
Charles University in Prague 

Faculty of Mathematics and Physics 
 

 

 

 

Master Thesis 
 

 

 

 

 
 

 

 

 

Tomáš Knap 

 

Comparison of Fully Software and Hardware 

Accelerated XML Processing 
 

 

 

 

 

 

 

 

 

 

 

Department of Software Engineering 

Supervisor: RNDr. Irena Mlýnková, Ph.D. 

Study plan: Informatics 

http://www.cuni.cz/
http://www.mff.cuni.cz/toUTF8.en/fakulta/struktura/ksi.htm


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

2 

I would like to thank to my supervisor Dr. Irena Mlýnková for many inspiring ideas and 

advices, provided sets of possible testing data, overview of benchmarks, and principally for 

her conscionable and valuable leadership in all respects. Furthermore, I would like to thank to 

Dr. Jakub Yaghob for smooth installation and maintenance of the servers for the testing 

environment and valuable ideas especially at the beginning of the work. 

 

Moreover, I would certainly like to thank to Jiří Melichna, former IBM WebSphere 

DataPower Technical Sale for CEMAAS and currently SOA Architect, for its selfless support 

in all phases of the work, valuable hints during the preparation of the tests, many ideas which 

accelerates my work, and dozens of pleasant testing afternoons with interesting discussions. I 

hope I will be able to reciprocate in the future. Besides, I would like to thank to Miroslav Vaic 

and Tomáš Peroutka from the Trask solutions company for initial ideas and procurement of 

access to the XML processing appliance.  

 

Finally, special thanks to my parents, who supported me throughout the writing, and to my 

friends, who provided me valuable relaxation in my spare time.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that I have written this work independently and used no resources other than 

the indicated aids. I agree with lending of this work. The work may be reproduced for 

academic purposes. 

 

Prague, 30
th 

July 2008        Tomáš Knap 

 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

3 

TTaabbllee  ooff  CCoonntteennttss  

I. Introduction and Basic Terminology............................................................ 10 

1. Introduction .................................................................................................................. 10 
1.1. Background Motivation.......................................................................................... 10 
1.2. Goals of The Thesis................................................................................................ 10 
1.3. Conventions ............................................................................................................ 10 

1.3.1. Hierarchy of Headings .................................................................................... 11 
1.4. Thesis Organization................................................................................................ 11 

2. Terminology and Technology Overview ...................................................................... 12 
2.1. XML ....................................................................................................................... 12 

2.1.1. Parsing XML Documents ............................................................................... 12 
2.1.2. Validating XML Documents .......................................................................... 13 
2.1.3. Transforming XML Documents ..................................................................... 18 

2.1.4. Securing XML Documents ............................................................................. 20 
2.2. XML in Java ........................................................................................................... 25 

2.2.1. Java API for XML Processing ........................................................................ 25 
2.2.2. Java API for XML Digital Signature and XML Encryption........................... 27 

2.3. J2EE and Servlets ................................................................................................... 27 

II. Testing Environments ................................................................................... 28 

3. Description of Testing Environments ........................................................................... 28 
3.1. IBM WebSphere DataPower Integration Appliance XI50 ..................................... 28 

3.1.1. Features of XI50 ............................................................................................. 28 
3.1.2. Typical Use Cases of XI50 ............................................................................. 30 

3.1.3. Connection to a Business Network ................................................................. 31 
3.1.4. Web-based GUI .............................................................................................. 32 
3.1.5. Internal Device Structure ................................................................................ 33 

3.1.6. Approximate Price .......................................................................................... 34 
3.1.7. Other Appliances ............................................................................................ 34 

3.2. IBM WebSphere Application Server v 6.1 ............................................................ 34 
3.2.1. Architectural Overview ................................................................................... 34 
3.2.2. Installation and Profiling ................................................................................ 35 
3.2.3. Administration of the Application Server ....................................................... 35 

3.2.4. Approximate Price .......................................................................................... 36 
3.2.5. Other Application Servers or SW Solutions ................................................... 36 

3.3. Auxiliary Tools ...................................................................................................... 36 
3.3.1. Eclipse Version 3 ............................................................................................ 37 
3.3.2. IBM Rational Application Developer Version 7 ............................................ 37 
3.3.3. Curl ................................................................................................................. 37 
3.3.4. Apache HTTP Server Benchmark Tool (AB) ................................................. 37 

3.3.5. Windows Server 2003 Performance Tool ....................................................... 39 

III. Testing - Defining Models and Metrics ....................................................... 40 

4. Overview of the Testing Suites .................................................................................... 40 

4.1. Naming Conventions .............................................................................................. 40 

4.2. Process of Searching Suitable Collections of Testing Scenarios ........................... 40 
4.2.1. Way to the “Onion” Testing Suite .................................................................. 40 
4.2.2. Way to the “Flat” Testing Suite ...................................................................... 41 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

4 

4.3. Outline of the Testing Hierarchy ............................................................................ 42 
4.4. Architecture of the Testing Framework ................................................................. 43 
4.5. Server Part of the Testing Framework in HW Environment .................................. 44 

4.5.1. Front End and Back End Sections .................................................................. 45 

4.5.2. Firewall Type .................................................................................................. 46 
4.5.3. XML Manager ................................................................................................ 46 
4.5.4. Firewall Policy ................................................................................................ 46 
4.5.5. XML Firewall Used in Our Testing Framework ............................................ 49 

4.6. Server Part of the Testing Framework in the SW Environment ............................ 50 

4.6.1. Processing Rules ............................................................................................. 51 
4.7. Measuring the Tests ............................................................................................... 55 

4.7.1. Measures ......................................................................................................... 56 

5. Defining the “Flat” Testing Suite ................................................................................. 57 
5.1. The Outline of the Testing Groups and Testing Scenarios .................................... 57 
5.2. Testing Group: Parsing XML Data ........................................................................ 57 

5.2.1. Testing Data and Testing Hierarchy ............................................................... 57 

5.2.2. Processing Rule Definition ............................................................................. 59 
5.2.1. Tested Engines in the SW Environment ......................................................... 61 

5.3. Testing Group: Validating XML Data ................................................................... 61 
5.3.1. Testing Data and Testing Hierarchy ............................................................... 61 

5.3.1. Processing Rule Definition ............................................................................. 62 
5.3.1. Tested Engines in the SW Environment ......................................................... 63 

5.4. Testing Group: Transforming XML Data .............................................................. 63 

5.4.1. Testing Data .................................................................................................... 63 

5.4.1. Processing Rule Definition ............................................................................. 68 
5.4.2. Tested Engines in the SW Environment ......................................................... 69 

5.5. Testing Group: Securing XML Data ...................................................................... 70 
5.5.1. Testing Data and Testing Hierarchy ............................................................... 70 
5.5.2. Processing Rule Definition ............................................................................. 70 

5.5.3. Tested Engines in the SW Environment ......................................................... 74 
6. Defining the “Onion” Testing Suite ............................................................................. 76 

6.1. The Outline of the Testing Groups and Testing Scenarios .................................... 76 

6.2. Testing Group: Auction .......................................................................................... 76 
6.2.1. Testing Data and Testing Hierarchy ............................................................... 76 

6.2.2. Processing Rule Definition (Auction_XSLT) ................................................. 77 
6.2.3. Processing Rule Definition (Auction_VAL_XSLT) ...................................... 77 

6.2.4. Processing Rule Definition (Auction_VAL_XSLT_SIGN) ........................... 78 
6.2.5. Processing Rule Definition (Auction_VAL_XSLT_SIGN_ENC) ................. 79 
6.2.6. Tested Engines in the SW Environment ......................................................... 80 

6.3. Testing Group: CSVOutput .................................................................................... 80 
6.3.1. Testing Data and Testing Hierarchy ............................................................... 81 

6.3.2. Processing Rule Definition (CSV_XSLT) ...................................................... 82 
6.3.3. Processing Rule Definition (CSV_XSLT_XSLT2) ........................................ 82 
6.3.4. Processing Rule Definition (CSV_XSLT_VAL_XSLT2).............................. 82 
6.3.5. Processing Rule Definition (CSV_VER_XSLT3_XSLT_VAL_XSLT2) ..... 83 
6.3.6. Rule Definition (CSV_DEC_ VER_XSLT3_XSLT_VAL_XSLT2) ............. 84 

6.3.7. Tested Engines in the SW Environment ......................................................... 85 

IV. Testing - Testing and Comparing ................................................................. 86 

7. Environment Settings ................................................................................................... 86 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

5 

7.1. The HW Environment ............................................................................................ 86 
7.1.1. Configuration .................................................................................................. 86 
7.1.2. Tuning Possibilities ......................................................................................... 86 
7.1.3. Monitoring Capabilities .................................................................................. 87 

7.1.4. Debugging Capabilities ................................................................................... 87 
7.2. The SW Environment ............................................................................................. 88 

7.2.1. Configuration .................................................................................................. 88 
7.2.2. Tuning Possibilities ......................................................................................... 89 
7.2.3. Monitoring and Debugging Capabilities ......................................................... 93 

7.3. Used Settings .......................................................................................................... 93 
8. Testing .......................................................................................................................... 94 

8.1. The “Flat” Testing Suite ......................................................................................... 95 

8.1.1. Parsing Testing Group .................................................................................... 95 
8.1.2. Validating Testing Group ............................................................................... 97 
8.1.3. Transforming Testing Group .......................................................................... 99 
8.1.4. Securing Testing Group ................................................................................ 102 

8.1.5. Cross-scenario Comparison .......................................................................... 106 
8.2. The “Onion” Testing Suite ................................................................................... 109 

8.2.1. Auction Testing Group ................................................................................. 110 
8.2.2. CSVOutput Testing Group ........................................................................... 113 

8.2.1. Cross-scenario Comparison .......................................................................... 117 

V. Results, Conclusion, and Future Work ...................................................... 120 

9. Conclusion .................................................................................................................. 120 
10. Future Work ................................................................................................................ 122 

VI. References and Appendices ....................................................................... 123 

11. References .................................................................................................................. 123 

12. Appendices ................................................................................................................. 128 
12.1. Appendix A - Contents of the Enclosed DVD-ROM ........................................... 128 
12.2. Appendix B – Important Java Packages ............................................................... 128 

12.2.1. Java API for XML Processing 1.3 - JSR 206 [W26] .................................... 128 
12.2.2. XML Digital Signature API for Java 1.0 - JSR 105 [W20] .......................... 129 

12.2.3. XML Digital Encryption API for Java 1.0 - JSR 106 [W21] ....................... 129 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

6 

LLiisstt  ooff  FFiigguurreess  aanndd  EExxaammpplleess 

 

Figure 1 Conventions ......................................................................................................... 11 

Figure 2 Sample XML Document ..................................................................................... 12 
Figure 3 XML Document for Explanation of DTD Validation (peopleList.xml) ............. 14 
Figure 4 Sample DTD File (peopleList.dtd) ...................................................................... 14 
Figure 5 Sample XML Document for Explanation of XSD Validation (peopleList.xml) 15 
Figure 6 Sample XSD File (peopleList.xsd) ...................................................................... 16 

Figure 7 Source XML Document for Explanation of XSL Transformations .................... 19 
Figure 8 XSL Stylesheet for Creating the Resulting HTML Page .................................... 19 
Figure 9 Resulting XML Document for Explanation of XSL Transformations ................ 20 
Figure 10 Process of Ensuring Integrity .............................................................................. 21 

Figure 11 Process of Ensuring Confidentiality .................................................................... 21 
Figure 12 Spheres of Activity of a Security Context ........................................................... 22 
Figure 13 Example of Using XML Signature ...................................................................... 23 
Figure 14 XML Document for Explanation of Encrypting ................................................. 24 

Figure 15 XML Document with Encrypted Credit Card Number ....................................... 24 
Figure 16 Information about a Key Used for Encryption and Decryption .......................... 25 
Figure 17 SAX Parsing Example ......................................................................................... 26 
Figure 18 DOM Parsing Example ....................................................................................... 26 

Figure 19 XSL Transformation Example ............................................................................ 27 
Figure 20 XI50 – Outer Face of the Appliance ................................................................... 28 

Figure 21 Example of a Flat File ......................................................................................... 31 

Figure 22 Flat File Description (FFD) File for the Above Flat File .................................... 31 

Figure 23 Proxy Mode of XI50 Connection to a Network .................................................. 32 
Figure 24 Coprocessor Mode of XI50 Connection to a Network ........................................ 32 

Figure 25 Web-based GUI - Main Window ........................................................................ 33 
Figure 26 Simple Architectural Overview of Application Server ....................................... 35 
Figure 27 Administrative Console for IBM WebSphere Application Server ...................... 36 

Figure 28 Curl Sample Request ........................................................................................... 37 
Figure 29 AB Sample Request ............................................................................................ 38 

Figure 30 AB Sample Response .......................................................................................... 38 
Figure 31 Sample Processing Rule of a Testing Scenario in the “Onion” Testing Suite .... 41 

Figure 32 Architecture of the Testing Framework in the SW Environment ....................... 43 
Figure 33 Architecture of the Testing Framework in the HW Environment ....................... 44 

Figure 34 Configuring XML Firewall ................................................................................. 45 
Figure 35 Sample Processing Policy with a Set of Processing Rules.................................. 47 
Figure 36 Common Client to Server Processing Rule in HW Environment ....................... 49 
Figure 37 Detail of Matching Action ................................................................................... 50 
Figure 38 Detail of Results Action ...................................................................................... 50 

Figure 39 Sequence Diagram of Processing Individual and Pipelined Actions .................. 51 
Figure 40 A Processing Rule with a Transforming Action ................................................. 54 
Figure 41 A Processing Rule with an Encrypting Action and TreeWrapper Actions ......... 54 
Figure 42 A Complex Rule with DOM and PIPED Input and Output Contexts ................. 54 
Figure 43 Definition of a Processing Rule .......................................................................... 55 

Figure 44 Names and Appropriate Sizes of Used XMark Documents ................................ 58 

Figure 45 Processing Rule for Par_STREAM Testing Scenario ......................................... 59 

Figure 46 Processing Rule for Par_DOM Testing Scenario ................................................ 59 
Figure 47 Processing Rule for Stream Parsing .................................................................... 60 
Figure 48 Detail of the Transforming Action ...................................................................... 60 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

7 

Figure 49 Processing Rule for Val_XSD_BASE Testing Scenario .................................... 62 
Figure 50 Processing Rule for Validating Action ................................................................ 62 
Figure 51 Detail of Validating Action ................................................................................. 63 
Figure 52 Processing Rule for XSLTMark Test Cases in SW ............................................ 68 

Figure 53 Processing Rule for XSLTMark Test Cases in HW ............................................ 69 
Figure 54 Detail of Transforming Action ............................................................................ 69 
Figure 55 Signing Processing Rule for DSA and SHA1 Algorithms .................................. 71 
Figure 56 Verifying Processing Rule for DSA and SHA1 Algorithms ............................... 71 
Figure 57 Encrypting using RSA2 and AES 256 ................................................................ 71 

Figure 58 Detail of Encrypting Using RSA2 and AES 256 ................................................ 72 
Figure 59 Signing Using DSA and SHA1 Algorithms ........................................................ 73 
Figure 60 Detail of Signing Using DSA and SHA1 Algorithms ......................................... 74 

Figure 61 Names and Appropriate Sizes of Used XMark Documents in Auction .............. 76 
Figure 62 Processing Rule for Auction_XSLT Testing Scenario ....................................... 77 
Figure 63 Processing Rule for Auction_VAL_XSLT Testing Scenario in SW .................. 78 
Figure 64 Processing Rule for Auction_VAL_XSLT Testing Scenario in HW ................. 78 

Figure 65 Processing Rule for Auction_VAL_XSLT_SIGN Testing Scenario in SW ....... 79 
Figure 66 Processing Rule for Auction_VAL_XSLT_SIGN Testing Scenario in HW ...... 79 
Figure 67 Rule for Auction_VAL_XSLT_SIGN_ENC Testing Scenario in SW ............... 80 
Figure 68 Rule for Auction_VAL_XSLT_SIGN_ENC Testing Scenario in HW .............. 80 

Figure 69 Names and Appropriate Sizes of used XML Documents in CSVOutput ........... 81 
Figure 70 Structure of the Database of Employees ............................................................. 81 

Figure 71 Processing Rule for CSV_XSLT Testing Scenario ............................................. 82 

Figure 72 Processing Rule for CSV_XSLT_XSLT2 Testing Scenario ............................... 82 

Figure 73 Processing Rule for CSV_XSLT_VAL_XSLT2 Testing Scenario .................... 83 
Figure 74 Rule for CSV_VER_XSLT3_XSLT_VAL_XSLT2 Testing Scenario in SW .... 83 

Figure 75 Rule for CSV_VER_XSLT3_XSLT_VAL_XSLT2 Testing Scenario in HW ... 84 
Figure 76 Rule for CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 Scenario in SW ....... 84 
Figure 77 Rule for CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 Scenario in HW ...... 85 

Figure 78 CPU Usage (XI50) .............................................................................................. 87 
Figure 79 System Usage (XI50) .......................................................................................... 87 

Figure 80 Memory Usage (XI50) ........................................................................................ 87 

Figure 81 System Log (XI50) .............................................................................................. 87 
Figure 82 Probe - Selecting Context and Viewing XML Document ................................... 88 

Figure 83 Probe - Context Variables ................................................................................... 88 
Figure 84 Number of GC Runs ............................................................................................ 91 

Figure 85 Duration of One GC Run .................................................................................... 91 
Figure 86 Percentage of Time Spent in GC ......................................................................... 91 
Figure 87 Requests per Second Measure ............................................................................. 92 
Figure 88 Used Settings ....................................................................................................... 93 
Figure 89 DOM and Stream Testing Scenarios in HW and SW ......................................... 96 

Figure 90 Throughput Ratio of DOM Parsing ..................................................................... 97 
Figure 91 Validating Testing Group in HW and SW .......................................................... 98 
Figure 92 XSLTMark in HW and SW ................................................................................. 99 
Figure 93 XALAN (on the Left) and SAXON-B (on the Right) Heap Usage .................. 100 
Figure 94 Comparison of Throughputs of XSLTMark_XL .............................................. 101 

Figure 95 Comparison of Throughputs of Transforming Testing Group in HW .............. 102 

Figure 96 Encrypting in HW and SW ................................................................................ 103 
Figure 97 Signing in HW and SW ..................................................................................... 104 
Figure 98 Comparison of Signing and Encrypting in HW and SW .................................. 105 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

8 

Figure 99 Summary Comparison of Throughputs in the HW Environment ..................... 106 
Figure 100 Summary Comparison of Throughputs in the SW Environment ...................... 107 
Figure 101 Network Utilization of the “Flat” Testing Suite with Optimal Test Cases ....... 108 
Figure 102 Network Utilization of the “Flat” Testing Suite in HW .................................... 108 

Figure 103 Network Utilization of the “Flat” Testing Suite in SW .................................... 109 
Figure 104 Cross-scenario Comparison of Test0.002 in Both Environments ..................... 110 
Figure 105 Cross-scenario Comparison of Test0.002 in the SW Environment .................. 111 
Figure 106 Cross-size comparison of Test Cases of Auction_XSLT Testing Scenario ...... 112 
Figure 107 Cross-Scenario and Cross-size Comparison for C=1 in HW and SW .............. 113 

Figure 108 Cross-scenario Throughput for Rows200 Test Case in HW ............................. 114 
Figure 109 Cross-scenario Throughput for Rows200 Test Case in SW .............................. 115 
Figure 110 Cross-scenario Throughput for Rows2000 Test Case in SW ............................ 115 

Figure 111 Cross-size Throughput of CSV_XSLT Testing Scenario in HW and SW ........ 116 
Figure 112 Cross-Scenario and Cross-size Comparison for C=1 in HW and SW .............. 117 
Figure 113 Network Utilization of the “Onion” Testing Suite with Optimal Test Cases ... 118 
Figure 114 Network Utilization of the “Onion” Testing Suite in HW ................................ 118 

Figure 115 Network Utilization of the “Onion” Testing Suite in SW ................................. 119 
Figure 116 Packages of Java API for XML Processing ...................................................... 129 
Figure 117 Packages of XML Digital Signature API for Java ............................................ 129 
Figure 118 Packages of XML Digital Encryption API for Java .......................................... 129 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

9 

Title: Comparison of Fully Software and Hardware Accelerated XML Processing 

Author: Tomáš Knap 

Department: Department of Software Engineering 

Supervisor: RNDr. Irena Mlýnková, Ph.D. 

Supervisor's e-mail address: Irena.Mlynkova@mff.cuni.cz 

 

Abstract:  

The aim of this work is to compare XML processing abilities of standard software solutions 

and hardware accelerated scenarios using a new generation of XML processing appliances. 

The emphasis is puts on the speed of processing XML documents and on the demandingness 

of various operations over XML data. Firstly, we describe the used XML technologies and 

corresponding implementations in Java. Consequently, we characterize the core parts of our 

testing frameworks - IBM WebSphere DataPower Integration Appliance XI50 for hardware 

accelerated and IBM WebSphere Application Server 6.1 for standard XML processing. 

Further, the testing hierarchy involving two distinct testing suites - “Flat” and “Onion”- and 

tens of testing scenarios are defined. The “Flat” testing suite covers parsing, validating, 

transforming, and securing operations over XML data applied individually to a wide range of 

testing data, without bothering with concurrency. On the other hand, the “Onion” testing 

suite is a stress test combining several operations together. Both testing suites are executed 

on our testing framework and several measures (such as throughput) are collected and 

analyzed using n-dimensional OLAP cubes. The results show under which circumstances the 

appliance for hardware accelerated XML processing is worth using on and quantify the gain, 

which can be reached when incorporating such appliance to a network.  

 

Keywords: XML, XSLT, XML Security, XML Benchmark, XML Firewall  

 

 

Název práce: Srovnání softwarového a hardwarově akcelerovaného zpracování XML dat  

Autor: Tomáš Knap 

Katedra (ústav): Katedra softwarového inženýrství 

Vedoucí diplomové práce: RNDr. Irena Mlýnková, Ph.D.  

E-mail vedoucího: Irena.Mlynkova@mff.cuni.cz 

 

Abstrakt:  

Cílem diplomové práce je porovnat možnosti zpracování XML dokumentů pomocí 

standardních softwarových řešení a s využitím speciálních zařízení pro hardwarovou 

akceleraci zpracovávaných XML dokumentů. V první části jsou popsány použité XML 

technologie, včetně jejich implementací v Javě. Následně jsou představeny klíčové části 

testovaných systémů - IBM WebSphere DataPower Integration Appliance XI50 pro 

hardwarově akcelerované a IBM WebSphere Application Server 6.1 pro standardní 

softwarové zpracování XML dat. Následně jsou definovány desítky testovacích scénářů, které 

můžeme rozřadit do dvou hlavních skupin - „Flat“ a „Onion“. V prvně jmenované skupině 

jsou individuálně otestovány standardní operace nad XML daty jako parsování, validace, 

transformace a šifrování. V „Onion“ testovací skupině jsou pak zátěžové testy kombinující 

více operací nad XML daty. Výsledky testů obou skupin jsou posbírány a analyzovány 

v OLAP kostce. Výsledky ukazují, kdy se zařízení podporující hardwarově akcelerované 

zpracovaní XML dat vyplatí a také kvantifikují zvýšení propustnosti dat v podnikové síti po 

začlenění tohoto zařízení. 

 

Klíčová slova: XML, XSLT, Zabezpečení XML, XML Benchmark, XML Firewall 

http://www.mff.cuni.cz/toUTF8.en/fakulta/struktura/ksi.htm


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

10 

II..  IINNTTRROODDUUCCTTIIOONN  AANNDD  BBAASSIICC  TTEERRMMIINNOOLLOOGGYY  

11..  IINNTTRROODDUUCCTTIIOONN  
This section covers a background motivation for the work, goals of the thesis, an overview of 

the following sections, and naming and typographical conventions. 

11..11..  BBaacckkggrroouunndd  MMoottiivvaattiioonn  

Extensible Markup Language (XML) [W9] standard was originally projected as a standard 

format for electronic publishing of documents on the web. However, very soon after its 

release, XML language has taken place as a general format for interchanging and storing data. 

However, the great advantages of XML format, such as its openness, human readability, 

universality, and platform independence, are accompanied with the performance issues when 

the automated processing of XML documents is required. 

 

Operations over XML data can be executed by common servers with XML aware 

applications, without any special hardware acceleration for processing XML data. Whereas 

this approach seems to be sufficient in small organizations, in larger companies, it could cause 

serious performance bottlenecks in XML processing, especially when the interchanged data 

should be validated, encrypted, verified, signed, transformed etc. As a result, operations over 

XML data could slow down the whole chain of executed processes in a company.  

 

The solution could involve adding various load balancers and extra common servers which 

distributes the processing of XML documents a bit more. However, this approach has its 

practical limits, due to restriction of resources, still increasing maintenance, data traffic, 

distribution of security policies, and many other drawbacks. 

 

Other solution includes special appliances that are manufactured to process XML documents 

and carry out common operations over XML data. Such appliances should accelerate XML 

processing, at the cost of higher price. Besides the acceleration features, such appliances 

could be easier to deploy, maintain, with XML-aware security components, support for Web 

services, and enterprise application integration environments [Erl]. Nevertheless, the same 

question remains - whether and under which circumstances these appliances are better choice?  

11..22..  GGooaallss  ooff  TThhee  TThheessiiss  

The main goal of this thesis is to compare the traditional fully software and new hardware 

accelerated processing of XML documents. For this purpose, the sets of testing scenarios are 

defined, performed, and compared. Consequently, the results should reveal when the 

hardware accelerated environment is worth using and, on the other hand, in which situations 

the common completely software solution is sufficient.  

11..33..  CCoonnvveennttiioonnss  

Figure 1 lists formatting styles that give a specific meaning to some parts of the thesis. 

 

Sample text Meaning 
Code Sample code, configuration file  
Important code Emphasized part of the code 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

11 

Referenced code Code part or a figure label referenced from the 

text  

Filename Filename used in the thesis 

Figure 1 Conventions 

11..33..11..  HHiieerraarrcchhyy  ooff  HHeeaaddiinnggss  

The master thesis consists of the following heading types: 

 Part - The whole thesis consists of several parts denoted by a Greek number followed 

by a dot and a title  

o Sample: I. Introduction and Basic Terminology  

 Section - Each part consists of sections denoted by a number followed by a dot and a 

title  

o Sample: 1. Introduction  

 Subsection - Each section can contain subsections depicted as two numbers followed 

by a title  

o Sample: 1.1. Background  

 Chapter - Subsections can further involve chapters symbolized by three numbers 

followed by a title  

o Sample: 1.3.1 Hierarchy of Headings  

 Subchapter - Chapters can have subchapters introduced only by the title of the 

subchapter  

o Sample: Comparison of XML Schema Languages 

 

These heading types are used when referencing differently nested parts of the thesis. 

11..44..  TThheessiiss  OOrrggaanniizzaattiioonn  

Part I introduces motivation and goals of this thesis and briefly explains basic XML 

terminology and technology. Part II describes both testing environments. Subsequently, Part 

III defines the testing framework and contains definitions of the testing suites. Part IV 

includes the testing and results comparing. Part V sums up results and delineates possible 

future work. Finally, Part VI holds additional materials and references. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

12 

22..  TTEERRMMIINNOOLLOOGGYY  AANNDD  TTEECCHHNNOOLLOOGGYY  OOVVEERRVVIIEEWW  
This section introduces the basic terminology concerning XML language, describes 

operations over XML documents and usage of XML language in Java. 

22..11..  XXMMLL  

Extensible Markup Language (XML) [W9] is a standardized text format derived from 

Standard Generalized Markup Language (SGML) [W35] and governed by W3 Consortium 

[W54]. The following chapters describe the basic operations that can be performed over XML 

data.  

 

Figure 2 depicts a sample XML document. An XML document consists of elements (e.g. an 

element firstname) and attributes (e.g. an attribute id of an element person). Elements 

can contain other elements and/or text contents, on the other hand, attributes can involve only 

text contents. The scope of elements is defined by an opening and closing token with the 

name of the element closed into angle brackets supplemented with a forward slash in case of 

the closing token. If the elements are opened and closed properly and for each pair of 

elements the assertion “If an element A starts before an elements B and the element B starts 

before the element A ends then the element B is closed before the element A” is valid, the 

document is well-formed. As a result, the elements of the XML document create a tree 

structure.  

 

Each XML document contains one root element (e.g. an element people in Figure 2) and 

possibly definitions of other elements inside of the root element. The tree character of an 

XML document is successfully exploited when processing the XML document. The very first 

line in Figure 2 declares that it is an XML document of the version 1.0 with UTF-8 text 

encoding. For a full documentation of XML format, see W3C Recommendation [W56]. 

 
<?xml version="1.0" encoding="UTF-8"?> 

<people> 

  <person id="p111"> 

    <firstname>Jon</firstname> 

    <lastname>Bright</lastname> 

  </person> 

</people> 

Figure 2 Sample XML Document  

22..11..11..  PPaarrssiinngg  XXMMLL  DDooccuummeennttss  

An XML document can be treated as a general text, however, this approach is unnecessarily 

non-effective. The existence of elements and attributes in XML documents enables the 

creation of XML-aware parsers. There are two approaches in parsing XML data.  

Document Object Model (DOM) 

Concept of well-formed XML documents enables recursive processing of an XML document 

and building a tree structure in a memory, where elements, attributes and other types of XML 

metadata compose the nodes of the tree. This concept is used by W3C standard DOM Level 3 

[W39] and implemented in DOM parsers. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

13 

Simple API for XML (SAX) 

SAX parsing approach evolves as an opposed variant to a DOM processing in order to reduce 

the memory footprint. Unlike DOM, the SAX approach has no formal specification, the Java 

implementation tends to be considered as normative [W40]. Consequently, the SAX approach 

was implemented in other languages according to implementation in Java.  

 

SAX parser is event-based, therefore, an XML document is stepwise processed and 

occurrences of defined events (e.g. start of an element, text node occurrence, end of an 

element) are sent to user-defined callback methods. This processing does not need to build a 

tree representation of the whole XML document in a memory, hence, the memory 

consumption is much more lower. However, the SAX parser cannot return to already parsed 

segments of the XML document, which eliminates the available operations over the XML 

data parsed in this way (e.g. the children elements of a root element cannot be sorted 

according to their names).  

22..11..22..  VVaalliiddaattiinngg  XXMMLL  DDooccuummeennttss  

XML documents contain data that are usually interchanged among different applications. 

However, without metadata about the content of an XML document, it is hard to prevent or 

reveal all unexpected, missing, or badly named nodes. What is more, the structure of elements 

and attributes of an XML document stays only in heads of document designers. Therefore, no 

other subject (person or machine) can check that a given XML document satisfies some 

restrictions defined by designers.  

 

In our case, if an XML firewall appliance (see Part II) does not know the right structure of 

documents that are allowed to go through the firewall, such filtering of XML documents is 

almost on the same level as in standard firewall where the appliance does not know anything 

about XML format. Hence, some kind of metadata that describe a structure of an XML 

document is needed. Then, an incoming XML document can be validated against these rules 

by the XML firewall and all desiderative machines are aware of the structure of these XML 

documents. Finally yet importantly, subjects (people or machines) creating XML documents 

can establish common vocabulary of created XML documents. Hence, the created documents 

can be denoted as document instances of the XML document describing their structure and 

thus presenting a template for all other created documents of the same type.  

Document Type Definition (DTD) 

DTD [W34] was originally included in SGML specification [W35] and later used in XML 

language specification [W9]. It enables description of a structure of an XML document, 

however, its expressive power and range of covered data types is limited (see Subchapter 

“Comparison of XML Schema Languages”).  

 

DTD can be introduced together with an XML document, that it describes, or it can be 

shipped in a separate file and linked together by a declaration of used DTD files at the 

beginning of an XML file. DTD contains three base building blocks (key words) designed to 

describe a structure of an XML document: 

 Element 

 Attribute 

 Entity 

 

Elements are the key building blocks. Each key word element in a DTD describes structure of 

the element in a respective document instance, which means its name, optional child elements 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

14 

and their cardinality. Each attribute key word in a DTD involves definition of an attribute 

used in the respective document instance - its name, a name of element to which it belongs, 

type of the attribute and a default value and/or whether the attribute is mandatory, optional or 

has a fixed value. Entities are variables that are used to hold some standard text or special 

characters (e.g. „<‟) and they are expanded/substituted with their real value during parsing of 

the document instance. 

 

DTD supports data types in a limited way. The elements can contain sequence of character 

data that should be parsed (so-called PCDATA). PCDATA involve entities for expansion and 

tags that are treated as markup. The attribute data type can be one of the following list (not 

complete, all can be found on [W34]) : 

 CDATA - general character data 

 Enumerated list (x | y | ...) - the value must be one of the values in the enumerated list  

 ID - unique identification of an element in an XML document 

 IDREF - unique identification of another XML element 

 

Figure 3 and Figure 4 show an XML document and a DTD containing records about people. 

Note that the DOCTYPE tag in the XML document includes the reference to the DTD file 

peopleList.dtd used for validating the XML document.  

 
<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE peopleList SYSTEM "peopleList.dtd"> 

<peopleList> 

  <person id="p111" currentEmployee="true"> 

    <name>Jon Bright</name> 

    <gender>M</gender> 

    <salary>2000</salary> 

  </person> 

</people_list> 

Figure 3 XML Document for Explanation of DTD Validation (peopleList.xml) 

 
<!ELEMENT peopleList (person*)> 

<!ELEMENT person (name, birthdate?, gender?, salary?)> 

<!ELEMENT name (#PCDATA)> 

<!ELEMENT birthdate (#PCDATA)> 

<!ELEMENT gender (#PCDATA)> 

<!ELEMENT salary (#PCDATA)> 

 

<!ATTLIST person id ID #REQUIRED> 

<!ATTLIST person currentEmployee (true|false) "false" > 

<!ATTLIST salary note CDATA #IMPLIED> 

Figure 4 Sample DTD File (peopleList.dtd) 

 

The DTD file defines a root element peopleList that contains arbitrary number of the 

elements person (denoted by the following operator „*‟). Each person element consists of 

a mandatory element name and optional elements birthday, gender, and salary 

(optional elements are denoted by the following operator „?‟). The next four lines with 

element definitions depict that the elements name, birthdate, gender and salary 

contain parsed character data (#PCDATA). The element person has two attributes. The first 

one is a mandatory attribute id with a value that should be unique among other elements 

person (thanks to data type ID). The second attribute currentEmpoyee indicates 

whether the person is an employee or not (this attribute can contain only two values - “true” 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

15 

or “false” - and the value “false” is the default one). The element salary can have one 

optional attribute note that contains general character data.  

XML Schema 

XML Schema [W37] is a W3C Recommendation designed to describe structure of an XML 

document, which have many advantages over DTD (See Subchapter “Comparison of XML 

Schema Languages”) and therefore is a preferred way of describing XML documents. XML 

Schema is far more complex than DTD, therefore, we explain a main idea and comment a 

chosen example, the rest can be found on [W37]. 

 

The expressive power of XML Schema is a superset of DTD. All DTD files can be rewritten 

to XML Schema with the same meaning. XML Schema Definition (XSD) file is an XML file 

used to delineate the structure of an XML document (document instance). XSD is capable of 

defining elements and attributes that can contain simple data types (such as words, numbers, 

and dates) as well as complex elements that involve attributes and/or other elements arbitrary 

mixed with text.  

 

XML Schema has plenty of prepared data types that can describe the meaning of the contents 

of elements and attributes. Such data types can be customized through a set of facets, which 

allow for example defining and checking the length of a text, a range of admissible numbers, 

or regular expression that must be matched. What is more, complex data types containing 

other elements and/or attributes can be created from scratch, can restrict, or extend other 

types. Whole hierarchies with respect to object-oriented principles of inheritance and 

polymorphism can be created.  

 

XSD files can be included to other XSD files and reused, therefore, hierarchies of XSD files 

can be maintained as a common vocabulary of XML documents for the whole company. In 

order to avoid name collision in XSD files, the concept of namespaces is introduced. Thus, 

every element in XSD can have special prefix valid for one or more XSD files that logically 

groups together set of elements. Different sets of elements typically have different prefixes, so 

that common names of elements (for example “day”) can be used without a danger of a 

potential name collision. Names of namespaces are typically based on a domain name of a 

company, which creates them, so that the chance of choosing the same namespace by two 

companies is minimized. 

 

Last but not least, many integrity restrictions can be defined through the use of elements 

unique, key, and the XPath [W55] language.  

 

Let us show a sample XML file similar to the XML file in Figure 3 used in Subchapter 

Document Type Definition (DTD) and its corresponding XSD file.   

 
<?xml version="1.0" encoding="UTF-8"?> 

<peopleList xmlns="http://www.nappy.cz"  

             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

             xsi:schemaLocation="http://www.nappy.cz peopleList.xsd"> 

  <person id="p111" currentEmployee="true"> 

    <name>Jon Bright</name> 

    <gender>M</gender> 

    <salary>2000</salary> 

  </person> 

</peopleList>  

Figure 5 Sample XML Document for Explanation of XSD Validation (peopleList.xml) 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

16 

 

The differences in comparison with Figure 3 are bolded. The attributes of a root element 

peopleList successively specify the default namespace of this document, the namespace 

of support elements for XML Schema instances and location of XSD file describing the XML 

document. Figure 6 shows the XSD file for peopleList.xml document and is divided into three 

segments. 

 
<?xml version="1.0"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"  

           targetNamespace="http://www.nappy.cz"  

           xmlns="http://www.nappy.cz"> 

 

  <!-- Structure of element peopleList - Segment 1--> 

  <xs:element name="peopleList"> 

    <xs:complexType> 

      <xs:sequence> 

        <xs:element name="person" type="personType" maxOccurs="unbounded"/> 

      </xs:sequence> 

    </xs:complexType> 

  </xs:element> 

 

  <!-- Structure of element person - Segment 2 --> 

  <xs:complexType name="personType"> 

    <xs:all> 

      <xs:element name="name" type="xs:token"/> 

      <xs:element name="birthday" type="xs:date" minOccurs="0"/> 

      <xs:element name="gender" type="genderType" minOccurs="0"/> 

      <xs:element name="salary" type="salaryType" minOccurs="0"/> 

    </xs:all> 

    <xs:attribute name="id" type="personIdType" use="required"/>     

    <xs:attribute name="currentEmployee" type="xs:boolean" use="optional" 

default="false"/> 

  </xs:complexType> 

 

  <!--Decoupled type declarations of elements and attributes - Segment 3--> 

  <xs:simpleType name="genderType"> 

    <xs:restriction base="xs:string"> 

      <xs:enumeration value="M"/> 

      <xs:enumeration value="F"/> 

    </xs:restriction> 

  </xs:simpleType> 

 

  <xs:complexType name="salaryType"> 

    <xs:simpleContent> 

      <xs:extension base="xs:positiveInteger"> 

       <xs:attribute name="note" type="xs:string" use="optional"/> 

      </xs:extension>     

    </xs:simpleContent> 

  </xs:complexType> 

 

  <xs:simpleType name="personIdType"> 

    <xs:restriction base="xs:ID"> 

      <xs:pattern value="p([0-9])+"/> 

    </xs:restriction> 

  </xs:simpleType> 

 

</xs:schema> 

Figure 6 Sample XSD File (peopleList.xsd) 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

17 

An element xs:schema is a root element of each XSD file and depicts that the schema 

definition follows (xs denotes shortcut of the used namespace and is explicitly mentioned in 

the following text only if the name without a namespace shortcut is ambiguous). The 

attributes of the element schema successively define the namespace of XML Schema 

elements (such as xs:schema, xs:element), targetNamespace of XSD file which 

should correspond to a default namespace of a document instance, and a default namespace of 

the XSD file. Elements in the default namespace need not be prefixed by a namespace 

shortcut, its namespace is implicitly taken into account.  

 

Segment 1 of Figure 6 defines an element peopleList and its contents. The element 

peopleList contains arbitrary number of elements person which is signified by an 

element complexType and its grandchild element xs:element with an attribute 

maxOccurs set to unbounded. The attribute minOccurs works on the same principle - it 

determines the minimum number of occurrence of the element. If minOccurs and/or 

maxOccurs are omitted, the default value “one” is assumed for both attributes. The child 

element of the element comlexType is not important in this case, however, if there would 

be more element declarations within the element peopleList, these elements must occur 

exactly in the defined order. The declaration of element person has decoupled definition to 

Segment 2 of Figure 6. In fact, each element can be declared and defined on one place, or the 

declaration can involve attribute type referencing the detached definition of the element.  

 

Segment 2 is a decoupled definition of the element person. As we can see, the element 

person involves four elements and two attributes. The element all indicates that the child 

elements of the element person can appear in an arbitrary order (unlike the element 

sequence in Segment 1). Segment 3 described later contains decoupled type definition of 

elements gender and salary and attribute id. The rest of elements (name, birthday) 

and attributes (currentEmployee) have build-in data types, so they are declared and 

defined on the same place. The mandatory element name is a token, which means that it 

should be a string that does not contain line feeds, carriage returns, tabs, leading or trailing 

spaces, or multiple spaces. The optional element birthday contains a built-in type date, 

therefore only data in a form 1984-07-06 are allowed. The attribute currentEmployee 

should hold boolean values “false” or “true” and the attribute use with a value required 

indicates that the attribute is mandatory. Otherwise, if the value of the attribute use is 

optional (default value), the attribute is not mandatory. 

 

Segment 3 contains definitions of optional elements gender and salary and mandatory 

attribute id. The first element simpleType holds definition of the element gender. The 

element gender is a string data type, but restricted only to two values - “M” and “F” 

(denoted by an element restriction and elements enumeration). The element 

complexType describes the element salary. The element salary contains a positive 

number from a defined range (see [W37]) and an optional attribute note with text contents. 

The last simpleType element in Segment 3 specifies that the attribute id from the 

Segment 2 holds data of type ID, which means that the value of this attribute must be unique 

among other elements containing this attribute. What is more, the value of the attribute id is 

restricted to the values that satisfy the regular expression given in the elements 

restriction and pattern. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

18 

Comparison of XML Schema Languages 

XML Schema language has several advantages over DTD: 

 It uses XML syntax and therefore can be parsed, transformed, or validated as other 

XML documents 

 XML Schema has support for namespaces, so that a name collision can be easily 

prevented  

 XML Schema contains plenty of built-in data types, so that the content of elements 

and attributes can be precisely delineated 

 The structure of document can be described more precisely in XML Schema (for 

example there is no way to specify a mixed content of elements and text in DTD) 

 

On the other hand, the disadvantage of the XML Schema is its talkiness and more 

complicated syntax.  

Other Schema languages 

DTD and XML Schema are not the only possibilities for describing structure of XML 

documents. The other schema languages are (for example): 

 Relax NG [W57] 

 Schematron [W58] 

22..11..33..  TTrraannssffoorrmmiinngg  XXMMLL  DDooccuummeennttss  

In many cases, we would like to transform an XML document A to a document B with a 

slightly or completely different structure. Extensible Stylesheet Language Transformations 

(XSLT) is a W3C Recommendation [W59] and language that addresses this needs, hence, a 

language describing the transformation of the source document to the resulting document.  

 

The so-called XSL stylesheet is governing the transformation process. It contains a set of 

construction rules, each consisting of a pattern that is tried to be matched against the source 

document and a template which describes what should be done if the rule is matched. The 

idea of templates enables us to describe a wide range of XML documents with the same 

structure by one XSL stylesheet. We explain some of the features of XSLT on an example, 

rest can be found on [W59]. 

 

Figure 7 depicts a source XML document involving a list of employees. Each employee is 

represented as a single element employee with its subelements holding information about 

the particular employee.  

 
<?xml version="1.0" encoding="utf-8"?> 

<people> 

  <employee> 

    <id>0059</id> 

    <firstname>John</firstname> 

    <lastname>Brown</lastname> 

    <city>Prague</city> 

    <position>Analyst</position> 

  </employee> 

  <employee> 

    <id>0060</id> 

    <firstname>Jack</firstname> 

    <lastname>Mill</lastname> 

    <city>London</city> 

    <position>Tester</position> 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

19 

  </employee> 

  <employee> 

    <id>0061</id> 

    <firstname>Thomas</firstname> 

    <lastname>Lock</lastname> 

    <city>Paris</city> 

    <position>Analyst</position> 

  </employee> 

</people> 

Figure 7 Source XML Document for Explanation of XSL Transformations 

 

We create an XSL stylesheet converting the source XML document in Figure 7 to a HTML 

page with a table of employees working as analysts (specified in the element position of 

the element employee). Each row of the resulting table in the HTML page should contain 

last name of the employee and the city, where the employee works. Figure 8 depicts the 

necessary XSL stylesheet. 

 
[0] <?xml version="1.0" encoding="iso-8859-1"?> 

[1] <xsl:stylesheet version="1.0" 

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 

[2] <xsl:template match="/"> 

    <html> 

      <body> 

        <h2>Analysts</h2> 

        <table border="1"> 

          <tr> 

            <th>Lastname</th> 

            <th>City</th> 

          </tr> 

[3]       <xsl:for-each select="people/employee[position='Analyst']"> 

            <tr> 

              <td> 

[4]             <xsl:value-of select="lastname"/> 

              </td> 

              <td> 

[5]             <xsl:value-of select="city"/> 

              </td> 

            </tr> 

[6]       </xsl:for-each> 

        </table> 

      </body> 

    </html> 

[7] </xsl:template> 

[8] </xsl:stylesheet> 

Figure 8 XSL Stylesheet for Creating the Resulting HTML Page 

 

Line 0 declares an XML document and its encoding, because all XSL stylesheets are XML 

documents as well. Line 1 indicates that the rest of the XML file is an XSL stylesheet of 

version 1.0. Since the versions 1.0 and 2.0 of XSL stylesheets differ significantly, it is 

important to introduce the intended one. Line 3 holds a construction rule, with its pattern 

matching and a template part. This construction rule matches the root element of the source 

document, indicated by the pattern “/” in the attribute match. The attribute match can hold 

arbitrary XPath query which locates part(s) of the source XML document.  

 

The processing of the source XML document begins always from the root element. Firstly, we 

try to find in the XSL stylesheet a processing rule describing how to behave with the root 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

20 

element of the source document. If such processing rule does not exist, implicit processing 

rule is used, which begins to process the direct children of the root element in the source 

document.  

 

However, we have defined a processing rule matching the root element and therefore its 

template is executed row by row before doing something else with the rest of the source XML 

document. Hence, the lines between Line 2 and 3 are copied to the resulting XML, creating a 

HTML and table header. Consequently, for-each element declared in XSL namespace is 

executes. This construct selects all elements employees with a position element equal 

to “Analyst” (employees John and Thomas) and consequently for all these employees, lines 

between Line 3 and 6 are executed. This lead to creation of two table rows in the resulting 

HTML page holding for each row contents of the lastname element in the first cell and of 

the element city in second cell. The contents of the lastname and city elements are 

copied from the source XML document to the resulting document using value-of element 

which executes the XPath query specified within the select attribute and returns the 

acquired value. Finally, the lines between Line 6 and 7 are copied to the output and the 

resulting table and the whole HTML document are closed. Figure 9 depicts the resulting XML 

document. 

 

 

Figure 9 Resulting XML Document for Explanation of XSL Transformations 

22..11..44..  SSeeccuurriinngg  XXMMLL  DDooccuummeennttss  

The previous standards do not solve any security issues associated with XML data 

interchange. By default, XML data are sent in a plain form. That is admissible in a small 

closed network of well-known computers and users, however, if such data are sent over the 

Internet, securing these transfers is inevitable.   

 

The main goal of securing XML data is preserving integrity and/or confidentiality of (a part 

of) a message carrying the data. Integrity ensures that a third person does not alter the XML 

data sent over the wire. Confidentiality hides the XML data so that the content is visible only 

to the receiver (after decrypting the message). In both cases, asymmetric cryptography is 

involved. The asymmetric cryptography uses two types of keys, private and public, which 

form a fixed key pair. Data encrypted with a private key can be successfully decrypted only 

with the public key from the same pair and vice versa. Therefore, the data encrypted (signed) 

with the private key of a user A can be decrypted (verified) by a user B only with the public 

key of the user A. Thus if someone alters the message during the transfer, he does not know 

the private key of the user A, so the user B (receiver) can easily find out that the message was 

tampered, because the decoding (verifying) of the message with the public key of the user A 

will fail. Hence, the integrity of such XML data is preserved (see Figure 10).  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

21 

 

Figure 10 Process of Ensuring Integrity 

 

On the other hand, if the user A encrypts XML data with the public key of the user B, such 

data can be decrypted only by the user B and his/her private key, which means that 

confidentiality is preserved (see Figure 11). 

 

 

Figure 11 Process of Ensuring Confidentiality 

 

Both techniques can be combined, so that integrity as well as confidentiality of XML data is 

guaranteed. 

Spheres of Activity of a Security Context 

A security context is an interval in an XML document transfer that starts with an application 

of some security principles on the XML document (e.g. the document is encrypted) and ends 

with the reverse operation (e.g. decryption of the document). The security context can have 

different spheres of activity (see Figure 12): 

 Point-to-point security - Security is enforced only within the adjacent computer nodes  

 End-to-end security - Security persists from the initial sender till the desired receiver  

 

 

 

 

 

 

User B  

 

 

 

 

 

User A 

Plain 

XML 

Data  

Encrypting 

with public 

key B 

 

Decrypting 

with private 

key B 

 

Plain 

XML 

Data  

Secured 

XML 

Data 

Distrusted zone 

 

 

 

 

 

User B  

 

 

 

 

 

User A 

Plain 

XML 

Data 

Encrypting 

with private 

key A 

Decrypting 

with public 

key A 

Plain 

XML 

Data 

Secured 

XML 

Data 

Distrusted zone 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

22 

 

Figure 12 Spheres of Activity of a Security Context 

 

Point-to-point security can be enforced only within two adjacent nodes. If the data should 

pass one or more intermediary nodes, each intermediary node must create a new security 

context. If the intermediary node does not need to break the previous security context (for 

example to access the data encrypted by the previous context), the creation of a new security 

context unnecessarily increases workload and decreases the overall security, because the 

intermediary node can be a potential enemy. Typical representative of a point-to-point 

security is a HTTPS [W60] protocol. 

 

On the other hand, end-to-end security context can be established between the initial sender 

and the desired receiver, so that no intermediary node needs to break and re-establish the 

security context. End-to-end security increases throughput as well as security.  

 

All standards defined specially for securing XML work on the end-to-end basis. 

Levels of Granularity 

Security can be specified on the different levels of granularity: 

 Message-level security - Security can be particularized only for an XML document as 

a whole 

 Field-level security - Security can be defined on a part of an XML document (e.g. only 

desired elements can be encrypted) 

 

In the following text, we describe in more detail the end-to-end field-level security that is 

native to XML data. 

XML Signature 

XML Signature is a W3C Recommendation [W16, Ste] for ensuring integrity of XML data. It 

uses cryptographic hash functions, such as Secure Hash Algorithm version 1 (SHA-1) [W17], 

and asymmetric algorithms for digital signing and verifying digital signatures, such as Digital 

Signature Algorithm (DSA) [W18].  

 

Point-to-point 

Initial 

sender 

(node) 

Intermediary 

computer 

(node) 

 

Desired 

receiver 

(node) 

XML 

 

Point-to-point 

XML 

End-to-end 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

23 

XML Signature calculates digest(s) of desired part(s) of XML data (called data object(s)) and 

digitally signs the acquired digest(s) together with other auxiliary information contained 

within an element SignedInfo using preferred asymmetric cryptographic algorithm. 

Information about the key that was used to create the XML Signature can be included in the 

sent XML data. The Figure 13 shows a sample Signature element structure: 

 
<Signature Id="MySignature" xmlns="http://www.w3.org/2000/09/xmldsig#">  

  <SignedInfo>  

    <CanonicalizationMethod  

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>  

    <SignatureMethod  

Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>  

    <Reference URI="http://example.com/bar.xml#ElementToSign">  

      <Transforms>  

        <Transform  

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>  

      </Transforms>  

      <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>  

      <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>  

    </Reference>  

  </SignedInfo>  

  <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>  

  <KeyInfo>  

   <KeyValue> 

     <DSAKeyValue>  

       <P>...</P><Q>...</Q><G>...</G><Y>...</Y>  

     </DSAKeyValue>  

   </KeyValue>  

  </KeyInfo>  

</Signature> 

Figure 13 Example of Using XML Signature 

 

The core element SignedInfo contains common as well as data object specific information 

basis for the signing process. Each Reference element within this section describes one 

digested data object – the element DigestValue contains digest of such data object, the 

element DigestMethod specifies method used for digesting such data object and, finally, 

the element Transform depicts chain of transformations that are used to prepare the data 

object for digesting. The element Reference has an attribute URI that contains URI [W28] 

of the referenced data object. The SignedInfo element further involves an element 

CanonicalizationMethod that specifies the algorithm used for canonicalization of the 

SignedInfo element before it is actually signed by an algorithm initiated in a 

SignatureMethod element as a part of the whole signature process. 

 

As we can see, the data object(s) that should be signed are actually digested and the digest 

value is stored in the element DigestValue. Consecutively, the whole element 

SignedInfo is signed and the resulting signature value is stored in the element 

SignatureValue. 

 

The element KeyInfo contains the key to be used to validate the signature (e.g. a public 

key). This element is optional, because the receiver can already know such information, 

hence, it would be redundant information and can be omitted. 

 

For further purposes, it is important to differentiate enveloped and enveloping signature.  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

24 

In an enveloping signature, the Signature element is placed over the signed data object 

and the data object is identified via the URI attribute of the element Reference (see Figure 

13). On the other hand, an enveloped signature has the element Signature as the child 

element of the signed data object itself. In this case, the element Transform is mandatory, 

so that the element Signature can be removed when data object‟s digest is computed. 

XML Encryption 

XML Encryption is a W3C Recommendation [W19, Ste] for ensuring confidentiality of XML 

data objects. Typically, it uses symmetric cryptographic algorithms, such as Triple Data 

Encryption Standard (DES) [W29] for encrypting XML data objects and, optionally, 

asymmetric algorithms for encrypting the symmetric key used in XML data encryption.  

 

Figure 14 depicts a sample source XML document based on the example in [W19] that 

describes one PaymentInfo element used for an ATM transaction: 
 

<?xml version='1.0'?> 

<PaymentInfo xmlns='http://example.org/paymentv2'> 

  <Name>John Smith</Name> 

  <CreditCard Limit='5,000' Currency='USD'> 

    <Number>4019 2445 0277 5567</Number> 

    <Issuer>Example Bank</Issuer> 

    <Expiration>04/08</Expiration> 

  </CreditCard> 

</PaymentInfo> 

Figure 14 XML Document for Explanation of Encrypting 

 

Figure 15 shows the same XML file but with encrypted content of the element credit card 

Number: 
 

<?xml version='1.0'?> 

<PaymentInfo xmlns='http://example.org/paymentv2'> 

  <Name>John Smith</Name> 

  <CreditCard Limit='5,000' Currency='USD'> 

    <Number> 

      <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'  

      Id='ED' 

                     Type='http://www.w3.org/2001/04/xmlenc#Content'/> 

        <EncryptionMethod 

Algorithm='http://www.w3.org/2001/04/xmlenc#tripledes-cbc'/> 

        <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'> 

          <ds:RetrievalMethod URI='#EK' 

             Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/> 

      <ds:KeyName>John Smith</ds:KeyName>   

        </ds:KeyInfo> 

        <CipherData> 

          <CipherValue>DEADBEEF</CipherValue> 

        </CipherData> 

      </EncryptedData> 

    </Number> 

    <Issuer>Example Bank</Issuer> 

    <Expiration>04/08</Expiration> 

  </CreditCard> 

</PaymentInfo> 

Figure 15 XML Document with Encrypted Credit Card Number 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

25 

The element CipherValue contains the encrypted form of the content of element Number 

created by cryptographic algorithm defined in the EncryptionMethod element. The 

KeyInfo element contains an element KeyName with the name of the key usable for 

decrypting the encrypted data object. Alternatively, the KeyInfo element can contain an 

element RetrievalMethod which specifies URI of an element (see Figure 16) with 

information about encryption of the key that is actually used to encrypt and decrypt the 

desired XML data object(s). Element EncryptedData encapsulates information about 

encrypted content and particularize the nature of the encrypted data, e.g. whether the whole 

element or only its content is encrypted. 

 
<EncryptedKey Id='EK' xmlns='http://www.w3.org/2001/04/xmlenc#'> 

  <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/> 

  <ds:KeyInfo xmlns:ds='http://www.w3.org/2000/09/xmldsig#'> 

    <ds:KeyName>John Smith</ds:KeyName> 

  </ds:KeyInfo> 

  <CipherData> 

    <CipherValue>xyzabc</CipherValue> 

  </CipherData> 

  <ReferenceList> 

    <DataReference URI='#ED'/> 

  </ReferenceList> 

  <CarriedKeyName>Sally Doe</CarriedKeyName> 

</EncryptedKey> 

Figure 16 Information about a Key Used for Encryption and Decryption 

 

The element EncryptedKey, referenced by the attribute URI of the element 

RetrievalMethod in Figure 15, has a similar structure as the element 

EncryptedData, but holds information about encryption of a key used to encrypt/decrypt 

XML data object(s). This encryption uses receiver‟s public key and asymmetric cryptographic 

algorithms specified in element EncryptionMethod, such as RSA [W30], for ensuring 

that only the desired receiver can decode the element CipherValue in the element 

EncryptedKey and, thus, get the access to the key that decrypts the encrypted XML data 

object in the element EncryptedData. The element EncryptedKey is typically included 

in the same XML file as element(s) EncryptedData. The element ReferenceList 

contains backward references to EncryptedData elements in the XML document. Finally, 

the element CarriedKeyName can hold alternative names to keys. 

22..22..  XXMMLL  iinn  JJaavvaa  

XML defines platform independent data format. On the other hand, Java provides cross-

platform programming language. This subsection covers the standards for processing XML 

document in Java. 

22..22..11..  JJaavvaa  AAPPII  ffoorr  XXMMLL  PPrroocceessssiinngg  

Java API for XML Processing (JAXP) is a core Java Community Process (JCP) [W41] 

recommendation (under a code JSR 206) [W26, McG] for parsing, validating and 

transforming XML documents. It defines interfaces for processing XML documents and 

specifies requirements and suggestions for concrete implementations. JAXP (currently in 

version 1.3) is a successor of Java API for XML Parsing (JSR 005) [W61] which covers only 

DOM and SAX parsing. JAXP is part of Java 5 API.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

26 

Until the formation of JAXP, Java APIs for transformations were proprietary, there were no 

general conventions. What is more, validation was only a part of a parsing process, the 

decoupling of validation was not encompassed by JSR 005. 

 

JAXP is designed with a consideration of possible future implementations and offers SAX, 

DOM, XSLT, XPath and validation plugability, which means, the custom implementations 

fulfilling the JAXP interface and conformance requirements can be used. This gives us a 

chance to try more Java implementations with the same interface.  

 

The following subchapters show simple examples of using JAXP interfaces. In all examples, 

the exception catching is omitted, so that the examples are more comprehensible.  

SAX Parsing 

Figure 17 depicts an example of using SAX interface. 
 

[1] SAXParserFactory factory = SAXParserFactory.newInstance(); 

[2] SAXParser parser = factory.newSAXParser(); 

[2] DefaultHandler handler = new MyApplicationParseHandler(); 

 

[4] parser.parse("sourcefile.xml", handler); 

Figure 17 SAX Parsing Example 

 

Line 1 creates a SAX parser factory. Each SAX parser created from this factory (Line 2) 

respects the customized settings of the factory. Line 3 defines a handler for catching events 

which occurs during processing of an XML document. Line 4 executes the parsing task - the 

specified XML document sourcefile.xml is parsed and events about the parsing are sent to the 

defined handler for further processing.  

DOM Parsing 

Figure 18 depicts an example of using DOM interface. 

 
[1] DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); 

[2] DocumentBuilder builder = factory.newDocumentBuilder(); 

[3] Document document = builder.parse("sourcefile.xml"); 

Figure 18 DOM Parsing Example 
 

Again, as in SAX parsing example, Line 1 creates a DOM parser factory. The factory can be 

customized according to programmer‟s needs. Consequently, the builder is created from 

the factory (on Line 2), XML document sourcefile.xml is parsed using the builder (on 

Line 3), and finally, the resulting tree is stored to document variable (on Line 3). 

XSL Transformation 

Figure 19 shows an example on transforming XML documents. 

 
[1] TransformerFactory factory = TransformerFactory.newInstance(); 

[2] Transformer transformer = factory.newTransformer(  

new StreamSource("mystylesheet.xsl") 

); 

[3] transformer.transform( 

new StreamSource("sourcefile.xml"), 

new StreamResult("resultfile.xml") 

    ); 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

27 

Figure 19 XSL Transformation Example 

 

Line 1 defines a factory for XSL transformation. The factory itself can create XSL 

transformers (as on Line 2) which are used for transforming the input XML sourcefile.xml 

to the output XML resultfile.xml using the stylesheet mystylesheet.xsl. Again, the factory 

can be customized so that all transformers created from that factory use the same custom 

settings.  

22..22..22..  JJaavvaa  AAPPII  ffoorr  XXMMLL  DDiiggiittaall  SSiiggnnaattuurree  aanndd  XXMMLL  EEnnccrryyppttiioonn    

Java Community Process (JCP) [W41] recommendation with the code JSR 105 describes the 

Java API for XML Digital Signature 1.0 [W20]. The recommendation is in Final Release state 

since the year 2005 and involves javax.xml.crypto package containing common java 

interfaces for signing and verifying XML documents according to XML Signature W3C 

Recommendation [W16]. To add, JSR 105 involves a reference implementation of these 

interfaces. The examples of using javax.xml.crypto package are part of the full API 

documentation [W20]. Java API for XML Digital Signature is part of Java 6 SE.  

 

JCP recommendation JSR 106 describes the Java API for XML Encrypting 1.0 [W21] 

according to XML Encryption W3C Recommendation [W19]. Unfortunately, JSR 106 

recommendation is still in phase of Proposed Public Review Draft, which means, there exists 

no real implementation of these interfaces. As a result, we have to use another proprietary 

implementation of XML Encryption in Java. 

22..33..  JJ22EEEE  aanndd  SSeerrvvlleettss  

Java Platform, Enterprise Edition [W51, W52, Joh] is a platform for running distributed 

multitier Java applications using component-based approach [Szy]. Application logic is 

typically distributed into more components in more tiers of the J2EE architecture. The four 

typical tiers are Client, Web, Application, and Backend. Moreover, J2EE incorporates 

transaction support and unified security model which can be employed by the user 

application. 

 

In the most common web application, client (web browser) in the Client tier sends a request to 

a Web tier. The components in the Web tier are responsible for displaying the data on the web 

page, however, the data must be firstly loaded and prepared by components in the Application 

and Backend tiers. Components of all tiers can be on different machines. 

 

In our case, we use only the Java Servlet component (see Java Servlet Specification [W50]) 

usable in the Web tier for processing the incoming XML documents (as HTTP payload), 

applying actions to the documents, and sending responses back to the non-Java client. The 

advantage of using simple J2EE application is that we do not need to implement threads 

management, parsing of the incoming and serializing of the outgoing document.     

 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

28 

IIII..  TTEESSTTIINNGG  EENNVVIIRROONNMMEENNTTSS  

33..  DDEESSCCRRIIPPTTIIOONN  OOFF  TTEESSTTIINNGG  EENNVVIIRROONNMMEENNTTSS  
This section covers overview of used testing environments. Firstly, we introduce IBM 

WebSphere DataPower Integration Appliance XI50 for hardware processing of XML data. 

Further, WebSphere Application Server 6.1 is presented. Finally, auxiliary tools Curl, Apache 

HTTP Server Benchmark tool, Eclipse, and IBM Rational Application Developer Version 7 

are described.  

33..11..  IIBBMM  WWeebbSSpphheerree  DDaattaaPPoowweerr  IInntteeggrraattiioonn  AApppplliiaannccee  XXII5500  

The hardware appliance that is taken into account is IBM WebSphere DataPower Integration 

Appliance XI50 (hereafter XI50). It is a rack-mountable XML-aware appliance with four 

network interfaces (see Figure 20 and [W4]). 

 

Figure 20 XI50 – Outer Face of the Appliance 

 

XI50 was originally developed by the DataPower Company, which was acquired by the IBM 

Company [W1] in May 2005. The appliance is nowadays maintained and further improved by 

IBM as a part of IBM WebSphere platform [W2]. 

 

Except for XI50, IBM produces another two appliances – IBM WebSphere DataPower XML 

Accelerator XA35 in a green case (hereafter XA35) and IBM WebSphere DataPower XML 

Security Gateway XS40 covered in a yellow case (in further text XS40). They both support 

only a subset of operations of their blue “brother” XI50, however, they are cheaper. To be 

more precise, XA35 appliance is designed as an XSL accelerator without any security and 

integration features, XS40 has the same features as XA35, adds security features, and still 

lacks integration features in comparison with XI50 apliance. Our testing scenarios use XI50 

as a default appliance, but if XS40 or even XA35 is sufficient for successful accomplishment 

of a given scenario, this fact is emphasized.  

33..11..11..  FFeeaattuurreess  ooff  XXII5500  

The main features can be divided into four areas: basic XML acceleration, security, 

integration, and supporting features.  

Basic XML Acceleration Features 

Operations over large amount of XML data require appropriate computational capacity 

because many operations are very time-consuming. Therefore, the hardware acceleration is 

welcomed. The list of such basic operations involves: 

 

 XSL transformations  

 support for XPath queries  

 XML Schema validation 

 validation of Web services against WSDL 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

29 

 

Note that some security features presented in the next section (e.g. XML encryption and XML 

digital signatures) can also be very time-consuming.  

Security Features 

Security is sometimes overlooked due to performance issues, but XI50 solves this problem 

and, what is more, it offers plenty of security features “under the same roof” – from 

encryption of XML to creation of security tokens for authorizing access to resources behind 

XI50 appliance. The features include:  

 

 object and message level XML encryption and XML digital signatures 

 SOAP [W77] filtering 

 XML threats protection (such as XML Denial of Service (XDoS), XML virus 

protection, dictionary attacks protection etc.)  

 authentication of Web services messages using WS-Security [W78] and Security 

Assertion Markup Language (SAML) [W75], support for WS-SecureConversation 

[W76] 

 authorization for XML messages 

 auditing (traceability) of previous authentications, resource allocations 

 support for Kerberos [W79], RADIUS [W80], Lightweight Directory Access Protocol 

(LDAP) [W81] 

 ability to process WS-Trust and WS-Federation messages 

 Public key infrastructure (support for RSA, DES, Triple DES, AES [W83], SHA, 

X.509 [W72], CRL [W72], and more) 

Integration Features 

These features are important when legacy systems are integrated with other systems and/or 

this appliance is a part of enterprise application integration platform [Erl]. It involves 

protocols and messages transformations as well as integration with business middleware, 

enterprise application integration environments, and databases. 

 

 support for wide variety of protocols: HTTP, HTTPS, IBM WebSphere MQ [W74], 

Java Message Service (JMS) [W73]  

 multi-protocol gateway, transformations between these protocols 

 Web services proxy 

 Universal Description Discovery and Integration (UDDI) 

 static and dynamic routing (using XPath, WS-Routing) 

 non-XML message (such as binary and flat text) to XML message transformation  

 fetching data from external resource (such as HTTP server) 

 direct database access - execution of SQL statements against supported databases  

Supporting Features 

Finally yet importantly, the set of other features, mainly for better overview over 

development, deployment, and management process, consists of: 

 

 user-defined logging and error catching, user-defined variables for further processing 

 service-level management of Web services 

 Web Services Distributed Management (WSDM) [W82] 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

30 

 managing appliance through web GUI, command-line interface, Simple Network 

Management Protocol (SNMP), SOAP management interface, integrated development 

environment integration through Eclipse (Chapter 3.3.1) and Altova XML Spy [W6] 

 system controlling, detailed probing of processed data 

 role-based management (users are working within domains with given authorization) 

33..11..22..  TTyyppiiccaall  UUssee  CCaasseess  ooff  XXII5500    

Typical use cases of XI50 can be divided into the following scenarios: 

 

 XML firewall – validating and securing XML 

 Security gateway and proxy for Web services 

 XSL transformations, generating XHTML from XML, generating XML logs 

 Transforming non-XML flat file to a data-oriented XML 

 Multi-protocol gateway 

 Other tasks - generating inserts to databases, fetching content from the given address 

XML Firewall – Validating and Securing XML 

XI50 acts as a firewall that effectively processes incoming and outgoing traffic on content 

basis (it knows XML). Hence, XML data getting through XI50 appliance can be filtered or 

validated against a schema, digitally signed files can be verified, encrypted files decrypted, 

and company security policies (even using external appliances such as a RADIUS server) can 

be specified and enforced. As a result, incoming and outgoing XML files are accepted or 

rejected according to inner company needs. XI50 also contains build-in protection against 

known XML threats (see Chapter 3.1.1). 

Security Gateway and Proxy for Web Services 

Here, XI50 plays role of a security gateway for Web services. Similar operations as in the 

previous scenario are performed, however, applied to requests and responses of Web services. 

Family of WS-Security standards is used to authenticate SOAP requests according to a wide 

range of authentication tokens, to enforce integrity and/or confidentiality of SOAP request (or 

even part of the request), and to apply security policies similarly to the previous scenario. In 

addition, XI50 can act as a proxy for Web services, which yields in hiding Web service‟s 

backend. 

XSL Transformations, Generating XHTML from XML, Generating XML Log 

XI50 can be used for fast processing of a large amount of XML data that have to be 

transformed before they are presented or moved on. Such transformations are very often 

significantly time-consuming and, consequently, they cause performance issues. 

Transforming a Non-XML Flat File to a Data-oriented XML Document 

XI50 supports transforming non-XML files to XML files and vice versa. For describing the 

structure of non-XML files, proprietary Flat Files Description (FFD) files specified and 

maintained by Contivo [W14] are used. Contivo is involved in semantic integration of data 

within business network. It produces software for defining common vocabulary repositories, 

managing conversions between XML files and automatically generating XSL transformations 

according to vocabulary repositories and user-defined mapping between source and target 

XML files.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

31 

A FFD file describes the structure of a given flat file and it is used to convert a flat file to an 

XML file. Figure 21 and Figure 22 depict a source flat file and an appropriate FFD file: 

 

 
Multilayer Technology GMBH CO. KG   20020677  USD  US A 

Smart Modular                       20000689  USD  US A 

 

Figure 21 Example of a Flat File 

 
<? xml version="1.0" encoding="UTF-8"?> 

<File name="Prism"> 

  <Group name="record" delim="\n" maxOccurs="unbounded"> 

    <Field name="VendorName" length="35"/> 

    <Field name="VendorNumber" length="10"/> 

    <Field name="Currency" length="5"/> 

    <Field name="Country" length="3"/> 

    <Field name="SyncIndicator" length="1"/> 

  </Group> 

  <Literal value="\n"/> 

</File> 

Figure 22 Flat File Description (FFD) File for the Above Flat File  

 

According to this Flat File Description file, records in the flat file are delimitated by the new 

line and number of such records is unbounded. Each record is represented as an element 

record in an output XML and has five child elements with the names specified by the 

attribute name of elements Field in FFD. An Attribute length of the element Field in 

FFD describes the length of a text in the flat file that is pasted into appropriate element‟s 

value in the output XML file. 

 

The FFD file can have far more complex structure. Unfortunately, it is not an open format, so 

details are not publicly available. 

Multi-protocol Gateway 

XI50 can accept different protocols and convert them to desired protocol(s). To be accurate, 

HTTP, HTTPS, IBM WebSphere MQ, Java Message Service (JMS) are supported. Therefore, 

XI50 can, for example, listen on HTTP and HTTPS protocol‟s port and convert such 

request(s) to MQ messages that are subsequently sent to a business network. 

Other Tasks - Generating Inserts to Databases, Fetching Content from a Given Address 

XI50 can generate inserts to a wide range of supported databases. It is not a main feature of 

XI50 but it simplifies processing of data. Furthermore, XI50 can fetch content from a 

specified address, e.g. from an HTTP server. 

33..11..33..  CCoonnnneeccttiioonn  ttoo  aa  BBuussiinneessss  NNeettwwoorrkk  

XI50 can be connected to different segments of a business network. It can work at the edge of 

business network (thus in so-called demilitarized zone) just behind the standard firewall, 

where it acts as an XML firewall, a security and multi-protocol gateway, and/or a Web 

services proxy. Demilitarized zones can be also between two divisions within the same 

organization, but the purpose would be similar to the previous case. Furthermore, XI50 can 

work on special operations within the internal business network, such as generating XHTML 

pages, re-routing Web services, transforming XML files between two data sources etc. (For 

more scenarios, see Chapter 3.1.2).   



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

32 

 

Nevertheless, what is common for all of these scenarios, XI50 can be connected in two basic 

modes – in a proxy and a coprocessor mode. In real scenarios, especially when serving as 

gateways and entry points to business networks, where availability of such appliances is 

crucial, XI50s are typically used in a pair with a load balancer distributing traffic between 

them. For clearness in the following pictures, only one XI50 is shown. 

Proxy Mode 

In this case, XI50 acts as a proxy (see Figure 23), i.e. all communication (even if not needful) 

goes through XI50. What is more, network infrastructure need not be changed (we just split a 

cable and connect XI50 to both new ends).  

 

 

Figure 23 Proxy Mode of XI50 Connection to a Network 

Coprocessor Mode 

Conversely, coprocessor mode of XI50 connection yields more traffic on an application server 

linked to XI50, because of sending data to and receiving processed data from XI50 (see 

Figure 24). However, XI50 does not need to probe all packets as shown in proxy mode. The 

proxy mode is preferred, because the coprocessor mode yields more traffic overhead due to 

one extra network hop.   

 

 

Figure 24 Coprocessor Mode of XI50 Connection to a Network 

33..11..44..  WWeebb--bbaasseedd  GGUUII  

XI50 can be comfortably managed by a web-based interface. Each user logs in under the 

specific domain, which grants him rights according to business needs.  

 

The main window offers a portal to main services, such as Web Service Proxy and XML 

Firewall. Further, it allows access to logs and monitoring tools, as well as to the inner file 

system and export/import possibilities (see Figure 25).  

 

Application 

Server 
 

XI50 

 

Standard 

Firewall 
oorr  

SSeerrvveerr 

Application 

Server 
 

XI50  

 

 

 

Standard 

Firewall 
oorr  

SSeerrvveerr 

Internet 

Internet 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

33 

 

Figure 25 Web-based GUI - Main Window 

 

The most interesting part of the web-based GUI comprises named object store accessible 

under the left menu field “Objects” (see Figure 25). It consists of a wide range of objects - 

building blocks - used to create all application services. Objects definitions are decoupled as 

much as possible and the objects can be referenced from potentially many other objects, 

which eliminates redefinitions of (parts of) objects. The objects needed for our testing are 

described more precisely in a definition of the testing framework in Subsection 4.5. 

 

Complete Web-based GUI reference can be found on [W4] (free registration required). Apart 

from web-based GUI, Command Line Interface (CLI) or SOAP-based XML Management 

Interface is accessible. 

33..11..55..  IInntteerrnnaall  DDeevviiccee  SSttrruuccttuurree  

There is not much available information about the real internal structure of XI50. However, 

according to the documentation, web-based GUI system information, and experience, it 

should has a main processing engine for processing and dispatching requests, an accelerator 

for securing XML, XML-aware memory addressable by XPath queries, and an add-on 

accelerator card for further accelerating and decoupling XML parsing and schema validation 

from the main XML processing engine). XI50 has no movable secondary memories, but 

almost 4GB of flash memory. All IBM appliances are firmware updatable. An interconnection 

of inner components is unfortunately not publicly available. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

34 

33..11..66..  AApppprrooxxiimmaattee  PPrriiccee  

According to the hardware announcement from March 28, 2006 [W15], the lowest model 

XA35 costs about $35,000, the middle model XS40 about $65,000, and, finally, the highest 

model XI50 $75,000. The prices above are for appropriate appliances in their base versions 

with a third-generation (XG3) processing technology. Appliances with the new fourth-

generation (XG4) processing technology (contain a special add-on accelerator card for 

decoupling XML parsing and schema validation from the main XML processing engine) 

and/or with some extra features such as IBM Tivoli Access Manager and/or maintenance 

support cost more. 

33..11..77..  OOtthheerr  AApppplliiaanncceess  

IBM WebSphere DataPower appliances are not the only existing appliances for accelerating 

XML processing, however, there exists no directly comparable product. The market with 

similar appliances, involves: 

 Cisco ACE XML Gateway (produced by Cisco [W10]) - XML firewall, approximately 

comparable with XS40 appliance with some integration features. 

 SecureSpan XML Networking Gateway (Layer 7 Technologies [W12]) - XML 

firewall with PCI-e SSL and XML accelerator cards, approximately comparable to 

XS40 with integration support.  

 

Generally, appliances specializing in XML processing are not so broaden in Czech Republic 

as in Western Europe or America and the true value of these appliances is nowadays not fully 

appreciated. Nevertheless, the situation is likely to meliorate in the following years, because 

standard firewalls tend to be insufficient and, what is more, overlooked security principals can 

have deplorable consequences.  

 

Firstly, we are working with IBM WebSphere DataPower appliance (XI50) because, as 

written above, it is nowadays not easy to have an access to such sort of hardware appliances. 

Secondly, DataPower appliances were one of the first appliances in this category. In addition, 

its tight relation with IBM WebSphere application server gives us opportunities to compare 

software and hardware processing of XML data by products of one vendor.  

33..22..  IIBBMM  WWeebbSSpphheerree  AApppplliiccaattiioonn  SSeerrvveerr  vv  66..11  

IBM WebSphere Application Server v 6.1 [W2] (in the following text Application server or 

WAS) provides a common environment and programming model for running applications that 

are insulated from the underlying hardware, operating system, and network. WAS is built on 

J2EE standard, offers tools for building, deploying, installing, running, securing, load 

balancing, and maintaining J2EE applications. WAS can also serve as a web server, endpoint 

of Web services, security authority, and/or integrator of legacy applications with new ones. 

WAS is the key part of IBM WebSphere software platform that helps to build service-oriented 

architecture [Erl] and integrates applications over a common message broker. WAS 6.1 

implements J2EE Specification v1.4 [W53] and Java Servlet Specification 2.4 [W50]. 

33..22..11..  AArrcchhiitteeccttuurraall  OOvveerrvviieeww  

Figure 26 shows simplified architecture of an Application Server that is important for our 

thesis, for the full architectural overview and all supported standards, see [W2, W38]. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

35 

 

Figure 26 Simple Architectural Overview of Application Server 

 

The HTTP request comes from a client to an embedded HTTP server on an Application 

Server and is sent to an appropriate Servlet according to local path of the request URL and 

adjusted servlet mapping. Web Container is a container for J2EE web components, such as 

Servlets (see 2.3). The Servlet processes the request and creates response that is sent back to 

the client. 

33..22..22..  IInnssttaallllaattiioonn  aanndd  PPrrooffiilliinngg  

Files associated with WAS can be divided into two areas: 

 Product files - set of WAS binaries shared by instances of Application Servers 

 Configuration files - set of customizable data files called profiles, which govern the 

individual instances of Application Servers 

 

Hence, profiles enable creation of different instances of WAS with different configurations. 

Obviously, only one instance is running at one time during our testing so that the memory and 

other resources are not wasted.  

33..22..33..  AAddmmiinniissttrraattiioonn  ooff  tthhee  AApppplliiccaattiioonn  SSeerrvveerr  

WAS installation involves a web browser-based tool for managing the profiles of Application 

Server (see Figure 27).  

 

Application Server 

Web Container Embedded 

HTTP 

Server Servlet 

HTTP request 

HTTP response 

Client 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

36 

 

Figure 27 Administrative Console for IBM WebSphere Application Server 

 

The important functionalities of the administration tool are: 

 managing configuration of the Application server (e.g. used JVM parameters) 

 observing the status of installed applications, starting, stopping, and installing 

applications  

 monitoring the installed and started applications and tuning the performance of them 

 logging and tracing possibilities 

33..22..44..  AApppprrooxxiimmaattee  PPrriiccee  

The price of IBM WebSphere Application Server version 6.1 depends on the target server, 

where the WAS is installed. For our four cores Xeon, the license costs 8250$ (2062.5$ per 

one core). IBM WAS can be downloaded and evaluated free of charge for two months.    

33..22..55..  OOtthheerr  AApppplliiccaattiioonn  SSeerrvveerrss  oorr  SSWW  SSoolluuttiioonnss  

There are many J2EE Application Servers on the market, for example: 

 BEA WebLogic Server [W64] 

 JBoss Enterprise Application Platform [W65] 

 Sun GlassFish Enterprise Server [W66] 

 

All J2EE compatible application servers can be successfully used instead of IBM WAS. 

Nevertheless, when utilizing IBM WAS and XI50 appliance, we have a chance to compare 

two products from the same vendor. 

33..33..  AAuuxxiilliiaarryy  TToooollss  

In this subsection, auxiliary tools Eclipse, IBM Rational Application Developer Version 7, 

Curl, Apache HTTP Server Benchmark tool, and Windows Server 2003 Performance tool are 

described. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

37 

33..33..11..  EEcclliippssee  VVeerrssiioonn  33  

Eclipse [W8] is an open source Java integrated development environment and platform for 

further tools from different vendors, because the functionality of Eclipse is easily extended 

through plug-ins of third-party vendors. 

 

Eclipse is the core of IBM Rational Application Developer products. Hence, we do not use 

Eclipse directly, but through IBM Rational Application Developer 7 (See Chapter 3.3.2)   

33..33..22..  IIBBMM  RRaattiioonnaall  AApppplliiccaattiioonn  DDeevveellooppeerr  VVeerrssiioonn  77  

IBM Rational Application Developer Version 7 (RAD) is built on Eclipse and is specialized 

for developing applications for IBM WebSphere Application Server with many helpful 

additional features. 

 

RAD can start, stop, and manage IBM WebSphere Application Server 6.1, the key part of our 

software testing environment. Applications developed in RAD and deployed on target 

Application server can be debugged directly from RAD IDE. 

 

RAD can sniff traffic between client and Application Server and display, resend, or modify 

content of requests and/or responses sent to the server. 

 

IBM Rational Application Developer 7 is freely available for two months on [W1] (after free 

registration). 

33..33..33..  CCuurrll  

Curl [W7] is a command line tool for transferring files to a remote server, supporting wide 

variety of protocols, such as FTP, HTTP, HTTPS, and TELNET. Thanks to curl, it is possible 

to send files over supported protocols to desired destination and get responses to desired 

output. We use curl to launch the testing scenarios for the first time, so that we can verify the 

received data (printed on the defined output). As the data are sent in a “--data-binary” mode, 

formatting is preserved and the response is readable. For further testing, Apache HTTP server 

benchmarking tool (AB) is used (see Chapter 3.3.4). To be compared with Curl, AB does not 

slow the testing process with writing response to the output, enables concurrent requests, and 

collects statistical data.  

 

An example of using curl to send XML data (stored in the file queen.xml) to a given 

destination is shown in Figure 28 . The response is sent to a standard output: 

 

 

Figure 28 Curl Sample Request 

 

One known problem of this stuff is a very bad support for sending large files for processing. 

Still, XI50 can downloads needful large files from a web server, rather than wait for files to be 

uploaded.   

33..33..44..  AAppaacchhee  HHTTTTPP  SSeerrvveerr  BBeenncchhmmaarrkk  TTooooll  ((AABB))  

AB [W33] is a command line tool for benchmarking a HTTP server. In comparison with Curl, 

no other protocols apart from HTTP are supported, however, this tool provides useful 

information for measuring throughput of a given batch of HTTP requests. Figure 29 shows a 

typical usage of an AB command from Windows Command Line tool:  

curl --data-binary @queens.xml http://localhost:9082/XML/EntryServlet 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

38 

 

 

Figure 29 AB Sample Request 

 

The meaning of fragments of the example in Figure 29 is as follows: 

 “–n 10” - The number of requests dispatched to the defined destination 

 “-c 1” - The number of concurrent requests  

 “-p queens.xml” - The file sent in one request 

 “http://localhost:9082/XML/EntryServlet” - The destination of sent files 

 

The final report contains useful information for measuring the tests, especially the total size of 

transferred data, time per request and requests per second measures, and time taken before the 

testing was completed. An example of the AB report is depicted in Figure 30. 

 

 

Figure 30 AB Sample Response 

 

ab.exe -n 10 -c 1 -p queens.xml http://localhost:9082/XML/EntryServlet 

Server Software:      WebSphere 

Server Hostname:      192.168.201.1 

Server Port:       9082 

 

Document Path:          /XML/EntryServlet 

Document Length:      16045 bytes 

 

Concurrency Level:     1 

Time taken for tests:   0.406250 seconds 

Complete requests:      10 

Failed requests:        0 

Write errors:           0 

Total transferred:      161910 bytes 

Total POSTed:           162130 

HTML transferred:   160450 bytes 

Requests per second:  24.62 [#/sec] (mean) 

Time per request:       40.625 [ms] (mean) 

Time per request:       40.625 [ms] (mean, across all concurrent requests) 

Transfer rate:          388.92 [Kbytes/sec] received 

                        389.74 kb/s sent 

778.94 kb/s total 

 

Connection Times (ms) 

             min    mean  [+/-sd]   median   max 

Connect:         0     6     7.7    0       15 

Processing:     15     34    20.5      31       78 

Waiting:        15     32    21.5      31       78 

Total:          15     40    18.3      31       78 

 

Percentage of the requests served within a certain time (ms) 

  50%     31 

  66%     46 

  75%     46 

  80%     62 

  90%     78 

  95%     78 

  98%     78 

  99%     78 

 100%     78 (longest request) 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

39 

Again, as with the Curl command line tool, instead of pushing large HTTP files to a desired 

destination, it is better to download the desired files from a HTTP server. 

33..33..55..  WWiinnddoowwss  SSeerrvveerr  22000033  PPeerrffoorrmmaannccee  TTooooll  

Windows Server Performance tool is used for measuring important resources (e.g. processor, 

memory, hard disk utilization) during the testing in the SW environment. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

40 

IIIIII..  TTEESSTTIINNGG  --  DDEEFFIINNIINNGG  MMOODDEELLSS  AANNDD  MMEETTRRIICCSS    

44..  OOVVEERRVVIIEEWW  OOFF  TTHHEE  TTEESSTTIINNGG  SSUUIITTEESS  
This section covers an overview of the testing suites, the interconnection of the testing 

components and the definition of our testing framework.  

44..11..  NNaammiinngg  CCoonnvveennttiioonnss  

For further purposes, if we talk about processing actions or actions, we mean applying an 

XML technology (such as XSLT) on given XML data. Each action has its input and output 

contexts which specify inputs and outputs to or from the action. A processing rule denotes a 

precisely defined progression of actions. A processing policy contains one or more processing 

rules. If we talk about data, or testing data, it means the input XML data to a processing 

policy. Measures denote the measured values during the testing (e.g. requests per second 

measure).  

 

A test case run represents an application of a processing policy on the given testing data and 

writing down associated measures. A test case symbolizes repeated test case runs with the 

same processing policy and testing data. A testing scenario consists of one or more test 

case(s). A testing group denotes one or more testing scenarios that logically go together. 

Finally, testing suite presents collection of testing groups. 

 

The testing hierarchy signifies a testing suite which has one or more testing groups which 

involve one or more testing scenarios which contain one or more test cases and underlying 

test case runs. A model represents a definition of a processing policy and testing data 

incorporated in a testing hierarchy.  

 

A testing framework is a set of tools and programs that enables the testing in fully software 

(SW) environments and hardware accelerated (HW) environments. 

44..22..  PPrroocceessss  ooff  SSeeaarrcchhiinngg  SSuuiittaabbllee  CCoolllleeccttiioonnss  ooff  TTeessttiinngg  SScceennaarriiooss  

This subsection covers a background for choosing our testing suites. 

44..22..11..  WWaayy  ttoo  tthhee  ““OOnniioonn””  TTeessttiinngg  SSuuiittee  

In a SW environment, the complexity of processing XML data tends to cause performance 

bottlenecks in a business network. On the other hand, in a HW environment, XI50 appliance 

should be a device with a wire-speed XML processing, thus the XML documents transferred 

over the wire should use the capacity of the network, as if there is no such XML processing 

appliance. 

 

Therefore, the one thing that should be investigated is the break point, after which the 

performance of SW environments begins to lose breath rapidly and becomes useless. The 

second question is, if an assertion about wire-speed XML processing in the HW environment 

is true under every condition. 

  

To answer these questions, incremental stress testing, starting with a very simple testing 

scenario with one action, and gradually adding other actions, can show us these break points 

and overall usefulness of both environments. What is more, it can lead us to interesting partial 

results (between adjacent testing scenarios and both environments) as well as global results 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

41 

that can show when and how quickly HW and SW environments lose power with more 

complicated testing scenarios. 

  

Let us call this kind of a test as the “Onion” testing suite, because the adding of actions to 

processing rules of incessantly tougher and tougher testing scenarios symbolizes the layers of 

a growing onion. 

Sample Processing Rule of the “Onion” testing suite 

Figure 31 depicts a sample processing rule of a testing scenario of a testing group in the 

“Onion” testing suite. 

 

Figure 31 Sample Processing Rule of a Testing Scenario in the “Onion” Testing Suite 

 

It is obvious, that an order of the actions in a processing rule is ambiguous, however, on the 

other hand, not all permutations of actions shown in Figure 31 give meaningful results. For 

example, validating fully encrypted XML data does not make sense, because in an encrypted 

XML document, original nodes are not accessible.  

 

Although some processing rules have meaningful orders of actions, they are not practically 

useful. For example, XML validation can precede signature verification, but the validation 

can be worthless if the verification of the XML document failed.  

 

More details about used actions are in Subsections 4.5 and 4.6. 

44..22..22..  WWaayy  ttoo  tthhee  ““FFllaatt””  TTeessttiinngg  SSuuiittee  

The “Onion” testing suite is a great stress test, however, there are other more basic questions 

to be answered, such as what testing data should be chosen for the “Onion” testing suite? 

What engines should be exploited? How much the slightly different sizes of testing data of 

one testing scenario influence the gathered measures?  

 

Decrypting  

XML 

Verifying  

XML 

Validating  

XML 

Transforming  

XML 

Input 

Encrypted, 

Signed 

XML data 

Output 

Plain, double 

transformed 

XML data 

Transforming  

XML 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

42 

Such questions lead us to the second, so-called “Flat” testing suite, which decouples testing of 

individual actions over XML data into separate groups of testing scenarios. 

 

Firstly, the “Flat” testing suite should be a non-stress test, so that the behaviour of a wide 

range of different sizes of testing data and actions with slightly different settings can be 

compared and analyzed without bothering with a concurrency when processing XML data.  

 

Secondly, in the HW environment, we have at our disposal only XI50, but in the SW 

environment there exist multiple engines for processing the desired actions over XML data 

(for example a couple of different XSLT processors). Therefore, the “Flat” testing suite gives 

us a chance to compare the performance of different engine implementations, select the best 

one, and compare it with XI50 in the “Onion” testing suite. 

 

To conclude, the “Flat” testing suite deeply analyzes individual actions over XML data and, 

consequently, purveys results for better selection of processing rules and testing data of the 

“Onion” testing suite. In other words, thanks to the “Flat” testing suite, the “Onion” testing 

suite can have significantly less amount of testing data and therefore it can really aim to 

concurrency and stress testing with a solid knowledge of behaviour of the testing data utilized 

in the “Flat” testing suite. 

 

Conformance testing for determining compatibility with XML standards is not part of our 

testing scope. 

44..33..  OOuuttlliinnee  ooff  tthhee  TTeessttiinngg  HHiieerraarrcchhyy  

The following tree outlines the higher levels of the testing hierarchy - the testing suites and its 

testing groups with a short description. Complete testing hierarchy explanation can be found 

in Sections 5 and 6: 

 The “Flat” testing suite (Section 5) covers the most common techniques in XML 

processing, except for XQuery [W67], which is not supported on XI50 and thus its 

performance cannot be measured and compared. XML technologies are tested 

individually. 

o Parsing testing group - There are two approaches in processing XML 

documents. The first one involves buffering a whole XML document and 

executing actions on that buffered object in an operational memory. This 

approach is referred as DOM parsing technique. The second one successively 

buffers small parts of an XML document, executes the desired action on the 

part of XML document and discards the buffer. Let us refer this approach as 

Streaming parsing technique. Both techniques are described more deeply in 

Subsections 4.5 and 4.6. This testing scenario covers parsing of different sizes 

of testing data using both techniques (DOM and Stream).  

o Validating testing group covers validating of XML documents against XSD 

and DTD files, using different sizes of input testing data and schema files with 

a different level of complexity.  

o Transforming testing group contains various XSL stylesheets applied on 

various input data. It indirectly includes processing of XPath queries. 

o Securing testing group includes encrypting and digital signing of a part 

of/whole XML document using different cryptographic algorithms and 

subsequent decrypting and verifying of encrypted and signed documents. 

  The “Onion” testing suite (Section 6) combines different actions to one processing 

rule. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

43 

o Auction testing group is a complex testing group from a stock market 

environment putting together validations, transformations, encryptions and 

digital signatures. It creates HTML reports about buyers on the auction. 

o CSVOutput testing group is a complex testing group generating secured 

comma separated exports from an XML database of people. It contains 

validations, transformations, decrypting and signature verification, where all 

validating and transforming actions of the processing rule can be processed in 

a streamed way. 

44..44..  AArrcchhiitteeccttuurree  ooff  tthhee  TTeessttiinngg  FFrraammeewwoorrkk    

The architecture of components participating in our testing framework differs in the HW and 

SW environment, however, it is common for both testing suites. 

 

In the SW environment (Figure 32), a client sends a HTTP request with an input XML 

document through AB tool to the network interface of a Server. The request is redirected to an 

IBM WebSphere Application Server 6.1 entrance port and successively sent to a J2EE 

application entrance point and to an appropriate Servlet according to URI of the request. 

Subsequently, the logic of the Servlet invokes proper processing rule, executes actions on 

input data and creates HTTP response with output data from the processing rule. HTTP 

response is sent back to the original client. 

 

Figure 32 Architecture of the Testing Framework in the SW Environment 

 

 

On the other hand, in the HW environment (Figure 33), the input XML document is not 

posted directly to an XI50 appliance, however, the AB tool sends only a simple HTTP GET 

request and the desired input XML document is downloaded from an Apache HTTP Server.  

 

To be more precise, when the HTTP GET request reaches network interface of XI50 

appliance, it is redirected to a defined XML Firewall (according to a port in the HTTP 

request). Later on, the defined processing policy of the XML Firewall is entered and the 

processing rule defined for the client-to-server traffic is invoked (denoted as “Processing rule 

(C-S)” in Figure 33). This processing rule is very simple, it just forwards the request to a 

backend (HTTP server) defined in the XML Firewall settings. When the request attains the 

Apache HTTP server, the desired XML document is fetched and downloaded to XI50 

appliance.  

Server Part - PC 

IBM WebSphere Application 

Server (WAS) 6.1 

Client Part - PC 

Network 

Interface 
HTTP 

Servlet 

Processing 

Rule 

J2EE 

application 

entrance 

point 

Network 

Interface 

Network 

Interface 

Network 

Interface 

AB 

tool 

Input XML 

Data 

Results 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

44 

 

As the response reaches XI50 appliance, the same XML Firewall and its processing policy is 

called, nevertheless, the processing rule for traffic in a server-to-client direction is utilized 

(denoted as “Processing rule (S-C)” in Figure 33). The server-to-client processing rule is in 

fact the executive processing rule similar to a processing rule in the SW environment in 

Figure 32. The server-to-client processing rule is applied to the downloaded input XML 

document and an output XML document is created and sent back to the original client. 

 

Figure 33 Architecture of the Testing Framework in the HW Environment 

 

The main difference between SW and HW approaches is an extra step (downloading files 

from the HTTP Server) in processing requests in the HW environment. Nevertheless, this 

corresponds to a real-world scenario, where the utilization of XI50 appliance connected to a 

business network in a proxy mode adds one more component to a network topology, and, 

thus, brings extra network overhead caused by an extra network hop. Therefore, it makes 

sense to compare the SW environment with two components (client, server) and the HW 

environment with three network components (client, server, XI50 appliance). The resulting 

measures are directly comparable and show the gain or loss in processing XML documents 

with or without connected XI50 appliance.  

 

Subsections 4.5 and 4.6 describe the server part of our testing framework in the HW and SW 

environment (i.e. “blue part” in Figure 32 and Figure 33). The main goal is to clarify how the 

processing rules with its processing actions are defined in both environments. 

44..55..  SSeerrvveerr  PPaarrtt  ooff  tthhee  TTeessttiinngg  FFrraammeewwoorrkk  iinn  HHWW  EEnnvviirroonnmmeenntt  

This chapter explains the XI50 settings essential for building server part of our testing 

framework shown in Figure 33. 

 

An XML Firewall is a base object used for processing incoming requests and outgoing 

responses. As we can see on a sample XML Firewall object summary screen in Figure 34, 

each XML Firewall object has its name (Firewall Name), type (Firewall Type), 

associated XML Manager, policy for processing requests and responses (Firewall 

Policy), and definitions of Back End (e.g. Application Server) and Front End (A 

network interface on XI50) targets. The possible settings and settings used in our testing 

framework are described in the following chapters. 

Server Part - XI50 appliance  

XML  

Firewall 

Network 

Interface 
Processing 

Policy 

Processing 

Rule (C-S) 

XML 

Firewall 

Port 

Network 

Interface 

Network 

Interface 

Processing 

Rule (S-C) 

Client Part - PC 

Network 

Interface 

AB 

tool Results 

HTTP Part - PC 

Network 

Interface 

HTTP 

Server 

Input 

XML 

Data 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

45 

 

 

Figure 34 Configuring XML Firewall 

44..55..11..  FFrroonntt  EEnndd  aanndd  BBaacckk  EEnndd  SSeeccttiioonnss    

The Front End section of the XML Firewall definition in Figure 34 contains a Device 

Address definition of a network interface which accepts the requests (0.0.0.0 denotes 

arbitrary network interface on XI50). The Device Port specifies a port on which the XML 

Firewall is listening, therefore all requests directed to this port are processed by this XML 

Firewall object. The Request Type within the Front End section specifies a type of 

incoming requests and can contain the following values:  

 XML - XML Firewall is expecting a message with general XML data, the content of 

the incoming request is parsed and prepared for further processing by a processing 

rule.  

 SOAP - A request message is a SOAP message, the XML Firewall parses the request 

and automatically validates the SOAP message  

 Non-XML - The message does not contain XML data, nevertheless, it is buffered by 

XI50 appliance for further usage.  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

46 

 Pass-Thru - The incoming message is passed through the XML Firewall “as-is”, 

message content is not buffered. 

 

The Pass-Thru is the best choice for a request type in our testing framework, because the 

only purpose of the request is to download desired XML document for further processing by a 

server-to-client processing rule.  

 

The Back End section has similar fields as Front End section and defines an address and 

a port of the back end system (such as an Application Server or HTTP server) to which the 

filtered request is sent for further processing. In our case, the server address contains IP 

address of a machine with Apache HTTP Server. 

44..55..22..  FFiirreewwaallll  TTyyppee  

The Firewall Type involves the following possibilities: 

 Loopback-proxy - Defines an XML Firewall object which receives requests from 

a client and sends a response back immediately. No back end is called (i.e. the Back 

End section of the XML Firewall definition in Figure 34 is disabled). 

 Static-backend - The Back End section of XML Firewall is enabled and 

specifies a fixed definition of a back end system (such as HTTP server or Application 

server) which processes an incoming request and creates a response. 

 Dynamic-backend - Similar to static-backend, however, the target back end 

system is specified dynamically according to the incoming request. 

 

In our testing framework, we used Static-backend choice, which enables redirecting a 

request to Apache HTTP Server. 

44..55..33..    XXMMLL  MMaannaaggeerr  

The XML Manager can be shared among many XML Firewall objects and contains settings 

influencing the way in which the data are processed. For example, it specifies a security 

restriction on the size, depth, number of elements of a processed XML document, caching 

policies of used XSL stylesheets, settings of XG4 plug-in acceleration card, and whether the 

streaming is enabled or not. For particular settings of the XML Manager object in our testing 

framework, see Chapter 7.1.1. 

44..55..44..  FFiirreewwaallll  PPoolliiccyy  

A Firewall policy holds a set of processing rules which define the actions that are 

applied to the requests coming from a client (and possibly further dispatched to a server) and 

to the responses coming from a server back to a particular client. Figure 35 depicts a sample 

processing policy screen. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

47 

 

Figure 35 Sample Processing Policy with a Set of Processing Rules 

 

The bottom part of a policy screen contains a set of processing rules governed by this 

processing policy. There are three types of processing rules according to the impacted data 

Direction: 

 Client to Server (C-S) - A processing rule is applicable to the data coming to 

the XI50 appliance for the first time (typically from a client) 

 Server to Client (S-C) - A rule is relevant for the data coming to the XI50 

appliance for the second time (typically as a response from a server) 

 Both Directions - A rule can be applied to all incoming data. 

 

If there are more processing rules, the first rule that can be used on the incoming data is 

applied. That is a rule that describes the appropriate direction and whose Matching action is 

satisfied (see Chapter 4.5.5). 

 

Each processing rule governs a sequential set of processing actions, which are applied to the 

incoming data. A queue of actions is for all rules depicted in the bottom part of a firewall 

policy screen next to the name and the direction of the processing rule.  

 

A middle part of the firewall policy screen in Figure 35 gives a detailed view of the queue of 

actions of the selected processing rule and enables easy adding, removing, and editing actions 

of the rule (the list of available actions is depicted in Subchapter “Supported XML Actions”). 

The selected rule in Figure 35 has seven actions (Matching, Decrypting, Verifying, 

Transforming, Transforming, Validating, and Transforming) which are consequently applied 

to a response coming from a server (because it is a S-C processing rule).  

 

Finally, the top part of the firewall processing policy screen depicts a unique name of the 

processing policy. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

48 

Supported XML Actions 

The following list contains names and icons of actions that are important for our testing 

framework (sorted alphabetically). The details of actions are described in Sections 5 and 6. 

 Decrypting  - Action for decrypting XML data according to XML Encryption W3C 

Recommendation [W19] 

 Encrypting  - Action for encrypting XML data according to XML Encryption 1.0 

W3C Recommendation [W19] 

 Signing  - Action for signing XML data according to XML Signature 1.0 W3C 

Recommendation [W16] 

 Transforming  - Action for executing XSL transformations according to XSLT 1.0 

W3C Recommendation [W59] 

 Validating  - Action for validating data against XML Schema 1.0 W3C 

Recommendation [W37] 

 Verifying  - Action for verifying signed XML data according to XML Signature 

W3C Recommendation [W16] 

 

The following two auxiliary actions are used:  

 Matching  - see Chapter 4.5.5 

 Resulting  - see Chapter 4.5.5 

 

Validating and Matching actions are always streamable and a subset of Transforming actions 

is streamable as well (see Chapter 7.1.2). 

 

There are far more actions, such as SYNC action for synchronizing several branches of 

parallel execution, FETCH for fetching a document from a target system. All actions are 

documented on [W4]. 

Supported Input and Output Contexts to the Actions 

The supported input contexts are as follows: 

 INPUT 

 (USER_DEFINED) 

 PIPED 

 NULL 

 

The supported output contexts involve: 

 OUTPUT 

 (USER_DEFINED) 

 PIPED 

 NULL 

 

Each processing action (except of Matching action) has its input and output contexts. INPUT 

context specifies reading of an XML document directly from the incoming request/response. 

On the other hand, OUTPUT context specifies a serialization of an XML document to the 

outgoing response. The other contexts are used to control the data flow between actions in a 

processing rule.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

49 

NULL context indicates that an action does not require/create input/output at all. Furthermore, 

the output context can have arbitrary name (e.g. “OUTPUT_OF_XSLT”, “MY_CONTEXT”), 

which can be used as an input context to the following actions of a processing rule belonging 

to the same processing policy. What is more, such context name can be specified as an output 

context in a C-S processing rule and as an input context to an action in a S-C processing rule. 

This type of context is denoted as (USER_DEFINED). If a PIPED output context is specified, 

the output of an action is directly passed to the next action in the same processing rule with a 

mandatory PIPED context as an input context.  

 

The main difference between arbitrary named context and PIPED context is in the memory 

requirements. Every named context stores its actual state of the processed data (even if the 

data sizes are tens of megabytes) in a memory together with tens of variables describing the 

origin of the data, used firewall policy, processing rule etc. Moreover, the named context 

created in a C-S processing rule is valid in an S-C processing rule as well. Therefore, if C-S 

and S-C processing rules of one processing policy contain both several processing actions, the 

memory requirements are roughly equal to the sum of sizes of all metadata in all contexts, 

which can be several times higher than the size of the input data itself. The stored context 

metadata are garbage collected only after the last processing action of the processing policy is 

executed. On the other hand, PIPED context metadata are marked as a garbage immediately 

after the data are accepted by the next action in a processing rule with a PIPED input context. 

 

PIPED context cannot be used in all actions, because it behaves like a local streaming inside 

of XI50 appliance, therefore, only Transforming and Validating actions can use PIPED input 

and output contexts. What is more, PIPED context must be used if the whole processing rule 

contains more than one action (except of Matching action) and should be streameable. If not 

specified otherwise, PIPED contexts are used in our testing framework where possible. 

44..55..55..  XXMMLL  FFiirreewwaallll  UUsseedd  iinn  OOuurr  TTeessttiinngg  FFrraammeewwoorrkk  

Except of the Firewall Policy settings and little changes in the XML Manager 

settings, all XML Firewall settings shown in Figure 34 depict the real values used in all 

our testing scenarios in the HW environment.  

 

The changes to XML Manager are specific for each testing scenario and are described 

together with the particular testing scenario in Sections 5 and 6. The processing policy is also 

testing scenario specific, however, all processing policies contain two processing rules. 

Whereas the S-C processing rule (the second one in Figure 35) is testing scenario specific (see 

Sections 5 and 6), the C-S processing rule is the same for all testing scenarios in our testing 

framework and is depicted in Figure 36. 

 

 

Figure 36 Common Client to Server Processing Rule in HW Environment 

 

The only goal of the C-S processing rule is to forward the request to the HTTP Server (see 

Figure 33) so that the desired XML document can be downloaded and processed by the 

scenario specific S-C processing rule. The C-S processing rule involves two actions: 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

50 

 Matching action - This action is by default in all processing rules on the XI50 

appliance and specifies a document set, which is accepted by the processing rule. The 

match condition can be based on URLs, HTTP headers of incoming XML documents, 

XPath expressions, or error codes, however we do not need to filter the incoming 

documents in any way. Therefore, in all our testing scenarios, the matching pattern is 

set to „*‟, which means that all incoming data are accepted by this processing rule. The 

matching action has no input or output contexts, it just clarifies which documents are 

accepted by the processing rule. The detail of Matching action is as simple as Figure 

37 shows.  

 

Figure 37 Detail of Matching Action 

 

 Results action - Results action buffers the processed XML document and sends it as a 

whole to the special OUTPUT context when ready. If the processing rule does not 

define any other processing actions (except for Matching action), the Results action 

must be used. In our common C-S processing rule (see Figure 36), the Results action 

has a special INPUT context as an input context and OUTPUT context as an output 

context. The middle part of Figure 38 is not used, we simply copy the data from input 

context INPUT to the output context OUTPUT. The definitions of input and output 

contexts are important - these definitions are in all actions except for the Matching 

action. 

` 

Figure 38 Detail of Results Action 

 

In Section 5, all S-C processing rules for particular testing scenarios are specified, together 

with details of each processing action. In Section 6, symbolic notation as in Figure 31 is used 

for depicting processing rules, with emphasized input and output contexts of the processing 

actions.  

44..66..  SSeerrvveerr  PPaarrtt  ooff  tthhee  TTeessttiinngg  FFrraammeewwoorrkk  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

This chapter defines in a more precise way the server part of the testing framework in the SW 

environment depicted in Figure 32. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

51 

The server part of the testing framework consists of a servlet-based J2EE application 

developed in Rational Application Developer (see Chapter 3.3.2) and is deployed on IBM 

WebSphere Application Server (see Subsection 3.2). The application processes incoming 

requests with XML documents as HTTP payload and creates responses. Hence, it makes the 

same work as XML Firewall object defined in Subsection 4.5. The processing of an XML 

document inside the Servlet is managed by a Queue Manager and consists of a processing rule 

(or a queue of actions) that is applied to the input XML document. The Queue Manager must 

support individual execution of actions as well as pipelining of actions. 

44..66..11..  PPrroocceessssiinngg  RRuulleess  

Figure 39 shows a sequence diagram of execution of three actions. The first action 

(symbolized as Action 1) is carried out individually, thus the action is initialized and executed 

before going to the next action in the queue of actions (processing rule). The second and the 

third action (denoted as Actions 2 and 3) are pipelined, hence, both these actions are firstly 

initialized and consequently Action 2 is executed. This yields to execution of Action 3 which 

is directly supplied with outputs of Action 2. Results of Action 3 are the overall results of 

these two pipelined actions. Therefore, N pipelined actions can be comprehended as one 

complex compound action. 

Action 3Servlet Queue Manager

executeTest()

Action 1

initialize()

initialize()

Action 2

request

response

execute()

initialize()

execute()

execute

 

Figure 39 Sequence Diagram of Processing Individual and Pipelined Actions 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

52 

Processing of actions is the core functionality of our testing framework. In the following 

subchapters, the supported XML actions, possible inputs and outputs to the actions, and 

feasible samples of processing rules are introduced.  

Supported XML Actions 

The following XML actions are used in our testing framework in the SW environment (sorted 

alphabetically): 

 Decrypting - Action for decrypting XML data according to XML Encryption W3C 

Recommendation [W19] 

 Encrypting - Action for encrypting XML data according to XML Encryption 1.0 W3C 

Recommendation [W19] 

 Stream parsing (this action cannot be decoupled on XI50) - Action for parsing XML 

data in a streamed way according to SAX API 2.0.2 [W67] 

 Signing - Action for signing XML data according to XML Signature 1.0 W3C 

Recommendation [W16] 

 Transforming - Action for executing XSL transformations according to XSLT 1.0 

W3C Recommendation [W59] 

 Validating (XML Schema and DTD validation) - Action for validating data against 

XML Schema 1.0 W3C Recommendation [W37] and DTD [W34] 

 Verifying - Action for verifying signed XML data according to XML Signature W3C 

Recommendation [W16] 

 

In addition, TreeWrapper action is used for building and serializing DOM tree according to 

DOM Level 3 Specification [W39]. 

 

Stream parsing and Validating action can be streamed, all other actions need to access the 

whole document. Transformations can be streamed if a streamable engine is utilized. 

 

Each processing action has its unique name, the definitions of inputs and outputs to the action 

and other attributes, such as a name of XSL stylesheet used for the particular XSLT 

transformation. 

Supported Input and Output Contexts to the Actions 

The supported input contexts to the actions are as follows: 

 INPUT 

 DOM  

 PIPED 

 

The supported output contexts involve: 

 OUTPUT 

 DOM 

 PIPED 

 NULL 

 

An action that has INPUT as its input context directly reads an XML document from a HTTP 

request. On the other hand, if the action has OUTPUT as its output context, the output of the 

action is directly serialized to HTTP response payload. The processing rule must contain 

exactly one action with its input context defined as INPUT and exactly one action with an 

output context set to OUTPUT. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

53 

 

DOM input/output of an action denotes that the action is processed as an individual action, 

hence, the DOM tree is input/output to the action. If an action has defined DOM as an output 

context, the following action must have a DOM context as an input context which takes as an 

input the DOM tree created by the previous action. A PIPED output context of an action can 

be used in conjunction with the following action in the processing rule that must have set its 

input context to a PIPED context, in which case, the output of one action is directly sent to the 

input of the following action without the need of building intermediary DOM tree. PIPED 

approach is based on emitting and processing SAX events. 

 

NULL output context is applicable only to the action that generates no result, such as 

Verifying of a signed XML document.  

 

In all cases, an output context of an action must correspond to an input context of the 

following action, except for INPUT, OUTPUT (both must appear only once in a processing 

rule) and NULL. If the NULL context is used as an output context of an action, the last not-

null output context of the previous actions in a processing rule is used as an input to the 

following action. 

 

If the whole processing rule should be streamable, it must contain only streamable actions and 

if the processing rule consists of more than two action, these actions must use only INPUT, 

OUTPUT and PIPED contexts. 

 

To add, we do not support (USER_DEFINED) contexts as in the HW environment, because 

an output of one action is directly use as an input to the following action. 

Individual and Pipelined Actions 

A queue of individual actions uses a DOM tree in an operation memory to store intermediate 

results between adjacent actions. This approach is perfectly fine for actions which must 

operate on the whole XML document, such as various security operations (Encrypting, 

Signing action) or XSL transformations working with the whole XML document (e.g. 

stylesheet involving a global sorting).  

 

However, there are actions that do not inevitably need the whole XML document in a memory 

to be successfully executed (such as all Validating, Parsing and some Transforming actions). 

Pipelining of actions enables to redirect an output of one action directly to the input of the 

following action, so that no intermediate structure is built in a memory. The pipelining utilizes 

the fact that JAXP interfaces of Transforming and Validating actions support SAX events as 

inputs and can emit SAX events as an output.  

Processing Rule Definitions 

Figure 40, Figure 41, and Figure 42 illustrate sample processing rules with different input and 

output contexts of actions in the processing rule (denoted by a rectangle with an arrow). The 

colour rectangles depict one processing action with a type of action (e.g. Transforming), 

support file necessary for executing the action (e.g. an XSL file), and, optionally, a particular 

java engine implementing the action in a brackets after the action type. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

54 

 

Figure 40 A Processing Rule with a Transforming Action 

 

Figure 41 A Processing Rule with an Encrypting Action and TreeWrapper Actions 

 

 

Figure 42 A Complex Rule with DOM and PIPED Input and Output Contexts 

 

Figure 43 depicts a Java code that defines the same processing rule as Figure 40. 

 
//Name of a processing rule 

[1] String name = "Transforming_XMark_SAXON_alphabetize"; 

 

//Creating processing rule  

[2] List<ActionMetaData> aMetaList = new ArrayList<ActionMetaData>(); 

 

{ 

//Creating a processing action 

[3] ActionMetaData aMetaData = new ActionMetaData(); 

[4] aMetaData.setActionName(name + "action"); 

[5] aMetaData.setActionType(TypeOfIncomingAction.XSLT_SAXON); 

[6] aMetaData.setActionFile("alphabetize.xsl"); 

[7] aMetaData.setActionInput(TypeOfInput.INPUT); 

[8] aMetaData.setActionOutput(TypeOfOutput.OUTPUT); 

TreeWrapper 

Decrypting  

Verifying  

Transforming 

(SAXON) 

alphabetize.xsl 

 Validating 
auction.xsd 

DOM 

DOM 

DOM 

PIPED 

INPUT 

OUTPUT 

TreeWrapper 
DOM 

DOM 

OUTPUT 

INPUT 

Encrypting 

TreeWrapper 

Transforming 

(SAXON) 

alphabetize.xsl 
INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

55 

 

//Adding the action to the processing rule 

[9] aMetaList.add(aMetaData); 

} 

 

//Adding the processing rule to a map of all processing rule  

[10] testCaseRepository.put(name, aMetaList); 

Figure 43 Definition of a Processing Rule 

 

Line 1 holds a unique name for the whole processing rule and policy as well (in the SW 

environment, processing policy always involves only one processing rule). Line 2 declares a 

processing rule as a list of processing actions and allocates memory on the heap. 

Consequently, Line 3 declares and allocates memory for a new processing action.  

 

Line 4 specifies a unique name for a processing action (based on the name of the processing 

rule). Line 5 introduces a type of action based on supported XML actions and used engines 

(see Section 5). Line 6 holds a file which is necessary for the given type of action (such as 

XSL stylesheet, XSD file). Lines 7 and 8 successively define input and output contexts of the 

action and finally, Line 9 adds the processing action to the processing rule. 

 

Line 10 inserts the whole processing rule to a map of all processing rules, so that it can be 

quickly accessed when necessary. Lines 3-9 can be repeated more than once to specify more 

actions in a processing rule. For example, in a case of processing rule in Figure 42, Lines 4-9 

are utilized five times (once for each processing action) in a java code definition.  

 

Particular settings of all processing rules in the SW environment in Sections 5 and 6 are 

depicted using colour rectangles instead of Java code. A colour rectangle (e.g. in Figure 40) 

holds exactly the same information as bolded lines (Lines 5-8) in Figure 43, however, in a 

more transparent way.  

44..77..  MMeeaassuurriinngg  tthhee  TTeessttss    

Important question is, how should be the measures collected. 

 

The first possibility is sniffing of the beginnings and endings of individual actions or whole 

processing rules, but this has several disadvantages. On XI50, the debug mode can be turned 

on, so that specific details about actions can be marked down, or an extra dummy XSL 

transformation writing down details about processed actions can be added as an extra action 

to a measured processing rule. Unfortunately, both these solutions are too time consuming 

and the time spent by these solutions is too variable, so that the overhead for such measuring 

is hardly estimatable. What is more, it could reduce the speed of processing the whole 

processing rule several times. Moreover, both these solution do not consider the network 

traffic overhead. In the SW environment, the same problems with sniffing individual actions 

can occur. 

 

The other possible solution involves measuring the processed actions together with a network 

traffic overhead. This gives us a chance to utilize the different architectures of the SW and 

HW environments. What is more, it allows us to measure the overall time spent on more than 

one request and enables measuring of stress tests. Moreover, if sufficient number of requests 

is sent for processing, the measures gathered for the whole batch of requests neutralizes the 

deviations in processing times of single requests (e.g. influence of CPU interruptions, network 

delays, memory fetches). 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

56 

 

To sum up, we use the batch measuring of our test cases using the AB measures gathered in 

an AB report. 

44..77..11..  MMeeaassuurreess  

The following key measures are observed: 

 Throughput (KB/s, MB/s)  

 Requests per Second (R/s)  

 Time per request (ms)  

 

The throughput is the major key measure, because the throughput is tight to the input and 

output sizes of XML documents as well as to the processing time. Therefore, it is a good way 

to characterize a real-world performance. 

 

The following additional measures can be obtained: 

 Time taken for tests (s) 

 Length of request/response (Bytes) 

 

In addition to the specified measures purveyed by the AB tool report, the following 

complementary measures are tracked: 

 CPU utilization (%) - Usage of a general processing unit (CPU)  

 Workload (Only on XI50) (%) - Workload of the whole device, including general 

processing unit and all accelerators. 

 Maximum memory usage (%)  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

57 

55..  DDEEFFIINNIINNGG  TTHHEE  ““FFLLAATT””  TTEESSTTIINNGG  SSUUIITTEE  
This section covers a definition of the testing scenarios of the “Flat” testing suite. The goal of 

the “Flat” testing suite is to examine individual actions over XML data in a fully software as 

well as hardware accelerated environment.  

55..11..  TThhee  OOuuttlliinnee  ooff  tthhee  TTeessttiinngg  GGrroouuppss  aanndd  TTeessttiinngg  SScceennaarriiooss  

This testing suite consists of the following testing groups and testing scenarios: 

 Parsing XML data (for more details see Subsection 5.2) 

o Par_DOM 

o Par_STREAM  

 Validating XML data (see Subsection 5.3) 

o Val_DTD_BASE  

o Val_XSD_BASE  

o Val_XSD_REDUCED  

o Val_XSD_EXTENDED  

 Transforming XML data (see Subsection 5.4) 

o Tra_XSLTMark 

o Tra_XSLTMark_L 

o Tra_XSLTMark_XL 

o Tra_XSLTMark_XXL 

 Securing XML data (see Subsection 5.5) 

o Sec_ENC_ENC_RSA2_3DES 

o Sec_ENC_ENC_RSA2_AES256 

o Sec_ENC_ENC_RSA2_AES128 

o Sec_ENC_ENC_RSA_3DES 

o Sec_ENC_ENC_RSA_AES256 

o Sec_ENC_ ENC_PART_RSA2_AES256 

o Sec_ENC_DEC_RSA2_3DES 

o Sec_ENC_DEC_RSA2_AES256 

o Sec_SIG_SIG_DSA_SHA1 

o Sec_SIG_SIG_RSA_SHA1 

o Sec_SIG_SIG_RSA2_SHA1 

o Sec_SIG_VER_DSA_SHA1 

55..22..  TTeessttiinngg  GGrroouupp::  PPaarrssiinngg  XXMMLL  DDaattaa  

The goal of this testing group is to compare DOM and Stream approaches in processing XML 

documents. What is more, it is a reference testing group, because all other testing groups use 

implicitly DOM or Stream XML processing. This testing group should also answer questions 

of memory consumption, effectivity of garbage collection policies and changes in measured 

metrics related to the increased memory capabilities.  

55..22..11..  TTeessttiinngg  DDaattaa  aanndd  TTeessttiinngg  HHiieerraarrcchhyy  

As to the testing data, we choose XMark [W48] and its generator of synthetic XML 

documents. XMark generator is scalable, sizes of generated XML documents fluctuate from 

tens of kilobytes to tens of gigabytes. The structure of these XML documents is realistic, 

filled with fictitious data from a stock market environment. The generated XML documents 

tend to be data-oriented with elements containing longer text (e.g. notes to the transferred 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

58 

stock market transactions, constructed from a combination of thousands of most frequently 

used words from Shakespeare‟s plays). 

  

Unlike generators creating XML documents with a random structure, XMark has an 

advantage of generating XML documents which are valid against an invariable XSD file. 

Moreover, XMark documents have reasonably complicated structure, so that they can be used 

in other testing scenarios, which demand some level of complexity, such as in XML Schema 

validations.  

 

Figure 44 shows the list of used XMark files with the custom names and sizes.  

 

Filename Size (KBs, MBs, GBs) 
Test0.0 26.5 KB 

Test0.0001 29.5  

Test0.00015 33.6  
Test0.0002 38.1 

Test0.0003 43.3 

Test0.0004 50.8 

Test0.0005 60.2 

Test0.0007 76.8 

Test0.001 115 KB 

Test0.002 210 

Test0.003 318 

Test0.004 457 

Test0.005 567 

Test0.007 817 

Test0.01 1.128 MB 

Test0.02 2.275  

Test0.03 3.402 

Test0.04 4.616 

Test0.05 5.601 

Test0.07 7.954 

Test0.1 11.325 MB 

Test0.2 22.817 

Test0.3 34.048 

Test0.4 45.307 

Test0.5 56.290 

Test0.7 79.702 

Test1.0 113.061 MB 

Test2.0 226.788 

Test3.0 340.717 

Test4.0 454.498 

Test5.0 568.096 

Test7.0 795.548 

Test10.0 1.111 GB 

Test20.0 2.225  

Test50.0 5.576 

Test100.0 11.141 

Figure 44 Names and Appropriate Sizes of Used XMark Documents 

 

The Parsing testing group consists of the following testing scenarios: 

 DOM processing (Par_DOM) 

 Stream processing (Par_STREAM) 

 

Very Small 

Small 

Medium 

Large 

Very Large 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

59 

Each test case in both testing scenarios takes one XMark document from Figure 44 and parses 

it using the parsing method according to the governing testing scenario. For example, the test 

case test0.0 belonging to a DOM Parsing testing scenario involves DOM parsing of an XMark 

document test0.0.xml.  

 

However, not all XMark documents in Figure 44 are used for DOM parsing, because DOM 

memory requirements are increasing with the growing sizes of the XML documents. On the 

other hand, Stream processing has constant memory requirements, and, therefore, even the 

very large files can be processed using Stream approach. 

Other Sources of XML Data 

XMark is inevitably not the only generator of synthetic XML data, there are many others 

[Mly]. Arguments for choosing XMark are overviewed in Chapter 5.2.1 

 

Instead of using XML generators, we can exploit a fixed set of XML data, such as exports of 

The Internet Movie Database, protein sequences, NASA astronomical data etc. However, 

these sources are often badly scalable, with many similar XML documents. What is more, 

since these sets of data represent only a subset of possible documents of a particular area, the 

advantage of true real data in comparison with XMark synthetic data is questionable.  

55..22..22..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn    

The following subchapters describe the processing rules in the SW and HW environments. 

The SW Environment  

In Par_STREAM testing scenario, the processing rule consists of one action - Stream Parsing. 

Figure 45 denotes the processing rule together with the defined input and output contexts. 

  

 

Figure 45 Processing Rule for Par_STREAM Testing Scenario 

 

A processing rule for the Par_DOM testing scenario involves two actions - one for building a 

DOM tree in a memory and the second one for serializing the DOM tree back to the OUTPUT 

context (see Figure 46).   

 

Figure 46 Processing Rule for Par_DOM Testing Scenario 

TreeWrapper DOM 

OUTPUT 

INPUT 

TreeWrapper 

Stream Parsing  

INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

60 

HW Environment 

In the HW environment, the processing rules for Par_DOM and Par_STREAM testing 

scenarios are the same (see Figure 47). Both processing rules contain the Matching action (see 

Chapter 4.5.5) and Transforming action with identity.xsl stylesheet copying an input 

document from INPUT to OUTPUT context. Transforming action must be used, because 

XI50 appliance does not decouple “Just Parsing” action. We can use a processing rule 

containing Matching and Results actions (see Chapter 4.5.5), however, only for Par_DOM 

testing scenario, because the Results action always buffers the XML document, which is 

definitely not acceptable for Par_STREAM testing scenario. 

 

 

Figure 47 Processing Rule for Stream Parsing 

 

Figure 48 denotes details of the Transforming action. 

 

Figure 48 Detail of the Transforming Action 

 

Input and Output sections denotes input and output contexts and are set to INPUT and 

OUTPUT. The Options section specifies identity.xsl as an XSL stylesheet used by the 

Transforming action. The meaning of the other settings can be found on [W4]. 

 

The settings in XML Manager (see Chapter 4.5.3) influence whether the DOM or Stream 

processing is used (and thus the Par_DOM or Par_STREAM testing scenario is executed). By 

default, all XSL transformations wait for parsing the whole input XML document, only then 

the XSL transformation is applied and the output is created. Hence, we have to enable stream 

processing for Par_STREAM testing scenario in XML Manager settings (see Chapter 7.1.2). 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

61 

55..22..11..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

In the HW environment, we have no choice. In the SW environment, the most common 

parsers are  

 Apache Xerces2 2.8.0 [W42] - Fully compliant with JAXP 1.3, DOM Level 3 and 

SAX 2.0.2. 

 Apache Crimson 1.1 [W43] - This parser was a default one for Java 1.4, however, it 

supports only JAXP 1.1 (except for transformations) and DOM Level 2. The Apache 

Xerces2 project is preferred and further developed instead of Crimson. 

 MXP1 - XML Pull Parser 3
rd

 Edition [W44] - Based on different API specified on 

[W45]. 

 

For parsing XML data, Apache Xerces2 (2.8.0) is used in all testing scenarios in the SW 

environment. It is a default parser for Java 1.5, fully compliant with JAXP 1.3 specification 

and latest DOM and SAX specifications, and it has no reasonable competitors. 

55..33..  TTeessttiinngg  GGrroouupp::  VVaalliiddaattiinngg  XXMMLL  DDaattaa  

This testing group involves scenarios comprising of Validating actions. 

55..33..11..  TTeessttiinngg  DDaattaa  aanndd  TTeessttiinngg  HHiieerraarrcchhyy  

XSDBench [W32] is an open-source XML Schema benchmark. However, it is not complete at 

all and does not contain support for XML Schema validation in Java. No other reasonable 

benchmarks can be found.  

 

Nevertheless, the idea of XSDBench can be partially utilized in our own testing group. 

XSDBench differentiates two areas of using XSD file. To define: 

 structure of an XML document 

 data types of an XML document 

 

XSD file describing only structure of an XML document should contain only build-in data 

types (such as data type “string”). On the other hand, XSD file holding data types of a 

described XML document should involve only various definitions of data types. In a real 

world, each XSD file typically contains both, definition of a structure as well as custom data 

types of characterized XML document. 

 

In our testing group, we start with a base schema file, and then, add and remove complexity 

to/from this file and observe the performance gains or losses. The expressing power of the 

base schema file is on the level of a DTD schema file. We use the following levels of 

complexity of the schema files: 

 DTD schema (Val_DTD_BASE testing scenario) 

 XML Schema with expressing power of DTD - We use dtd2xs tool [W70] for 

converting a DTD to an XSD file. The XSD file then contains only structure definition 

on the level of DTD, string data types and some integrity restriction, which can be 

specified in DTD, such as ID and IDREF attributes. (Val_XSD_BASE) 

 XML Schema with expressing power of DTD (see the Val_XSD_BASE), plus ID and 

IDREFs are replaced by simple strings (Val_XSD_REDUCED) 

 XML Schema as in Val_XSD_BASE testing scenario, with complex data types 

containing pattern matching, enumeration values and other restrictions. 

(Val_XSD_EXTENDED) 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

62 

As a base DTD file, auction.dtd file describing XML documents generated by XMark is used. 

This file has a potential for complex pattern matching and the results can be compared with 

the Parsing testing group results. As the source files, the same collection of testing files as in 

Parsing testing group is used (see 5.2.1).  

 

Each level of complexity corresponds to one testing scenario. Each testing scenario has its 

own set of test cases, where each test case introduces a validation of one XMark file against 

the schema file determined by the testing scenario. 

55..33..11..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  

The following subchapters describe the processing rules in the SW and HW environments. 

The SW Environment 

In all scenarios in the SW environment, the processing rules consist of one action - XML 

Schema or DTD validation. The main difference between DTD and XML Schema validation 

concerns the fact that JAXP 1.3 specification does not allow decoupling of DTD validation. 

This means, DTD validation cannot be used in a processing rule of more actions unless it is 

used as a first action because, otherwise, the processed input XML document should have 

been parsed twice - once at the beginning of the processing rule and again as a part of DTD 

validation.  

 

Figure 49 shows definition of the processing rule for XML Schema validation. 

  

 

Figure 49 Processing Rule for Val_XSD_BASE Testing Scenario 

HW Environment 

In the HW environment, the processing rule is much more intuitive in comparison with 

Parsing testing group in Subsection 5.2. Figure 50 shows a processing rule for XML Schema 

validation testing scenarios. As we can see, the processing rule consists of two actions, the 

first one is the Matching action described already in Chapter 4.5.5 and the second action is a 

Validating action.  

 

Figure 50 Processing Rule for Validating Action 

 

Figure 51 shows the detail of the Validating action of the Val_XSD_BASE testing scenario.  

Validating 
auction.xsd 

INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

63 

 

Figure 51 Detail of Validating Action 

 

The input and output contexts of the Validating action are set to INPUT and OUTPUT, 

because it is the only action in the processing rule (Matching action is not counted).  

 

The middle part of Figure 51 defines several ways in which the incoming XML document can 

be validated. We have chosen the first variant - Validate Document via Schema 

URL, which means that all incoming XML documents are validated against the fixed XSD file 

and, therefore, XI50 can use XG4 Plug-in card for further acceleration of the validation 

process in a more efficient way. Other variants involve (apart from other less important 

choices) validation against XSD file specified in the incoming XML document and validation 

of XML documents with encrypted parts (see Section 5.5). 

 

The Validating action is similar for other testing scenarios concerning XSD schema file, only 

the governed XSD file differs. However, DTD validations are not supported on XI50 

appliance, thus, the testing scenario containing DTD validation is not performed on XI50. 

55..33..11..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

The situation on the field of the tested engines is the same as in the Parsing testing group in 

the SW environment, because parsers are by design capable of validation process. Therefore, 

the Apache Xerces2 2.8.0 is used as JAXP 1.3 fully compliant parser for validating XML 

documents. 

55..44..  TTeessttiinngg  GGrroouupp::  TTrraannssffoorrmmiinngg  XXMMLL  DDaattaa  

This testing group covers XSL transformations. 

55..44..11..  TTeessttiinngg  DDaattaa  

XSLTMark is a benchmark for comprehensive measurement of performance of XSLT 

processors [W31]. The DataPower Company developed it in year 2000 for testing 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

64 

performance of early versions of XI50 hardware appliances and compared results with 

accessible software solutions. In May 2005, IBM acquired DataPower Company and 

hardware appliances were further improved and integrated to IBM WebSphere platform. 

 

Our testing scenarios contain the test cases involved in the original XSLTMark, but embedded 

to our testing framework. The original version of benchmark is currently hardly available and 

does not involve up-to-date drivers. However, although the XSLTMark is obsolete, utilizing 

its XSL stylesheets gives us a chance to accomplish tests once more on a more advanced 

version of hardware appliance and a more powerful software solution.  

 

XSLTMark contains about 40 XSL stylesheets covering different aspects of XSLT 

Recommendation (see Subchapter “Areas of XSLT Processing”). All stylesheets conform 

only to the XSLT W3C Recommendation version 1.0. Apart from some implemented features 

of XSLT 2.0, XI50 is still not fully XSLT 2.0 compliant, so this is unimportant drawback.  

 

The original set of XSLTMark stylesheets comprises our base testing scenario - 

Tra_XSTMark. The subsequent three testing scenarios use a subset of XSTMark styleshets 

with larger input XML documents. The testing scenarios are as follows (the full list of used 

XSL stylesheets and input XML documents in all testing scenarios is shown in Subsection 

“List of Test Cases”): 

 Standard XSLTMark (Tra_XSTMark) 

 XSLTMark with 10 times larger input XML documents (Tra_XSTMark_L) 

 XSLTMark with 100 times larger input XML data (Tra_XSTMark_XL)  

 XSLTMark with 1000 times larger input XML data (Tra_XSTMark_XXL)  

 

One test case of all testing scenarios corresponds to application of one XSL stylesheet from 

XSLTMark on an appropriate input XML document using particular XSLT engine. 

 

XSLTMark is the only reasonable XSLT benchmark that we have managed to find, 

fortunately suitable for our measurement according to wide range of tested areas. It would be 

very tough to write such a complex set of XSL stylesheets. The little bit smaller and easier 

input document sizes of XSLMark stylesheets for nowadays computing capabilities are 

balanced in three extension scenarios.  

Areas of XSLT Processing 

We can differentiate four areas of XSLT processing: 

 XSLT rules pattern matching and template instantiation (MATCH) 

 XSLT control structures (e.g. xsl:choose) and parameter passing (CONTROL) 

 XPath selection of node sets (SELECT) 

 XPath library functions such as string and node set operations (FUNCTION) 

If the impacted area cannot be specified, GENERAL area is used.  

List of Test Cases  

The following list depicts test cases used in our testing scenarios. Each item of the following 

list contains a name of the test case, the character of an input XML document, a stylesheet 

description, and XSLT processing area covered by the test case. If the input XML document 

is used in more testing scenarios, it contains more versions of the input file (e.g. 100/1000 

rows of a database table), the second value is used for Tra_XSTMark_L, the third value for 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

65 

Tra_XSTMark_XL, and the fourth value for Tra_XSTMark_XXL testing scenarios. The test 

cases used in all four testing scenarios have bolded names. The names of the output XML 

documents are similar to the names of the input XML documents. 

 

 Alphabetize 

o Input: alphabetize.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: alphabetize.xsl - Sorts the elements in the input tree according to 

the names of elements 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Attests 

o Input: attsets.xml - Sales report 

o Style sheet: attests.xsl - Tests node-copying using named attribute sets 

o Impacted area of XSLT processing: GENERAL 

 Avts 

o Input: avts.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: avts.xsl - Tests expansion of attributes 

o Impacted area of XSLT processing: SELECT 

 Axis 

o Input: Proprietary axis.xml file 

o Style sheet: axis.xsl - Tests XPath selection along the different axes 

o Impacted area of XSLT processing: SELECT 

 Backwards 

o Input: Proprietary backwards.xml with tournament results  

o Style sheet: backwards.xsl - Reverses an order of elements in the input XML 

document 

o Impacted area of XSLT processing: CONTROL 

 Bottles 

o Input: bottles.xml - Holds an auxiliary element with the initial size parameter 

containing number of bottles generated  

o Style sheet: bottles.xsl - Generates verses of the "99/999/9999/99999 bottles of 

beer on the wall" song 

o Impacted area of XSLT processing: FUNCTION, CONTROL 

 Breadth 

o Input: breadth.xml - Broad and shallow XML document 

o Style sheet: breadth.xsl - Performs a search for a unique element in a large 

shallow tree 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Brutal 

o Input: brutal.xml - Inventory of items 

o Style sheet: brutal.xsl - Executes many XPath sum and count functions 

o Impacted area of XSLT processing: SELECT, FUNCTION, CONTROL 

 Chart 

o Input: chart.xml - Sales report  

o Style sheet: chart.xsl - Generates HTML chart of sales data 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Creation 

o Input: creation.xml -100/1000/10000/100000 rows of database table 

o Style sheet: creation.xsl - Tests xsl:element and xsl:attribute 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

66 

o Impacted area of XSLT processing: GENERAL 

 Current 

o Input: Proprietary current.xml 

o Style sheet: current.xsl - Tests complex XPath node selection 

o Impacted area of XSLT processing: SELECT 

 Dbonerow 

o Input: dbonerow.xml - 10000 rows of database table 

o Style sheet: dbonerow.xsl - Selects a single row from a very large table 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Dbtail 

o Input: dbtail.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: dbtail.xsl - Prints a table by traversing the following-sibling axis 

o Impacted area of XSLT processing: SELECT 

 Decoy 

o Input: decoy.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: decoy.xsl - Same stylesheet as in Patterns test case, with some 

decoy templates thrown 

o Impacted area of XSLT processing: MATCH 

 Depth 

o Input: Proprietary depth.xml 

o Style sheet: depth.xsl - Performs a search for a unique element in a large tree 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Encrypt 

o Input: encrypt.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: encrypt.xsl - Performs a Rot-13 substitution cipher on all element 

names and text nodes (it replaces each letter by another letter 13 characters 

further along the alphabet) 

o Impacted area of XSLT processing: FUNCTION 

 Functions 

o Input: functions.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: functions.xsl - Tests a variety of number and string functions 

o Impacted area of XSLT processing: FUNCTION 

 Game 

o Input: Proprietary game.xml 

o Style sheet: game.xsl - Produces HTML table of the baseball game stats 

o Impacted area of XSLT processing: SELECT, FUNCTION, CONTROL 

 HTML 

o Input: Proprietary html.xml 

o Style sheet: html.xsl - Produces HTML table with results of economy result of 

several divisions 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Identity 

o Input: identity.xml - 1000/10000/100000/1000000 rows of database table 

o Style sheet: identity.xsl - The identity transformation 

o Impacted area of XSLT processing: CONTROL 

 Inventory 

o Input: Proprietary inventory.xml 

o Style sheet: inventory.xsl - Produces HTML table of the data 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

67 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Metric 

o Input: metric.xml - Data in metric notation 

o Style sheet: metric.xsl - Converts metric units to English units 

o Impacted area of XSLT processing: FUNCTION 

 Number 

o Input: Proprietary number.xml 

o Style sheet: number.xsl - Tests format-number() function 

o Impacted area of XSLT processing: FUNCTION 

 Oddtemplate 

o Input: Proprietary oddtemplate.xml 

o Style sheet: oddtemplate.xsl - Tests a variety of complex match patterns 

o Impacted area of XSLT processing: MATCH, SELECT 

 Patterns 

o Input: patterns.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: patterns.xsl - Stylesheet contains extremely simple templates with 

tough patterns 

o Impacted area of XSLT processing: MATCH 

 Prettyprint 

o Input: prettyprint.xml - 100/1000/10000/100000 rows of database table 

o Style sheet: prettyprint.xsl - Formats the input in legal HTML 

o Impacted area of XSLT processing: CONTROL, FUNCTION 

 Priority 

o Input: Proprietary priority.xml 

o Style sheet: priority.xsl - Pops the first element off a priority Queue and 

returns the queue 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Products 

o Input: Proprietary products.xml 

o Style sheet: products.xsl - Produces HTML table from the product data 

o Impacted area of XSLT processing: SELECT, CONTROL 

 Queens  

o Input: queens.xml - 6/8/10/12 

o Style sheet: queens.xsl - Solves the "Queens" problem 

o Impacted area of XSLT processing: FUNCTION, CONTROL 

 Reverser 

o Input: reverser.xml - The Gettysburg Address - the most famous speech of 

Abraham Lincoln 

o Style sheet: reverser.xsl - Stylesheet copies the input document with text-node 

strings reversed 

o Impacted area of XSLT processing: FUNCTION, CONTROL 

 Stringsort 

o Input: stringsort.xml - 1000/10000/100000/1000000 rows of database table 

o Style sheet: stringsort.xsl - Performs a sort based on string keys 

o Impacted area of XSLT processing: CONTROL 

 Summarize 

o Input: summarize.xml - "Queens" stylesheet 

o Style sheet: summarize.xsl - Reports information about an XSL stylesheet 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

68 

o Impacted area of XSLT processing: FUNCTION 

 Total 

o Input: total.xml - Sales report 

o Style sheet: total.xsl - Reports on sales data 

o Impacted area of XSLT processing: SELECT, FUNCTION 

 Tower  

o Input: tower.xml - 10/12/15/20 pieces of Hanoi tower building blocks 

o Style sheet: tower.xsl - Solves the “Towers of Hanoi” problem 

o Impacted area of XSLT processing: CONTROL, FUNCTION 

 Trend 

o Input: trend.xml - Numerical data 

o Style sheet: trend.xsl - Computes trends in the input data 

o Impacted area of XSLT processing: SELECT, FUNCTION 

 Union 

o Input: Proprietary union.xml 

o Style sheet: union.xsl - Performs complex pattern matching 

o Impacted area of XSLT processing: MATCH, SELECT 

 XPath 

o Input: Proprietary xpath.xml 

o Style sheet: xpath.xsl - Performs another complex pattern matching 

o Impacted area of XSLT processing: MATCH 

55..44..11..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  

The following subchapters describe the processing rules in the SW and HW environments. 

The SW environment 

In all testing scenarios, the test cases involve one action - XSL transformation. Figure 52 

depicts the definition of a processing rule with one XSL Transforming action executed on 

SAXON engine (see Chapter 5.4.2) with INPUT and OUTPUT contexts as input and output 

contexts. 

 

Figure 52 Processing Rule for XSLTMark Test Cases in SW 

 

A similar processing rule is defined for each combination of XSL stylesheet, XSLT engine 

and testing scenario. 

HW Environment 

A processing rule is very simple, it contains only Marching and Transforming actions (see 

Figure 53).  

 

Transforming 

(SAXON) 

alphabetize.xsl 
INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

69 

 

Figure 53 Processing Rule for XSLTMark Test Cases in HW 

 

The detail of the Transforming action for a sample test case using alphabetize.xsl stylesheet is 

revealed in Figure 54. Again, it contains INPUT and OUTPUT as input and output 

contexts. The middle part of Figure 54 defines which XSL stylesheet is used. 

 

 

Figure 54 Detail of Transforming Action 

 

As in Validating testing group, the XSL stylesheet is fixed for all documents using this 

processing rule, so that the XSL stylesheet can be pre-fetched and cached by XI50 appliance. 

In contrary to XML Schema validation, the XSL stylesheet can be specified in an incoming 

XML document as well, however, we must be careful, because in this case, an XSL stylesheet 

is cached only after the first use of it. 

55..44..22..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

In the HW environment, the XSLT engine is obvious. In the SW environment, the list of 

available engines (among others) involves:  

 XALAN 2.7.1 

 SAXON-B 9.0.0.2 

 XSLTC  

 

Standard XSLT engine in Java 1.5 is XSLTC. XSLTC is based on XALAN engine, however, 

uses compiled stylesheets.  

 

We use all these XSLT engines, so that we can compare them and stand the strongest one 

against XI50 in the “Onion” testing suite (Section 6). 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

70 

 

Character of some XSL stylesheets enables streaming processing of XSL stylesheets. 

However, no used XSLT engine in the SW environment is capable of streaming. SAXON-A 

(higher version of SAXON engine) should have some restricted possibility to mark a part of 

an XSL stylesheet as streamable, however, this task must be prepared manually for all XSL 

stylesheets and what is more, SAXON-A is not freely available and we do not have chance to 

try it. 

55..55..  TTeessttiinngg  GGrroouupp::  SSeeccuurriinngg  XXMMLL  DDaattaa  

The goal of this testing group is to measure the performance of digital signing and encrypting 

of XML documents according to W3C standards XML Signature and XML Encryption (see 

Chapter 2.1.4).  

55..55..11..  TTeessttiinngg  DDaattaa  aanndd  TTeessttiinngg  HHiieerraarrcchhyy  

Since there exists no special benchmark for testing only encryption and/or signing of XML 

documents, the problem of choosing right data for the Securing testing group is related to 

choosing an appropriate generator of XML documents. We use the same generator as for 

Parsing testing group, so that we can straightforwardly compare the measures gathered in the 

Parsing and Securing testing group. 

  

The encrypting and decrypting testing scenarios are following: 

 Encrypting the whole incoming XMark document using asymmetric RSA cipher with 

2048 bits long key (RSA2) for encrypting the actual symmetric key used for the 

encryption. The symmetric algorithm is 3DES in Sec_ENC_ENC_RSA2_3DES 

testing scenario and AES CBC with 128 and 256 bits long key in 

Sec_ENC_ENC_RSA2_AES128 and Sec_ENC_ENC_RSA2_AES256 testing 

scenarios. RSA algorithm with 1024 bits long key is examined in the HW environment 

as well in Sec_ENC_ENC_RSA_3DES and Sec_ENC_ENC_RSA_AES256 testing 

scenarios. 

 Decrypting the whole XML document encrypted using RSA2 and AES 256 CBC or 

3DES (Sec_ENC_DEC_RSA2_AES256 and Sec_ENC_DEC_RSA2_3DES). 

 Encrypting one element which occurs repeatedly in an XML document (such as an 

element holding credit card numbers of persons participating on stock market 

business) with RSA2 and AES 256. RSA2 is chosen for higher security and AES 256 

for quicker encryption and higher security in comparison with 3DES (Sec_ENC_ 

ENC_PART_ RSA2_AES256). 

 

Moreover, the signing and verifying testing scenarios are as follows:  

 Signing the whole document using asymmetric RSA cipher with 1024 bits long key 

(RSA), RSA2 and DSA with 1024 bits long key (DSA) together with SHA1 digest 

algorithm. Therefore, we have three testing scenarios - Sec_SIG_SIG_DSA_SHA1, 

Sec_SIG_SIG_RSA_SHA1, and Sec_SIG_SIG_RSA2_SHA1. 

 Verifying the whole document signed by DSA and SHA1 (the testing scenario 

Sec_SIG_VER_DSA_SHA1) 

55..55..22..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  

The following subchapters describe the processing rules in the SW and HW environments. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

71 

SW Environment 

All scenarios consists of one Encrypting/Decrypting or Signing/Verifying action using a 

defined combination of cryptographic algorithms and two TreeWrapper actions for building a 

DOM tree of an input XML document and for serializing encrypted/decrypted/signed XML 

document to an output stream (Encrypting, Decrypting, Signing, and Verifying actions must 

operate with the whole XML document). Figure 55 demonstrates the processing rule 

definition for the testing scenario signing the whole XMark document using DSA and SHA1 

algorithms (testing scenario Sec_SIG_VER_DSA_SHA1).  

 

Figure 55 Signing Processing Rule for DSA and SHA1 Algorithms 

 

Processing rules containing the Encrypting or Decrypting actions instead of Signing action are 

very similar. The Verifying action has a null output and, therefore, the second TreeWrapper 

action uses the output of the first TreeWrapper action as an input (see Figure 56)  

 

Figure 56 Verifying Processing Rule for DSA and SHA1 Algorithms 

HW Environment 

The processing rules of all testing scenarios in the Securing testing group contain two actions, 

the Matching action and Encrypting, Decrypting, Signing, or Verifying action, depending on 

the particular testing scenario.  

 

Figure 57 depicts the processing rule used in the Sec_ENC_ENC_RSA2_AES256 testing 

scenario. 

 

 

Figure 57 Encrypting using RSA2 and AES 256 

 

TreeWrapper 
DOM 

NULL/DOM 

OUTPUT INPUT 

Verifying 

 
TreeWrapper 

TreeWrapper 
DOM 

DOM 

OUTPUT INPUT 

Signing 

TreeWrapper 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

72 

Figure 58 shows the detail of the Encrypting action. As in other testing groups of the “Flat” 

testing suite, it contains INPUT and OUTPUT as input and output contexts. The middle 

part of Figure 58 specifies that we use Standard XML Encryption, the input to this 

action is the whole Raw XML document, the used certificate is testRSA2_Cer (based 

on RSA2 algorithm), and the symmetric encryption algorithm is AES256-CBC. Moreover, 

the encryption type is Element which means that the whole desired element is encrypted, 

not just the content of the element. Meaning of the other settings can be found on [W4] and 

[W19]. 

 

 

Figure 58 Detail of Encrypting Using RSA2 and AES 256 

 

Figure 59 depicts actions of the processing rule involved in the testing scenario 

Sec_SIG_SIG_DSA_SHA1. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

73 

 

Figure 59 Signing Using DSA and SHA1 Algorithms 

 

Detailed information about the Signing action is depicted in Figure 60. The Signing action 

involves the INPUT and OUTPUT as input and output contexts. The other settings 

particularize that the Enveloped Method is used to sign the whole Raw XML 

document. The selected enveloped method has an impact on the location and syntax of the 

element containing signature metadata in the resulting XML document. Furthermore, 

testDSA_PKey is used as a private key for signing the input XML document digested by 

sha1 message digest algorithm. The certificate testDSA_Cer (s public key to a 

testDSA_PKey) is attached to the signature metadata in the resulting XML document. 

Meaning of the other settings can be found on [W4] and [W16]. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

74 

 

Figure 60 Detail of Signing Using DSA and SHA1 Algorithms 

 

The processing rules for decrypting encrypted XML documents and verifying signed XML 

documents are similar, only the chosen Encrypting and Signing actions are replaced by 

Decrypting and Verifying actions and in case of Verifying action, the output context is set to 

NULL. 

55..55..33..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

JSR 105 specification of unified Java interface for XML Signature was released in 2005 and 

we use its reference implementation of XML Signature.  

 

On the other hand, JSR 106 specifications of unified Java interface for XML Encryption is 

still in Proposed Public Review Draft status, thus, the reference implementation is not yet 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

75 

available. There are proprietary implementation of XML Encryption W3C standard, which 

unfortunately do not have a common interface: 

 Package com.ibm.ws.wssecurity.xss4j (xmlsecurity.jar) - IBM library used by default 

in IBM WebSphere Application Server 

 Package org.apache.xml.security [W47] - Apache XML Security project  

 Package org.bouncycastle [W48] - Open source Cryptography API of Legion of the 

Bouncy Castle group 

 

Unfortunately, Apache XML Security project has unavailable documentation and last update 

in May 2007. Cryptography API from Legion of the Bouncy Castle is suitable, however we 

have finally selected IBM library, which is a de facto Java standard for XML Encryption on 

IBM products. All above packages support digital signature as well, however, each package 

with its own proprietary interface. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

76 

66..  DDEEFFIINNIINNGG  TTHHEE  ““OONNIIOONN””  TTEESSTTIINNGG  SSUUIITTEE      
The “Onion” testing suite takes advantages of knowledge and experiences gained in the “Flat” 

one and involves the testing groups containing various combinations of actions over XML 

data mixed together in a single processing rule. In other words, the testing groups create 

progressions of testing scenarios, starting from a very simple one (with a processing rule with 

just one action) and ending with the most complex one (with many meaningful actions).  

66..11..  TThhee  OOuuttlliinnee  ooff  tthhee  TTeessttiinngg  GGrroouuppss  aanndd  TTeessttiinngg  SScceennaarriiooss  

This testing suite consists of the following testing groups and its testing scenarios: 

 Auction testing group - It creates a HTML report involving buyers on a stock market 

and auctioned items 

o Auction_XSLT 

o Auction_VAL_XSLT 

o Auction_VAL_XSLT_SIGN 

o Auction_VAL_XSLT_SIGN_ENC 

 CSVOutput testing group - This testing group covers exporting comma separated 

values (CSV values) from an XML database of employees 

o CSV_XSLT 

o CSV_XSLT_XSLT2 

o CSV_XSLT_VAL_XSLT2 

o CSV_VER_XSLT3_XSLT_VAL_XSLT2 

o CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 

 

Testing groups in the “Onion” testing suite are composed so that they pretend some real world 

testing scenarios, such as generating HTML reports or exporting XML to CSV file. Besides, 

Auction testing group utilizes tough XSL stylesheet, the toughest version of XML Schema 

validation introduced in the Validating testing group and Encrypting and Signing actions from 

the Securing testing group. On the other hand, CSVOutput testing group contains easy 

streamable XSL transformations, XML Schema validation, and Verifying and Decrypting 

actions from the Securing testing group. XSLTC engine is used in all testing scenarios as the 

XSLT engine in the SW environment due to the best results in Transforming testing group. 

66..22..  TTeessttiinngg  GGrroouupp::  AAuuccttiioonn  

Auction testing group covers the stress testing combining medium-to-tough Validating action, 

tough Transforming action, Signing action, and Encrypting action in its most complex testing 

scenario. 

66..22..11..  TTeessttiinngg  DDaattaa  aanndd  TTeessttiinngg  HHiieerraarrcchhyy  

Auction testing group employs some of the XMark testing data used in the Parsing testing 

group. To be more precise, the XMark files depicted in Figure 61 are utilized. 

 

Filename Size (KBs, MBs) 
Test0.002 210 KB 

Test0.004 457 KB 

Test0.005 567 KB 

Test0.007 817 KB 

Test0.01 1.128 MB 

Figure 61 Names and Appropriate Sizes of Used XMark Documents in Auction 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

77 

 

As we can see, the list of used XMark files is noticeably shorter than the list in Figure 44 and 

contains rather smaller files (because the Transforming action is relatively tough). On the 

other hand, each file is tested with different levels of concurrency (1, 2, 3, 4, 5, 7, 10, 15, 20, 

30, 50, and 100). 

 

The testing scenarios of the Auction testing group are as follows: 

 Auction_XSLT - The first scenario involves only one action in a processing rule - 

Trasforming action using XSL stylesheet auctionBuyers.xsl which generates a HTML 

report involving buyers and its auctioned items. The transformation is chosen for its 

non-triviality and non-streamability. 

 Auction_VAL_XSLT - It includes the Transforming action from the previous testing 

scenario and adds a Validating action utilizing auctionExtended.xsd XSD file 

introducing the toughest variant of XSD file from Validating testing group (see 

Subsection 5.3). 

 Auction_VAL_XSLT_SIGN) - It uses the actions defined in Auction_VAL_XSLT 

testing scenario and adds Signing action of the whole XML document using SHA1 

digest algorithm and DSA asymmetric cipher. 

 Auction_VAL_XSLT_SIGN_ENC - The most complex testing scenario of the 

Auction testing group contains Transforming, Validating, and Signing actions from 

the previous testing scenarios and adds Encrypting action of the whole XML 

document using AES 256 symmetric cipher (with 256 bits long key) and RSA2 

asymmetric cipher (with 2048 bits long key).  

66..22..22..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((AAuuccttiioonn__XXSSLLTT))  

In both testing environments, the processing rule contains one Transforming action using 

auctionBuyers.xsl with input and output contexts set to INPUT and OUTPUT. Figure 62 

depict the processing rule in the SW and HW environments. 

 

Figure 62 Processing Rule for Auction_XSLT Testing Scenario 

66..22..33..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((AAuuccttiioonn__VVAALL__XXSSLLTT))  

A processing rule for the Auction_VAL_XSLT differs in both environments. In the SW 

environment, the processing rule is rather complicated. If the Validating action produces not-

null output (output context is not set to NULL), it cannot directly process INPUT context (see 

restrictions of JAXP [W26]). Therefore, there are several solutions to substitute the expected 

PIPED context between Validating and Transforming action: 

- Adding one extra auxiliary Transforming action before Validating action and leaving 

PIPED context between Validating and Transforming action. 

- Setting output context of the Validating action to NULL and: 

o Building a DOM tree (using TreeWrapper action) 

o Copying an input stream of XML data to a buffer and re-reading it again by a 

Validating action (However, this solution bypasses the standard testing 

framework behaviour.) 

Transforming  
auctionBuyers.xsl 

INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

78 

 

We choose the second solution involving a creation of a DOM tree. The testing data are rather 

small, so the tree in memory does not represent a trouble (the largest testing file in this testing 

scenario has about 1 MB). 

 

To sum up, the processing rule involves three actions - TreeWrapper action for building the 

DOM tree, Validating action using auctionExtended.xsd, and Transforming action using 

auctionBuyers.xsl stylesheet as in the Auction_XSLT testing scenario. 

 

 

Figure 63 Processing Rule for Auction_VAL_XSLT Testing Scenario in SW 

  

In the HW environment, there is no problem with PIPED context between Validating and 

Transforming action, however, in order to have as much comparable processing rules in both 

environments as possible, the processing rule contains Validating and Transforming actions 

using the same XSL and XSD files as in the SW environment and with the contexts as in 

Figure 64. 

 

Figure 64 Processing Rule for Auction_VAL_XSLT Testing Scenario in HW 

 

66..22..44..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((AAuuccttiioonn__VVAALL__XXSSLLTT__SSIIGGNN))  

The processing rules differs in the HW and SW environments. In the SW environment, this 

testing scenario contains TreeWrapper, Validating, and Transforming actions as in 

Auction_VAL_XSLT testing scenario and adds Signing and TreeWrapper actions for signing 

the result of the Transforming action and serializing it to the output stream. The contexts are 

as in Figure 65.  

 

Validating 
auctionExtended.xsd 

Transforming  
auctionBuyers.xsl 

 

NULL/INPUT 

INPUT 
OUTPUT 

TreeWrapper 

Validating 
auctionExtended.xsd 

Transforming  
auctionBuyers.xsl 

 

NULL/DOM 

INPUT 

OUTPUT 

DOM 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

79 

 

Figure 65 Processing Rule for Auction_VAL_XSLT_SIGN Testing Scenario in SW 

 

In the HW environment, the testing scenario embraces the same actions as 

Auction_VAL_XSLT testing scenario and simply adds the Signing action and sets the 

contexts as in Figure 66. 

 

 

Figure 66 Processing Rule for Auction_VAL_XSLT_SIGN Testing Scenario in HW 

66..22..55..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((AAuuccttiioonn__VVAALL__XXSSLLTT__SSIIGGNN__EENNCC))  

Again, the processing rules differs in HW and the SW environments. In the SW environment, 

the testing scenario contains actions as in the Auction_VAL_XSLT_SIGN testing scenario 

and adds Encrypting action between Signing and the second TreeWrapper actions, so that the 

signed XML document is encrypted and serialized to the output stream. The contexts are as in 

Figure 67.  

Validating 
auctionExtended.xsd 

Transforming  
auctionBuyers.xsl 

 

NULL/INPUT 

INPUT 

OUTPUT Signing 

DOM 

TreeWrapper 

Validating 
auctionExtended.xsd 

Transforming  
auctionBuyers.xsl 

 

NULL/DOM 

INPUT 

OUTPUT 

DOM 

Signing 

TreeWrapper 

DOM 

DOM 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

80 

 

 

Figure 67 Rule for Auction_VAL_XSLT_SIGN_ENC Testing Scenario in SW 

 

In the HW environment, the testing scenario Auction_VAL_XSLT_SIGN_ENC involves the 

same actions as Auction_VAL_XSLT_SIGN testing scenario, adds the Encrypting action at 

the end of the queue of actions, and uses contexts as in Figure 68.  

 

Figure 

66

 

Figure 68 Rule for Auction_VAL_XSLT_SIGN_ENC Testing Scenario in HW 

66..22..66..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

In the HW environment, the tested engines are obvious. In the SW environment, the 

Validating action uses XERCES2 as in the Parsing and Validating testing groups, 

Transforming action utilizes XSLTC engine. 

66..33..  TTeessttiinngg  GGrroouupp::  CCSSVVOOuuttppuutt  

CSVOutput testing group generates in a secured way comma separated values (CSV values) 

from an XML database of employees. It involves stress testing combining three easy 

streamable XSL transformations, easy Validating, Verifying, and Decrypting actions in its 

most complex testing scenario.  

 

TreeWrapper 

Validating 
auctionExtended.xsd 

Transforming  
auctionBuyers.xsl 

 

NULL/DOM 

INPUT 

OUTPUT 

DOM 

Signing 
DOM 

Encrypting  
DOM 

TreeWrapper 

DOM 

Validating 
auctionExtended.xsd 

Transforming 
auctionBuyers.xsl 

 

NULL/INPUT 

INPUT 

OUTPUT 

Signing 

DOM 

Encrypting  

DOM 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

81 

66..33..11..  TTeessttiinngg  DDaattaa  aanndd  TTeessttiinngg  HHiieerraarrcchhyy  

The CSVOutput testing group embraces different sizes of testing data already used in the 

Transforming testing group. To be more precise, the files in Figure 69 contain successively 

20, 200, 2000, and 20000 elements row depicted in Figure 70. Each file is tested with 

different levels of concurrency (1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 50, and 100). 

 

  

Filename Size (KBs, MBs) 
Rows20 3.392 KB 

Rows200 34.563 KB 

Rows2000 356.829 KB 

Rows20000 3.599 MB 

Figure 69  Names and Appropriate Sizes of used XML Documents in CSVOutput 

 
<?xml version="1.0" encoding="utf-8" ?>  

<table> 

  <row> 

    <id>0000</id>  

    <firstname>Al</firstname>  

    <lastname>Aranow</lastname>  

    <street>1 Any St.</street>  

    <city>Anytown</city>  

    <state>AL</state>  

    <zip>22000</zip>  

  </row> 

  ... 

</table> 

Figure 70 Structure of the Database of Employees 

 

The testing scenarios of the CSVOutput testing group are following: 

 CSV_XSLT - The first testing scenario contains only one Transforming action in a 

processing rule, using avtsEdited.xsl stylesheet for converting sub-elements of all 

elements row to attributes. The testing scenario is streamable in the HW environment. 

 CSV_XSLT_XSLT2 - The processing rule of the second testing scenario involves the 

processing action of the CSV_XSLT testing scenario and the core XSL stylesheet 

avtsToCSV.xsl exporting the output of the first Transforming action as comma 

separated values (CSV). The testing scenario is streamable in the HW environment. 

The stylesheet avtsToCSV.xsl is inspired by [Man]. 

 CSV_XSLT_VAL_XSLT2 - This testing scenario adds Validating action governed by 

avtsBeforeCSV.xsd to the processing rule of the CSV_XSLT_XSLT2 testing 

scenario. The testing scenario is streamable in the HW environment. 

 CSV_VER_XSLT3_XSLT_VAL_XSLT2 - The processing rule contains actions from 

the CSV_XSLT_VAL_XSLT2 testing scenario and appends Transforming and 

Verifying actions. Moreover, the input XML data slightly differ from the simpler 

testing scenarios of this testing group, because this testing scenario expects signed 

versions of the files in Figure 69 using DSA and SHA1 algorithms. These testing data 

are firstly verified by the Verifying action and after that, the Transforming action 

using avtsStripSignature.xsl strips off the Signature element and sends the rest of the 

XML data to the Transforming action utilizing avtsEdited.xsl stylesheet. The 

processing rule is non-streamable as a whole, because the Verifying action needs 

access to the whole XML document. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

82 

 CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 - The most complex testing scenario 

includes the processing actions from CSV_VER_XSLT3_XSLT_VAL_XSLT2 testing 

scenario and adds a new Decrypting action for XML documents encrypted by AES 

256 and RSA2 ciphers. Therefore, the input testing data must slightly differ from the 

files in Figure 69 and from files mentioned in the testing scenario 

CSV_VER_XSLT3_XSLT_VAL_XSLT2, so that the Decrypting action can be used. 

To be more precise, the testing data are firstly signed using DSA and SHA1 

algorithms (as in the previous testing scenario), later on, encrypted using RSA2 and 

AES 256 ciphers and only after that, they can be used as testing data to this testing 

scenario. The processing rule is non-streamable as a whole, because the Verifying and 

Decrypting actions need access to the whole XML document.   

66..33..22..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((CCSSVV__XXSSLLTT))  

In both testing environments, the processing rule involves one Transforming action using 

avtsEdited.xsl stylesheet with input and output contexts set to INPUT and OUTPUT. Figure 

71 depict the processing rule in the SW and HW environments. 

 

Figure 71 Processing Rule for CSV_XSLT Testing Scenario 

66..33..33..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((CCSSVV__XXSSLLTT__XXSSLLTT22))  

In both testing environment, the processing rule contains two Transforming actions PIPED 

together. The first one is utilizing avtsEdited.xsl stylesheet from the CSV_XSLT testing 

scenario and the second uses avtsToCSV.xsl key stylesheet. The contexts look like in Figure 

72.  

 

Figure 72 Processing Rule for CSV_XSLT_XSLT2 Testing Scenario 

66..33..44..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((CCSSVV__XXSSLLTT__VVAALL__XXSSLLTT22))  

In both environments, the processing rules contain two Transforming actions as in 

CSV_XSLT_XSLT2 testing scenario and add a Validating action. All actions in both 

processing rules are PIPED as in Figure 73. 

Transforming  
avtsEdited.xsl 

PIPED 

INPUT OUTPUT 
Transforming  
avtsToCSV.xsl 

 

 

Transforming  
avtsEdited.xsl 

INPUT 

OUTPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

83 

 

 

Figure 73 Processing Rule for CSV_XSLT_VAL_XSLT2 Testing Scenario 

66..33..55..  PPrroocceessssiinngg  RRuullee  DDeeffiinniittiioonn  ((CCSSVV__VVEERR__XXSSLLTT33__XXSSLLTT__VVAALL__XXSSLLTT22))  

The processing rules differ in the HW and SW environments. In the SW environment, the 

testing scenario contains the actions as in the CSV_XSLT_VAL_XSLT2 testing scenario and 

adds TreeWrapper, Verifying, and Transforming actions. The TreeWrapper action builds a 

DOM tree of the input document, subsequently, the Verifying action verifies the built DOM 

tree and later, the Transforming action takes the DOM tree created by the TreeWrapper action 

and strips off the Signature element and sends the XML data further. The contexts are as in 

Figure 74. 

 

Figure 74 Rule for CSV_VER_XSLT3_XSLT_VAL_XSLT2 Testing Scenario in SW 

 

In the HW environment, the actions are as in the CSV_XSLT_VAL_XSLT2 testing scenario, 

however, the Verifying and Transforming actions are added. The contexts are as in Figure 75. 

TreeWrapper 

Verifying 

Transforming 

(XSLTC) 
avtsStripSignature.xsl 

Transforming 

(XSLTC) 
avtsEdited.xsl 

PIPED 

OUTPUT 

Validating 
avtBeforeCSV.xsd 

Transforming 

(XSLTC) 
avtsToCSV.xsl 

 

 

PIPED 

INPUT 

PIPED 

DOM 

NULL/DOM 

Transforming  
avtsEdited.xsl 

PIPED 
INPUT 

OUTPUT 

Validating 
avtBeforeCSV.xsd 

Transforming  
avtsToCSV.xsl 

 

 

PIPED 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

84 

 

Figure 75 Rule for CSV_VER_XSLT3_XSLT_VAL_XSLT2 Testing Scenario in HW 

66..33..66..  RRuullee  DDeeffiinniittiioonn  ((CCSSVV__DDEECC__  VVEERR__XXSSLLTT33__XXSSLLTT__VVAALL__XXSSLLTT22))  

The processing rules in both testing scenarios use the same actions as in 

CSV_VER_XSLT3_XSLT_VAL_XSLT2 testing scenarios of the respective environment and 

insert Decrypting action before the Verifying action. The contexts are as in Figure 76 for the 

SW environment and in Figure 77 for the HW environment. 

 

Figure 76 Rule for CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 Scenario in SW 

 

TreeWrapper 

Decrypting  

Verifying 

Transforming 

(XSLTC) 
avtsStripSignature.xsl 

Transforming 

(XSLTC) 
avtsEdited.xsl 

PIPED 

OUTPUT 

Validating 
avtBeforeCSV.xsd 

Transforming 

(XSLTC) 
avtsToCSV.xsl 

 

 

PIPED 

INPUT 

PIPED 

DOM 

NULL/DOM 

DOM 

Verifying 

Transforming  
avtsStripSignature.xsl 

Transforming  
avtsEdited.xsl 

PIPED 

OUTPUT 

Validating 
avtBeforeCSV.xsd 

Transforming  

 
avtsToCSV.xsl 

 

 

PIPED 

INPUT 

PIPED 

NULL/INPUT 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

85 

 

Figure 77 Rule for CSV_DEC_VER_XSLT3_XSLT_VAL_XSLT2 Scenario in HW 

66..33..77..  TTeesstteedd  EEnnggiinneess  iinn  tthhee  SSWW  EEnnvviirroonnmmeenntt  

In the HW environment, the tested engine cannot be changed. In the SW environment, the 

Validating action uses XERCES2 as in the Parsing and Validating testing group and all 

Transforming actions utilize XSLTC engine. 

 

 

Decrypting  

Verifying 

Transforming  
avtsStripSignature.xsl 

Transforming  
avtsEdited.xsl 

PIPED 

OUTPUT 

Validating 
avtBeforeCSV.xsd 

Transforming  
avtsToCSV.xsl 

 

 

PIPED 

INPUT 
PIPED 

NULL/DOM 

DOM 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

86 

IIVV..  TTEESSTTIINNGG  --  TTEESSTTIINNGG  AANNDD  CCOOMMPPAARRIINNGG  

77..  EENNVVIIRROONNMMEENNTT  SSEETTTTIINNGGSS  
This section summarize settings of both testing environments 

77..11..  TThhee  HHWW  EEnnvviirroonnmmeenntt  

Firstly, let us have a look at settings of the HW environment. Chapter 7.1.1 holds 

configuration, Chapter 7.1.2 tuning possibilities, Chapter 7.1.3 monitoring, and Chapter 7.1.4 

debugging capabilities of this environment. 

77..11..11..  CCoonnffiigguurraattiioonn    

The configuration of the HW environment (XI50 appliance) is as follows: 

 IBM WebSphere DataPower Integration Appliance XI50, 

 XG4 add-on accelerator card installed 

 Firmware version XI50.3.6.1.4 Build 156561cf  

77..11..22..  TTuunniinngg  PPoossssiibbiilliittiieess  

By default, XI50 appliance caches 5000 XML documents. The number of cached documents 

can be redefined within a range of 1 - 250.000 documents or the size of the caching memory 

can be specified. We set the caching memory to zero, so that no XML document is cached, 

because in a real-world scenario, two documents are rarely the same.  

 

Furthermore, XI50 appliance caches 256 XSL stylesheets by default, the number of cached 

stylesheets can vary between five and 1.000.000. The default value (256 stylesheets) is 

sufficient, because our tests do not contain more than 50 XSL stylesheets. Therefore, all 

stylesheets in our tests are cached which corresponds to a real-world scenario, where the 

majority of regularly used XSL stylesheets should be cached. 

 

Moreover, we disable all limits on the size of a single element in an XML document, the size 

of the whole XML document, and on the maximum depth of elements in an XML document.  

  

By default, XML Schema validations are performed using SAX model, XSL transformations 

use DOM model. Alternatively, SAX processing can be used for transforming XML 

documents (if the nature of an XSL stylesheet enables it), which is called streaming. If the 

XSL stylesheet cannot be fully streamed, partial streaming is tried, which we can imagine as 

creation of small local DOM trees during the transformation. Streaming settings can be 

enabled or disabled in XML Manager settings at two levels: 

 Stream, if not possible, raise error  

 Stream, if not possible, process the input document in a standard way, which means 

building a DOM tree 

When the streaming is enabled, it is emphasized in the definition of the testing scenario. 

 

All the above tuning possibilities can be redefined in XML Manager settings of each XML 

Firewall. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

87 

77..11..33..  MMoonniittoorriinngg  CCaappaabbiilliittiieess  

Under the main menu “Status” in web-based interface of XI50 appliance (see Figure 25), the 

following usable statistics can be obtained: 

 CPU Usage - The usage of the general processing engine 

 

Figure 78 CPU Usage (XI50) 

 

 System Usage - The total workload (counted as load of the general processing engine 

and all other resources, such as accelerators, XG4 add-on card) 

 

Figure 79 System Usage (XI50) 

 

 Memory Usage - Information about free, used and total memory usage  

 

Figure 80 Memory Usage (XI50) 

77..11..44..  DDeebbuuggggiinngg  CCaappaabbiilliittiieess  

XI50 appliance can be debugged using: 

 System log messages (Figure 81 depicts a sample system log) 

 

 

Figure 81 System Log (XI50) 

 

 Probe - The probe enables observing all contexts of the used processing rule. Each 

context holds information about the current state of the processed XML document and 

about variables associated with the particular context (see Figure 82 and Figure 83). 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

88 

 

Figure 82 Probe - Selecting Context and Viewing XML Document 

 

 

Figure 83 Probe - Context Variables 

 

Obviously, during the testing, the log level is set to “fatal”, therefore, only the fatal errors are 

logged. Moreover, probe must be disabled, because it slows down the processing by tens of 

percents.  

77..22..  TThhee  SSWW  EEnnvviirroonnmmeenntt  

Secondly, let us examine the settings of the SW environment. Chapter 7.2.1 holds 

configuration, Chapter 7.2.2 tuning possibilities, and Chapter 7.1.37.2.3 monitoring and 

debugging capabilities of this environment. 

77..22..11..  CCoonnffiigguurraattiioonn    

Main Server with IBM WebSphere Application Server (School server): 

 Intel Xeon CPU E5310@1.6GHz (4 Cores), 

 3.75GB RAM,  

 HDD in RAID 

 Windows Server 2003 R2, Standard Edition, SP2, 32-bit 

 IBM WebSphere Application Server 6.1.0.2, Build cf20633.22 (18.8.2006) 

 JRE 1.5.0 (build pwi32dev-20060511 (SR2)),  

 IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Windows Server 2003 x86-32 

j9vmwi3223-20060504 (JIT enabled), 

 

Auxiliary Server with Apache HTTP Server (R61-HTTP): 

 Intel Core2 Duo CPU T7250@2.0GHz (2 Cores), 

 2 GB RAM,  

 Windows Server 2003 R2, Standard Edition, SP2, 32-bit 

 Apache HTTP Server 2.2.8. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

89 

Client (T40p-Client): 

 Intel Pentium M @1.6 GHz (1 Core), 

 2 GB RAM, 

 Microsoft Windows XP, SP2, with removed crippled TCP/IP stack (more than 10 

TCP/IP connections can be opened at once)  

 

Client (R61-Client): 

 Intel Core2 Duo CPU T7250@2.0GHz (2 Cores), 

 2 GB RAM, 

 Microsoft Windows XP, SP2 with removed crippled TCP/IP stack (more than 10 

TCP/IP connections can be opened at once) 

77..22..22..  TTuunniinngg  PPoossssiibbiilliittiieess    

The tuning of the SW environment can have great impact on results of our tests. Especially 

the JVM settings are important. 

IBM Java Virtual Machine (JVM) Tuning 

This subchapter describes settings involving particular JVM parameters for running J2EE 

application on the Application Server. 

 

To start with, the Java heap size has a direct impact on behaviour of a garbage collection and, 

consequently, on the performance of the running java application. The larger heap, the more 

memory is at our disposal, however, it takes also longer to accomplish a garbage collection. 

Xms switch specifies the initial java heap size, the Xmx switch the maximum heap size. For a 

production server, it is usually a good idea to specify the initial java heap size smaller than the 

maximum size, because the JVM heap can shrink and expand according to actual 

requirements. However, the changes in java heap size have measurable overhead, so for our 

case, where the optimal performance is required, the initial heap size and maximum heap size 

are set to the same value. 

 

The default JVM heap size on a standard Java platform and 32-bit system is 64MB which is 

definitely not sufficient. A simple application executing XSL transformations with this default 

settings of the heap memory size shows that almost 30% of elapsed time is spent on garbage 

collections. When the maximum heap size of JVM is set to 1500MB, the time spent by 

garbage collecting is less than 0.001% of the summary elapsed time. 

 

The default heap size of the Application Server is 768M, which should be increased as well. 

The maximum addressable memory on Windows Server 2003 32-bit is 4 GB (2^32). 

However, the operating system divides the total available physical memory into two parts - 

system space and user process space. Our main server has 3,75GB of physical memory, 

therefore, the theoretical maximum of memory consumed by an Application Server is about 

1920MB. Hence, the amount of 1536MB of heap memory is a good candidate, because it is 

the double value in comparison with the default settings (768MB) and comprises 80% of the 

total available memory in the user space, which is a maximum recommended ratio of JVM 

heap memory size to the total available memory.   

 

User space of an operational memory can be enlarged to the exclusion of the system space by 

using the switch ”/3GB” in the boot.ini file. After this modification, the maximum available 

memory for user process space increases to 2880MB. Therefore, the JVM heap size 2304MB 

is a suitable candidate, because it is a triple amount of the default heap memory of the 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

90 

Application Server (768MB) and again comprises 80% of the total available memory in user 

process space (2880MB). However, this settings could be unstable due to restricted system 

space and are not considered in our testing. 

 

JVM has a memory manager for automatic allocation and deallocation of memory on the 

heap, so that a programmer does not need to allocate a memory manually. When the JVM 

cannot allocate a memory for an object, the garbage collector (GC) is called to ensure the 

sweeping of the objects that are no longer needed. Each JVM vendor provides its own tuning 

parameters and garbage collector policies (the IBM JVM is not an exception). 

 

Xgcpolicy switch specifies a policy used by a vendor specific garbage collector. The 

following four values can be used with IBM JVM: 

 optthruput (a default policy) - A garbage collector with this policy provides a high 

throughput, however the pauses during the garbage collection tend to be longer. 

Moreover, all application threads are stopped during a garbage collection. 

 optavgpause - This policy collects garbage concurrently with the application 

execution, so that the garbage collection pauses are reduced. However, this policy has 

some impact on the overall throughput.  

 gencon - This policy splits the heap into generation segments and uses two types of 

garbage collections - minor and major. A minor garbage collection takes place very 

often and operates over the young generation of objects (i.e. objects that were created 

since the last minor garbage collection). It uses the fact that many new objects live 

very shortly, so that they can be marked as garbage and swept very shortly after their 

creation during the next minor garbage collection. On the other hand, long-lived 

objects are promoted to the segment with old generation of objects. Major garbage 

collection maintains the old generation segment of the heap, when it is full. This 

policy is very useful for the stream processing of XML documents where the read and 

processed parts of the XML document can be very soon deallocated (in an ideal case 

till the next minor garbage collection) 

 subpool - This policy is similar to the default one except that the heap is divided 

into multiple sections, so that scalability for object allocation is improved. It is 

designed primarily for systems with more than eight processors, thus this policy is not 

considered in our testing. 

 

The impact of different settings of garbage collection policies together with both DOM and 

Stream parsing approaches is illustrated on the parsing of the batch of 100 test1.0.xml files 

using both parsing approaches. Figure 84 shows the total garbage collection runs according to 

various garbage collection policies and parsing approaches. Subsequently, Figure 85 depicts 

the time spend on one garbage collection. Finally, Figure 86 shows the percentage of time 

spent in the garbage collection of the overall duration of parsing and Figure 87 depicts 

“Requests per Second” measure for each garbage collection policy.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

91 

 

Figure 84 Number of GC Runs 

 

 

Figure 85 Duration of One GC Run 

 

 

Figure 86 Percentage of Time Spent in GC 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

92 

 

Figure 87 Requests per Second Measure 

 

As we can see, more garbage collections do not inevitably mean worse results. The garbage 

collection policy should be used according to the character of the testing data. The gencon 

policy is very effective for Stream processing of XML documents, because many objects die 

until the next (minor) garbage collection. However, the DOM object tends to stay in the 

memory for a long time, thus the gencon policy for DOM processing gives very bad results, 

with more than 19% of total time spent in garbage collection. The policies optavgpause 

and optthruput tend to give similar results with reasonable time spent in garbage 

collection (less than 4% of the overall parsing time). The default policy optthruput tends 

to be optimal in DOM parsing and the worst in case of Stream processing, however the 

differences between the worst and the best are in Stream processing minimal. If we are 

looking for optimal policy for both parsing approaches, we definitely do not choose gencon 

policy. From the two resting policies, we choose optthruput policy, which gives better 

results in DOM processing used in major testing scenarios (All security actions must use 

DOM parsing). 

 

Other JVM settings involve the following: 

 Xnoclassgc switch - Standardly, the JVM unloads classes that are not used by any 

alive instances. The switch -Xnoclassgc disables this behaviour and, thus, 

increases the performance. However, this switch should be enabled only for special 

occasions, such as for our performance tests.  

 Xquickstart switch - By default, JVM optimize the runtime performance, 

however, if this switch is present, the optimizing level is degraded in favour of a faster 

start of an Application server. This switch should be omitted, which gains slight 

performance boost. 

Other Tuning Possibilities 

 TCP/IP transport channel pool - The default value for the thread pool for incoming 

requests is 10-50 which should be expanded to 10-100.  

 Servlet caching policy - Caching of servlets should be disabled, so that the result is 

always computed 

 Keep-Alive interval - It specifies how often TCP repeats keep-alive transmission when 

no response is received (by default 2 hours). It helps keeping connection until the 

response is computed. We have tried to change this interval to 20-25s, so that the 

TCP/IP timeout does not occur in several test cases, however, we were not successful. 

  “http://apache.org/xml/properties/input-buffer-size” is a property of Xerces parsing 

engine, which specifies a size of the input buffer in the XML Reader. Should be tuned 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

93 

according to the size of the documents. Default value is 2KB, should not be more than 

16KB. We do not experiment with this tuning possibility, however, it could slightly 

increase the speed of parsing. 

 

There are far more settings, however, not all settings have measurable impact on the overall 

performance.  

77..22..33..  MMoonniittoorriinngg  aanndd  DDeebbuuggggiinngg  CCaappaabbiilliittiieess  

Firstly, all monitoring tools and the monitoring itself must be turned off during testing. This 

can be done in section “Monitoring and Tuning” and “Troubleshooting” of the web-based 

administration tool (see Figure 27). Specifically, Performance Monitoring Infrastructure 

(PMI) and Request Metrics (RM) tools should be disabled. PMI is a core technology for 

collecting underlying data of several other tools for viewing and analyzing performance. On 

the other hand, Request Metrics is a technology and tool for tracing individual transactions 

within the Application server.  

 

Secondly, all in-depth logging tools in “Troubleshooting” section of the web-based 

administration tool (see Figure 27) must be disabled. This can be done by changing a log level 

from a default value (“info”) to an appropriate level (“fatal”), so that only fatal errors are 

logged. The logging could be switched off completely, however, this can overlook some fatal 

errors which can lead to misinterpretation of results.  

77..33..  UUsseedd  SSeettttiinnggss  

Figure 88 depicts used settings of our testing environments during the testing. 

 

Settings Switches 

1 See Chapter 7.1.2 

A  -Xmx768M, -Xms768M, -Xnoclassgc 

B -Xmx 1536M, -Xms 1536M,-Xnoclassgc 

Figure 88 Used Settings 

 

In the HW environment, only Settings 1 are used (with possibility of enabling/disabling 

Streaming switch). In the SW environment, Settings A are the default settings suggested by 

the Application Server, with minimum heap size value set to maximum heap size value and 

with noclassgc switch enabled. Settings B have double amount of maximum and 

minimum heap memory in comparison with Settings A. Settings B are the default ones in the 

SW environment, if not specified otherwise.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

94 

88..  TTEESSTTIINNGG  
This section involves results of the testing of the “Flat” and “Onion” testing suite. As 

specified in Subsection 4.7, many measures are gathered with each test case run, however, 

this section analyzes only the major measure indicating the real-world performance - the 

throughput. Other measures (see Chapter 4.7.1) do not describe the performance of XML 

processing so aptly and/or the measures are dependent on the throughput measure, hence, 

these measures can be deducted from the throughput measure. All gathered measures can be 

viewed in reports appended to this thesis (see Subsection 0). If not specified otherwise, the 

throughput is measured in MB/s and the SW environment is using Settings B (see Subsection 

7.3), which is shorten as SW_B. 

 

Auxiliary files needed for the testing, such as XSL stylesheets, XSD files, and keys needed 

for securing actions, are cached. If these auxiliary files are loaded for every iteration of the 

same test case, it does not conform to a real-world situation where the repeatedly reused 

resources are typically cached and we want to measure metrics characterizing real-world 

performance. Moreover, in case of XSL stylesheets, the default XSLT engine of Java version 

5 is XSLTC, which compiles (not interprets) XSL stylesheets. That kind of engine cannot be 

used in a reasonable way if the XSL stylesheet cannot be cached, and must be constantly 

reloaded and recompiled every time it is utilized. 

 

As to the technique of gathering measures, the first few test cases run after starting the 

Application server or XI50 appliance last longer because of extensive loading of java classes 

and caching metadata about test cases. This is taken into account and all testing contain a few 

minutes of warm-up period containing loops of tests that we intend to measure. After this 

period, the system performance should be stabilized and the measures can be safely gathered. 

To add, all monitoring and debugging tools are disabled, all other processes which can 

influence the measured values are shut down. This is extremely important in the “Onion” 

testing suite where the test cases with the higher level of concurrency use fully all four cores 

of our School server and almost all or all resources on XI50 appliance. 

 

In all subsections of Section 8, if we say that the throughput is in the environment A x times 

higher than in the environment B, we mean that the ratio of the average throughput in the 

environment A to average throughput in the environment B measured over the same set of test 

cases and possibly over other dimensions, such as tested engines, concurrency levels etc., is 

equal to x. If we talk about supported test cases, we mean test cases with testing data that can 

be successively run on the particular testing environment.  

 

The network lines have a theoretical throughput of 1 Gb/s in both testing environments. 

Therefore, the utilization of the network is depicted in all subsections in Section 8 as a 

percentage of usage of 1 Gb bandwidth. In the “Onion” testing suite, the gathered values of 

the throughput measure can be in the HW environment even higher than 1Gb/s, because of the 

architecture of the testing framework - the throughput is measured together for two distinct 

sections of the network (see Subsection 4.4).  

 

In all testing scenarios in the “Flat” testing suite except for the Parsing testing group, if the 

test cases with the XMark testing data ranging from Test0.0 to Test1.0 are supported, we say 

that all test cases are supported. In the Parsing testing group, even larger data are tested and 

evaluated using stream parsing approach. The restrictions on the supported test cases are in 

most cases caused by the “Out of Memory” exception when the heap size is not sufficient, 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

95 

errors during processing testing or auxiliary data, TCP/IP timeouts, and/or by the limitations 

of AB and curl tools, which are both unable to upload very large files in the SW environment. 

 

In the “Onion” testing suite, the test cases are chosen according to the results of the “Flat” 

testing suite and so that all of them are supported on all testing environments.  

 

For each testing group, the lowest model of HW appliance (see Subsection 3.1) is specified. 

88..11..  TThhee  ““FFllaatt””  TTeessttiinngg  SSuuiittee  

In the SW environment, the tests typically acquire fully one core of the School server. On the 

other hand, in the HW environment, the total workload of the general processing unit, 

accelerators, and other resources is typically between 20% and 30%. In scenarios running 

majority of the time on accelerators, the utilization of the general processor in XI50 appliance 

is less than 20%.  

 

The memory of XI50 cannot be increased or decreased, the inner garbage collection policies 

cannot be changed. The approximate memory usage can be counted by multiplying the size of 

the input testing data by two (for input and output contexts of the processing rules) and, 

consequently, 1.5 should further multiply the result if the DOM processing technique is used. 

If the Stream processing approach is used, the memory requirements are insignificant even for 

very large files (tens of GBs) 

 

In the SW environment, the memory and its management can be tuned, especially by setting 

the size of the accessible memory and choosing an appropriate garbage collection policy (see 

Chapter 7.2.2). The size of the heap memory depends on the selected settings of the SW 

environment.  

 

The Parsing, Transforming, and Validating testing group can be successfully run on XA35, 

XS40, or XI50 appliance in the HW environment. The Securing testing group requires XS40 

or XI50 appliance. 

88..11..11..  PPaarrssiinngg  TTeessttiinngg  GGrroouupp  

Parsing testing group covers DOM and Stream testing scenarios (see Section 5). Supported 

test cases differ according to the applied testing scenario and testing environment. The Stream 

testing scenario in the HW environment is utilizing all testing data, however, the Stream 

testing scenario in the SW environment and DOM testing scenarios in both testing scenarios 

do not use all testing data.  

 

In the HW environment in DOM testing scenario, supported test cases are test cases 

containing any XMark file except of the file Test5.0 and larger. This restriction is enforced by 

the bounded memory of XI50 appliance with the respect to all aspects of the processing on 

XI50 appliance (see Subsection 4.5). In the SW environment, supported test cases are test 

cases ranging from Par_test0.0 to Par_test1.0 due to AB tool problem with uploading larger 

files. In addition, due to Out of Memory exception, DOM parsing with Settings A cannot 

process Par_test0.7 and Par_test1.0 test cases. 

 

Firstly, let us examine the graph in Figure 89 depicting the throughput of the DOM and 

Stream testing scenarios in both environments (using Settings A and B in the SW 

environment) and test cases ranging from Par_test0.0 to Par_test1.0.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

96 

 

Figure 89 DOM and Stream Testing Scenarios in HW and SW 

 

As we can see, the throughput of XI50 is higher in all test cases. To be more precise, the 

average throughput in case of DOM processing is in the HW environment approximately 

3.76x higher than in SW-B environment (measured over all test cases of the DOM testing 

scenario ranging from Par_test0.0 to Par_test1.0). Figure 90 depicts the trend of the ratio of 

the throughput in the HW environment to throughput in the SW environment of DOM testing 

scenarions for the same test cases as in Figure 89. 

 

Moreover, the throughput measured in the SW environment with Settings B and A does not 

differentiate much, which can lead us to the fact, that increasing the memory heap twice 

brings only a little gain (especially for smaller testing data) or even can bring worse results 

(especially for larger testing data) due to more time spent in the garbage collections. 

Therefore, the results gathered on XI50 with 4GBs of total memory and the SW environment 

with 768MB or 1536MB of heap size can be directly compared.  

 

The throughput in the HW environment is highest for medium-sized XML documents (test 

cases ranging from Par_test0.01 to Par_test0.1) which is in coherence with the overhead of 

the TCP/IP stack transferring too small XML documents and with the network overhead of 

transferring large documents, where the TCP/IP stack tends to be ineffective. In the HW 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

97 

environment, the DOM processing strategy is in general a better idea for testing data ranging 

from tens of kilobytes to tens of megabytes. Nevertheless, for the larger testing data, the 

Stream approach yields in better results (see test cases Par_test0.5, Par_test0.7, and 

Par_test1.0 in Figure 89), because of memory restrictions on XI50 appliance and subsequent 

garbage collections. The rapid decrease in the throughput in the HW environment in Stream 

testing scenario between Par_test0.001 and Par_test0.002 is a little bit mystery, however, the 

fact that DOM processing technique has better throughputs in most test cases (Par_test0.0 to 

Par_test0.4) is logical, due to quite large memory on XI50, accompanied by a significantly 

better memory management. 

 

The throughput in the SW environment is not optimal for too small testing data as well, 

because of the network and application server overhead. Nevertheless, the throughput is not 

falling down for large files as in the HW environment, which is possibly due to not so 

effective parsing technique of the general CPU on the Application server. Therefore, the curve 

will possibly start falling down only for even more larger files which are out of the scope of 

our supported test cases. In the SW environment, The DOM parsing is definitely more 

resource demanding than the Stream processing which has 1.38x higher average throughput 

than the DOM parsing approach (measured over all test cases ranging from Par_test0.0 to 

Par_test1.0 and using Settings B in both cases). 

  

 

Figure 90 Throughput Ratio of DOM Parsing 

88..11..22..  VVaalliiddaattiinngg  TTeessttiinngg  GGrroouupp  

Validating testing group involves four testing scenarios containing DTD and XML Schema 

validations (see Section 5). Supported test cases differ according to the testing scenario and 

the testing environment. In the SW environment, all testing scenarios are supported. In the 

HW environment, Val_DTD_BASE testing scenario is not supported at all, testing scenario 

Val_XSD_REDUCED supports all test cases, and testing scenarios Val_XSD_BASE and 

Val_XSD_EXTENDED are successfully run for all test cases except for test case Val_test1.0.  

 

Figure 91 depicts the throughput of all testing scenarios in the Validating testing group in 

both environments and for test cases ranging from Val_test0.0 to Val_test1.0.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

98 

 

Figure 91 Validating Testing Group in HW and SW 

 

The throughput on XI50 appliance is highly dependent on the measured scenario. For smaller 

test cases (Val_test0.0 to Val_test0.002) the Val_XSD_BASE and Val_XSD_REDUCED 

have similar throughputs, however, with the growing size of the testing data, the throughput is 

beginning to differ more and more. This shows that introducing ID and IDREF attributes in 

XSD files is very resource demanding for larger files and influences the final throughput 

significantly. In our testing scenario even more than adding some pattern matching on regular 

expressions (compare differences between Val_XSD_BASE - Val_XSD_EXTENDED and 

Val_XSD_BASE - Val_XSD_REDUCED testing scenarios). The throughput of 

Val_XSD_BASE and Val_XSD_EXTENDED testing scenarios for test cases Val_test0.4 to 

Val_test0.7 is even worse than in the SW environment for the same test cases. This affirms 

the latest trend of XI50 appliance to be rather message-oriented than batch-oriented appliance 

with strong orientation on validating  SOAP messages which are typically smaller than tens of 

megabytes. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

99 

On the other hand, in the SW environment, DTD validation is significantly faster (with almost 

double throughput than other validating testing scenarios), Val_XSD_BASE and 

Val_XSD_REDUCED testing scenarios have similar throughputs, only the throughput of the 

testing scenario Val_XSD_EXTENDED is little bit lower. Therefore, contrary to the results in 

the HW testing environment, the difference between testing scenarios Val_XSD_BASE and 

Val_XSD_EXTENDED is greater than between Val_XSD_BASE and Val_XSD_REDUCED 

testing scenarios. Moreover, the complexity of XSD validations has significantly smaller 

influence on the resulting throughput than in the HW environment. This relates with results in 

Figure 89 showing lower efficiency in parsing XML documents. 

 

The comparison of throughputs of the Parsing and Validating testing groups is covered in 

Subsection 8.1.5 

88..11..33..  TTrraannssffoorrmmiinngg  TTeessttiinngg  GGrroouupp    

Transforming testing group contains four testing scenarios governing XSLT transformations 

(see Section 5). All test cases are executed properly except for the test case “Tra_number” on 

SAXON-B engine in the SW environment, which fails due to fatal error during parsing XSL 

stylesheet number.xsl. 

 

Figure 92 and Figure 94 reveal the measured throughput of Tra_XSLTMark and 

Tra_XSLTMark_XL testing scenarios in both environments and with all test cases defined in 

Section 5.  

 

 

Figure 92 XSLTMark in HW and SW  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

100 

As we can see, XI50 appliance has better throughputs in all test cases, the average throughput 

in the HW environment is 4.64x higher than in the SW environment (measured over all test 

cases of XSLTMark over all engines in the HW and SW environments).  

 

The differences are noticable especially in test cases containing complex and/or numerous 

XPath queries, because XI50 appliance owns a memory addressable by XPath queries. For 

example, the throughput of test case Tra_functions has in the HW environment 8.32x higher 

average throughput than in the SW environment (measured over all test case runs of 

Tra_functions test case from the Tra_XSLTMark testing scenario and over all engines in the 

HW and SW environments). With the increased size of the input testing data, the differences 

between environments are even higher - see Figure 94 containg throughputs of the 

Tra_XSLTMark_XL testing scenario. 

 

On the field of SW XSLT engines, XSLTC has the highest throughput in most cases, 

especially in cases of complex XSL stylesheets, such as in Tra_tower test case, where the 

compiled XSL stylesheet is much more effective than the interpretted one. SAXON-B beats 

XSLTC in some test cases involving simple XSL stylesheets, because XSLTC shares many 

libraries with XALAN engine, which is the worst XSLT engine in most test cases possibly 

due to innefective memory management. It is especially noticeable in Tra_identity test case 

that actually performs only identity transformation. Figure 93 show memory allocation 

behaviour of both engines during execution of all test cases in Tra_XSLTMark testing 

scenario on XALAN and SAXON-B engine. The horizontal axis shows the time and the 

vertical axis megabytes of allocated memory. The peak values are ranging from 0 to 500MBs 

of allocated memory.  

 

 

Figure 93 XALAN (on the Left) and SAXON-B (on the Right) Heap Usage 

 

If we take a closer look at both graphs, we can see that the XALAN engine is definitely 

allocating more memory on the heap (about 200-300MB more than SAXON-B). Such 

phenomenon indicates larger/more objects created during execution of tests.  

 

XALAN has better result than SAXON-B in some test cases requiring loading of the whole 

input document to memory (such as Tra_encrypt), where the memory overhead cannot be 

bypassed.  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

101 

 

Figure 94 Comparison of Throughputs of XSLTMark_XL 

 

Figure 94 shows test cases of Tra_XSLTMark_XL testing scenario, where the differences in 

througputs in the HW and SW environments are even more obvious, because of larger testing 

data and, hence, lower network overhead. For example, the test case Tra_functions has 1535x 

higher average throughput in the HW environment than in the SW environment (measured 

over all test case runs of test case Tra_functions of XSLTMark_XL testing scenario and over 

all engines in the HW and SW environments).  

 

Figure 95 contains summary comparison of throughputs in the HW environment of test case 

supported by all testing scenarios in Transforming testing group. For each test case, its 

throughput is typically highest for Tra_XSLTMark_L or Tra_XSLTMark_XL testing 

scenarios. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

102 

 

Figure 95 Comparison of Throughputs of Transforming Testing Group in HW 

88..11..44..  SSeeccuurriinngg  TTeessttiinngg  GGrroouupp  

Securing testing group involves testing scenarios containing encrypting and decrypting using 

different cryptographic algorithms (see Section 5). Firstly, let us look at encrypting and 

decrypting testing scenarios followed by signing and verifying testing scenarios.  

Encrypting and Decrypting Testing Scenarios 

In the SW environment, Sec_ENC_ENC_RSA2_* and Sec_ENC_DEC_RSA2_* testing 

scenarios support all test cases except for Sec_test0.7 and Sec_test1.0 due to Out of Memory 

exception (token „*‟ denotes both variants of encrypting and decrypting using AES or 3DES 

algorithms). In the HW environment, all testing scenarios support all test cases, except for the 

testing scenarios Sec_ENC_DEC_RSA2_AES256 and Sec_ENC_DEC_RSA2_3DES which 

do not support test cases ranging from Sec_test0.4 to Sec_test1.0 due to TCP/IP timeout.  

 

Figure 96 depicts the measured throughput of selected encrypting testing scenarios in both 

environments and for test cases ranging from Sec_test0.0 to Sec_test0.5.  

 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

103 

 

Figure 96 Encrypting in HW and SW  

 

In the SW environment, the choice of a symmetric cipher used during the encryption of the 

input testing data is rather insignificant. On the other hand, XI50 has almost double 

throughput when using AES algorithm instead of 3DES for encryption, regardless the size of 

the key used (128 or 256 bits).  

 

Due to security accelerators on XI50 appliance, the throughput in the HW environment is 

almost triple in average in comparison with the SW environment. The trend of all values 

belonging to one testing scenario copies the trend in Figure 89, because encrypting requires to 

have a DOM tree built in a memory, hence, involves DOM processing. 

 

Using RSA (utilizing 1024-bits long key) instead of RSA2 (RSA with 2048-bits long key) 

gives similar results, which is logical, because an asymmetric key is used only for encrypting 

the symmetric key used to actual encryption of the XML document (see 2.1.4) and therefore 

the results with RSA used instead of RSA2 are not included in Figure 96. In the “Onion” 

testing suite, RSA2 is preferred due to higher security. As to the symmetric algorithms used, 

we prefer AES algorithm with 256-bits long key, which has better throughputs in both testing 

environments and is adopted as an encryption standard by the U.S. government. 

 

Sec_ENC_ENC_PART_ RSA2_AES256 testing scenario is measured only on XI50 and gives 

worse results than Sec_ENC_ENC_RSA2_AES256. Therefore, it is better and preffered to 

encrypt the whole XML document instead of, for example, all occurrences of an element 

http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Federal_government_of_the_United_States


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

104 

“Age” within the collection of elements “Person”. In the SW environment, this testing 

scenario could not be measured, because of lack of documentation in IBM encryption Java 

library. 

 

As to decrypting testing scenarios, both have in SW as well as in the HW environment worse 

throughputs than the appropriate encrypting scenarios. To be more precise, In the HW 

environment, encryption using RSA2 and AES256 algorithms has 1.51x higher average 

throughput and encryption utilizing RSA2 and 3DES algorithms has 1.37x higher average 

throughput than decryption using the same algorithms and measured over all supported test 

cases. In the SW environment, encryption using RSA2 and AES256 algorithms has 2.85x 

higher average throughput and encryption with RSA2 and 3DES algorithms has 2.16x higher 

average throughput than decryption using the same algorithm and measured over all test 

cases. 

Signing and Verifying Testing Scenarios 

In the SW environment, Sec_SIG_SIG_RSA_SHA1 and Sec_SIG_SIG_RSA2_SHA1 testing 

scenarios support all test cases except for Sec_test0.5, Sec_test0.7, and Sec_test1.0, testing 

scenario Sec_SIG_SIG_DSA_SHA1 supports all test cases except for Sec_test0.7 and 

Sec_test1.0, and, finally, Sec_SIG_VER_DSA_SHA1 supports all test cases. Unsupported 

test cases are due to Out of Memory exception. In the HW environment, all testing scenarios 

support all test cases, except for the testing scenario Sec_SIG_VER_DSA_SHA1 that does 

not support test cases ranging from Sec_test0.2 to Sec_test1.0 due to TCP/IP timeout.  

 

Figure 97 depicts the throughput of selected signing testing scenarios in both environments 

and for test cases ranging from Sec_test0.0 to Sec_test1.0.  

 

 

Figure 97 Signing in HW and SW 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

105 

 

In both environments, the choice of the asymmetric algorithm used for signing the digest of 

the XML document is rather unimportant. This is logical, because asymmetric algorithm is 

used only for signing the message digest, not the whole message. However, the combination 

of DSA and SHA1 algorithms is preferred, because DSA and SHA1 are both required by 

XML Signature standard and, what is more, DSA is United States Federal Government 

standard for digital signatures.  

 

The average throughput of signing action is in the HW environment 3.54x higher than in the 

SW environment (measured over all test cases ranging from Sec_test0.0 to Sec_test0.5 and 

over both testing scenarios Sec_SIG_SIG_RSA2_SHA1 and Sec_SIG_SIG_DSA_SHA1). 

The trend of all values in Figure 97 belonging to the same testing scenario copies the trend of 

DOM parsing testing scenario in Figure 89, because signing (as well as encrypting) requires a 

DOM tree in a memory and, therefore, DOM processing precedes the signing action.  

 

As to verifying testing scenarios, in the HW environment, Sec_SIG_SIG_DSA_SHA1 has 

14.28x higher average throughput than verifying using the same algorithms (measured over 

all test cases ranging from Sec_test0.0 to Sec_test0.1). In the SW environment, 

Sec_SIG_SIG_DSA_SHA1 has 1.38x higher average throughput than verifying using the 

same algorithms (measured over all test cases ranging from Sec_test0.0 to Sec_test0.5).  

Comparison of Encrypting and Signing 

Figure 98 is comparing throughputs of signing using DSA and SHA1 algorithms and 

encrypting using RSA with 2048-bits long key and AES with 256-bits long key in both testing 

environments.  

 

 

Figure 98 Comparison of Signing and Encrypting in HW and SW 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

106 

 

In the HW environment, signing and encrypting (for test cases from Sec_test0.004 to 

Sec_test1.0) has similar throughputs. In the SW environment, the throughput of signing action 

is almost double for test cases from Sec_test0.01 to Sec_test1.0. 

88..11..55..  CCrroossss--sscceennaarriioo  CCoommppaarriissoonn  

Figure 99 and Figure 100 compare throughputs of selected testing scenarios from Parsing, 

Validating, and Securing testing group separately in the HW and SW environment. 

 

 

Figure 99 Summary Comparison of Throughputs in the HW Environment 

 

As we can see, in the HW environment, Parsing testing group has highest maximum 

throughputs, followed successively by the testing scenarios Sec_SIG_SIG_DSA_SHA1, 

Sec_ENC_ENC_RSA2_AES256,  and Val_XSD_REDUCED. Moreover, the shape of the 

curves of the Securing testing group is similar to the one of the Par_DOM testing scenario and 

the shape of the curves of the Validating testing group is like the one in Par_Stream testing 

scenario. This is because DOM parsing is preceding all Securing actions and, on the other 

hand, Validating actions are processed in a streamed way. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

107 

 

Figure 100 Summary Comparison of Throughputs in the SW Environment 

 

In the SW environment, the similarities in the shapes of the curves are not as visible as in 

Figure 99 due to smaller differences in throughputs of different sizes of testing data of one 

testing scenario. However, we can see that signing and encrypting has higher throughputs than 

any testing scenario from the Validating testing group containing XML Schema validation. 

Network Utilization 

Finally, let us have look at the percentage utilization of 1Gb network by various chosen 

testing scenarios. For each testing scenario, except for Transforming testing group, the 

maximum average test case throughput is counted. In case of Tra_XSLTMark testing 

scenario, the average throughput of five test cases with the lowest/highest average 

throughputs is counted and marked as Tra_XSLTMark_Low/Tra_XSLTMark_High in the 

table in Figure 101. Finally, for the Tra_XSLTMark_XL testing scenario, the average 

throughput of three test cases with the lowest/highest average throughputs is counted and 

marked as Tra_XSLTMark_XL_Low/ Tra_XSLTMark_XL_High in Figure 101.  

 

Figure 101 shows the collected results. Network usage less than 10% is emphasized by red 

colour and network utilization over 50% is marked by green colour. Figure 102/Figure 103 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

108 

shows the percentage throughputs in comparison with 1Gb network in both environments of 

all chosen testing scenarios sorted according to reached results in HW/SW enviroment. 

 

Testing Scenario SW - % of 1Gb HW-% of 1Gb 

Par_DOM 18.7 (Par_test0.07) 66.4 (Par_test0.05) 

Par_STREAM 26.9 (Par_test0.7) 60 (Par_test0.07) 

Val_DTD_BASE 18.9 (Val_test0.2) N/A 

Val_XSD_BASE 10.8 (Val_test0.04) 28.7 (Val_test0.002) 

Val_XSD_REDUCED 11.3 (Val_test0.7) 44.7 (Val_test0.7) 

Val_XSD_EXTENDED 9.2 (Val_test0.7) 21.5 (Val_test0.03) 

Tra_XSLTMark_High 4.3 28.7  

Tra_XSLTMark_Low 0.1 0.6 

Tra_XSLTMark_XL_High 6.5 58.9 

Tra_XSLTMark_XL_Low 0.5 18.2 

Sec_ENC_ENC_RSA2_AES256 9.7 (Sec_test0.2) 33.6 (Sec_test0.02) 

Sec_ENC_DEC_RSA2_AES256 5.6 (Sec_test0.03) 22.3 (Sec_test0.04) 

Sec_SIG_SIG_DSA_SHA1 17.6 (Sec_test0.05) 42.7 (Sec_test0.03) 

Sec_SIG_VER_DSA_SHA1 17.4 (Sec_test0.05) 10.8 (Sec_test0.002) 

Figure 101 Network Utilization of the “Flat” Testing Suite with Optimal Test Cases 

 

 

Figure 102 Network Utilization of the “Flat” Testing Suite in HW 

 

In the HW environment, the three highest throughputs belong to both Parsing testing 

scenarios and to the average throughput of three test cases with the highest throughput from 

the testing scenario Tra_XSLTMark_XL containing easy XSL stylesheets and relatively large 

testing data (ranging from hundreds of kilobytes to megabytes). All these three testing 

scenarios have its maximum peak utilization over 50% without counting any concurrency.  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

109 

 

Figure 103 Network Utilization of the “Flat” Testing Suite in SW 

 

On the other hand, in software environment, the first three ranks of the scale are occupied by 

Parsing testing scenarios and Val_DTD_BASE testing scenario. If we compare the maximum 

throughput of Val_DTD_BASE and Val_ XSD_BASE testing scenarios, we can see one of 

the reasons, why DTD validation is still popular. Besides, we can see, how many testing 

scenarios in the SW environment have the maximum throughput less than 10% of the line 

capacity.  

 

The highest contrast is in the testing scenario Tra_XSLTMark_XL, where the average 

throughput of the three slowest test cases (Tra_XSLTMark_XL_Low) is in the HW 

environment still three times higher than the average throughput of the three fastest test cases 

(Tra_XSLTMark_XL_High) in the SW environment. To sum up, the greatest weakness in the 

SW environment is the throughput of tough XSL transformations of testing data of all sizes, 

the utilization is under 0.5%, which introduces serious bottleneck in processing XML 

documents.  

88..22..  TThhee  ““OOnniioonn””  TTeessttiinngg  SSuuiittee  

In both testing environments, the usage of general CPU is ranging from a few percents to 100 

percents. However, in the HW environment, the maximum load is typically reached with 

more concurrent requests and with growing complexity of testing scenarios, the general CPU 

usage tends to be lower due to help of accelerators. 

 

As to memory requirements, all test cases are chosen so that the memory is not depleted.  

 

Both testing groups in the “Onion” testing suite require XS40, or XI50 appliance in the HW 

environment due to included security actions. 

 

In both testing groups in the “Onion” testing suite, there are 4 dimensions which influence the 

observed measure throughput - concurrency, test case, testing scenario, and testing 

environment. Therefore, 5-dimensional graphs (4 dimensions plus one measure throughput) 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

110 

would be ideal, however, not very practical for observing results on a 2-dimensional paper. 

Thus, in all graphs, the dimension testing environment is either fixed or added to some other 

dimension (because it has only 2-3 values) and one other dimension is always fixed. With 

such a restriction, we are constructing 3-dimensional graphs which can be projected to 2-

dimensional paper. Admittedly, this lead us to many possible views on the measured 

throughput (permutation of 5 dimensions), not counted all possible values of the fixed 

dimension. Therefore, only the most illustrative combinations of dimensions and fixed values 

are shown, other views on the measured throughput can be built according to the Subsection 

12.1.  

88..22..11..  AAuuccttiioonn  TTeessttiinngg  GGrroouupp  

Figure 104 and Figure 105 provides a cross-scenario comparison of throughputs of the test 

case Auction_test0.002 (fixed dimension) in both environments. Consequently, Figure 106 

depicts the cross-size comparison of throughputs of different test cases belonging to the 

Auction_XSLT testing scenario (fixed dimension).  

 

 

Figure 104 Cross-scenario Comparison of Test0.002 in Both Environments 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

111 

In Figure 104, we can see the comparison of results in both environments at the small expanse 

of lucidity. However, the four bottom lines on graph in Figure 104 concerning throughput in 

the SW environment are depicted in more detail in Figure 105.  

 

Firstly, in the SW environment, CPU utilization is reaching 100% at the concurrency level 4, 

which corresponds with results of the “Flat” testing suite, where all tests typically fully 

depleted one core of the School server. In the HW environment, 100% workload is beginning 

on the concurrency levels 7-10 for Auction_XSLT testing scenario and falling down to 

concurrency levels 4-5 for other testing scenarios. 

 

The second important fact, which yields from the previous affirmation, is the lack of support 

for XSL transformations in the SW environment, where the average throughput of 

Auction_XSLT testing scenario is approximately 6x lower than in the HW environment. To 

be more precise, the medium to tough transformation in Auction_XSLT testing scenario 

applied to rather small testing data of size 210 KB yields in less than 10% usage of the 

network, not counting in all other actions applied in other more complex testing scenarios of 

the Auction testing group.  

 

In the HW environment, the throughputs of the Auction_VAL_XSLT_SIGN and 

Auction_VAL_XSLT_SIGN_ENC testing scenarios are similar due to relatively small 

outputs of the XSLT transformation and due to security accelerators on XI50 appliance.  

 

 

Figure 105 Cross-scenario Comparison of Test0.002 in the SW Environment 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

112 

 

Figure 106 depicts comparison of throughputs of all test cases of the Auction_XSLT testing 

scenario in HW (left side) and SW (right side) environment.  

 

 

Figure 106 Cross-size comparison of Test Cases of Auction_XSLT Testing Scenario 

 

As we can see, the maximum throughput for Auction_test0.002 (the test case with the 

smallest testing data) is in the HW environment 5x higher than in the SW environment and 

affirms very good support for XSLT transformations even if the input testing data are rather 

small (210KBs).  

 

In the SW environment, the point of optimal throughput is very unstable for test cases with 

smaller testing data (test0.002, test0.004) and falls down with a small increase or decrease in 

concurrency level. Moreover, the optimal throughput concurrency level is shifting to the 

smaller values with increasing size of input testing data (concurrency level 7 for test0.002, 

concurrency level 5 for test0.004). In the HW environment, the optimal or almost optimal 

throughput is stable, for wide range of concurrency levels (beginning with the concurrency 

level 5 and ending with concurrency level 50), which gives better presumption about the total 

processing power of a group of HW appliances as well as about the number of HW appliances 

needful for particular XML processing task.  

 

The resulting graphs for other testing scenarios of the Auction testing group can be viewed in 

the attached reports (see Subsection 12.1). 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

113 

Finally, Figure 107 purveys descending trend of throughputs with the growing size of the 

testing data and growing complexity of the testing scenarios in HW (on the left side) and SW 

(on the right) environment. Concurrency level is fixed to one. 

 

 

Figure 107 Cross-Scenario and Cross-size Comparison for C=1 in HW and SW 

88..22..22..  CCSSVVOOuuttppuutt  TTeessttiinngg  GGrroouupp  

Figure 108 and Figure 109 purvey a cross-scenario comparison of throughputs of the test case 

CSV_rows200 (fixed dimension) in HW and SW testing environments.  

 

The keywords “Piped” and “NonPiped” depicted in the graphs after the name of the testing 

scenarios of the CSVOutput testing group are just indicating, whether the PIPED context is 

used where possible or not. However, “NonPiped” keyword is used only in case of 

CSV_XSLT testing scenario, where it is equal to the “Piped” variant. Therefore, in the 

following graphs, all testing scenarios in the CSVOutput testing group are using PIPED 

contexts where possible.   

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

114 

 

Figure 108 Cross-scenario Throughput for Rows200 Test Case in HW 

 

In the HW environment, the throughput is culminating for CSV_XSLT testing scenario for 

concurrency levels 15-30, where the utilization of the network line is about 94%. After adding 

the second XSL transformation, the throughput almost halved, when the XSL transformations 

are PIPED (the yellow curve), however, if the named context is used to connect two XSL 

transformations (the turquoise-coloured curve), the throughput is about 30% higher in 

comparison with the PIPED one. This is little bit surprising, because the gain of the usage of 

the PIPED context does not prove for any of the four different sizes of the testing data used 

within the CSVOutput testing group, except for very large concurrency levels. However, for 

security reasons relating with the better memory utilization, the PIPED context is preferred in 

a real-world testing environment.  

 

The results of the testing scenarios containing just Verifying action (red curve) and both 

Verifying and Decrypting actions (blue curve) are similar, the red line is hiding the blue one. 

The utilization of the network of the most complex testing scenario is only about 15%. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

115 

 

Figure 109 Cross-scenario Throughput for Rows200 Test Case in SW 

 

In the SW environment, the throughputs of CSV_XSLT and CSV_XSLT_XSLT2 testing 

scenarios are similar, with the highest values for concurrency levels 30-50. Nevertheless, the 

network utilization is still no more than 19% of 1Gb bandwidth.  

 

Figure 110 depicts a cross-scenario comparison of throughputs of the test case 

CSV_rows2000 (fixed dimension) in the SW environment, instead of using CSV_rows200 as 

in Figure 109. 

 

 

Figure 110 Cross-scenario Throughput for Rows2000 Test Case in SW 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

116 

 

The throughput of all testing scenarios is rapidly falling down for higher levels of 

concurrency (10 and more). On the other hand, in the HW environment, the shapes of the 

curves are similar to Figure 108 with even higher measured throughput values due to 

involving test case with larger testing data and, thus, lower network overhead. 

 

Figure 111 holds comparison of throughputs of test cases CSV_rows20, CSV_rows200, and 

CSV_rows2000 of the CSV_XSLT testing scenario in both testing environments. 

 

 

Figure 111  Cross-size Throughput of CSV_XSLT Testing Scenario in HW and SW 

 

In the HW environment, the highest throughput is achieved for CSV_rows2000 test case, 

followed by CSV_rows200 test case, and CSV_rows20. In the SW environment, 

CSV_rows2000 test case has the highest throughput only for lower concurrency levels, for 

concurrency level higher than seven, CSV_rows200 wins and CSV_rows2000 loses rapidly as 

is illustrated in Figure 110 as well.  

 

Last but not least, Figure 111 and Figure 112 depict the descending trend of throughputs with 

the growing size of testing data and growing complexity of the testing scenarios in HW (on 

the left side) and SW (on the right) environments. Concurrency level is fixed to one. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

117 

 

Figure 112 Cross-Scenario and Cross-size Comparison for C=1 in HW and SW 

88..22..11..  CCrroossss--sscceennaarriioo  CCoommppaarriissoonn  

Finally, let us have look on percentage utilization of 1Gb network by various chosen testing 

scenarios. For each testing scenario, the maximum average test case throughput with a 

particular concurrency level is counted. 

 

Figure 113 shows the collected results. Network usage less than 10% is emphasized by red 

colour and network utilization over 50% is marked by green colour. For each testing scenario, 

the percentage utilization is depicted, together with the test case name and concurrency level 

for which the maximum throughput is measured. Figure 114/Figure 115 depicts the 

percentage throughputs in comparison with 1Gb network in both environments of all chosen 

testing scenarios sorted according to reached results in the HW/SW environment.  

 

Testing Scenario SW - % of 1Gb HW-% of 1Gb 

Auction_XSLT 9.9 (c7, 

Auction_test0.002) 

51.7 (c50, 

Auction_test0.002) 

Auction_VAL_XSLT 6.1 (c20, 

Auction_test0.002) 

35.6 (c50, 

Auction_test0.002) 

Auction_VAL_XSLT_SIGN 9.6 (c10, 

Auction_test0.002) 

29.4 (c7, 

Auction_test0.002) 

Auction_VAL_XSLT_SIGN_ENCRYPT 8.5 (c7, 

Auction_test0.002) 

29.8 (c50, 

Auction_test0.002) 

CSV_XSLT 25.8 (c15, 

CSV_rows20000) 

119.9 (c20, 

CSV_rows2000) 

CSV_XSLT_XSLT2 16.0 (c15, 

CSV_rows200) 

64.3 (c50, 

CSV_rows2000) 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

118 

CSV_XSLT_VAL_XSLT2 15.2 (c5, 

CSV_rows20000) 

39.8 (c15, 

CSV_rows20000) 

CSV_VER_XSLT3_XSLT_VAL_XSLT2 8.0 (c5, 

CSV_rows2000) 

10.5 (c20, 

CSV_rows2000) 

CSV_DEC_VER_XSLT3_XSLT_VAL_XSL

T2 

6.6 (c4, 

CSV_rows2000) 

11.4 (c20, 

CSV_rows2000) 

Figure 113 Network Utilization of the “Onion” Testing Suite with Optimal Test Cases 

 

 

Figure 114 Network Utilization of the “Onion” Testing Suite in HW 

 

In the HW environment, the CSV_XSLT testing scenario is dominating with reaching 119% 

usage of 1Gb network. Therefore, if the size of the testing data, the concurrency level, and the 

complexity of the XSL stylesheet are appropriate, the wire-speed processing of XML 

documents is real. The second rank of the scale belong to CSV_XSLT_XSLT2, which is 

predictable because of far more easier XSL stylesheets utilized in CSVOutput testing group 

than in Auction testing group. Nevertheless, the testing scenario Auction_XSLT with tough 

XSL stylesheet reaches better results than the testing scenario CSV_XSLT_VAL_XSLT2 

containing two easy XSL stylesheets and easy XML Schema validation on the level of the 

testing scenario Val_XSD_REDUCED. Verifying and Decrypting actions achieve worse 

maximum throughputs than Encrypting and Signing actions. 

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

119 

 

Figure 115 Network Utilization of the “Onion” Testing Suite in SW 

 

In the SW environment, the same two testing scenarios win, however only with maximum 

utilization 25.8% and 16%, which is rather low for such easy XSL stylesheets utilized by 

these testing scenarios. In contrary to the HW environment, the testing scenario 

CSV_XSLT_VAL_XSLT2 with two easy XSL stylesheets and easy XML Schema validation 

achieves higher network utilization than Auction_XSLT containing just one, however, tough 

XSL transformation. Hence, Figure 115 underscores the non-effectivness of XSL 

transformations in the SW environment.  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

120 

VV..  RREESSUULLTTSS,,  CCOONNCCLLUUSSIIOONN,,  AANNDD  FFUUTTUURREE  WWOORRKK  

99..    CCOONNCCLLUUSSIIOONN  
The aim of this work was to compare XML processing abilities of standard software 

environments (SW environments) and hardware accelerated environments (HW 

environments).  

 

To start with, we have defined a testing framework which consists of a client and server parts 

utilizing XI50 appliance and WebSphere Application Server as representatives of HW and 

SW environments, respectively. To add, in the SW environment, we have designed and 

implemented a servet-based J2EE application deployable on WebSphere Application Server 

with logic for parsing, validating, transforming, and securing XML data. Furthermore, the 

application enables definition of processing policies in a similar way as on XI50 appliance 

and is capable of caching auxiliary testing files (such as XSL stylesheets) and metadata about 

test cases. 

 

After that, we have specified the testing hierarchy consisting of two testing suites, six testing 

groups, tens of testing scenarios, hundreds to thousands of test cases and tens of thousands of 

test case runs containing different testing data and utilizing different subsets of XML actions.  

 

The testing hierarchy was executed on our testing framework and gathered measures were 

collected and analyzed using n-dimensional OLAP cubes. We produced reports containing all 

gathered and computed measures aggregated to all levels of testing hierarchy, starting with 

the average values of a particular measure for a test case and ending with the average values 

of a particular measure for the testing suite. Consequently, graphs showing the throughputs of 

the test cases from one testing group as well as across more testing groups were constructed 

and analyzed. Moreover, the sorted scale of testing scenarios according to its maximal 

throughput was built and summary results were formulated. 

 

The test establishes, that HW accelerated XML processing brings 3.36x/4.42x higher average 

throughput measured over all test cases of all testing scenarios and all testing groups in the 

“Flat”/”Onion” testing suite. The difference in the throughput is most noticeable in case of 

XSL transformations. In Transforming testing group, the average throughput is in the HW 

environment 15x higher than in the SW environment measured over all test cases of all testing 

scenarios in the Transforming testing group and over all tested engines in both environments.  

 

The “Onion” testing suite demonstrates that the wire-speed XML processing is reachable, if 

the size of the testing data, the concurrency level, and the complexity of XSL stylesheets are 

suitable. Moreover, in the HW environment, the optimal or almost optimal throughput lasts 

for a wider range of concurrency levels than in the SW environment, thus, the throughput 

value is much more stable and predictable. 

 

Nevertheless, the performance gain relating to the connection of the HW appliance to the 

business network is not automatic and could be achieved only if several preconditions are 

observed. Firstly, we have to find out, that the processing of XML is the real bottleneck of the 

process we would like to speed up and, what is more, we must ensure that all other 

subprocesses of the accelerated process can prepare data for and consume data from the new 

XML processing appliance according to the estimated throughput of the data.  



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

121 

Secondly, XI50 should be considered as a message-oriented, not batch-oriented appliance. In 

other words, be aware of sending too large files (hundreds of megabytes) over the network, or 

at least try to connect the XML processing appliance in a proxy mode, so that one extra 

network hop is omitted, because the overhead of sending large files over the network using 

TCP/IP stack is high. Not mention the fact, that in case of non-streamable data, XI50 has a 

limited amount of memory and if the device is almost out of memory and cannot be 

revitalised by a garbage collection, it is silently rebooted and temporarily unavailable for tens 

of seconds. The reasonable limits on the size of XML documents depend on the complexity of 

the processing policy. On the other hand, the streaming approach can process even very large 

files, however, only Parsing, Validating and a subset of Transforming actions are streamable. 

And, what is more, streaming of large XML documents can be potentially very dangerous. 

The problem is what should be done, if a processing error occurs at the end of 100GB file, 

when the majority of the file is already out of the appliance.  

 

Another important aspect is the economic point of view. Let us assume that the preconditions 

for incorporating HW appliance to the business network are satisfied and the sextuple 

acceleration of the XML processing can be expected due to suitable XSL transformations. 

Consequently, we can exchange six common servers with one XI50 appliance. If we possess 

30 common servers, we can expect to buy just 5 XI50 appliances (emergency and testing 

servers as well as XI50 appliances are not counted). Perhaps, 4 or 6 appliances would be 

necessary, depending on the efficiency of the load balancers, network topology etc. Still, this 

leads us to significant savings in depleted electric energy and, what is more, we could 

probably dismiss one or two full-time administrators of these servers. Annual gross income of 

two senior administrators would be at least comparable to the price of one XI50 appliance.  

 

If we consider directly our situation, let us assume that our School server costs 15,000$ with 

all SW installed on it and XI50 with XG4 accelerator card costs 90,000$. Again, if the 

throughput is in the HW environment 6x higher than in the SW environment (which is 

realistic in XSL transforming testing scenarios), we have the same price per 1Mb/s of 

throughput. Moreover, the question of administration, power, and room savings is still not 

taken into account. 

 

To sum up, if certain preconditions are taken into account, the hardware appliance can bring 

significant acceleration to processed XML data. 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

122 

1100..  FFUUTTUURREE  WWOORRKK  
Further work can involve conformance testing to clarify, if the XML processing appliance is 

fully satisfying the used XML standards. For example, Extensible Markup Language 

Conformance Test [W71] can be executed. 

 

Furthermore, the tests can be launched on HW appliances from different vendors and/or on 

the farm of servers and hardware appliances to verify the behaviour of more than one 

appliance. However, the appliances are hardly available in Czech Republic and, therefore, we 

have to wait until the situations meliorates. 

 

Moreover, the results of processing SOAP messages can be gathered and analysed. Although 

the SOAP messages are XML data, they have their specific characteristics. Besides, WS-

Security standard can be exploited and its performance compared with the performance of 

securing raw XML data.  

 

Ultimately, XI50 has a great advantage in memory addressable by XPath queries. Hence, we 

can go even further, try to modify the memory management of some open source kernel and 

compare the gathered results with the results measured on XI50 appliance. 

 

 

 

  

 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

123 

VVII..  RREEFFEERREENNCCEESS  AANNDD  AAPPPPEENNDDIICCEESS  

1111..  RREEFFEERREENNCCEESS  
[Erl] Thomas Erl: Service-Oriented Architecture, A Field Guide to Integrating XML and Web 

Services, Prentice Hall, 2004 (379-415) 

 

[Joh] Rod Johnson: Expert One-on-One J2EE Design and Development, Wiley Publishing, 

2003 (15-40, 203-248) 

 

[Man] Sal Mangano: XSLT Cookbook, O‟Reilly, 2002 (149-200) 

 

[McG] James McGovern, Sameer Tyagi, Michael E. Stevens, Sunil Mathew: Java Web 

Services Architecture, Morgan Kaufmann Publishers, 2003 (277-312) 

 

[Mly] Mlýnková, I.: XML Benchmarking: Limitations and Opportunities. Technical report 

2008/1. Charles University, Prague, Czech Republic, January 2008 

 

[Ste] Christopher Steel, Ramesh Nagappan, Ray Lai: Core Security Patterns - Best Practises 

and Strategies for J2EE, Web Services and Identity Management, Prentice Hall, 2006 (297-

325) 

 

[Szy] Clemens Szyperski, Dominik Gruntz, Stephan Murer : Component Software, Second 

Edition, Addison-Wesley, 2005 

 

[W1] http://www.ibm.com,  

Homepage of International Business Machines Corporation (IBM)  

 

[W2] http://www-306.ibm.com/software/websphere/,  

Information about IBM WebSphere software (including IBM WebSphere Application Server)  

 

[W3] http://en.wikipedia.org,  

Homepage of English version of free electronic encyclopaedia 

 

[W4] http://www-306.ibm.com/software/integration/datapower/,  

Homepage of IBM WebSphere DataPower SOA Appliances (including XI50 appliance) 

 

[W6] http://www.altova.com/,  

Homepage of XML utilities produced by Altova 

 

[W7] http://curl.haxx.se/,  

Homepage of curl utility for sending HTTP requests 

 

[W8] http://eclipse.org,  

Homepage of Java Integrated Development Environment (IDE) 

 

[W9] http://www.w3.org/XML/,  

Outline of XML standards 

 

http://www.ibm.com/
http://www-306.ibm.com/software/websphere/
http://en.wikipedia.org/
http://www-306.ibm.com/software/integration/datapower/
http://www.altova.com/
http://curl.haxx.se/


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

124 

[W10] http://www.cisco.com/en/US/products/ps7314/index.html,  

XML processing appliance made by Cisco 

 

[W12] http://www.layer7tech.com/products/page.html?id=71, 

 XML processing appliance produced by Layer 7 Technologies 

 

 

[W14] http://www.contivo.com/,  

Homepage of Contivo, a company which interests in semantic integration of data  

 

[W15] http://www-306.ibm.com/common/ssi/rep_ca/3/897/ENUS106-

253/ENUS106253.PDF, IBM WebSphere DataPower Announcement, March 2006 

 

[W16] http://www.w3.org/TR/xmldsig-core/,  

XML Signature 1.0 Syntax and Processing, W3C Recommendation, February 2002 

 

[W17] http://www.itl.nist.gov/fipspubs/fip180-1.htm,  

Secure Hash Standard Specification 

 

[W18] http://www.itl.nist.gov/fipspubs/fip186.htm,  

Digital Signature Standard 

 

[W19] http://www.w3.org/TR/xmlenc-core/,  

XML Encryption 1.0 Syntax and Processing, W3C Recommendation, December 2002 

 

[W20] http://jcp.org/en/jsr/detail?id=105,  

JSR 105, XML Digital Signature Java API, Final Release, June 2005 

 

[W21] http://jcp.org/en/jsr/detail?id=106,  

JSR 106, XML Digital Encryption API, Proposed Public Review Draft, December 2005 

 

[W26] http://jcp.org/en/jsr/detail?id=206,  

JSR 206, Java API for XML Processing (JAXP) 1.3, Maintenance Release, November 2006 

 

[W28] http://www.ietf.org/rfc/rfc2396.txt,  

RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax 

 

[W29] http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf,  

Data Encryption Standard 

 

[W30] http://www.rsa.com/rsalabs/node.asp?id=2125,  

RSA Cryptographic Standard 

 

[W31] http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html,  

XSLT Benchmark  

 

[W32] http://www.codesynthesis.com/projects/xsdbench/,  

XML Schema Benchmark 

 

 

http://www.contivo.com/
http://www-306.ibm.com/common/ssi/rep_ca/3/897/ENUS106-253/ENUS106253.PDF
http://www-306.ibm.com/common/ssi/rep_ca/3/897/ENUS106-253/ENUS106253.PDF


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

125 

[W33] http://httpd.apache.org/docs/2.0/programs/ab.html,  

Documentation of Apache HTTP server benchmarking tool (AB tool) 

 

[W34] http://www.w3schools.com/dtd/default.asp,  

Document Type Definition tutorial 

 

[W35] http://www.w3.org/MarkUp/SGML/,  

An overview of Standard Generalized Markup Language resources 

 

[W37] http://www.w3.org/XML/Schema,  

XML Schema on W3C 

 

[W38] http://www-306.ibm.com/software/info/education/assistant/,  

IBM Educational Assistant 

 

[W39] http://www.w3.org/TR/DOM-Level-3-Core/,  

W3C DOM Level 3 Specification, April 2004 

 

[W40] http://www.saxproject.org/,  

SAX Project 

 

[W41] http://jcp.org/en/jsr/overview,  

Java Community Process Overview 

 

[W42] http://xerces.apache.org/xerces2-j/,  

Homepage of Apache Xerces2 Parser 

 

[W43] http://xml.apache.org/crimson/,  

Homepage of Apache Crimson Parser 

 

[W44] http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/index.html,  

Homepage of MXP1 - XML Pull Parser 

 

[W45] http://www.xmlpull.org/,  

Homepage of API for pull parsing 

 

[W46] http://www.dom4j.org/,  

Open source library dom4j for working with XML, XPath and XSLT 

 

[W47] http://santuario.apache.org/,  

Apache XML Security Project 

 

[W48] http://monetdb.cwi.nl/xml/,  

XMark - An XML Benchmark Project 

 

[W50] http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html,  

JSR 154, Java Servlet 2.5 Specification, Final Release 

 

[W51] http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html,  

JSR 244, Java Platform, Enterprise Edition 5 Specification 

http://www-306.ibm.com/software/info/education/assistant/
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.saxproject.org/


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

126 

 

[W52] http://java.sun.com/javaee/technologies/,  

Java EE Technology 

 

[W53] http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf,  

Java 2 Platform, Enterprise Edition Specification, v1.4 

 

[W54] http://www.w3.org/,  

Homepage of World Wide Web Consortium 

 

[W55] http://www.w3.org/TR/xpath,  

XML Path Language 1.0, W3C Recommendation, November 1999 

 

[W56] http://www.w3.org/TR/REC-xml/,  

Extensible Markup Language 1.0 (Fourth Edition), W3C Recommendation, August 2006 

 

[W57] http://relaxng.org/, 

Relax NG Homepage 

 

[W58] http://xml.ascc.net/resource/schematron/schematron.html,  

Schematron, an XML structure validation language 

 

[W59] http://www.w3.org/TR/xslt,  

XSL Transformations, Version 1.0, November 1999 

 

[W60] http://www.ietf.org/rfc/rfc2818.txt,  

RFC 2818, HTTP over TLS 

 

[W61] http://jcp.org/en/jsr/detail?id=005,  

JSR 005, XML Parsing Specification, Final Release, March 2000 

 

[W64]http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/weblogic/

server, BEA WebLogic Server 

 

[W65] http://www.jboss.com/products/jbossas,  

JBoss Enterprise Application Platform 

 

[W66] http://www.sun.com/software/products/appsrvr/index.jsp,  

Sun GlassFish Enterprise Server 

 

[W67] http://www.w3.org/TR/xquery/,  

XQuery 1.0, W3C Recommendation, January 2007  

 

[W70] http://www.lumrix.net/dtd2xs.php,  

Homepage of dtd2xs for converting DTD files to XSD files 

 

[W71] http://www.w3.org/XML/Test/,  

Extensible Markup Language (XML) Conformance Test Suites 

 

 

http://redir.netcentrum.cz/?noaudit&url=http%3A%2F%2Fwww.w3.org%2FXML%2FTest%2F


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

127 

[W72] http://tools.ietf.org/html/rfc3280,  

RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation 

List (CRL) Profile 

 

[W73] http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html, 

JSR 914, Java Message Service (JMS) API, Maintenance Release, March 2002 

 

[W74] http://www-306.ibm.com/software/integration/wmq/,  

Homepage of IBM WebSphere MQ 

 

[W75] http://xml.coverpages.org/saml.html,  

Security Assertion Markup Language (SAML), Technology Report 

 

[W76] http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-

secureconversation-1.3-os.html, WS-SecureConversation 1.3, OASIS Standard, March 2007 

 

[W77] http://www.w3.org/TR/soap/,  

Simple Object Access Protocol (SOAP) 1.2, W3C Recommendation, April 2007 

 

[W78] http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf, Web Services Security 1.1, OASIS Standard, February 2006 

 

[W79] http://web.mit.edu/Kerberos/,  

Kerberos, The Network Authentication Protocol 

 

[W80] http://tools.ietf.org/html/rfc2865,  

RFC 2865, Remote Authentication Dial In User Service (RADIUS) 

 

[W81] http://tools.ietf.org/html/rfc4510, 

RFC 4510, Lightweight Directory Access Protocol (LDAP) 

 

[W82] http://docs.oasis-open.org/wsdm/wsdm-muws1-1.1-spec-os-01.htm,  

Web Service Distributed Management (WSDM), OASIS Standard, August 2006 

 

[W83] http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf,  

Advanced Encryption Standard (AES), FIPS 197, November 2001 



Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

128 

1122..  AAPPPPEENNDDIICCEESS  
The following subsections contain supplements to this thesis. 

1122..11..  AAppppeennddiixx  AA  --  CCoonntteennttss  ooff  tthhee  EEnncclloosseedd  DDVVDD--RROOMM    

This work is accompanied by a DVD-ROM with the following folder structure (sorted 

alphabetically): 

 Core J2EE Application - Involves core J2EE application used in the sever part of 

the SW testing framework, where it implements the logic of processing policies and 

contexts. It is included as a deployable J2EE EAR file or as a folder tree export 

from IBM Rational Application Developer. 

 OLAP Reports - Embraces the summary OLAP reports and several OLAP cubes 

for individual slicing and dicing of the cube according to the attached manual. 

Thanks to OLAP cubes, all results and all gathered measures can be viewed in a 

pleasant way. 

 Testing Data - Holds testing data used in both testing environments  

 Testing Scripts - Contains scripts for batch testing in HW as well as in SW 

environment 

 Tools - Other tools created or downloaded and used for the purpose of the thesis  

1122..22..  AAppppeennddiixx  BB  ––  IImmppoorrttaanntt  JJaavvaa  PPaacckkaaggeess  

The following chapters contain important Java packages used when developing the 

application for processing XML requests in the SW environment. The lists of Java packages 

are adopted from particular Java documentations. 

1122..22..11..  JJaavvaa  AAPPII  ffoorr  XXMMLL  PPrroocceessssiinngg  11..33  --  JJSSRR  220066  [[WW2266]]  

javax.xml 

Core XML constants and functionality from the XML 

specifications. 

javax.xml.datatype  
XML/Java Type Mappings. 

javax.xml.namespace  
XML Namespace processing. 

javax.xml.parsers  

Provides classes allowing the processing of XML 

documents.  

javax.xml.transform 

This package defines the generic APIs for processing 

transformation instructions, and performing a 

transformation from source to result.  

javax.xml.transform.dom  

This package implements DOM-specific transformation 

APIs. 

javax.xml.transform.sax  

This package implements SAX2-specific transformation 

APIs.  

javax.xml.transform.stream  

This package implements stream- and URI- specific 

transformation APIs.  

javax.xml.validation 

This package provides an API for validation of XML 

documents.  

javax.xml.xpath  
This package provides an object-model neutral API for 

file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\datatype\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\namespace\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\parsers\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\transform\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\transform\dom\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\transform\sax\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\transform\stream\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\validation\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\javax\xml\xpath\package-summary.html


Tomáš Knap                                        Comparison of Fully Software and Hardware Accelerated XML Processing 

129 

the evaluation of XPath expressions and access to the 

evaluation environment.  

org.w3c.dom.* 

 Provides the interfaces for the Document Object Model 

(DOM) which is a component API of the Java API for 

XML Processing 

org.xml.sax  
This package provides the core SAX APIs.  

org.xml.sax.ext  

This package contains interfaces to SAX2 facilities that 

conformant SAX drivers won't necessarily support.  

org.xml.sax.helpers  

This package contains "helper" classes, including 

support for bootstrapping SAX-based applications.  

Figure 116 Packages of Java API for XML Processing 

 

1122..22..22..  XXMMLL  DDiiggiittaall  SSiiggnnaattuurree  AAPPII  ffoorr  JJaavvaa  11..00  --  JJSSRR  110055  [[WW2200]]  

javax.xml.crypto  
Common classes for XML cryptography. 

javax.xml.crypto.dom 

DOM-specific classes for the javax.xml.crypto 

package. 

javax.xml.crypto.dsig  

Classes for generating and validating XML digital 

signatures. 

javax.xml.crypto.dsig.dom  

DOM-specific classes for the javax.xml.crypto.dsig 

package. 

javax.xml.crypto.dsig.keyinfo 

Classes for parsing and processing KeyInfo elements 

and structures. 

javax.xml.crypto.dsig.spec 
Parameter classes for XML digital signatures. 

Figure 117 Packages of XML Digital Signature API for Java 

 

1122..22..33..    XXMMLL  DDiiggiittaall  EEnnccrryyppttiioonn  AAPPII  ffoorr  JJaavvaa  11..00  --  JJSSRR  110066  [[WW2211]]  

javax.xml.crypto.enc  

Classes for parsing, encrypting and decrypting XML 

EncryptedType structures. 

javax.xml.crypto.enc.dom  

DOM-specific classes for the javax.xml.crypto.enc 

package. 

javax.xml.crypto.enc.keyinfo 

Classes for parsing and processing KeyInfo elements 

and structures. 

javax.xml.crypto.enc.spec  
Parameter classes for XML Encryption. 

Figure 118 Packages of XML Digital Encryption API for Java  

 

file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\org\w3c\dom\package-summary.html
http://java.sun.com/xml
http://java.sun.com/xml
http://java.sun.com/xml
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\org\xml\sax\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\org\xml\sax\ext\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\Other\JAXP%20Java%20API%20for%20XML%20Processing%20(JSR%20005,206)\JAXP%20Java%20API%20for%20XML%20Processing%201.3%20(JSR%20206)\jsr-206-docs\api\org\xml\sax\helpers\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dom\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\dom\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\keyinfo\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\keyinfo\KeyInfo.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Signature%20APIs%20(JSR%20105)\api\javax\xml\crypto\dsig\spec\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Encryption%20APIs%20(JSR%20106)\javadocs\javax\xml\crypto\enc\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Encryption%20APIs%20(JSR%20106)\javadocs\javax\xml\crypto\enc\dom\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Encryption%20APIs%20(JSR%20106)\javadocs\javax\xml\crypto\enc\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Encryption%20APIs%20(JSR%20106)\javadocs\javax\xml\crypto\enc\keyinfo\package-summary.html
file:///C:\Documents%20and%20Settings\tomas\Dokumenty\prace\diplomka\Podklady\Specifikace\XML%20Digital%20Encryption%20APIs%20(JSR%20106)\javadocs\javax\xml\crypto\enc\spec\package-summary.html

