one construct from another or build up relations
among various constructs.

Example 3. For instance, we can consider an editor of plain text document. It
has only two commands - INSERT, which inserts a letter to the current caret
position and DELETE, which deletes a letter on current caret position. The
command itself should store only the global position of the operation, which can
be done using dynamic pointers. [9] (This technique takes into account shifts of
text in document.) In that case, all commands are independent of each other and
potentially they can be undone in any order.

Of course, this is the ideal situation for a developer, but in real-word ap-
plications environments are much more complicated. Consider the mentioned
text editor, only a bit extended - it supports simple text formating like various
fonts and text size. A new command called MODIFY has to be introduced, which
takes a position, sets a new format and stores the old format for undo. In this
situation, the statement “..., all commands are independent on each other and
potentially they can be undone in any order.” is not valid anymore. If a letter
is inserted and then its format is modified, the undo of INSERT should not be
done before undo of MODIFY - undo of MODIFY would then changed a non-
existing construct. We can see, that a possibility of modification of constructs has
introduced a dependency between two commands.

Generally, there are two types of dependencies:

• Implicit dependency

– If command A modifies construct C1 and older command B also mod-
ifies C1, the result of command B is dependent on the result of com-
mand A. We say, that command B depends on command A.

– If command B depends on command A and command C depends on
B, than command C depends also on A - transitivity.

• Explicit dependency

– This dependency is set by the system. It complements implicit de-
pendencies in cases, when one command uses the result of another
command, but they do not work with the same construct. The tran-
sitivity also holds.

Implicit dependency does not have to be stored in a data collection, they
can be computed on the fly. For this purpose it is needed to extend commands
by adding information about affected construct(s). Information about explicit
dependencies has to be held in dedicated data structure.

It is not important for undo/redo purposes, whether two commands are de-
pendent explicitly or implicitly - the meaning is the same. Because of that, we
just say that command A depends on command B.
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3.6 Undo Model

Undo model represent the way the application approaches to undo and redo
functionality. It describes what can be undone, how the history is logged and
how the system will react to the undo operation. In some cases it may imply the
way how the undo stack is visualized to the user.

In later sections of this chapter, we can observe, that particular models can
differ from each other in many ways, but usually they have several common parts:

1. Commands - Represent solitaire actions of the user.

2. History buffer(s) - Store executed commands.

3. Undo/Redo manager - Controls history buffers.

4. User interface - Interacts with the user.

These parts can be easily mapped to popular architecture pattern Model-
View-Controller [16]. Commands together with history buffers are the model,
the user interface is the view and the controller is represented by the undo/redo
manager.

All parts of the model are usually tightly coupled but the essential part of
the model is the undo/redo manager - it manipulates with stacks and reacts on
user’s actions by selecting commands for execution and undo.

3.6.1 State of the System

State of the system (or just state) is a set of all objects in the document, including
all commands, constructs and their properties.

Two states are equal if and only if all values of all objects in the document
are equal.

3.6.2 Properties of Undo Models

Before we start discussion on various examples of undo models, we have to define
several properties.

Stable Execution Property

Paper [6] defines a so-called stable execution property :
A command is always redone in the same state that it was originally executed

in and is always undone in the state that was reached after the original execution.
A state in this context is an ordered list of commands that are done.

This property ensures, that if a command could be originally executed and
undone it would be possible also in any other time.
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Weakened Stable Execution Property

The stable execution property is very strict and it holds true only for a very
limited number of undo models. For this purpose, we define a weakened stable
execution property :

During redo operation of command C, all commands, on which command C
depends, are redone prior to C and during undo operation of command C, all
commands dependent on C are undone prior to C.

This property also ensures, that if a command could be originally executed
and undone, it would be possible also in any other time, but it is not so strict.

Stable Result Property

Stable execution property assures, that all executed commands can be undone
and undone commands redone. Stable result property specifies, what must be the
results of these operations:

• After successful performance of undo operation on the model, there is no
command in the history stack which satisfies both conditions:

– It can be undone.

– Calling undo on this command would cause performing an operation
on non-existing object.

• After successful performance of redo operation on the model, there is no
command in the history stack which satisfies both conditions:

– It can be redone.

– Calling redo on this command would cause performing an operation on
non-existing object.

If this property holds true, undo model is safe from application perspective -
it should not cause a application crash because of invalid references or pointers
pointing to non-existing objects.

Commutative Undo Property

The undo model is commutative if and only if the state reached after undo or redo
any two commands C1 and C2 is equal to the state reached after undo or redo the
same commands in the opposite order.

Commutativity ensures, that the result of any two operations in not dependent
on the order, in which operations are performed. This property is important to
the user, because results of models for which commutative undo property does
not hold true, can be confusing.

Minimalistic Undo Property

The undo model is called minimalistic, if redo operation of command C redoes
only command C and all commands older than C, on which C depends, and if
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undo operation of command C undoes only the command C and all commands
younger than C, which are dependent on C.

Minimalistic undo property ensures, that undo and redo operation selects
the minimal possible number of commands to undo or redo. In other words, if
command is not dependent or not depends on C, it will be left untouched.
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4. Related Work - Current Undo
Models

During past years, several undo models were presented. This chapter will focus
mainly on models, which use commands as the basic unit on which undo and
redo is performed. There are also other approaches, for instance saving the whole
state of document after each action, but they are beyond the scope of this thesis.

The basic division of undo models is to linear undo and non-linear undo.

4.1 Linear Undo and Redo

The linear undo model is the simplest (and probably the most widely used) way
how to achieve undo functionality. The word linear means, that only the most
recently executed command can be undone.

All executed commands are stored in one history buffer. History buffer is
a simple LIFO container. A new command is always pushed to the top of the
buffer. This data structure is also often called stack.

4.1.1 Performing Undo and Redo

The user is able to undo only the most recently executed command, which is
the command on the top of the stack. Such a command does not have to exist,
because the stack may be empty (after document creation or load) - in that case
undo is impossible and it should be signaled to the user. When undo is performed,
the undone command must be prepared for redo.

The redo order follows the idea for undo operation - only the most recent
undone command may be redone. Figure 4.1 shows the linear undo from user’s
perspective.

C1 C2 C3 C4 C5 C6 C7

Executed commands Undone commands

Current state
Can be undone Can be redone

Figure 4.1: Linear undo from user perspective

4.1.2 Possible Implementation

This behavior can be achieved in two ways. Either undone command is pushed
to another stack (so-called “redo stack”), or the original undo stack has pointer
to the top, which is moved one command down after undo operation.
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Two Stack Version

In this case, the command for redo is located on the top of the redo stack - each
undone command becomes “the most recent undone command” and therefore it
is pushed to the redo stack. After performing the redo, the command is returned
back to the top history buffer (undo stack).

If a new command is executed and redo stack is not empty, all commands in
the redo stack are discarded.

An example of this solution is depicted in Figure 4.2.

Undo stack Redo stack

Both stacks grow
in this direction

This command (5) would be selected
 for undo operation.

1

2

3

4

5

6

7

This command (6) 
     would be selected
     for redo operation.

The order, in which 
commands have been
originaly executed

5

8

The new command would be put 
to the top of the undo stack and 
the redo stack would be discarded.

Figure 4.2: Linear undo model with two stacks

Pointer Version

The history buffer contains a variable top pointer, which points between the two
commands - so in this case the term top of the stack refers to the place, where
the top pointer points. The history buffer is thus split into two parts - above
and under the top pointer. The part under the top pointer is full of executed
commands and the part above is full of undone commands. The new command
is always placed one position above the top pointer and the top pointer is then
moved also one position up.

When the user wants to undo an operation, the command directly under the
top pointer is taken, the undo method is called and the top pointer is moved one
command down - the undone command will be above the top pointer. Redo is
done in a similar way - the command right above the top pointer is taken and
executed (redone) and the top pointer is moved one command up.
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If a new command is executed and all commands above the top pointer are
discarded the new command is placed as usual.

The example of this solution can be seen in Figure 4.3.

1

2

3

4

55

6

7

The top pointer

This command (5) would be selected for undo. 
The top pointer would be moved under it. 

This command (6) would be selected for redo. 
The top pointer would be moved above it. 

8

Undo/redo stack

The new command would be placed above the current
 top pointer, commands 6 and 7 would be discarded and 
the top pointer would be moved above the new command. 

The order, in which 
commands have been
originaly executed

Figure 4.3: Linear undo and redo with one stack and the top pointer

Comparison of Pointer and Double Stack Version

Both versions act from user’s perspective in the same way. The version with two
stacks is easier to implement - there is no pointer to the top, push() and pop()
methods only add or remove a command from the stack. On the other hand,
there are two stacks, which lead to more memory consumption.

4.2 Non-linear Undo and Redo

A simple linear undo is sufficient in many applications, but it has its limitations
- there is at most one command to undo and one to redo.

A non-linear undo brings one fundamental feature - there is a possibility of
undoing or redoing also other commands than the last executed one. This does
not imply, that any command can be undone at any time. Several models have
been presented, each deals with the undo and redo in its own way.

4.2.1 Script Model

This model was presented by Archer et al. in 1984[5]. The core idea is simple
- the history buffer is a script of commands, which is being edited by the user.
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In the original version the user was really meant to edit the script as a text file,
which is not very user-friendly approach (the user of a visual editor probably does
not want to learn at least syntax of some script), but it would not be hard to
present this script to the user in some graphical form.

All executed commands are appended to the script in ordinary way. Undo,
here called recovery, and redo are provided by editing the script. There are three
basic operations over the script:

1. append - Appends a new command to the script.

2. truncate - Removes last executed command from the script. There is also
operation truncate* which removes continuous sequence of commands from
the end of the script. In fact, truncate is a special case of truncate* -
truncate1. The removed commands may be voluntarily stored for future
reuse.

3. re-append - Takes the initially truncated command and appends it to the
script.

Editing of the script may be restricted in several ways. The restriction implies
behavior and usability of the model:

• Single-truncate - Only append and truncate operations are permitted, and
truncate cannot be used in two consecutive cycles. This restriction allows
only the last executed command to be undone and redo is not supported at
all.

• repeated-truncate - Only append and truncate* can be used. Classic ap-
proach, which mimics linear undo behavior, redo is still not supported.

• Truncate/re-append - All three operations are permitted. Truncated com-
mands are stored in an auxiliary script and they can be reapended in future.
The auxiliary script is not deleted after a new command is appended. This
version is more powerful than classic linear undo, because it allows using a
truncated command even after a new command was appended to the script.
This mode is the most interesting one.

During the work with the application commands are created, appended to
the script and executed. The script incrementally grows in the same way as the
history buffer does - until this point, script model acts in a usual way. But when
undo is initiated, the so-called complete rerun strategy is used.

The complete rerun means, that the state of all constructs is set to the
initial one and the modified script is executed, starting with the oldest command.
Another option is to perform only partial rerun - there are several checkpoints,
when the state of constructs (or the whole project) is saved, and rerun is then
performed only from the nearest checkpoint.

The interesting thing about this model is, that the programmer does not have
to define inverse commands, which negate the impact of the original command.
A command may really be represented by one dummy class, which does not store
any other information. This approach can be very useful, when there are no
dependencies among different commands on the stack (for example text editors
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typically have no dependencies). In this situation, the behavior may be similar
to the selective undo.

The biggest problem of this model is the complete rerun strategy. During the
user’s work, script may become very long and execution of all commands may
take a serious time, especially for embedded systems. The partial rerun improves
the performance in a situation, when the user wants to undo a command not
so far away from the current state. The price is higher memory consumption,
because more states of the project have to be saved.

4.2.2 The US&R Model

The US&R model [18] was first presented in 1984 and mainly extends the redo
functionality of traditional linear undo and adds a special action to undo and
redo - skip. Commands (called actions in this model) are stored not in the classic
flat history buffer, but in a history tree - a special buffer, which allows the user to
create branches in each of its nodes. There is no limit for the number of branches,
nor there is a limit for the length of one branch. Each branch is again a history
tree. Exactly one branch is marked as active branch - all executed commands
will be appended to this branch.

The history tree behaves during undo similarly to the history buffer - it
performs undo on commands in the active branch (let us call it A and denote
the commands in this branch A1, A2...) one by one. The main difference can be
seen when the user invokes a new command and there is at least one command
ready for redo. Linear undo model would discard all commands to redo and the
new command would replace them. The US&R model does not discard these
commands, but another branch in the history tree is created (let us call the
branch B, commands in this branch will be denoted B1, B2 and the command in
which branch B was created AB branch). This branch is set as “active”, which
means, that all other actions will be performed in this branch. If the user later
decides, that the undone commands in branch A were actually correct, he/she
can re-invoke them by undoing all commands from B branch back to the point
AB and then calling a redo. In this situation, there are both branches available,
so the application has to ask the user, which path is the right one. The user
chooses A and redoes all the commands from A. An example of this behavior can
be seen in Figure 4.4.

There is another feature in this model, which makes it very powerful - the
skip operation. This operation works only with undone commands and does only
one simple thing - it jumps over the command without redoing it, making the
next command in branch (if any) ready for redo. Typical usage would be to undo
commands to a certain point and then performing redo of ”wanted” commands
and skipping unwanted. In fact, this simple action allows the user to undo any
command in the history tree which makes this model suitable to “selective undo
ready”.

4.2.3 The Triadic Model

The triadic model [19] was presented in 1988 and it is another model, which
allows the user to undo any command in the history buffer.

20



3

5

7

Branch A

User can later undo branch B 
and return back to the 
branch A.

New command will be added here. 

8

Undo/redo tree

Active branch

1

2

AB

4

6

A1

A3

A4

B1

B2

Branch B

Figure 4.4: Branching with the US&R model.

The approach of triadic model is a mix between linear undo and script mod-
el. The model uses flat history buffers, which are only storage for commands.
Executed commands and undone commands have separate buffers. From users’
perspective, there are three visible operations:

• Undo - Takes the top command from executed commands buffer, executes
the inverse operation of this command and moves the command to the top
of the undone commands buffer.

• Redo - Takes the top command from undone commands buffer, executes
the command and moves it to the top of the executed commands buffer.

• Rotate - Takes the top command from undone commands buffer and moves
it to the bottom of the buffer.

These operations are originally defined more formally and support multiple ar-
guments (such as number of commands to undo and which buffers should be
affected).

The first execution of command is almost similar to the linear undo model -
the command is executed and pushed to executed commands buffer. The only
significant difference is, that undone command buffer remains untouched, even if
it is not empty. The undo operation is performed in a similar way as in the linear
undo model - only the top command from executed commands buffer can be
popped (taken away) and undone. The real power of this model comes with the
undone commands buffer and rotate operation. The user can undo any number of
commands (which also means transfer of this command to the undone commands
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buffer) and then rotate the buffer. By rotation of buffer, the user can select any
command to redo. The authors claim and prove that this model allows:

• Retraction - Reverts the effects of the last commands.

• Insertion - Inserts a sequence of commands into the middle of the executed
commands buffer.

• Extraction - Extracts a sequence of commands from the middle of the
executed commands buffer.

• Replacement - Replaces a sequence of commands in the middle of the
executed commands buffer by another sequence of the commands.

• Transposition - Switches positions of two sequences of commands in the
executed commands buffer.

• Reversion - Allows the user to redo a command even if new commands
were executed.

This model is interesting in the fact, that it uses inverse operations to undo
commands, but the outcoming results are similar to the script model. If the
user wants to undo command C in the middle of the executed commands buffer,
he/she must prior undo all commands above and then redo all commands except
the desired one. These commands are being redone in the state, when command
C has never been executed, which is the approach introduced by the script model.

Schema of triadic model is depicted in Figure 4.5.

Undo stack Redo stack

1

2

3

4

5

6

7
5

8

Command at this position
will be executed, when redo
is invoked

Operation rotate moves 
commands in Redo stack 
according to arrows

Figure 4.5: Schema of triadic models - two stacks and operations.
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Model Stable execu-
tion

Stable result Commutative
undo

Minimalistic
undo

Linear undo
model

yes yes yes no

Script model no no yes yes
US&R model yes yes yes yes
Triadic model yes/no1 yes/no2 no no
Direct selec-
tive undo

no no yes yes

Table 4.1: Properties of undo models.

4.2.4 Direct Selective Undo

Direct selective undo [6] is a model, which results from the classic linear undo.
Execution of the commands is done in a usual way (the same as linear undo). Also
the history list may be presented in the form of a simple list with the commands.

When the user picks up a command to undo (C1), this command is at first
examined by the application and then a new command (C2) is created in such
a way, that the effect of C2 negates the effect of C1. C2 is then executed and
appended to the history buffer like an ordinary command. Redo can be performed
simply - the original command is copied, executed and appended to the history
buffer. This model never shortens the history buffer, even undo means appending
a “”new” command to it.

The most difficult task is probably to find a command, which negates the
effect of the command to undo. The technical solution can be almost similar to
linear undo - the original command may have a method undo(), which returns
a new command to execute. Another option is to have an undo manager, which
understands the structure of the commands and therefore it can create an inverse
command.

4.3 Comparison

There are six model presented, each presents one way, how the undo functionality
can be done.

We start with a table 4.1 which shows properties supported by particular
models.

Stable execution property can be determined very easily - if commands can
be undone and redone in different document state in which they were originally
executed, the property does not hold. Stable result property holds true, if
the model itself cares about document stable state - if there is a mechanism
which avoids unstable state of document, the property holds, otherwise not.
Commutative undo property does not hold true if two identical states of history
buffers may lead to two different states o the document. The minimalistic undo

2Yes without rotate support, no with rotate support.
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Model Undo Redo
Linear undo
model

The youngest executed. The oldest undone.

Script model Any executed. Any undone.
US&R model The youngest executed. The oldest undone in each

available branch.
Triadic model The youngest executed. Any undone.
Direct selec-
tive undo

Any executed. Any undone.

Table 4.2: Which command can be selected for undo and redo

Model Method of undo
Linear undo
model

Executing inverse operation to command.

Script model Removing a command from the history buffer, which is
then replayed.

US&R model Executing an inverse operation to command.
Triadic model Executing an inverse operation to command.
Direct selec-
tive undo

Appending an inverse operation to history buffer and
execution.

Table 4.3: Method of undo

property holds, if during undo of any command (even middle of the stack) only
the requested command and commands which depend on the requested command
are undone.

The next important difference between the models is which commands may
be selected for undo a and which for the redo. The table summarizes 4.2 results.

The table 4.3 shows the method, which is used to negate effects of executed
an command.
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5. Analyses of Selective Undo

The previous chapter presented several non-linear undo models, which offer an
interesting view, how undo management could be done. Some models also deal
with so-called selective undo. Selective undo is not a model, but it is a feature,
which a model can offer. This chapter defines this feature, discusses issues
connected with the support of selective undo and offers possible solutions.

Some of the presented models have already solved these issues, some let the
developers to deal with them, according to needs of the application.

5.1 Selective Undo Definition

There is no clear definition of “What selective undo is”. Most papers focus on
defining the correct result of the undo/redo operation and then they construct
their model to give this required result. But the definition of selective undo is
different, because it is not just another property, which holds true or not. The
important question in this case is not “What should be the correct result of
undo/redo operation?”, but “What functionality should the model offer to the
user?”.

For the purpose of this thesis, we have selected fundamental functions the
user should be allowed to do, if we want to say, that a particular model supports
selective undo:

• The user should be able to undo any executed action in the history buffer.
Actions independent of the action being undone should be left untouched.

• The user should be able to redo any undone action in the history buffer.
Actions independent of the action being redone should be left untouched.

• No command should be ever automatically discarded from history buffer.
Exception can be made on direct user’s request to discard an undone com-
mand.

These requirements are common and the definition does not specify, what
should be the correct result of selectively undone or redone command - there
are several different ways how to achieve this functionality. Questions about the
result of operations are further discussed in Section 5.2.1.

First two requirements are natural - if we talk about the selective undo, it
should allow the user to select any command for requested operation. The third
requirement results from non-existence of the top of the stack in case of selective
undo.

5.2 Approaches and Behavior

If we look more deeply at the non-linear models presented in Chapter 4, which
are suitable also for selective undo, we can see two major approaches to handling
the commands in the history buffer. The first one takes history buffer as script
and performs undo by returning to certain state of document and re-executing
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all commands without the undone command. This approach is represented by
the script model. The second approach really traverses back through the history
buffer and negates or inverses the effect of undone command. The good example
can be the direct selective undo.

Both approaches are able to fulfill requirements for selective undo, but results
of operations can be very different.

• Script undo models - The correct result of undo is equal to the state of
the document, in which the undone command has never been executed. The
command is moved out of the script and the script is then run again without
the command. The most interesting fact is that if the undone command
influenced in some way any other later command, this influence exists no
more.

• Direct models - The correct result of undo for these models is equal to
the state of document, in which all commands have been normally executed
and only the effect of the undone command was reversed. In other words, if
there is an influence of an undone command on any other later command,
this influence is still valid and it is not negated.

The basic difference between both approaches is illustrated in Figures 5.1 and
5.2, which shows a simple image editor. The initial sequence of commands is in
both cases the same. The user draws circle C1, then he/she decides to fill it with
red color and then the circle is copied (C2 is created) and moved left. And finally
the user decides to undo command 2 “fill C1 with red color“.

Original situation

After undo of command 2

1

1

2

2

3

4

3

4

Create C1

Create C1

Fill C1

Fill C1

Copy C1 -> Create C2

Copy C1 -> Create C2

Move C2 left

Move C2 left

C1

C1

C2

C2

Figure 5.1: Undo with script like model.
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Original situation

After undo of command 2
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Fill C1

Copy C1 -> Create C2

Copy C1 -> Create C2

Move C2 left

Move C2 left

C1

C1

C2

C2

Figure 5.2: Undo with direct like model.

5.2.1 Correct and Good Result

It can be observed, that the results of undo in script-like models and direct-like
models are different. Then the fundamental question is “Which one is correct?”.

The answer is that both, because both models follow correctly their inner
rules, how undo should be performed. The result of undo is correct as long as it
brings the document into the state, in which it should be after undo operation,
according to the selected model. It means, that the result of undo operation (and
subsequently the state of document) is really dependent on the used undo model.

Better, but much harder, question would be “Which one is better?”. This
question cannot be answered until there is some definition of quality of undo
result. The quality can be very individual and the approach which is appreciated
by one user can be disliked by another. There is a study [8], which evaluated
users’ preferences for selective undo. The subjects had a figure with several
shapes and the order, in which the shapes were drawn. The question was, what
is the result after undoing particular steps. The majority of subjects has chosen a
result similar to cascade selective undo. The problem of study is a lack of subjects
(only 29 correct responds) so the results are not very predicative.

For the users, it is generally important to be able to estimate the result of the
operation. The cooperation with the machine, which one cannot master, can be
very frustrating and the users usually do not enjoy work with such an application
[14]. For this reason we can assume for the purpose of this thesis, that good result
is the one, which can be easily predicted by the user of the application. Because
even if the model acts a in really strange way, it can be used as long as it acts
like the user expects. When the user cannot predict the result of undo operation,
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either due to error in the model itself or due to the complexity of the model, the
model is unusable.

From this perspective, better results come from models similar to direct
selective undo model - they are focused on inverting the effect of an single action.
Results of script-like models can become very complex, especially when the user is
undoing a command, which is deeply nested somewhere at the bottom of history
stack.

5.3 Issues

Almost all models for selective undo need to solve several issues, which all come
from one simple fact - commands may be undone or re-executed outside the
context, in which they were originally executed - they break the stable execution
property.

This fact is not a problem as long as there are no dependencies among com-
mands. Regardless the chosen approach and model, as long as the commands are
perfectly independent of each other, they can be undone in any order. Depending
on the application, it is also possible that the commands may be shuffled and re-
executed in any order.

But the real-world applications usually do not use such a simple environment.
As illustrated in Chapter 3, even very simple applications like text editors with
a support of text formating bring dependencies among commands and undoing
commands in other order than linear may lead to unstable state of the document
or program.

There are three main issues - dead references, modify already modified and
discard commands problem.

5.3.1 Dead References

The dead references are probably the most serious problem and the next two
issues are sometimes considered as sub-issues of this one.

In case of using (well-coded) linear undo, it can never happen, that some
command would try to modify or destroy a construct, which does not exist. The
linearity assures that every action will be undone or re-executed in the same
document state in which the document was during the original execution [6].
This implies, that if the command was once executable, it will be executable also
during redo.

But the selective undo functionality cannot be achieved with linear undo
model. Commands may be undone in significantly different contexts than they
were originally executed. The main problem is, that constructs which are being
modified by these commands may be in different states or may not even exist.

Destroy or Modify Non-existing Construct

The problem is as follows:
We have a construct A, which has been created using command C1. Construct

A is later modified by commands C2 and C3. Finally, the user decides that
construct A is not needed and it is destroyed by command C4. Construct A no
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longer exists, so every reference or pointer to it is invalid. Then, the effect of
undo C1, C2, C3 is not clearly defined, because they would modify or destroy a
construct, which no longer exists.

It is probably the most common issue which has to be handled.

Create Already Existing Construct

This issue is a bit artificial, but it can occur in case of successful solution of
“destroy or modify a non-existing construct” issue. There is a situation in which
one construct may be created twice:

The basic situation is similar to the previous one - we have a construct A,
which has been created using command C1, modified by C2 and C3 and finally
destroyed by C4. Now suppose, that we are able to undo C1, whose effect is silent
success (it does nothing). In that case, there are two commands in the history
buffer, which create construct A (redo C1 and undo C4). If both actions are
performed, A is created twice.

Possible Solutions

There are two basic solutions for dead references and they differ in the level,
where they are used:

• Smart commands - The design of the command is the fundamental part
of each undo model and command structure can determine abilities of
particular models. Commands tend to be minimalistic. This requirement is
understandable - commands are quite common in the sense of quantity and
during a long work with application, lot of (thousands of) commands may
be generated. If each generated command is stored in the history buffer,
the memory consumption may grow into unacceptable values, especially for
embedded devices.

The goal is to design a command in such a way, that calling the undo()
or execute() method can deal with dead references. Each command at
first checks, whether all references or pointers are valid, i.e. the affected
objects really exist. Only if this check is successful, the requested action is
performed. If some reference is marked as dead, there are again two possible
solutions:

– Silent success - The command does nothing and it is marked as if the
action was performed). The command must not have any side-effects,
which are not related to the modified construct, because these side-
effects would be also skipped.

– Error is raised - The user is informed, that the action cannot be
performed. This solution is technically less challenging and easier to
implement, but it can be annoying to the user. The error information
may supply also a possible solution of this situation which helps the
user to get the document into desired state, although it negates the
simplicity of this solution.
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• Cascade undo - This solution is not command centered, but the logic
is implemented in the undo manager. The manager executes and undoes
commands in such a way, that there will be no dead reference in the history
buffer. The commands have to provide information about constructs they
affect, on which commands they depend and what is the action they perform
(create, modify, destroy). With these information, the manager is able to
determine the correct action:

– Undo of create construct command - All commands, which affect the
construct should be also undone. The construct will no longer exist,
so there should be no command to undo, which affects it.

– Undo of modify construct command - If there is a destroy command
for the modified construct, it should be undone. The construct must
exist, so if it was destroyed, it must be re-created (by undoing the
destroy command).

The smart commands solution can be used for both script-like and direct-like
model. Script-like models would probably prefer the version with silent success,
because it does not interrupt script run. Cascade undo is more natural for direct-
like models, because their history stacks are able to search commands anyway.

5.3.2 Modify Already Modified

This issue does not affect only selective undo models and it is rather logical than
technological. The situation is as follows:

We have a construct A which has property P of type string. After the creation
of A, P has value “abcd”. Then two commands C1 and C2 are invoked, both
modifying the value of P, C1 sets it to “efgh” and C2 to “ijkl”. Now consider the
selective undo of C1. The question is, what is then the correct value of P?

Basically, there are two possible values - “ijkl” or “abcd”. The script-like
models will restore the document to some state before execution of C1 and then
they will execute all commands without C1, including C2, which will set value
of P to “ijkl”. The effect of direct-like models depends on actual implementation
of commands, but a common solution would call the undo method of C1, which
would change the value to the previous one (from C1’s perspective) - “abcd”.

Until this point, both types of models behave in an expected way. But if we
go further:

After successful undo of C1, the user calls also undo on C2.
Script-like models will not touch the original value of P, because both com-

mands are now undone and so it remains “abcd”. The direct-like models will call
undo operation on C2, which similarly to C1 restores the previous value - now
“efgh”. This situation is interesting - both C1 and C2 are undone but value of P
is equal to the state after execution of C1.

This little paradox results from the basis of the direct-like model - the result
of selective undo may really be dependent of the order, in which all commands are
undone (or redone). The value of construct or its property is set by last executed
or undone command, which affected this construct or property. This issue is also
discussed in [14].
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Possible Solutions

In case of script-like models, there is nothing to solve, it behaves in an expected
way. Direct-like models have two solutions:

• Let it be. - This behavior can be considered as strange from user’s
perspective, but it does not lead to unstable document or program state.
The user should be informed in some way (for instance on the visualization
of the history stack), what will be the result.

• Voluntary cascade undo. - All younger modification commands, which
affect the same construct, are also undone.

5.3.3 Discard Commands Problem

In linear undo model, commands above the stack top are usually discarded from
the stack after a new command has been executed. This behavior is necessary,
because there must be a place for the newly executed command and executed
and undone commands cannot be mixed together.

The selective undo definition specifies, that no commands should be discarded
from the stack. It is necessary, because selective undo models usually do not
have a pointer to the top of the history buffer and therefore the model cannot
determine, which commands should be discarded.

But there is a problem - when the user undoes a command, his/her intention
is to negate the effect of the command. The effect of a command is negated,
because the effect is probably unwanted by the user and if effect is unwanted, the
command will probably not be redone again - redo is often used just to correct
badly selected undo operation. If this logic is true, the history stacks can be filled
with many undone commands, which will never be redone, because their effects
are useless for the user. This fact will make orientation in the stack harder and
the user may spend valuable time just by searching, which command should be
undone.

Possible Solutions

• Discard operation - The user can manually select a command, which will
be discarded from the history buffer.

• Linear-like discarding - If there is a continuous sequence of undone
commands at the end of the buffer, all commands in this sequence will
be discarded when a new command is executed.

• The oldest must go - Each history buffer holds only limited number of
commands and when this number is reached, the oldest command in the
buffer (regardless its state) is discarded.

It should be noted, that this issue does not have to be solved, because it will
not bring the document into an unstable state. However, possibility of discarding
commands from the the buffer can simplify work with the model.
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6. Proposed Algorithms

This chapter presents three models for undo in complex environments. It starts
with more precise definition of the environment and then defines the models.

6.1 Environment

Before we can start with algorithms, we need to clearly specify the environment,
in which our models will operate. This environment aims to match real-world
applications as much as possible.

6.1.1 Document

The most high-level unit of environment is a document, also called project. It can
be considered as a giant container, which creates a big envelope around all other
objects. It voluntarily provides methods to serialize and de-serialize its content
(usually used to save and later load the work), print results, convert the content
to some interchange format.

A document is a standalone unit - if a system supports simultaneous work
with multiple documents, they are independent and cannot interfere with each
other.

It is also common, but not mandatory, that documents can be transfered to
other instances of the application.

Example

The good examples of documents are:

• Text file - A set of characters.

• UML project - A set of UML classes and relations among them.

• Scalable vector graphics [2] file - A set of defined graphical objects and
shapes.

6.1.2 Constructs and Properties

Constructs are defined in Section 3.1 and they are used according to this defini-
tion.

All constructs reside in document’s construct pool, which is some suitable data
structure used to store constructs. Constructs are shared among workspaces and
one construct may be visualized on several workspaces.

6.1.3 Workspace and History Buffers

A workspace is an interface for the user, which he/she can use to modify the
content of the document. One document may be modified from several workspaces
and also one construct may be viewed in several workspaces.
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Document

...

Workspace W1 Workspace Wn

...
Construct pool

C1 C2 C3 C4 Cn

Figure 6.1: Schema of one document with several constructs (C1..Cn) and
workspaces(W1..Wn).

6.2 Extended Linear Undo

The extended linear undo model is the first new undo model presented in this
thesis. The main motivation for creating this model was a need to have model,
which is able to manage undo and redo in a safe and user-friendly way in case of
several connected history buffers.

6.2.1 Requirements

This model is the most basic one. It should be intuitive for the user - act like the
usual linear undo model does - and easy to implement in existing applications.
If an undo will be done in one workspace, it should not affect other workspaces,
unless it is necessary.

The properties to hold true should be:

• Weakened stable execution property - Although selective undo is not
the goal, stable execution property would mean implementing global linear
undo over all history buffers, which is not the aim.

• Stable result property - Model would not be usable without satisfying
this property.

• Commutative undo property - Important for intuitive usage.

The behavior of the algorithm results from linear undo model:

33



1. At most one command will be offered in each workspace for undo and redo.

2. Command offered for undo will be the oldest executed command in the
history buffer.

3. Command offered for redo will be the youngest undone command in the
history buffer.

4. After successful call of execute operation on command C in workspace W,
command C will be executed and it will be the first command to undo in
workspace W.

5. After successful call of undo operation on command C in workspace W,
command C will be undone and it will be the first command offered to redo
in workspace W.

6. After successful call of redo operation on command C in workspace W,
command C will be redone and it will be the first command offered to undo
in workspace W.

7. All commands to redo in workspace W are discarded after a successful
execution of a new command in workspace W.

If the model satisfies all the properties and acts according to the specified
behavior, we can say, that it is correct.

6.2.2 Principle and Analysis

The key idea of the extended linear undo is to take a plain linear undo model
and modify it in the way, that it suits for environment with several workspaces.

To satisfy intuitiveness and easy implementation for existing applications,
it would be useful, if each workspace would manage its own history buffer -
if a command is created in the workspace, it goes to the top of its buffer.
This approach results from one assumption: If a user is working in particular
workspace, he/she wants to undo or redo commands executed in this workspace
prior to commands in other workspaces. It obeys locality of users’ work and
usually the user does not switch workspaces very often so it will bring the user
closer to feel like he/she is using regular linear undo model - he/she can undo or
redo only the commands, which are right bellow or above the stack top.

But we cannot simply perform undo in one stack without checking other stacks
for possible dependent commands - this would break the stable result property.
For this purpose, we need to know exact order of commands among stacks - it
can be simply achieved by sequence numbering of each command. During undo
of command C, we have to check all younger commands, if they depend or not
on C. This check must be done recursively, because all dependent commands will
have to be undone and also their dependencies need to be checked. A similar
situation is for the redo operation.

If there is at least one dependency to an other stack found, an action needs
to be performed:
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• In case of undo - Let us call the first dependent command in the particular
history buffer Cu. Then all commands in the history buffer above the Cu

need to be also undone.

• In case of redo - Let us call the first dependent command in the particular
history buffer Cr. Then all commands in the history buffer under the Cr

need to be also redone.

This behavior will be very similar to the linear undo, because in each history
buffer there will be just one continuous sequence of executed commands and one
continuous sequence of undone commands.

6.2.3 Data Structures and Algorithm1

At first we have to specify the data structures, that will be used in the algorithm.

Command

struct {
int sequence number ;
int k e y s o f a f f e c t e d c o n s t r u c t s [ ] ;
bool i s undone ;

void∗ use r data ;
} Command;

We use the extended variant of command. sequence number is a global unique
numbering among all commands, each created command has this increased by
one in respect to its predecessor. The array keys of affected constructs is a
collection of all constructs’ keys, which are either created, modified or destroyed
by this command. user data is a pointer to the implementation-specific data
structure used to perform actual work of command.

There are three functions directly related to Command structure:
• Execute(Command)- Executes command for the first time (Algorithm 1).

• Undo(Command) - Undoes the effect of executed command(Algorithm 2).

• Redo(Command) - Is used for subsequent executions, may be the same as
Execute (Algorithm 3).

Implementation of these three function are simple, see Algorithms 1, 2, 3.

Algorithm 1 Execution of command

1: procedure Execute(command)
2: command.is undone ← false
3: DoExecute(command.user data)
4: end procedure

1Data structures are written in C-like syntax, procedures in pseudocode.
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Algorithm 2 Undo of command

1: procedure Undo(command)
2: command.is undone ← true
3: DoUndo(command.user data)
4: end procedure

Algorithm 3 Redo of command

1: procedure Redo(command)
2: command.is undone ← false
3: DoRedo(command.user data)
4: end procedure

Functions DoExecute, DoUndo and DoRedo are command specific and their
implementation is dependent on command’s purpose. They perform the request-
ed actions. In a programming language with a support of classes and virtual
inheritance, these function (methods) would probably be virtual and overridden
for each particular class of command.

History buffer

struct {
Command command stack [ ] ;
int i n d e x o f t o p ;
int key o f workspace ;

} H i s t o r y b u f f e r ;

History buffer is also a simple structure. It consists of collection of com-
mands command stack[]. Index of top specifies the position, where top of the
stack is - boundary line between executed and undone commands. It it the
position in an array, where a new command can be added, in case of empty
command stack the value is 0. When a new command is executed and pushed to
the stack, it is increased by one; when a command is redone, it is also increased
by one; when command is undone, it is decreased by one. key of workspace

serves as a unique identifier of buffer.
There are also several functions, which control the history buffer. For simplifi-

cation, if a function argument is of type General collection, it can be called also
with type history buffer and then it operates of history buffer.command stack.
• ItemCount(General collection) - Returns the number of items in general

collection.

• Pop(General collection) - Removes the last item of collection.

• Push(General collection, Item) - Adds one item to the end of the col-
lection.

• GetCommandToUndo(workspace key) - Returns the first command under
the top of history stack (see Algorithm 4).

• GetCommandToRedo(workspace key) - Returns the first command on which
the top of the history stack points(see Algorithm 5).
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• DiscardRedoCommands(workspace key) - Removes all command above cur-
rent top oh the history stack (see Algorithm 6).

• MoveTopPointerUp(workspace key,n) - Moves pointer to the top of the
history buffer n positions up.

• MoveTopPointerDown(workspace key,n) - Moves pointer to the top of the
history buffer n positions down.

Functions ItemCount, Pop and Push are usually provided by the programming
environment or external library for managing collections, for implementation of
other function see Algorithms 4, 5, 6.

Algorithm 4 Get command to undo

1: procedure GetCommandToUndo(workspace key)
2: hist buff ← GetHistoryBuffer(workspace key)
3: if hist buff.index of top = 0 then
4: return NULL
5: end if
6: return hist buff.command stack[hist buff.index of top - 1]
7: end procedure

Algorithm 5 Get command to redo

1: procedure GetCommandToRedo(workspace key)
2: hist buff ← GetHistoryBuffer(workspace key)
3: if hist buff.index of top = ItemCount(hist buff.command stack) then
4: return NULL
5: end if
6: return hist buff.command stack[hist buff.index of top]
7: end procedure

Both functions GetCommandToUndo and GetCommandToRedo at first check,
whether there is a suitable command to undo or redo and then returns NULL
or the desired command. index of top is always index to the position, where a
newly executed command should be placed.

Algorithm 6 Discard all commands to redo in workspace

1: procedure DiscardCommandsToRedo(workspace key)
2: hist buff ← GetHistoryBuffer(workspace key)
3: for i← hist buff.index of top to ItemCount(hist buff.command stack) do
4: RemoveIndexFromCollection(hist buff.command stack, i)
5: end for
6: end procedure

This function simply takes all commands above the index of top and removes
them from the collection command stack. MovePointerUp/Down only increas-
es/decreases the value of variable index of top and therefore the implementation
would be simple.
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Global History Buffer

As stated in Section 6.2.2, it will be needed to search through all commands in
the system for possible dependencies. For this purpose, we create a collection of
pointers to commands.

struct Command∗ g l o b a l h i s t o r y b u f f e r [ ] ;

This collection is ordered in an ascending manner by sequence number of
commands and serves for simpler searching for dependencies - the function can
just iterate through the collection. In real implementation it can be replaced by
a linked list in the structure of command or just dropped, but searching function
will then have to find firstly on which stack is the command with the lowest
following sequence number.

6.2.4 Algorithm

The structures presented in the previous section are the essential ones, which are
needed to describe the algorithm. We start with two helper functions, which it-
erate through global command buffer and search for dependencies - Algorithms
7 and 8.

Algorithm 7 Undo dependencies searcher for Extended linear undo model

1: procedure FindDependentCommandsForUndo(command to undo)
2: index ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Affected history buffers
6: ahb ← GetHistoryBufferKey(command)
7: . Commands to undo
8: commands2undo ← command
9: for i = index + 1 → ItemCount(global command buffer) do

10: comm ← global command buffer[i]
11: if comm.is undone then
12: continue
13: end if
14: if ahb ∩ GetHistoryBufferKey(comm) then
15: ack ← ack ∪ comm.keys of affected constructs)
16: commands2undo ∪ com2undo ∪ command
17: else if ack ∩ comm.keys of affected constructs then
18: ack ← ack, ∪ comm.keys of affected constructs)
19: ahb ← ahb, ∪ GetHistoryBufferKey(comm))
20: commands2undo ← commands2undo ∪ command
21: end if
22: end for

return commands2undo
23: end procedure

This procedure takes only one argument - the starting command. It incre-
mentally builds up three collections:
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1. Affected construct keys (ack) - Initialized with the keys of affected

constructs collection of the starting command.

2. Affected history buffers (ahb) - Initialized with the key of history buffer of
the starting command.

3. Commands to undo (commands2undo) - Initialized with the starting com-
mand.

It iterates in ascending order through all the commands in the system and
searches for commands which:

• are located in the buffer, which is in affected history buffers. (If so, it
means that at least one construct from this buffer was previously selected
for undo.)

• affect one of constructs which are in affected construct keys. (If so, it
means that the command is dependent on some other command, which was
previously selected for undo.)

If command CtoUndo satisfies at least one of these conditions, it is added to
the commands2undo collection, constructs CtoUndo modifies/creates/deletes are
merged with ack collection and the buffer, in which CtoUndo resides, is added into
ahb collection. After iterating through all younger commands, the commands2undo
collection contains all commands to perform successful undo.

The problem is similar in case of redo operation of command CtoRedo, but task
is a bit different - we have to find all commands, on which the CtoRedo is dependent.
The function FindDependentCommandsForRedo (Algorithm 8) does almost similar
work as FindDependentCommandsForUndo (Algorithm 7), but backwards.

FindDependentCommandsForRedo returns all commands, on which CtoRedo

command is dependent.
Once we are able to construct a collection of all commands, which have to be

undone or redone, we can perform the actual execution, undo and redo. All three
procedures (see Algorithms 9, 10 and 11) take as argument key of the workspace,
where undo is being performed, procedure ExecuteCommand must also have access
to particular command.

ExecuteCommand (Algorithm 9) is a simple procedure - it only calls function
Execute() on its argument CtoExecute, checks whether this execution has been
successful and if yes, it removes all commands above the stack top (undone
commands) from the buffer, pushes CtoExecute to the buffer and moves pointer
to top of the stack one position up. After calling this function, there are no
commands for redo and pointer to the top points one position above the last
command in the buffer, which is CtoExecute. CtoExecute is then appended to the
global history buffer (it can be appended to the end, because it surely has
bigger sequence number than any other command).

The UndoCommand function (Algorithm 10) function uses previously developed
function FindDependentCommandsForUndo, which builds up a collection of all
dependent commands. When a collection is built, rest of the job is simple. It is
just needed to reverse the collection - the oldest command is in the first place
and undo has to be done starting with the youngest command.
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Algorithm 8 Redo dependencies searcher for Extended linear undo model

1: procedure FindDependentCommandsForRedo(command to redo)
2: i ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Affected history buffers
6: ahb ← GetHistoryBufferKey(command)
7: . Commands to redo
8: commands2redo ← command
9: . Gets a key of history buffer in which the command is present

10: for i = i - 1 → 0 do
11: comm ← global command buffer[i]
12: if ¬ comm.is undone then
13: Continue
14: end if
15: if ahb ∩ GetHistoryBufferKey(comm) then
16: ack ← ack ∪ comm.keys of affected constructs)
17: commands2redo ← commands2redo ∪ command
18: else if ack ∩ comm.keys of affected constructs then
19: ack ← ack ∪ comm.keys of affected constructs)
20: ahb ← ahb ∪ GetHistoryBufferKey(comm))
21: commands2redo ← commands2redo ∪ command
22: end if
23: end for

return commands2redo
24: end procedure

Algorithm 9 Execute command

1: procedure ExecuteCommand(workspace key, command)
2: history buffer ← GetHistoryBuffer(workspace key)
3: if E thenxecute(command)
4: DiscardRedoCommands(history buffer)
5: Push(history buffer, command)
6: MoveTopPointerUp(history buffer,1)
7: Append(global history buffer, command)
8: return true
9: end if

10: return false
11: end procedure

The procedure RedoCommand (Algorithm 11) is almost similar to UndoCommand,
but FindDependentCommandsForRedo is used to built up the collection of depen-
dent commands.

40



Algorithm 10 Undo command

1: procedure UndoCommand(workspace key)
2: workspace ← global workspace collection[workspace key]
3: com2undo ← GetCommandToUndo(workspace)
4: . Command to undo
5: if com2undo ≡ NULL then return false
6: end if
7: com2undo collection ← FindDependentCommandsForUndo(com2undo)
8: . Collection of commands to undo
9: Revert(com2undo collection)

10: for i ← 0 to ItemsCount(com2undo collection) do
11: Undo(com2undo collection[i])
12: history buffer ← GetHistoryBuffer(com2undo collection[i])
13: MoveTopPointerDown(history buffer,1)
14: end for
15: return true
16: end procedure

Algorithm 11 Redo command

1: procedure RedoCommand(workspace key)
2: workspace ← global workspace collection[workspace key]
3: com2redo ← GetCommandToRedo(workspace)
4: . Command to redo
5: if com2redo ≡ NULL then return false
6: end if
7: com2redo collection ← FindDependentCommandsForRedo(com2redo)
8: . Collection of commands to redo
9: Revert(com2redo collection)

10: for i ← 0 to ItemsCount(com2redo collection) do
11: Undo(com2redo collection[i])
12: history buffer ← GetHistoryBuffer(com2redo collection[i])
13: MoveTopPointerUp(history buffer,1)
14: end for
15: return true
16: end procedure

6.2.5 Correctness

This section presents proofs, that the algorithm itself is correct and gives the
required results. To prove this, we need to prove that all properties declared
to hold true really hold true and the behavior matches the behavior specified in
requirements section.

Functions dealing with command structure

All functions dealing directly with commands - Execute, Undo and Redo are
considered to be correct. They only check, whether operation can be performed
and then call the command-specific function.
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Functions dealing with history buffer structure

The same approach can be used for most of functions manipulating with history
buffer. ItemCount, Pop, Push are provided by implementation of the underlaying
collection. MoveTopPointerUp/MoveTopPointerDown only increases/decreases a
variable, which is obviously correct.

Theorem 1. GetCommandToUndo returns a command at position index of top−
1 or NULL, if such a command does not exist.

Proof of Theorem 1. To prove this, we have to evaluate function flow. At first it
gets correct history buffer, then it tests index of top if it is 0. If so, it returns
NULL, if not, it returns hist buff.command stack[hist buff.index of top -

1], which is the command at position index of top− 1.
The index of top is initialized with zero, increased by one when a command

is added and executed or redone and decreased by one, when a command is
undone. Executed command at position index of top − 1 does not exist if and
only if the stack is empty ( index of top = 0 ) or all commands are undone (
index of top = 0 ).

Theorem 2. GetCommandToRedo returns a command at position index of top

or NULL, if such a command does not exist.

Proof of Theorem 2. GetCommandToRedo gets at first correct history buffer,
then it tests index of top if is equal to ItemCount(command stack). If so, it re-
turns NULL, if not, it returns hist buff.command stack[hist buff.index of top,
which is command at position index of top.

The undone command at position index of top does not exist if and only if
history stack is empty or all commands in the history stack are executed.
If stack is empty, ItemCount is 0 and index of top also. If all commands are
executed, index of top is equal to ItemCount.

Function DiscardCommandsToRedo only removes all commands at higher po-
sition than index of top. It performs this operation using function provided by
collection management, which is considered to be correct.

Algorithm

When we know, that functions dealing with the data structures are correct, than
we can prove correctness of the algorithm.

We start with one simple invariant.

Invariant 1. The value of index of top variable for each history buffer after
finishing undo, redo or execute operation is equal to index of last executed com-
mand plus one. All commands at positions less than index of top are executed,
all other commands are undone.

Proof of Invariant 1. After buffer initialization, buffer is empty, index of last
executed command is not-defined and value of index of top is set to zero.

Execution of command adds one executed command to the position of index
of top and increases index of top by one. Discarding undone commands at
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positions higher than index of top does not affect the value of index of top.
Invariant holds.

Redo of command executes command at the position index of top and in-
creases index of top by one. Invariant holds.

Undo of command undoes the command at the position index of top −1
and decreases the index of top by one. Invariant holds.

There are no other functions which would change the value of index of top

nor add or remove commands from the history buffer.

This invariant assures, that operations performed on the one buffer do not
break conditions for linear undo model.

Now, we should prove that both functions which search for dependent com-
mands always find all dependent commands.

Theorem 3. Function FindDependentCommandsForUndo will return a collection
of commands ComstoUndo, which contains all executed commands younger than
its argument CtoUndo which are dependent on CtoUndo. If dependent command
Cdep is found in history buffer HBi, the returned ComstoUndo will contain also all
commands in HBi older than Cdep and younger than CtoUndo.

Proof of Theorem 3. Suppose, that there is executed command Cdependent younger
then CtoUndo, which is transitively dependent on CtoUndo or there is an exe-
cuted command CsameStack also younger then CtoUndo, which is located in the
history bufferHBx, where already at least one command younger than CsameStack

is selected to undo, and none of Cdependent and CsameStack is present in ComstoUndo

after successful call of FindDependentCommandsForUndo.
There are total n commands in the global history buffer which are ran-

domly distributed into m history buffers. According to Invariant 1, if there is
undone command Cundone belonging to history buffer Ha, all younger commands
belonging to Ha are also undone.

The function creates two collections - ack (affected construct keys) and ahb

(affected history buffers). The first one is initialized with keys of affected

constructs of CtoUndo and the second one by key of history buffer (same as
workspace key) to which CtoUndo belongs.

The function iterates through all commands in global history buffer from
older to younger, starting with direct successor of CtoUndo. Each such a command
Ci is

• added into collection ComstoUndo AND

• its keys of affected constructs collection is merged with ack collection
AND

• the key of history buffer to which it belongs is merged with ahb collection

if at least one of these two conditions hold true:

• The set of keys of affected constructs of Ci intersects with ack.

• The key of history buffer to which Ci belongs intersects with ahb.
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The first condition is true if and only if Ci affects a construct, which was
already touched by one of constructs in ComstoUndo. Because ComstoUndo was
originally initialized with the keys of affected constructs of CtoUndo, Ci is
transitively dependent on CtoUndo.

The second condition means, that if the key of history buffer Hi, to which Ci

belongs, is already in ahb collection, a command older than Ci from the Hi has
already been selected selected for undo.

But that means, that both commands Cdependent and CsameStack cannot exist,
because they would be selected to undo.

Theorem 4. Function FindDependentCommandsForRedo will return a collec-
tion of commands ComstoRedo, which contains undone commands older than its
argument CtoRedo on which CtoRedo depends. If a dependent command Cdep is
found in the history buffer HBi, the returned ComstoRedo will contain also all
commands in HBi younger than Cdep and older than CtoRedo.

Proof of theorem 4. Suppose, that there is an undone command Cdependent older
then CtoRedo, on which CtoRedo (transitively) depends or there is an undone com-
mand CsameStack also older then CtoRedo, which is located in history buffer, where
already at least one command younger than CsameStack is selected for undo, and
none of Cdependent and CsameStack is present in ComstoRedo after successful call of
FindDependentCommandsForRedo.

The function creates two collections - ack (affected construct keys) and ahb

(affected history buffers). The first one is initialized with keys of affected

constructs of CtoRedo and the second one with the key of the history buffer to
which CtoRedo belongs (same as the workspace key).

The function iterates through commands in global history buffer in di-
rection from younger to older, starting with direct predecessor of CtoRedo. Each
such a command (let us call it Ci) is

• added into collection ComstoRedo AND

• its keys of affected constructs collection is merged with ack collection
AND

• key of history buffer to which it belongs is merged with ahb collection

if at least one of these two conditions hold true:

• The set of keys of affected constructs of Ci intersects with ack.

• The key of history buffer to which Ci belongs intersects with ahb.

The first condition is true if and only if Ci affects a construct, which was
already touched by one of the constructs in ComstoRedo. Because the ComstoRedo

was originally initialized with the keys of affected constructs of CtoRedo the
CtoRedo is transitively dependent on Ci.

The second condition means, that if the key of history buffer Hi, to which Ci

belongs, is already in ahb collection, a command older than Ci from the Hi has
already been selected selected for redo.

But that means, that both commands Cdependent and CsameStack cannot exist,
because they would be selected to redo.
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Behavior

There are 7 points defined in requirement section, which specifies required be-
havior.Each one will be proved to be satisfied:

1. Both functions GetCommandToUndo and GetCommandToRedo returns at most
1 command.

2. It has been already proved in proof of correctness of GetCommandToUndo

function, that GetCommandToUndo returns the youngest executed command
in the history stack.

3. It has been already proved in proof of correctness of GetCommandToRedo

function, that GetCommandToRedo returns the oldest undone command in
the history stack.

4. Function ExecuteCommand executes a command CtoExecute, discards all com-
mands at positions greater or equal to index of top, places CtoExecute at
the position specified by index of top and increments index of top by
1. CtoExecute is then at the position index of top − 1 and it is also the
youngest executed commands in this stack ⇒ CtoExecute will be offered as a
first command to undo.

5. Function UndoCommand undoes a command CtoUndo at the position index of top−
1 and decrements index of top by 1. CtoUndo is then on the position
index of top and it will be offered as a first command to redo.

6. Function RedoCommand redoes a command at position index of top and
increments index of top by 1. Redone command is then on the position
index of top− 1 and it will be offered as a first command to undo.

7. Function ExecuteCommand executes a command CtoExecute, discards all com-
mands at positions greater or equal to index of top. All commands at
these positions are undone and no other undone command cannot be in
stack.

Properties

Now we can prove, that the extended linear undo model satisfies the requested
properties.

Weakened stable execution property. Proofs of Theorems 3 4 prove, that in case
of undo operation of command CtoUndo, all younger dependent commands are also
chosen to undo prior to CtoUndo and in case of redo of CtoRedo, all older commands
on which CtoRedo depends are chosen to redo prior to CtoRedo.

Commands are always undone or redone in the right order. In case of un-
do, function FindDependentCommandsForUndo will return collection ordered in
ascending order according to sequence number. The youngest command has to
be undone first and therefore function UndoCommand will reverse the returned
collection and then iterate from start to end, calling Undo on each member. In
case of redo, FindDependentCommandsForRedo will return in descending order
according to sequence number. The oldest command has to be redone first
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(it certainly cannot depend on any command in the collection), and therefore
function RedoCommand will reverse the returned collection and then iterate from
start to end, calling Redo on each member.

That means that weakened stable execution property holds.

Stable result property. The same argument as for proof of weakened stable exe-
cution property can be used. There is no dependent executed younger command
in the global history buffer during undo of command ⇒ the property holds
for undo. There is no older command in the global history buffer on which
requested command to redo depends, command are also undone from younger to
older and redone from older to younger ⇒ the property holds for redo.

Commutative undo property. There are total n commands in the global history

buffer which are randomly distributed into m history buffers. We have two
randomly selected commands Ci and Cj.

Undo operation. Both Ci and Cj are executed. There are three situations,
which have to be handled:

• Ci and Cj are independent and there is no intersection between their sets
of dependent commands, they can be undone in any order and the result
will be the same.

• Ci and Cj are independent but their sets of dependent command intersect
each other. Let us call the set of commands in the intersection CS. If
Ci is undone prior to Cj, all commands in CS are undone prior to Ci and
also prior to Cj. During undo of Cj, commands in CS are already undone,
so they will not be selected to undo anymore and only commands which
are dependent on Cj but not on Ci will be undone. Similarly for opposite
order of undo. Results will be the same, because actions over one particular
construct will be always done in one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during undo of Ci, Cj

will be undone prior to Ci and subsequent explicit undo of Cj will not be
possible, which satisfies commutative undo property. If Cj will be selected
to undo explicitly by the user before undoing Ci, the situation is similar to
the previous one.

Redo operation. Both Ci and Cj are undone. There are three situations,
which have to be handled:

• Ci and Cj are independent and there is no intersection between their sets
of commands on which they depend. Then they can be redone in any order
and the result will be the same.

• Ci and Cj are independent but their sets of commands on which they depend
intersect each other. Let us call the set of commands in the intersection CS.
If Ci is redone prior to Cj, all commands in CS are redone prior to Ci and
also prior to Cj. During redo of Cj, commands in CS are already redone,
so they will not be selected to undo anymore and only commands which
are dependent on Cj but not on Ci will be redone. Similarly for opposite
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order of redo. Results will be the same, because actions over one particular
construct will be always done in one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during redo of Ci, Cj will be
redone prior to Ci and subsequent explicit redo of Cj will not be possible,
which satisfies commutative undo property. If Cj will be selected to redo
explicitly by the user before redoing Ci, then the situation is similar to the
previous one.

6.2.6 Conclusion

The extended the linear undo model is a new model which solves the need of
undo in case of environments with several connected history buffers. It is based
on linear undo model and adds the dependency search through all command in
all workspaces. It can be used in existing systems which use linear undo model
with minimal changes in the background undo management.

The main advantage is the fact, that the user with experience with the linear
undo does not have to learn a new set of rules, how undo and redo is done. If
the user uses only one workspace, the model acts in the same like linear undo. In
case of multiple workspaces, undo in the current workspace looks like linear undo
and the user is only informed, that also other workspaces were possibly affected.

There is one difference compared to the linear undo model. Linear undo
model always brings the document into the state, in which it was once before.
The extended linear undo model can possibly create a new document states,
which is depicted in Figure 6.2.6.

6.3 Cascade Selective Undo Model

The previous algorithm can serve as a basic undo solution for environments with
several stacks.

But, suppose a simple example of two workspaces W1 and W2. In W1 the user
creates a construct A, using command C1. Then he/she moves to W2, creates
a link to the construct A using command C2 and then continues with his/her
work in W2. After some time the user decides that creation of construct A was
a mistake and there is no use for it - so he/she decides to undo it. Because the
command which created link to A in W2 is buried under many other commands,
he/she moves to W1 and calls undo. After this, work in both workspaces is
lost, because Extended linear undo model has found a dependency between the
creation command in W1 and creation command in W2 - both touches the same
construct. This means that C2 must be also undone, but to undo C2, every single
command above the C2 has to be undone. Situation is illustrated in Figure6.3.

This situation is extreme and usually this scenario does not mean undoing all
work, but even unnecessary undoing parts of the work may be annoying for the
user. The fact is, that if the other commands in the buffer W2 are independent
of command C2, they do not have to be undone and the system will still stay
in stable state (no dead references). This approach would be much more user-
friendly and it some situations, it would greatly save user’s time.
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...

C1

C2

C3

Cn

...

C1

C2

C3

Cn

ABC

Situation:
The user created red circle in W1 
using command C1, and then 
switched to the W2 where three 
other constructs were created.
These constructs are not connected
in any way with the red circle in W1.

After undo of C1:
The undo manager searches for 
dependencies and no 
dependecy is found. Therefore
no undo in W2 is done,
which brings document into 
a state, in which it was never before.

W2

W1

W2

W1

ABC

Figure 6.2: Undo in W1 causes creation of new state of document.
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C1

C2

C3

Cn

...

C1

C2

C3

Cn

ABC

Situation:
The ser created a red circle in W1 
using command C1. Then he/she 
visualized  the same red circle in 
workspace  W2  using command C2 
and then he/she used issued 
another commands in W2 (C3-Cn), 
none of them touching the red circle.

Afterf undo of C1:
Undo manager searches for 
dependencies and founds that C2
touches the same construct as C1.
C2 has to be undone and also each 
command above  C2.

Both workspaces are then empty.

W2

W1

W2

W1

Figure 6.3: Undo in W1 causes undo of all commands in W2.
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6.3.1 Requirements

This algorithm should solve the previous situation but not only this. If it is
allowed to undo commands in the middle of the stack, when dependency is found,
it is not a ptoblem to allow it on the user’s direct request ⇒ thn new algorithm
should offer the selective undo functionality.

Selective undo implies undoing an redoing commands out of their original
context, which means that stable execution property cannot hold true. However,
if dependencies are tracked well at least weakened stable execution property can
hold true and this is sufficient to keep the document in stable state.

The properties to hold true are:

• Weakened stable execution property

• Stable result property - Model would not be usable without satisfying
this property.

• Commutative undo property - Important for intuitive usage.

• Minimalistic undo property - Saves user’s time.

There is not a big difference as compared with the extended linear undo
model. Stable result and commutative undo property should hold true anyway
in each command based model, because without them the model could provide
unpredictable results. Support of minimalistic undo property is the solution for
the situation described in previous chapter.

The behavior of model:

1. Each executed command will be offered to undo.

2. Each undone command will be offered to redo.

3. After successful call of execute operation on command C in workspace W,
command C will be executed and it will become the last command in the
history buffer belonging to workspace W.

4. After successful call of undo operation on command C in workspace W,
command C will be undone.

5. After successful call of redo operation on command C in workspace W,
command C will be redone.

6. Commands are never discarded from the history buffer.

This behavior respects analysis provided in Section 5. The user will be able to
undo any executed and redo any undone command, no commands are discarded
from the buffer during execution of a new command. This function can be
voluntary added on direct user’s request. It could make history buffer more
transparent, when the user is sure that the particular commands are not needed
anymore. Removing commands from the stack will not bring the system into
unstable state.
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6.3.2 Principle and Analysis

The requested behavior differs a lot from the extended linear undo model, but
the key principles remains. The command can now be undone or redone in the
middle of the stack. This situation exists also in the extended linear undo model,
but when there is a request to undo a command, which is not located directly
bellow the top of the stack, all commands above it have to be undone. This
concept is mandatory, if the stable execution property should hold true.

But as long as only the weakened stable execution property is the goal, this
approach can be relaxed and commands which are not dependent on the command
being undone/redone, can be left untouched. However the weakened stable
execution property says that all dependent commands must be undone/redone
prior to the selected command and therefore the dependency search function must
be run to construct collection of dependent commands before actual undo or redo
is performed. This function can work similar as FindDependentCommandsForUndo
and FindDependentCommandsForRedo in the extended linear undo model, but if
a dependent command is found, it should not automatically select rest of the
stack for undo or redo.

The functions for execution, undo and redo will not be changed much. The
main difference is, that in case of undo and redo, there is no implicit command
to be undone or redone, so an additional argument has to be added.

Command

The structure command can remain similar to the command structure used in
the extended linear undo model and also the functions or methods dealing with
the commands stay unchanged. This will help the developers to switch from
one model to another, because only the internal logic will have to change. The
implementation of all commands, which is usually much more larger may stay
untouched.

History buffer

The structure history buffer itself must be changed. The variable index of top

has no longer meaning if we want to support selective undo. When this variable
is removed, history buffer becomes only the storage for commands and it would
make sense to make a two-dimensional array of commands, where first index is
key of workspace. Because we also want to stay compatible with the previous
extended linear undo model, we will still use the structure history buffer, but
without the variable index of top.

struct {
Command command stack [ ] ;

} H i s t o r y b u f f e r ;

The functions which manipulate with the history buffer have to be revisit-
ed, because there are major changes in the behavior. Firstly, there is now possi-
bility of having a so-called “hole” in the stack. In the extended linear undo model,
there is always a continuous sequence of executed commands at the bottom of the
stack, then there is the top of the stack and then continuous sequence of undone
commands. But the support of selective undo dictates possibility of “mixing”
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executed and undone commands. This means, that functions GetCommandToUndo
and GetCommandToRedo are not useful anymore and they have to be replaced
with the functions returning specific command from the stack according to the
command’s position in the stack.

Because there is no top of the stack, also functions MovePointerToTopUp and
MovePointerToTopDown have no meaning and they will not be used anymore.

Therefore, command stack becomes rather a list than a classic stack. The
functions in the extended linear undo model push commands to the end (top)
of the stack and the commands are also removed from the end, according to the
LIFO behavior. If commands are never removed from the stack, function Pop is
useless. For adding commands, we can use function Append, which will add the
executed command to the end of the command stack collection.

Overview of function manipulating with History buffer:

• ItemCount(General collection) - Returns number of items in gener-
al collection. Calling on history buffer, it returns number of items in
command stack[].

• Append(General collection, Item) - Adds one item to the end of the collec-
tion.

• GetCommandByPosition(General collection, Index) - Returns item which
resides on the index’th position. If there is no such item, the null value is
returned. Index is zero based.

• GetCommandByKey(General collection, Key) - Returns item with spec-
ified Key (command with specified sequence number. If there is no such
item, the null value is returned.

The function portfolio is smaller compared to the extended linear undo model
and probably all of these functions can be provided by programming environment,
if it supports collection management.

Global History Buffer

The global history buffer structure remains also the same as in the extended
linear undo model.

6.3.3 Algorithm

The algorithm will have some parts similar to the extended linear undo model -
when undo or redo is issued, particular command has to be found in the stack,
dependency search will be issued and all dependent commands will be undone or
redone.

We start with the modified versions of the helper functions, which search for
dependencies - see Algorithms 12 and 13. Both functions are only lighter versions
of the same functions from the extended linear undo model.

The ExecuteCommand function (see Algorithm 14) only executes the command
and appends it to the end of the buffer. There is no other work to do, because
no commands are being discarded during execution.
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Algorithm 12 Undo dependencies searcher for cascade selective undo model

1: procedure FindDependentCommandsForUndo(command to undo)
2: index ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Commands to undo
6: commands2undo ← command
7: for i ← index + 1 to ItemCount(global command buffer) do
8: comm ← global command buffer[i]
9: if comm.is undone then

10: continue
11: end if
12: if ack ∩ comm.keys of affected constructs then
13: ack ← ack ∪ comm.keys of affected constructs)
14: commands2undo ← commands2undo ∪ comm
15: end if
16: end for

return commands2undo
17: end procedure

Algorithm 13 Redo dependencies searcher for cascade selective undo model

1: procedure FindDependentCommandsForRedo(command to redo)
2: i ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Commands to redo
6: commands2redo ← command
7: for i ← i - 1 downto 0 do
8: comm ← global command buffer[i]
9: if ¬ comm.is undone then

10: Continue
11: end if
12: if ack ∩ comm.keys of affected constructs then
13: ack ← ack ∪ comm.keys of affected constructs)
14: commands2redo ← commands2redo ∪ comm
15: end if
16: end for

return commands2redo
17: end procedure

Functions UndoCommand and RedoCommand (see Algoritms 15 and 16) are only
slightly changes - there is no correction of pointer to the top the stack after the
command has been successfuly undone/redone.
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Algorithm 14 Execute command in cascade selective undo model

1: procedure ExecuteCommand(workspace key, command)
2: history buffer ← GetHistoryBuffer(workspace key)
3: if E thenxecute(command)
4: DiscardRedoCommands(history buffer)
5: Push(history buffer, command)
6: MoveTopPointerUp(history buffer,1)
7: Append(global history buffer, command)
8: return true
9: end if

10: return false
11: end procedure

Algorithm 15 Undo command in cascade selective undo model

1: procedure UndoCommand(workspace key, com index)
2: workspace ← global workspace collection[workspace key]
3: com2undo ← GetCommandByIndex(workspace key, com index)
4: . Command to undo
5: if com2undo ≡ NULL then return false
6: end if
7: com2undo collection ← FindDependentCommandsForUndo(com2undo)
8: . Collection of commands to undo
9: Revert(com2undo collection)

10: for i ← 0 to ItemsCount(com2undo collection) do
11: Undo(com2undo collection[i])
12: end for
13: return true
14: end procedure

Algorithm 16 Redo command in cascade selective undo model

1: procedure RedoCommand(workspace key, com index)
2: workspace ← global workspace collection[workspace key]
3: com2redo ← GetCommandByIndex(workspace key, com index)
4: . Command to redo
5: if com2redo ≡ NULL then return false
6: end if
7: com2redo collection ← FindDependentCommandsForRedo(com2redo)
8: . Collection of commands to redo
9: Revert(com2redo collection)

10: for i ← 0 to ItemsCount(com2redo collection) do
11: Redo(com2redo collection[i])
12: end for
13: return true
14: end procedure

53



6.3.4 Correctness

This subsection presents proofs, that the cascade selective undo model is correct
and gives the required results.

All functions which manipulates with the data structures are either reused
from the extended linear undo model and thus their correctness has already been
proven or they are considered to be so simple, that they are provided by the
implementation of the collection and therefore they are also considered to be
correct.

Both functions that searches for dependencies ( FindDependentCommandsFor
Undo and FindDependentCommandsForRedo) are slightly changed. In fact, they
are only simplified versions of the same functions from the extended linear undo
model. The only difference is omitting the construction of ahb structure and
the subsequent check, whether the inspected command is located in the affected
buffer. However, the requested results of functions are different and invariant 1
is not valid anymore, so we need a new proof of correctness, although it will be
similar to the proves in section describing the extended linear undo model.

Theorem 5. Function FindDependentCommandsForUndo will return a collection
of commands ComstoUndo, which contains all executed commands younger than
its argument CtoUndo, which are dependent on CtoUndo.

Proof of theorem 5. Suppose, that there is executed command Cdependent younger
then CtoUndo, which is transitively dependent on CtoUndo and Cdependent is not
present in ComstoUndo after successful call of FindDependentCommandsForUndo.

There are total n commands in the global history buffer which are ran-
domly distributed into m history buffers.

The function creates collection ack (affected construct keys), initialized with
keys of affected constructs of CtoUndo.Then the function iterates through all
commands in global history buffer from older to younger, starting with direct
successor of CtoUndo. Each such a command Ci is

• add into collection ComstoUndo AND

• its keys of affected constructs collection is merged with ack collection

If the set of keys of affected constructs of Ci intersects with ack.
The condition is true, if and only if Ci affects a construct, which was already

touched by one of constructs in ComstoUndo. Because ComstoUndo was originally
initialized with the keys of affected constructs of CtoUndo, Ci is transitively
dependent on CtoUndo.

But that means, that command Cdependent may not exist, because it would be
selected to undo.

Theorem 6. Function FindDependentCommandsForRedo will return a collection
of commands ComstoRedo, which contains all undone commands older than its
argument CtoRedo on which CtoRedo depends.

Proof of theorem 6. Suppose, that there is undone command Cdependent older then
CtoRedo, on which CtoRedo (transitively) depends and Cdependent is not present in
ComstoRedo after successful call of FindDependentCommandsForRedo.
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The function creates collection ack (affected construct keys), initialized with
keys of affected constructs of CtoRedo. Then the function iterates through
all commands in global history buffer from younger to older, starting with
direct predecessor of CtoRedo. Each such a command Ci is

• add into collection ComstoRedo AND

• its keys of affected constructs collection is merged with ack collection

If the set of keys of affected constructs of Ci intersects with ack.
The condition is true, if and only if Ci is affected by a construct, which was

already affected by one of the commands in ComstoRedo. Because the ComstoRedo

was originally initialized with the keys of affected constructs of CtoRedo the
CtoRedo is transitively dependent on Ci.

The second condition means, that if the key of history buffer Hi, to which Ci

belongs, is already in ahb collection, a command older than Ci from the Hi has
already been selected selected for redo.

But that means, that command Cdependent may exist, because it would be
selected to redo.

Behavior

The requirements section specifies six requirements for behavior of cascade selec-
tive undo model. Following enumeration proves each of these requirements to be
met:

1. The model allows any executed command to be selected for undo - there is
no function, which would restrict the commands to be selected for undo.

2. The model allows any undone command to be selected for redo - there is
no function, which would restrict the commands to be selected for redo.

3. Function ExecuteCommand always executes the command CtoExecute and if
the execution of CtoExecute is successful, it appends CtoExecute to the end of
the history buffer belonging to the workspace in which CtoExecute has been
executed.

4. Function UndoCommand undoes command CtoUndo and all commands de-
pendent on CtoUndo. Dependent commands are gathered by calling Find

DependentCommandsForUndo with CtoUndo as an argument. As it has been
proven, function FindDependentCommandsForUndo will always return a col-
lection containing command in the argument and all younger executed
dependent commands. UndoCommand then calls function Undo on every item
from this collection, which means, that CtoUndo will be undone.

5. Function RedoCommand undoes command CtoRedo and all commands de-
pendent on CtoRedo. Dependent commands are gathered by calling Find

DependentCommandsForRedo with CtoUndo as an argument. As it has been
proven, function FindDependentCommandsForRedo will always return a col-
lection containing CtoRedo and all older undone commands on which CtoRedo

depends . RedoCommand then calls function Redo on every item from this
collection, which means, that CtoRedo will be redone.
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6. There is no function in the whole model, which would remove a command
from the history buffer. Thus, commands are never discarded from the
stack.

Properties

Weakened Stable Execution Property. It has already been proven, the function
FindDependentCommandsForUndo will return all younger commands dependent
on the command passed to it as an argument and similarly, FindDependent

CommandsForRedo will return all younger commands on which the command
passed to it as an argument depends.

Function UndoCommand will call FindDependentCommandsForUndo to get the
collection of all dependent commands. The collection is ordered in ascending
order according to the sequence number of the commands. The youngest com-
mand has to be undone first and therefore UndoCommand reverses the returned
collection and then the function iterates over it from start to end, calling Undo

on each member.
Function RedoCommand will call FindDependentCommandsForRedo to get the

collection of all dependent commands. The collection is ordered in descending
order according to the sequence number of the commands. The oldest command
has to be undone first and therefore RedoCommand reverses the returned collection
and then the function iterates over it from start to end, calling Redo on each
member.

That means that weakened stable execution property holds.

Stable result property. The proof has to be done for both operations, undo and
redo.

When a undo operation is invoked on command CtoUndo, function UndoCommand

is called and CtoUndo is passed as an argument to it. As it has been proven in
proof of weakened stable execution property, all executed commands dependent
on CtoUndo will be undone prior to the C and they are undone in the order from
the youngest to the oldest. This means, that property holds true.

Similarly, when a redo operation is performed on command CtoRedo, function
RedoCommand is called and CtoRedo is passed as an argument to it. As it has been
proved in proof of weakened stable execution property, all commands on which
CtoRedo depends are redone prior to the CtoRedo in the order from the oldest to
the youngest. This means, that property holds true.

Commutative undo property. There are total n commands in the global history

buffer which are randomly distributed into m history buffers. We have two
randomly selected commands Ci and Cj.

Undo operation. Both Ci and Cj are executed. There are three situations,
which have to be handled:

• Ci and Cj are independent and there is no intersection between their sets
of dependent commands. They can be undone in any order and result will
be the same.
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• Ci and Cj are independent but their sets of dependent command intersect
each other. Let us call the set of commands in the intersection CS. If Ci

is undone prior to Cj, all commands in CS are undone prior to Ci and also
prior to Cj. During undo of Cj, the commands in CS are already undone, so
they will not be selected to undo once mode and only commands which are
dependent on Cj but not on Ci will be undone. Similarly for opposite order
of undo. The results will be the same, because actions over one particular
construct will be always performed in one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during undo of Ci, Cj will
be undone prior to the Ci and subsequent explicit undo of Cj will not be
possible, which satisfies commutative undo property. If Cj will be selected
to undo explicitly by the user before undoing Ci, then the situation is similar
to the previous one.

Redo operation. Both Ci and Cj are undone. There are again three
situations, which have to be handled:

• Ci and Cj are independent and there is no intersection between their sets
of commands on which they depend. Then they can be redone in any order
and the result will be the same.

• Ci and Cj are independent but their sets of commands on which they depend
intersect each other. Let us call the set of commands in the intersection
CS. If Ci is redone prior to Cj, all commands in CS are redone prior to Ci

and also prior to Cj. During redo of Cj, the commands in CS are already
redone, so they will not be selected to undo once more and only commands
which are dependent on Cj but not on Ci will be redone. Similarly for
opposite order of the redo. Results will be the same, because actions over
one particular construct will be always done in one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during redo of Ci, Cj will
be redone prior to the Ci and subsequent explicit redo of Cj will not be
possible, which satisfies commutative undo property. If Cj will be selected
to redo explicitly by the user before redoing Ci, then the situation is similar
to the previous one.

Minimalistic undo property. We would like to prove, that for randomly selected
command CtoUndo, only CtoUndo and the commands which depend on CtoUndo will
be undone. Similarly for randomly selected command to redo CtoRedo, only CtoRedo

and the commands on which CtoRedo depends will be redone.
To undo a command CtoUndo, function UndoCommand with CtoUndo as an ar-

gument is called. This function will construct collection ComstoUndo by calling
function FindDependentCommandsForUndo, passing CtoUndo as an argument to
it. It has already been proven, that FindDependentCommandsForUndo will re-
turn collection, which contains only CtoUndo and commands dependent CtoUndo.
Function Undo is then called on each member ComstoUndo ⇒ minimalistic undo
property holds for undo operation.
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To redo command CtoRedo, function RedoCommand with CtoRedo as an argument
is called. This function will construct collection ComstoRedo by calling function
FindDependentCommandsForRedo, passing CtoRedo as an argument to it. It has al-
ready been proven, that FindDependentCommandsForRedo will return collection,
which contains only CtoRedo and all commands Cr and on which CtoRedo depends.
Function Redo is then called on each member of ComstoRedo ⇒ minimalistic undo
property holds for redo operation.

6.3.5 Conclusion

The presented model is a new undo model, which brings up the possibility of
undoing any command at any time in the environments with multiple connected
stacks. It suits very well to these environments, because it minimizes the number
of commands, which have to be undone/redone because of dependency between
two commands - the commands which are not dependent on the commands being
undone or redone are not affected. It allows more state of document to be reached
just by using undo and redo in comparison with the extended linear undo model.

The implementation of the model is not difficult, because the model can reuse
commands from the extended linear undo model. The internal functions also
share the common code with the extended linear undo model, functions are
generally even more simple. This surprising property comes out from the fact,
that this model is not aimed to be backwards compatible with the linear undo
model and therefore many unnecessary features can be omitted.

6.4 Combined Undo Model

The cascade selective undo model brings possibility of undoing any command at
any time. But there is one situation, which it handles badly - when the user wants
to take the whole document (all the workspaces) to some specific state (so called
global linear undo or), which could once exist in the past after the execution of
particular command. If there are not many dependencies among the stacks, the
user has to undo each command by hand. This can be annoying for the user,
especially if the requested command, which serves as the marker of the requested
state, is very old and it is deeply nested in the bottom of a stack.

Extended linear undo model behaves better in this situation, but the result
also depends on the number of dependencies among commands. The advantage is
(if the user interface supports it), that the user can usually select a command in
the middle of the buffer and all the commands above it will be undone. Bringing
document to a specific state then means at least one click in each history buffer.
This is significantly better in comparison with the cascade selective undo model
(number of the manual undo operations may be as high as number of younger
commands), but the ideal solution would be just one special undo action, which
would bring document into the desired state. The other problem is, that the user
has to know global order of commands - which command is the one above the
requested command - in all stacks.

Cascade selective undo model is also not so intuitive as the extended linear
undo model. The users are usually used to use undo and redo buttons or keyboard

58



shortcuts Ctlr+Z, Ctrl+Y, which are present in many applications supporting
undo and redo. But this interface cannot be used in the cascade selective undo
model, because there are no implicit commands to undo or redo - the user has to
select the particular commands from a list or stack.

The idea of combined undo model is to take the best from the both previously
presented models and extend them by adding possibility of bringing document
into a specific state. It should combine the intuitiveness of the extended linear
undo model with the possibilities that offer the cascade selective undo.

6.4.1 Requirements

The requirements for combined undo model results from both previous models.
The properties to hold true are:

• Weakened stable execution property

• Stable result property - The model would not be usable without satis-
fying this property.

• Commutative undo property - Important for intuitive usage.

• Minimalistic undo property- Saves user’s time.

The set of properties is identical to cascade selective undo model. The stable
execution property cannot hold true, if we want to offer any command to undo
or redo and simultaneously obey the minimalistic undo property.

We also would like to offer the possibility of performing undo in traditional
way (undo and redo button), which implies implementation of mechanism which
will select one command to undo and redo in each stack.

The behavior of model should be as follows:

1. Each executed command can be undone.

2. Each undone command can be redone.

3. The youngest executed command will be offered for linear undo. When
such a command does not exist, the linear undo is not possible.

4. If there is a continuous sequence of undone commands at the end of the
history buffer, the oldest command from this sequence will be offered for
linear redo.

5. Each executed command can be selected for global linear undo. After per-
forming global linear undo on command CtoUndo, there will be no younger ex-
ecuted command than CtoUndo and no older undone command than CtoUndo

in any history buffer in the document.

6. After a successful call of execute operation on command CtoExecute in workspace
W, command CtoExecute will be executed and it will become the last com-
mand in the history buffer belonging to W.

7. After a successful call of undo operation on command CtoUndo in workspace
W, CtoUndo will be undone.
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8. After a successful call of redo operation on command CtoRedo in workspace
W, CtoRedo will be redone.

9. Commands are never discarded from the history buffer.

6.4.2 Analysis

The combined undo model is a mix of the extended linear undo model and cascade
selective undo model, which are both already described and proven to be correct.
The purpose of this chapter is to find the way how to combine their functions in
one model.

As mentioned in requirements section, if we want to allow a model to act
like the linear undo model, there must be a mechanism which selects which
commands will be undone or redone when the undo or the redo button is pressed.
Extended linear undo model uses the pointer to the top of the stack, where the
border between undone and executed commands lies. But if we support selective
undo and therefore commands in the middle of the stack may be undone, there
can be more than one such a border. For this purpose, we create a pointer
to so-calledvirtual stack top. This pointer always points one position above the
youngest executed command. It can be easily computed on the fly by iterating
through history buffer starting at the end. The command to undo will be the
one bellow the virtual stack top, the command to redo will be the one on which
pointer points.

Global linear undo is new feature, which is not present in the extended linear
undo model nor in cascade selective undo model. It is called “undo”, but it
may also perform redo operations if it is necessary - all undone commands older
than the selected command have to be redone and undo all executed commands
younger than the selected command have to be undone. Implementation can
be easily done by one iteration through global history buffer, which will be
introduced later in this section.

It should be noted, that state reached after performing global linear undo
may not be the exact state, in which document was after the original execution
of the selected command. If there were any undone commands present in any
stack during original execution, the global linear undo will redo these commands.
Saving the exact state of stacks after execution of each command cannot be done
- it would be a new linear undo model (based on saving document state after each
step).

Execution of a new command would be done in the way that selective undo
requires - commands to redo are not discarded. It would be possible to discard
all commands above the virtual stack, but it would collide with definition of the
selective undo.

Command

The Command structure can be again taken from the extended linear undo model.
It carries all necessary information to build up hierarchy of dependencies.

The functions which operates with the structure - Execute, Undo and Redo -
also remain and their semantics is unchanged.
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History buffer

History buffer can be used form cascade selective undo model. As the pointer to
the top of the stack will be computed on the fly, we do not need a variable to
store this information, which makes this implementation is sufficient.

struct {
Command command stack [ ] ;
int i n d e x o f t o p ;

} H i s t o r y b u f f e r ;

But the functions which manipulates with the history buffer are changed,
because we would like to support also the linear undo:

• ItemCount(General collection) - Returns the number of items in a gen-
eral collection.

• Append(General collection, Item) - Adds one item at the end of the
collection.

• GetCommandByPosition(General collection, Index) - Returns item which
resides on the index’th position of the collection. If there is no such item,
the null value is returned. Index is zero based.

• GetCommandByKey(General collection, Key) - Returns item with speci-
fied Key (in case of a command with specified sequence number). If there
is no such item, the null value is returned.

• GetVirtualStackTop(General collection) - Returns the index of the
virtual top of the stack.

• GetCommandToLinearUndo(History buffer) - Returns the command, which
is right under the virtual top of the stack or null value, if such a command
does not exist.

• GetCommandToLinearRedo(History buffer) - Returns the command on
which points the virtual top of the stack or the null value, if such a command
does not exist.

All functions except GetVirtualStackTop are known from the previous al-
gorithms. GetCommandToLinearUndo and GetCommandToLinearRedo work in the
same way as GetCommandToUndo and GetCommandToRedo from the extended linear
undo algorithm, but instead of using pointer to top they get the correct index
of the stack top by calling GetVirtualStackTop.

Algorithm 17 shows implementation of GetVirtualStackTop.

Global history buffer

Global history buffer can remain unchanged, as it again serves only as a simple
collection for command ordering according to their sequence number.
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Algorithm 17 Get index of the virtual stack top

1: procedure GetVirtualStackTop(workspace key)
2: hist buff ← GetHistoryBuffer(workspace key)
3: top index ← ItemCount(hist buff.command stack)
4: for i ← ItemCount(hist buff.command stack) - 1 to 0 do
5: if hist buff.command stack[i].is undone ≡ false then
6: break
7: end if
8: top index ← top index - 1
9: end for

10: return top index
11: end procedure

6.4.3 Algorithm

The algorithm has to support three different types of undo and redo:

• Linear - Acts in the same way as the extended linear undo model.

• Selective - Acts in the same way as cascade selective undo model.

• Global - Takes the document into a state as it once was after original
execution of the selected command.

The functions for dependency search (see Algorithms 18 19) are well-known
and they have not been changed much.

Both functions are parametrized by one boolean variable is linear, which
specifies, whether the function searches for thw dependencies as the extended
linear undo model requires (if true) or as cascade selective undo model requires
(if false). Both returns a collection of commands, which should be reversed and
then undo or redo may be performed on each member of the collection.

Next important function is Execute (see Algorithm 20), which executes a new
command and appends it to the history buffer. Because execution is done in the
same way as the selective undo requires, function is similar to the Execute used
in cascade selective undo model.

There are together four functions for undo and redo - UndoCommandSelective
(Algorithm 21), RedoCommandSelective (Algorithm 23), UndoCommandLinear

(Algorithm 22) and RedoCommandLinear (Algorithm 24). Both selective and
linear functions take different number of arguments, so they are really presented
as four distinct functions, although in real implementation, they could be merged
together to avoid unnecessary code duplication - some parts of code are shared.

The last function which allows the user to undo and redo commands is called
UndoCommandGlobal (see Algorithm 25). As mentioned before, the purpose of
this function is to get document into a state, when there are no younger executed
and no older undone commands in the whole document than selected command.

Global history buffer is a perfect structure for the implementation of such
a function. The basic idea is an iteration through the buffer, which build up
two collections - commands to redo and commands to undo. Each undone
younger command goes to the commands to redo, each older executed command
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Algorithm 18 Undo dependencies searcher for combined undo model

1: procedure FindDependentCommandsForUndo(command, is linear)
2: index ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Affected history buffers
6: ahb ← GetHistoryBufferKey(command)
7: . Commands to undo
8: commands2undo ← command
9: for i = index + 1 to ItemCount(global command buffer) do

10: comm ← global command buffer[i]
11: if comm.is undone then
12: continue
13: end if
14: if is linear ∨ ( ahb ∩ GetHistoryBufferKey(comm)) then
15: ack ← ack ∪ comm.keys of affected constructs)
16: commands2undo ∪ commands2undo ∪ command
17: else if ack ∩ comm.keys of affected constructs then
18: ack ← ack ∪ comm.keys of affected constructs)
19: if is linear then
20: ahb ← ahb ∪ GetHistoryBufferKey(comm)
21: end if
22: commands2undo ← commands2undo ∪ command
23: end if
24: end for

return commands2undo
25: end procedure

to commands to undo. No other dependencies have to be searched, because if
there are some dependent commands to undo or redo, they will be surely also
undone or redone.

Two final for loops can be switched, because in case of redo, we start with the
oldest undone command (which implies that no older dependent undone command
exists) and in case of undo we start with the youngest executed command (which
similarly implies that no younger dependent executed command exists).

6.4.4 Correctness

Combined undo model is the mix of the extended undo model and cascade undo
model, but there are also several new features - virtual stack top and global linear
undo.

The command structure and functions that belong to it (Execute, Undo and
Redo) were reused from previous algorithms and their correctness has already
been proven.

Also the history buffer structure is taken from the cascade selective undo
model and it remains without changes and the functions ItemCount, Append,
GetCommandByPosition and GetCommandByKey as well. Functions GetCommand

ToLinearUndo and GetCommandToLinearRedo are implemented in the same way
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Algorithm 19 Redo dependencies searcher for combined undo model

1: procedure FindDependentCommandsForRedo(command, is linear)
2: i ← GetIndexToGlobalBuffer(command.sequence number)
3: . Affected construct keys
4: ack ← command.keys of affected constructs
5: . Affected history buffers
6: ahb ← GetHistoryBufferKey(command)
7: . Commands to redo
8: commands2redo ← command
9: for i = i - 1 downto 0 do

10: comm ← global command buffer[i]
11: if ¬ comm.is undone then
12: continue
13: end if
14: if is linear ∨( ahb ∩ GetHistoryBufferKey(comm)) then
15: ack ← ack ∪ comm.keys of affected constructs)
16: commands2redo ← commands2redo ∪ command
17: else if ack ∩ comm.keys of affected constructs then
18: ack ← ack ∪ comm.keys of affected constructs)
19: if is linear then
20: ahb ← ahb ∪ GetHistoryBufferKey(comm))
21: end if
22: commands2redo ← commands2redo ∪ command
23: end if
24: end for

return commands2redo
25: end procedure

Algorithm 20 Execute command in combined undo model

1: procedure ExecuteCommand(workspace key, command)
2: history buffer ← GetHistoryBuffer(workspace key)
3: if Execute(command) then
4: Append(history buffer, command)
5: Append(global history buffer, command)
6: return true
7: end if
8: return false
9: end procedure

as GetCommandToUndo and GetCommandToRedo from the extended linear undo
algorithm, but instead of using pointer to top they get index of stack top by
calling GetVirtualStackTop. Therefore both functions can be considered as
correct as long as GetVirtualStackTop returns correct index of the virtual stack
top.

Theorem 7. Function GetVirtualStackTop returns the index of the youngest
executed command in the history buffer increased by one. If there is no executed
command in the history buffer, the function returns zero.
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Algorithm 21 Selective undo command in combined undo model

1: procedure UndoCommandSelective(workspace key, com index)
2: com2undo ← GetCommandByIndex(workspace key, com index)
3: . Command to undo
4: if com2undo ≡ NULL then
5: return false
6: end if
7: com2undo collection ← FindDependentCommandsForUndo(com2undo,

false)
8: . Collection of commands to undo
9: Revert(com2undo collection)

10: for i ← 0 to ItemsCount(com2undo collection) do
11: Undo(com2undo collection[i])
12: end for
13: return true
14: end procedure

Algorithm 22 Linear undo command in combined undo model

1: procedure UndoCommandLinear(workspace key)
2: com2undo ← GetCommandToUndo(workspace key)
3: . Command to undo
4: if com2undo ≡ NULL then
5: return false
6: end if
7: com2undo collection ← FindDependentCommandsForUndo(com2undo,

true)
8: . Collection of commands to undo
9: Revert(com2undo collection)

10: for i ← 0 to ItemsCount(com2undo collection) do
11: Undo(com2undo collection[i])
12: end for
13: return true
14: end procedure

Proof of theorem7. Function sets value of top index to number of items in the
command stack of the history buffer. Then it iterates over all commands in the
command stack from the youngest to the oldest, in each iteration the value of the
top index is decreased by one. The iteration is stopped when the command on
current position is not undone or the bottom of the stack has been reached.

There is a total n command in the history buffer, index is zero based. If the
last command in the buffer (position n−1) is not undone, the value of top index

is not decreased even once and iteration is immediately stopped. Thus, value n
is returned, which is correct.

If the youngest executed command in the history buffer is at the position i,
i > 0andi < n, total (n− i+ 1) decrementations of the top index are performed
before iteration is stopped. Value n − (n − i + 1) = i + 1 is returned, which is
correct.

65



Algorithm 23 Selective redo command in combined undo model

1: procedure RedoCommandSelective(workspace key, com index)
2: com2redo ← GetCommandByIndex(workspace key, com index)
3: . Command to redo
4: if com2redo ≡ NULL then
5: return false
6: end if
7: com2redo collection ← FindDependentCommandsForRedo(com2redo,

false)
8: . Collection of commands to undo
9: Revert(com2redo collection)

10: for i ← 0 to ItemsCount(com2redo collection) do
11: Redo(com2redo collection[i])
12: end for
13: return true
14: end procedure

Algorithm 24 Linear redo of command in combined undo model

1: procedure RedoCommandLinear(workspace key)
2: com2redo ← GetCommandToRedo(workspace)
3: . Command to redo
4: if com2redo ≡ NULL then
5: return false
6: end if
7: com2redo collection ← FindDependentCommandsForRedo(com2redo,

true)
8: . Collection of commands to redo
9: Revert(com2redo collection)

10: for i ← 0 to ItemsCount(com2redo collection) do
11: Redo(com2redo collection[i])
12: end for
13: return true
14: end procedure

If there is no executed command in the history buffer, total n decrementations
of the top index are performed and the value zero is returned, which is correct.

If n = 0 (buffer is empty), value of top index is set to a zero (number of items
in the command stack), no iteration is done and therefore a zero is returned, which
is correct.

The function will always return correct value and therefore it is correct.

Algorithm

Functions which search for dependencies among commands (FindDependentCommands
ForUndo and FindDependentCommandsForRedo) are just mix of the same func-
tions implemted in the previous algorithms. In fact, we could use thee versions
from the extended linear undo model for the linear undo and the versions from
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Algorithm 25 Global linear udo

1: procedure UndoCommandGlobal(workspace key, com index)
2: selected comm ← GetCommandByIndex (workspace key, com index)
3: if selected com ≡ NULL then
4: return false
5: end if
6: i ← GetIndexToGlobalBuffer (selected comm.sequence number)
7: comm2redo ← empty collection
8: for i ← 0 to index - 1 do
9: comm ← global command buffer[i]

10: if comm.is undone then
11: comm2redo ← comm2redo ∪ comm
12: else
13: continue
14: end if
15: end for
16: comm2undo ← empty collection
17: for i ← ItemCount(global command buffer) downto index do
18: comm ← global command buffer[i]
19: if comm.is undone then State comm2undo ← comm2undo ∪ comm
20: else
21: continue
22: end if
23: end for
24: for i ← 0 to ItemsCount(comm2redo) do
25: Redo(com2redo[i])
26: end for
27: for i ← 0 to ItemsCount(comm2undo) do
28: Undo(com2undo[i])
29: end for

State return true
30: end procedure

cascade selective undo model for the selective undo. Underlaying data structures
has not been changed and therefore, they can be considered as correct.

Function Execute is similar to the same function defined for cascade selec-
tive undo model and functions UndoCommandSelective, UndoCommandLinear,
RedoCommandSelective and RedoCommandLinear have all been already defined
and proven correct either in the extended linear undo model or in cascade selective
undo model.

The only new function is UndoCommandGlobal.

Theorem 8. After successful call of function UndoCommandGlobal with CtoUndo

as an argument, all commands in the global history buffer younger then the
CtoUndo will be in the state undone and all commands in the global history buffer

older than the CtoUndo will be in the state executed.

Proof of theorem 8. Suppose, that there are two commands Cyoung and Cold. Cyoung

is younger than CtoUndo, Cold is older than CtoUndo. After the successful call of
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UndoCommandGlobal, Cyoung is not in the state undone and Cold is not in the state
executed.

There are total n commands in the global history buffer, CtoUndo is at the
position i, i ≥ 0 and i ≤ n (index is zero based). The function execution has two
independent phases:

• During the first phase, the function iterates through all commands younger
than CtoUndo, starting with the youngest one and stops at the position i.
Each command, which is not in the state undone, is undone. Because
commands are taken from the younger to older, it is not possible, than any
command being undone would have any older commands dependent on it
- they would be undone before it. All commands younger than CtoUndo are
undone and therefore command Cyoung may not exist.

• During the second phase, the function iterates through all commands older
than CtoUndo, starting with the oldest and stops at the position i− 1. Each
command, which is not in the state executed, is redone. Because commands
are taken from the older to younger, it is not possible, than any command
being redone could be dependent on non-executed command - all commands
older than it would be redone before it. All commands older than CtoUndo

are executed and therefore command Cold cannot exist.

Behavior

The requirement section specifies nine points, how the model should behave to
the user. Following enumeration proves each of these requirements to be satisfied:

1. The model allows any executed command to be selected for the selective
undo - there is no function, which would restrict commands to be selected
for undo.

2. The model allows any undone command to be selected for selective redo -
there is no function, which would restrict commands to be selected for redo.

3. It has been proven, that function GetCommandToLinearUndo selects the
youngest executed command and offers it to undo.

4. It has been proved, that function GetCommandToLinearRedo selects the old-
est executed command from the continuous sequence of undone commands
at the end of the history buffer and offers it to redo.

5. There is no restriction for selecting a command for global linear undo. It
has been proven, that function UndoCommandGlobal will get all command
younger than its argument into the state undone and all commands older
than its argument into the state executed.

6. Function ExecuteCommand executes a command and appends it at the end
of the history buffer.
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7. Both functions UndoCommandLinear and UndoCommandSelective call func-
tion FindDependentCommandsForUndo with CtoUndo as an argument. As it
has been proven that function FindDependentCommandsForUndo will always
return a collection containing CtoUndo and all executed commands, which
depends on CtoUndo. Both functions UndoCommandLinear and UndoCommand

Selective then call function Undo on every item of the collection, which
means, that CtoUndo will be undone.

8. Both functions RedoCommandLinear and RedoCommandSelective call func-
tion FindDependentCommandsForRedo with CtoRedo as an argument. As
it has been proved, function FindDependentCommandsForRedo will always
return a collection containing CtoRedo and all older undone commands on
which cCtoRedo depends. Both functions RedoCommandLinear and Redo

CommandSelective then call function Redo on every item from this col-
lection, which means that CtoRedo will be redone.

9. There is no function in the whole model, which would remove command
from the histrory buffer. Thus, commands are never discarded from the
stack.

Properties

There are total four properties claimed to hold true:

Weakened stable execution property. It has already been proved, that function
FindDependentCommandsForUndo will return all younger commands dependent
on the command passed to it as an argument and similarly, FindDependent

CommandsForRedo will return all younger commands on which command passed
to it as an argument depends. This behavior is independent of the value of the
second argument.

For undo of command CtoUndo either function UndoCommandLinear or Undo

CommandSelective is called. Both call FindDependentCommandsForUndo to get
the collection of commands, which depend on CtoUndo. The collection is ordered
in the ascending order according to the sequence number of commands. The
youngest command has to be undone first and therefore the both functions reverse
the order of the collection and then iterate from start to end, calling Undo on
each member. Commands are undone from the youngest to the oldest and no
command, which depends on CtoUndo is omitted ⇒ weakened stable execution
property holds true.

For redo of command CtoRedo either function RedoCommandLinear or Redo

CommandSelective is called. Both call FindDependentCommands ForRedo to get
the collection of commands, on which depends the CtoRedo. The collection is
ordered in the descending order according to the sequence number of commands.
The oldest command has to be redone first and therefore the both functions
reverse the order of the collection and then iterate from start to end, calling Redo

on each member. Commands are redone from the youngest to the oldest and
no command, on which CtoRedo depends is omitted ⇒ weakened stable execution
property holds true.

Function UndoCommandGlobal undoes all executed commands younger then
the command passed as an argument and redoes all undone commands older

69



than the argument. It has been proven, that it is performed in the order, that
satisfies weakened stable execution property.

That means that weakened stable execution property holds.

Stable result property. The proof has to be done for all three operations: undo,
redo and global linear undo.

When an undo operation is invoked on command CtoUndo, function UndoCommand

Linear or UndoCommandSelective is called and CtoUndo is passed as an argument
to it. As it has been proved in the proof of weakened stable execution property,
all executed commands dependent on CtoUndo and younger than the CtoUndo will
be undone prior to the CtoUndo and they will be undone in the order from the
youngest to the oldest ⇒ stable result property holds true.

When a redo operation is invoked on command CtoRedo, function RedoCommand

Linear or RedoCommandSelective is called. As it has been proven in the proof
of weakened stable execution property, all commands older than CtoRedo on which
CtoRedo depends will be redone prior to the CtoRedo and they will redone in the
order from the oldest to the youngest ⇒ stable result property holds true.

When a global linear undo is performed, function UndoCommandGlobal is
called and it undoes all executed commands younger then the command passed
to it as an argument and redoes all undone commands older than the argument.
Undo is performed in the order from the youngest to the oldest, redo in the order
from the oldest to the youngest. This means, that property holds true.

Commutative undo property. There are total n commands in the global history

buffer which are randomly distributed into m history buffers. We have two
randomly selected commands Ci and Cj.

Undo operation. Both Ci and Cj are executed. There are three situations,
which have to be handled:

• Ci and Cj are independent and there is no intersection between their sets
of dependent commands. Then they can be undone in any order and the
result will be the same.

• Ci and Cj are independent but their sets of dependent commands intersect
each other. Let us call the set of the commands in the intersection CS. If Ci

is undone prior to Cj, all commands in CS are undone prior to Ci and also
prior to Cj. During undo of Cj, commands in CS are already undone, so
they will not be selected for undo once more and only commands which are
dependent on Cj but not on Ci will be undone. Similarly for the opposite
order undo. Results will be the same, because actions performed on the one
construct will be always done in the one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during undo of Ci, Cj will
be undone prior to the Ci and subsequent explicit undo of Cj will not be
possible, which satisfies commutative undo property. If Cj will be selected
to undo explicitly by the user before undoing Ci, then the situation is similar
to the previous one.

Redo operation. Both Ci and Cj are undone. There are three situations,
which have to be handled:
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• Ci and Cj are independent and there is no intersection between their sets
of commands on which they depend. Then they can be redone in any order
and result will be the same.

• Ci and Cj are independent but their sets of commands on which they depend
intersect each other. Let us call the set of the commands in the intersection
CS. If Ci is redone prior to Cj, all commands in CS are redone prior to
Ci and also prior to Cj. During redo of Cj, commands in CS are already
redone, so they will not be selected to undo anymore and only commands
which are dependent on Cj but not on Ci will be redone. Similarly for
opposite order redo. Results will be the same, because actions on the one
construct will be always performed in one unique order.

• Ci and Cj are dependent, Cj depends Ci. Then during redo of Ci, Cj will
be redone prior to the Ci and subsequent explicit undo of Cj will not be
possible, which satisfies commutative undo property. If Cj will be selected
to redo explicitly by the user before undoing Ci, then the situation is similar
to the previous situation.

Global linear undo.
If both previous operations satisfies commutative undo property, the global

linear undo cannot break commutative undo property either, because it will
always bring document into a state, in which it would be if linear undo was
used. Linear undo satisfies commutative undo property and therefore, global
linear undo too.

Minimalistic undo property. Minimalistic undo property holds only for selective
undo.

We would like to prove, that for randomly selected command for selective undo
CtoUndo, only CtoUndo and the commands younger than CtoUndo which depends on
CtoUndo will be undone. Similarly for randomly selected command to selective
redo CtoRedo, only CtoRedo and the commands older than CtoRedo on which CtoRedo

depends will be redone.
To undo a command CtoUndo, function UndoCommandSelective with CtoUndo

as the argument is called. This function will construct collection of commands
to undo by calling function FindDependentCommandsForUndo, passing CtoUndo

boolean value “false” as the arguments to it. It has already been proven, that
FindDependentCommandsForUndo will return the collection, which contains CtoUndo

and all executed command dependent on CtoUndo. Function Undo is then called on
each member of the collection. Only CtoUndo and executed commands dependent
on CtoUndo are undone ⇒ the property holds true.

To redo a command CtoRedo, function RedoCommandSelective with CtoRedo as
the argument is called. This function will construct the collection of commands
to redo by calling function FindDependentCommandsForRedo, passing CtoRedo

and boolean value “false” as the arguments to it. It has already been proven,
that FindDependentCommandsForRedo will return the collection, which contains
CtoRedo and all commands older than CtoRedo on which CtoRedo depends. Function
redo is then called on each member of the collection. Only CtoRedo and undone
commands on which CtoRedo redends are redone ⇒ the property holds true.
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6.4.5 Conclusion

The combined undo model presents an user-friendly approach to the selective
undo. It combines classic linear undo (extended with the multiple stack support)
with its simplicity and selective undo, with powerful feature of undoing any
command anywhere in the system.

It also adds a new feature called global linear undo, which allows the user to
get the whole document to the state as similar as possible after the execution
of selected command. This function operates only over global history buffer

and in fact does not need local history buffers.
In fact, the global linear undo can be the simplest way how to provide un-

do and redo functionality in the environment with multiple workspaces. If all
workspaces share the one history buffer and the local history buffers are omitted,
the global linear undo works as the linear undo model.

The implementation of the combined undo model can reuse data structures
and several functions from previous algorithms, which eases the coding part of
the implementation and prevents unnecessary errors in program.

6.5 Comparison of presented algorithms

Each algorithm aims to provide a slightly different functionality. The big advan-
tage is, that all three of them can be built upon almost the same data structures
and therefore if one of them is already implemented, implementation of another
means only changing the undo manager. With minor changes, they can even
coexist together in one application and the user can decide, which approach suits
best to his/her needs.

Extended linear undo is extension of the traditional algorithm and it provides
basic undo and redo functionality in environments with multiple workspaces. Its
main advantage is simplicity of usage. The users are generally familiar with
linear undo and this model acts in the same way. Dependencies among particular
commands are automatically found and the user is informed, what is necessary
to undo or redo. The model can be implemented in many existing applications,
because system of commands and history buffers is very common and usually
only slight extensions need to be made.

On the other side, the cascade selective undo model is a simple model, which
provides selective undo functionality in environments with multiple workspaces.
Selective undo is not widely used in existing applications, but especially in com-
plex environments it can improve performance and speed up the work with
applications. Although it is a novel feature, it should not be difficult for the
user to learn how to use it.

6.5.1 Behavior difference

Differences among presented algorithms can be illustrated in sample scenario
depicted in Figure 6.4.

The sample scenario was created as follows:
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Figure 6.4: Sample situation with two workspaces

1. Creation of construct C1 (red circle) in workspace 1 (W1), using command
1.

2. Visualization of construct C1 in workspace 2 (W2), using command 2.

3. Creation of construct C2 in W1 using command 3.

4. Creation of construct C3 in W2 using command 4.

5. Creation of construct C4 in W1 using command 5.

6. Modification of construct C2 (addition of text ABC) in W1 using command
6.

7. Modification of construct C3 (resizing) in W2 using command 7.

8. Modification of construct C3 (change of color) in W2 using command 8.

For simplicity, the situation contains only two workspaces and eight commands
but it applies to multiple workspaces as well. Now consider the user’s intention:

1. The user wants to undo creation of C1 and other constructs should be left
untouched.
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• Extended linear undo model - It cannot be done, because undo
of C12 in W1 would cause undoing all commands in both workspaces.
The similar action performed in W2 would undo all command in W2,
but the C1 in W1 would remain executed and it would need one more
undo in W1. This would undo all command in W1 resulting in the
same situation.

• Cascade selective undo model - Undo performed in W1 on C1 will
cause undo of commands 1 and 2, and therefore no constructs except
C1 are affected.

• Combined undo model - Combined undo model can use the selective
undo functionality, resulting in the same situation as in case of cascade
selective undo model.

2. The user wants to undo creation of construct C4 in W1 and other constructs
should be left untouched.

• Extended linear undo model - It cannot be done, because com-
mand 6, which is older, is on the same stack and it must be undone
prior to command 5. Stack belonging to W2 is left untouched.

• Cascade selective undo model - There is no dependent command,
which depends on command 5. Therefore command 5 can be undone
and all other commands are left untouched.

• Combined undo model - Combined undo model can use the selective
undo functionality, resulting in the same situation as in case of cascade
selective undo model.

3. The user wants to undo resizing of construct C3 (command 7), all other
commands should remain executed.

• Extended linear undo model - It cannot be done, because com-
mand 8 depends on command 7 and thus it have to been also undone.

• Cascade selective undo model - The same behavior as for the
extended linear undo model.

• Combined undo model - The same behavior as for the extended
linear undo model.

4. The user wants to get the whole document into the state after the execution
of command 4.

• Extended linear undo model - The user has to manually undo
commands 7 and 5 (it would cause automatic undo of all younger
commands in the stacks). The user has to be aware of the global order
of commands.

2Undo of command in the middle of the stack in the extended linear undo model is generally
not possible, because only the command right bellow the top of the stack can be undone. In
this case we assume, that selecting C1 to undo would cause sequential undo of commands 6,5,3
and then command 1 would be undone.
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• Cascade selective undo model - The user has to manually undo
commands 8, 7, 6 and 5 or 7 (which undoes also 8 because of the
dependency), 6 and 5. The user has to be aware of the global order of
commands.

• Combined undo model - The user can select command 4 for global
linear undo and undo manager will undo younger commands automat-
ically.

This enumeration depicts the most common situations and how particular
models can react. Points 1,2 and 4 present possible differences in reactions, point
3 presents a situation in which all 3 models must react similarly.

The most versatile model is the combined undo model, which can use both
linear and selective undo, according to actual need.
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7. Undo and Redo in DaemonX
Project

The project DaemonX has been chosen to serve as a platform for experiments
with selective undo models. The reasons and current state of undo and redo in the
project are described in following sections. The general aspects of the project are
described only briefly and the chapter focuses mainly on the structure of history
buffers, dependencies among commands and command design.

Further information about the project itself can be found in project documen-
tation [12](publicly available).

7.1 Project Overview

The DaemonX framework is pluginable tool developed for data and/or process
modeling. The word framework is very important - DaemonX as solitaire applica-
tion is executable program, but it is not very useful. All functionality is provided
via various plugins, which use services provided by DaemonX framework.

The main services provided by DaemonX:

• Integrated environment - The application DaemonX forms an envelope
around all plugins, takes care about particular events, provides methods for
saving project state and unites interaction with the user (interface of each
plugin looks the same).

• Tools for plugin development - The et of abstract classes, which allows
plugin programmer to model a modeling language. Also called meta-meta
model.

• Data propagation - So-called evolution allows automatic data propaga-
tion between two plugins.

• Undo/redo support - The set of abstract classes for commands and
integrated undo/redo manager. The manager and the whole undo model is
discussed in the following chapters.

7.1.1 Data and Process Modeling

The main purpose of DaemonX framework is data and process modeling. There
are many data and process modeling languages and it would be hard to support
all of them. Because of this, DaemonX supports so-called modeling plugins. A
modeling plugin is a binary library, which can be integrated into the framework
and it is used to perform actual data or process modeling. It implements an
interface specified by DaemonX and uses services provided by the framework.
Usually there is one modeling plugin for each modeling language.

Big advantage of this approach is modularity of the application. The user can
install only those plugins which he/she really uses. Anybody can develop a new
plugin and extend functionality of DaemonX - he/she must only implement the
interface specified by DaemonX, which is publicly available.
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Modeling Plugin Development

Project DaemonX itself contains several sets of abstract classes, which are used
by plugin developers:

• Classes for modeling another modeling language - meta model. This feature
speeds up plugin development, because the developer does not have to
care about features common to all plugins - storage for constructs, canvas
painting, load/save functions etc. The developer has to set properties of
construct and create its controller and view, which is the interface of the
construct for the user of the plugin. For both, abstract classes are also
available. Controller is a class, which authorizes changes in the construct’s
properties. View is the interface of construct for the user of the plugin -
the developer can choose shape of construct on the canvas, specify where
particular properties are visualized and define allowed operations (resize,
change of position etc.) and the methods implemented in abstract class
catch events and manages most of view-oriented functions.

• Classes for command implementation. Every action which changes a con-
struct in any way should be implemented as a command. An abstract class
manages storage of commands in the history buffers, the developer must
provide actual “work code” and its inverse for undo.

• Interface for the plugin itself, which must be implemented by the developer.
A plugin uses this interface to pass own ribbon toolbar to the framework
and the developer can provide own implementation of several framework
function (save/load of construct storage).

Developing of plugin is not a complex task, it is mostly providing implemen-
tation of an abstract classes. This was an aim - even unskilled developers without
any deeper knowledge about internal function of the framework should be able
to implement a modeling plugin.

7.1.2 Data Propagation - Evolution

The most valuable feature is so called evolution, which allows data binding
between two diagrams and derivation of objects from one diagram to another.
For this purpose, special plugin (so-called evolution plugin) must exist, which
describes how data can be mapped and then propagated. The evolution plugin
exists for each two modeling languages implemented for DeamonX, for which the
evolution is enabled and all evolution plugins are directed - the data propagation
is possible only in one direction. If evolution plugin supports propagation from
source language L1 to target language L2, we call the plugin L1 → L2 evolution
pluing.

Work with evolution is not very complex. Usually, the user creates diagram(s)
in one modeling language (for instance UML). Then he/she decides, that it would
be useful to use this data model also in, e.g., BPMN [4] diagram. If there is a
UML → BPMN evolution plugin present in the framework, he/she can select
constructs, which are then propagated to BPMN diagram. This process is called
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derivation - it creates constructs in target diagram and setups so-called evolution
references between the original and derived constructs.

Evolution reference is a key term - it is the only way, how to specify cross-
language relationship between two objects in one project. This reference is
oriented (one object is a source and the second one is a target) and its existence
between two objects means, that if the value in the source object is changed,
this change is propagated to the target object. How the propagation is done is
specified in evolution plugin - there is no way how to specify some general rules
of propagation between two modeling languages - there is no common modeling
language and the rules would have to be customized anyway.

In situation that both diagrams (UML and BPMN) already exist, evolution
references can be set up by hand in user-friendly designer.

7.1.3 Technical Solution

The basic unit for propagation is command. The command in DaemonX matches
the definition of the command from in Chapter 3 very well, although it is extended
with additional variables.

Evolution plugin contains a predefined set of rules specifying, which values
can be propagated and how they can be propagated. All these rules are defined
over commands, in fact it is a mapping of commands from source modeling plugin
to commands of target modeling plugin.

When a new command C is being executed, it is also passed to evolution man-
ager. Evolution manager has a set of evolution references and set of commands.
Manager at first checks, whether there is an evolution reference binded to one of
command’s affected constructs. If so, the manager tries to find a rule, which has
similar type of C. If such a rule is found, propagation will occur.

7.2 Environment for Undo

The previous section briefly describes functions and some inner parts of the
DaemonX framework. For the purpose of this thesis, the most important part is
undo/redo manager and history buffers.

The first aim of the DaemonX framework was testing of evolution concept.
It should be an advanced proof of concept for this feature and therefore initial
architecture design was evolution-centered. However, other functions were not
completely left behind - if the application wants to be successful, it must be at
first easy to use.

For these reasons, the undo/redo functionality was a part of initial design, but
the proposed architecture was not very sophisticated. Because of evolution, we
needed to delimit and abstract operations with constructs to commands, which
implies also using commands to undo/redo management. Any other approach
would be wasting of resources.
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7.2.1 Design of Commands

Atomic command

As stated before, DaemonX provides an abstract class, which is ready for com-
mand implementation - ACommand. ACommand stands for atomic command, which
is one single piece of action, which can be executed. It is really atomic, so the
developer can be sure, that execution cannot be interrupted. Atomic command
should perform changes on exactly one construct.

All atomic commands must implement (among others) two methods and two
read-only properties:

• DoExecute and CanBeExecuted

• DoUndo and CanBeUndone

The CanBe... properties perform necessary checks. If they are true it must
be guaranteed that subsequent calling of respective Do... function will succeed.

Each atomic command carries a key of the construct which affects - this
information is later used for building up

For each construct, usually at least 2 atomic commands exist - one for creation
and one for deletion. If the construct supports modification of properties, each
such a modification is usually done by a separate atomic command - although
it is not mandatory and there can be a parametrized atomic command, which
can modify several properties at once (but one instance should modify only one
particular property).

Manipulation with views is also performed in command based environment.
The framework provides general commands for movement and resize of constructs.
However the developer may of implement his/her own commands to do this.

Command Group

The atomic command is the smallest piece of action the framework can perform
on a construct. The problem is, that in some situations this action is too small.
Chapter 3 provides an example of such a situation in Figure 3.2. Deletion of
class Vehicle implies deletion of both connections with the subclasses. For the
framework, it is not a problem to detect such a situation and solve it. But there
is no atomic command which deletes one class and two connections, there are
only separate commands for class deletion and for connection deletion. The user
does not want to see three separate commands in the history buffer, because for
him/her it was one action caused by one click.

For this purpose, DaemonX uses so-called command groups. Command group
puts several atomic commands together and provides the interface to execute and
undone them. In fact, the interface is very similar to command’s interface.

When an Execute method of command group is called, it executes in sequen-
tial order all atomic commands in the group, undo is performed similarly but
in reversed order. One command group is executable if and only if all atomic
commands in the group are executable (property CanBeExecuted returns true),
similarly for undo. The order of commands in the group is maintained by the
creator of the group and it is his/her/its responsibility, that execution order will
not bring the document into an unstable state.
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There is a special array of commands in the group, called termination com-
mands, which are executed and undone in the same order and it is guaranteed,
that these commands will be executed or undone after all other commands were
executed or undone. The termination commands serve mainly for internal frame-
work purposes (refresh of view etc.) and generally they should not be used by
the developer of plugin.

7.2.2 Command Group Tree

Each atomic command carries an information about the key of the affected
construct. Command group makes this information public, so it is possible to
construct a directed graph of implicit dependencies among command groups.
But data propagation process through evolution needs sometimes to explicitly
set dependencies among several groups.

For this purpose, command group tree has been created. Groups are formed
into directed graph - tree. The first added group is selected as a root of the tree.
Each group must have exactly one parent (except the root group, which has no
parent) and zero to infinity children. Since the graph is a tree, there must not
be a cycle. If there is an edge from group A to B, it means that when A is being
undone, B should be undone prior to A (A is older than B). The whole tree is
executed in layers. The number of the layer, in which the command group resides,
is defined as the distance of the groups in layer from the root of the tree plus one.
The execution starts with root layer (layer 1), then all command groups in layer
2, then layer 3 etc. Groups in the same layer are executed in order they were
added into tree.

Structure of tree is depicted in Figure 7.1.

7.2.3 Undo Management

The whole undo/redo management in DaemonX is controlled by one singleton
[10] class called UndoRedoManager.

Each command group created by plugin is passed to this class with speci-
fication of the workspace in which it was created. The manager accepts only
command groups and command group trees - even if only one atomic command
is necessary to perform desired action, it must be wrapped into a command group.
The manager firstly checks, whether the group is executable and if so, the group
is executed and stored in manager’s internal data structures.

When a command group tree is passed to the undo/redo manager, it at
first traverses through the tree and updates keys of affected constructs of each
command group according to position of the group in the tree. Manager itself
does not maintain any database of dependencies, all of them are stored as keys of
affected constructs in particular atomic commands or command groups. When
update is finished, it executes groups layer after layer starting with the root (layer
1). Each executed group is then stored in the right history buffer.

Internal data structures of manager are so-called command stacks. Because
undo/redo support was not a main task in DaemonX, the first idea was to use
a global linear undo - all commands, even from different plugins, are mixed in
one history buffer. This approach is not novel, it was already used for project
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Figure 7.1: Command group tree

XCase [3]. It is simple to implement, but after testing we realized, that it is
not very user-friendly. When undo is performed, the application jumps from one
workspace to another, and it is hard to control, which action will be undone in
the next step. Therefore, there is a separate history buffer for each workspace.

The overview of this situation, together with the structure of command group,
is depicted in Figure 7.2.

Extended Linear Undo

The first implemented algorithm was extended linear undo. It was developed
during initial development and proven to be useful feature.

The commands were managed stored in stacks. Each stack maintained its
own top of the stack, in other aspects it was just a collection of commands.

For dependency search, one global command buffer was used. This buffer
contained reference to each command in the document, ordered from the oldest
to the youngest.

When undo or redo operation was performed and the dependent command is
found, a dialog is shown to the user, with specification of dependent commands.
Each entry contains a checkbox - the user can select, which commands will be
really undone or redone. Dialog assures by automatic checking of particular
checkboxes, that there will not be an undone command between two executed
commands and vice versa. However, if the user unchecks any command to undo,
it may bring the project into unstable state. If all entries remain checked, it is
guaranteed that the document will not be in unstable state the desired operation.
A sample dialog is shown in Figure 7.3.

81



CommandGroup

Atomic command

commands termination commands

... ...

Undo/Redo manager

Command
group stack

...

Figure 7.2: Undo/Redo manager with several history stacks

The purpose of this dialog is mainly to inform the user, that also other
commands are being undone, but it allowed the user also to solve the situation,
when unnecessary command was being undone.

The dialog is still present in both following models.
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Figure 7.3: Dialog shown by undo/redo manager, when a dependent commands
were found

Cascade Selective Undo

The second implemented algorithm was cascade selective undo model. This model
was also useful, but impossibility of undoing large chunks of commands was a
limitation.

The implementation follows the analysis done in Chapter 6. Command stacks
are just collection of commands, which can return command based on its position
in the stack or based on its key.

All important work is done in undo/redo manager, which controls the stacks.
When undo or redo is performed, it searches for dependencies and undoes or
redoes commands returned by the search method.

The dialog from the previous section is displayed when at least one dependent
command is found. Its behavior is slightly changed - the user is able to select any
combination of checkboxes.

Interface to the user was also changed - undo and redo button were removed
and the user selects the command to undo or redo by clicking into the list of
commands on the particular command.

Combined Undo

The third and last implemented algorithm is the combined undo model.
The implementation mostly follows analysis done in Chapter 6 with one

exception. Each stack manages its own virtual top of the stack and when a
new command is executed, all commands above the virtual top in current stack
are discarded. It is expected, that if the user has undone a command, it has
been undone on purpose and therefore when a new command is executed, these
commands can be safely discarded from the stack.
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Because the model supports three methods of undo, the user has to be able to
select which one he/she wants to use. The command stack interface was extended
with the context menu, which reacts on right mouse button (RMB). When the
user clicks RMB on the command he/she can select from the menu, whether
he/she wants to use linear undo/redo, selective undo/redo or global linear undo.
Selecting linear undo (redo) on the command in the middle of the stack causes
linear undo (redo) on all executed (undone) commands above (below). Buttons
“undo” and “redo” are present and they cause linear undo and of command right
below or at the virtual stack top.

The example of the user interface is depicted in Figure 7.4. We can see eight
commands in the stack, four are undone (green) and four are executed (blue).
At the top of the stack, there two buttons with small arrows - the undo/redo
button, which causes linear undo/redo. In the middle of the picture, we can
see the context, which is displayed after right click on the particular command
and which offers three possible ways, how to undo the command. The commands
carry a simple information about their purpose (e.g. “Create UML initial state”).
However, this information is only static and does not inform the user, which
particular construct is affected.

Figure 7.4: The user interface for the combined undo model.

Data structures were reused from the previous models and only the undo/redo
manager was changed.
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7.3 Results

All three models were tested during usage of DaemonX. However, lack or real-
world users of DaemonX project limits results to impression of developers during
testing of various plugins.

7.3.1 Extended Linear Undo Model

The extended linear undo model was present during initial development and
therefore it was extensively tested. The general impression was good, the model
was easy to use and in case of one workspace or several independent workspaces,
it acted like linear undo. The need of undoing dependent commands (and all
commands above them in the same stack) were sometimes annoying and because
of this, the user in some cases did not use the undo/redo operations, but he/she
fixed the problem in an other way (manual deletion of construct,...).

Results of the model were easy to predict, but only on one stack. When
undo or redo operation affected several stacks, it was hard to determine, in what
state the document will be. This problem could be fixed by developing even more
extended version of commands, which could inform the user about actual changes
done to the constructs. However this change would mean reprogramming several
hundreds of commands and therefore it has been selected as potential future work.

7.3.2 Cascade Selective Undo Model

The cascade selective undo model brought a possibility of undoing any command,
but its limitation was undoing bigger chunks of commands at once.

This feature was not present and if the user wanted to undo fifteen independent
commands, he/she had to fifteen times select the particular command to undo.
This feature was really wanted by users and therefore it was the reason, why
cascade selective undo model was not so popular as plain extended linear undo
model.

The selective undo feature itself was mainly appreciated by the users and
they proposed a wish to combine both models, which resulted in combined undo
model.

7.3.3 Combined Undo Model

Combined undo model takes the best from both previous models and negates
their disadvantages.

When the user wants to undo only single command in the middle of the
stack, he/she can use a selective undo. If there is a need to undo big a chunk of
commands, linear undo or global linear undo can be used.

Global linear undo feature was really appreciated by the users, which shows
that linear approach is still probably more natural than selective.

The used user interface - undo/redo buttons and list of commands with context
menu - is generally sufficient, but its improvement can be a part of possible future
work.
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8. Conclusion and Future Work

The aim of the thesis has been designing and providing an algorithm or model,
which would be able to manage selective undo and redo operations in environ-
ments with multiple workspaces, where particular actions may depend on each
other.

This thesis starts with a brief summary of several different approaches to un-
do/redo and it provides a comparison of 6 real-world undo models with emphasis
on non-linear undo models. This experience results in definition and analysis of
selective undo and connected issues. For each of them several potential solutions
are discussed and their advantages and disadvantages are depicted.

The key part of thesis is a proposal of three undo models - extended linear
undo model, cascade selective undo model and combined undo model.

The first one extends linear undo model for environments with multiple workspaces
and it proved the concept of dependency searching to be useful and effective. The
model can be used in applications, where simple global linear undo is a limitation
for comfort use.

The second one provides universal implementation of selective undo model and
verifies particular solutions of issues presented during the analysis. The algorithm
performs well also in simple environments with only one stack and it can be used
in wide range of applications.

The third model combines both approaches together and adds function of
global linear undo. It is the most sophisticated model presented in this thesis
and it allows the user to choose between linear and selective undo according to
actual needs. It discusses limitations of both approaches in one model and one
application and it proves.

All three models are easy to implement, because they are built upon a com-
mon system of commands and history buffers, which are widely used in today
applications. The ease of the implementation has been proven trough DaemonX
framework, which served with its complex system of workspaces as a laboratory
for comparison of the models. The final implementation of combined undo model
extended the functionality of the framework itself.

8.1 Future Work

The general aim of the thesis has been fulfilled, but not all issues of undo and
redo operation are solved and there are many ways how to improve existing or to
create new models.

The big challenge is design of a selective undo model, which would search
dependencies among commands based on the multi-criterial basis. Presented
models use only keys of affected constructs to decide, whether there is a depen-
dency between two commands. Future models may use also other criteria - for
instance type of command(creation, modification, deletion, move,...) can be taken
into account. This approach could reduce the amount of commands selected as
dependent in one undo or redo operation. It implies revisiting modify already
modified issue by careful selecting criteria, which makes the command dependent
(movement commands depends on creation, but not on modification etc.).
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The other challenging task is to revisit the user interface of undo manager.
Almost all current implementations use two buttons and a stack of actions, but in
case of selective undo, also different approaches can be meaningful. Commands in
the stack can be ordered not by the age but by its state (executed, undone), stack
can visualize only commands for the focused construct. Also the history trees,
like in US&R model [18], can used for having several versions of one construct in
the one stack.
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Appendix A

Content of the CD

The attached CD contains:

• /thesis/thesis.pdf

• /DaemonX

– /bin - Compiled release version of DaemonX with necessary plugins
installed, ready to run.

– /doc - Documentation to the DaemonX project.

– /src - Source codes of DaemonX project.
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Appendix B

Combined Undo Model Manual

The usage of undo/redo in DaemonX is not complex. There are two areas, where
the undo/redo can be invoked, both are marked in Figure 8.1 with black arrows.

1 2
Figure 8.1: The areas, where undo/redo can be controlled.

The first one (marked with red “one”) is located at the top of the main
window and contains two small undo/redo buttons. Both will trigger only linear
undo/redo in the document.

The second one (marked with red “two”) is in the floating window with the
title “Command stack”. The window is located by default in the bottom right
corner of the main window, but the user can move it freely. The two buttons
at the top of the command stack window offer the same functionality as the
undo/redo buttons at the top of the main window.

Twe blue or green rectangles it the command stack window represent com-
mands. The green ones are undone, the blue ones are executed. The most
recent (the youngest) command is always on the top of the stack - it is the first
command in the window. The amount of commands displayed in the command
stack window can be controlled via DaemonX general settings [12].

To trigger selective undo or the global linear undo, the user has to click with
the right mouse button on the particular command in the command stack. The
context menu, which is depicted in figure 8.2, is displayed.

Then, the user can choose three types of undo/redo:

• Simple undo/redo - The linear approach.

• Selective undo/redo - The selective approach.
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Figure 8.2: Context menu - undo the command.

• Global linear undo

After clicking on one option, the chosen method of undo/redo will be per-
formed and the selected command will be undone/redone. But before the actual
undo/redo of the selected command, the undo/redo manager will search through
the global stack for dependent commands. If at least one is found, the dialog
depicted in Figure 8.3 appears.

Figure 8.3: Commands which are going to be undone/redone.

The dialog summarizes the actions to be taken - which commands will be
undone/redone. The user can take a command out the list by checking it out.
However, checking a dependent command out may cause an unstable state of the
document and it should be used for the development purposes only.

92


	Introduction
	Aims of this Thesis
	Structure of the Thesis

	Overview of Undo and Redo Operations
	History of Undo and Redo Operations
	Undo and Redo Today
	Importance of Undo/Redo Operations

	Definitions
	Constructs and Views
	Construct Pool and Workspace
	Commands
	Commands Ordering
	Extending Command Structure

	History Logging
	Dependencies Among Commands
	Undo Model
	State of the System
	Properties of Undo Models


	Related Work - Current Undo Models
	Linear Undo and Redo
	Performing Undo and Redo
	Possible Implementation

	Non-linear Undo and Redo
	Script Model
	The US&R Model
	The Triadic Model
	Direct Selective Undo

	Comparison

	Analyses of Selective Undo
	Selective Undo Definition
	Approaches and Behavior
	Correct and Good Result

	Issues
	Dead References
	Modify Already Modified
	Discard Commands Problem


	Proposed Algorithms
	Environment
	Document
	Constructs and Properties
	Workspace and History Buffers

	Extended Linear Undo
	Requirements
	Principle and Analysis
	Data Structures and Algorithm
	Algorithm
	Correctness
	Conclusion

	Cascade Selective Undo Model
	Requirements
	Principle and Analysis
	Algorithm
	Correctness
	Conclusion

	Combined Undo Model
	Requirements
	Analysis
	Algorithm
	Correctness
	Conclusion

	Comparison of presented algorithms
	Behavior difference


	Undo and Redo in DaemonX Project
	Project Overview
	Data and Process Modeling
	Data Propagation - Evolution
	Technical Solution

	Environment for Undo
	Design of Commands
	Command Group Tree
	Undo Management

	Results
	Extended Linear Undo Model
	Cascade Selective Undo Model
	Combined Undo Model


	Conclusion and Future Work
	Future Work


