
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Vojtěch Kolomičenko

Analysis and Experimental Comparison
of Graph Databases

Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Holubová, Ph.D.

Study programme: Informatics

Specialization: Software Systems

Prague 2013

I wish to express my gratitude and appreciation to my supervisor, RNDr. Irena
Holubová, Ph.D. for her thoughtful guidance, valuable suggestions during many
discussions and her kind supervision of this diploma thesis.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Analýza a experimentálńı porovnáńı grafových databáźı

Autor: Vojtěch Kolomičenko

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: RNDr. Irena Holubová, Ph.D.

Abstrakt: V posledńıch letech se nová skupina NoSQL databáźı, zvaná Grafové
databáze, stala velmi populárńı kv̊uli stále se zvyšuj́ıćı potřebě zpracovávat a
ukládat grafová data. Ćılem této práce je zkoumat r̊uzné možnosti a omezeńı
grafových databáźı a provést analýzu a experimentálńı porovnáńı vybraných
zást̊upc̊u této skupiny. Za t́ımto účelem byly formulovány obecné požadavky na
testováńı grafových databáźı a byl vyvinut rozšǐritelný testovaćı nástroj, nazvaný
BlueBench.

Kĺıčová slova: grafové databáze, NoSQL, benchmark, experimentálńı porovnáńı

Title: Analysis and Experimental Comparison of Graph Databases

Author: Vojtěch Kolomičenko

Department: Department of Software Engineering

Supervisor: RNDr. Irena Holubová, Ph.D.

Abstract: In the recent years a new type of NoSQL databases, called Graph
databases (GDBs), has gained significant popularity due to the increasing need
of processing and storing data in the form of a graph. The objective of this
thesis is a research on possibilities and limitations of GDBs and conducting an
experimental comparison of selected GDB implementations. For this purpose
the requirements of a universal GDB benchmark have been formulated and an
extensible benchmarking tool, named BlueBench, has been developed.

Keywords: graph databases, NoSQL, benchmark, experimental comparison

Contents

Introduction 3

1 NoSQL Movement 4
1.1 Introduction to NoSQL . 4
1.2 Consistency in NoSQL . 4

1.2.1 CAP Theorem . 5
1.2.2 BASE . 5

1.3 Key-value Databases . 6
1.4 Column-family Stores . 6
1.5 Document-oriented Databases . 7
1.6 Graph Databases . 7

1.6.1 Graph Model . 8
1.6.2 Data Structures . 8
1.6.3 RDF . 9
1.6.4 TinkerPop Stack . 10
1.6.5 Graph Query Languages 11

1.7 Summary . 12

2 Graph Database Systems 13
2.1 DEX . 13
2.2 InfiniteGraph . 14
2.3 Neo4j . 15
2.4 OrientDB . 16
2.5 Titan . 18
2.6 Summary . 19

3 Benchmarking 20
3.1 Recommended Design . 20

3.1.1 Graph Operations . 20
3.1.2 Query Classification . 21
3.1.3 Benchmarking Process . 21

3.2 Benchmark Datasets . 22
3.2.1 Real Graph Properties . 22
3.2.2 Graph Data Generators 22

3.3 Summary . 23

4 Related Work 25
4.1 GraphDB-Bench . 25
4.2 Survey of Graph Database Performance on the HPC-SGAB 26
4.3 Benchmarking Traversal Operations over Graph Databases 28
4.4 A Comparison of a Graph Database and a Relational Database . . 29
4.5 Summary . 30

1

5 Final Design of BlueBench 32
5.1 General Goals . 32
5.2 Used Technologies . 33
5.3 Conducted Tests . 34

5.3.1 Individual Operations . 34
5.3.2 Benchmarks . 36

5.4 BlueBench Software Architecture 37
5.4.1 Operation . 38
5.4.2 Operation Factory . 39
5.4.3 Core Benchmark Classes 40
5.4.4 Logging of Operations . 40
5.4.5 Loading the Graph . 41
5.4.6 Addressing Vertices across Scopes 42

5.5 Summary . 42

6 BlueBench Results 43
6.1 Testing Environment . 43
6.2 Input Data . 43
6.3 Assessed DB Systems . 44
6.4 Results of the Tests . 49

6.4.1 Graph Loading . 50
6.4.2 Traversal . 51
6.4.3 Shortest Path . 53
6.4.4 Non-traversing Queries . 55
6.4.5 Manipulation Queries . 56
6.4.6 Summary of the Results 57

6.5 Summary . 58

Conclusion 59

Bibliography 61

A Contents of the CD 64

2

Introduction

In the recent years, there has been a huge increase of importance to store and
analyze data in the form of a graph. Be it social networks, Web graphs, recom-
mendation systems or biological networks, these graphs have at least two things
in common – they are highly interconnected and huge, and so is the complexity of
algorithms used for their processing and analysis of their characteristics. Unlike
other types of data, networks contain lots of information in the way how particular
objects are connected; in other words, the relations between the objects.

Graph database management systems (GDBs) have emerged to fill the gap
in the market by providing solutions to the problem of storing and working with
large graphs. GDBs elevate the relations to be the most important entities in
the database model and are optimized for exploiting the relations to gather in-
formation from the graph. In addition, relations are not only mere connections;
they contain attributes as well as the other objects in the graph do. GDBs are
required to handle these attributes as efficiently as the graph topology itself, since
the attributes are often used as guideposts for crawling the graph.

A variety of GDB implementations has been appearing, and most of the sys-
tems are usually accompanied with biased proprietary tests claiming that their
performance is somewhat superior. Nevertheless, a large scale unbiased bench-
mark comprising the most substantial graph database functionality and putting
a higher number of GDBs into a comparison has not been conducted yet. We
believe that this is most likely to be the reason of the versatility of interfaces of
particular GDB engines, their configuration specifics and different capabilities.

As a consequence, the objective of this thesis is to summarize the background
behind the graph databases family and describe a chosen set of GDB represen-
tatives. Furthermore, a discussion on the aspects and implementation details of
a fair and complex graph database benchmark is laid down. Finally, a bench-
marking suite based on these recommendations, called BlueBench, is created and
the performance of a selected set of GDBs experimentally evaluated. The tested
databases are carefully chosen so that BlueBench compares not only the most pop-
ular GDB engines, but less conventional representatives as well. For this purpose
we have implemented a simple wrapper around a selected relational database,
which provides the basic functionality expected from GDBs. Therefore, we will
be able to confirm or deny the assumptions about relational databases not being
competent of handling graph data efficiently.

Contents Overview

In the first chapter we define the term NoSQL and categorize the best known
representatives. Most famous implementations of graph database systems are
described in detail in Chapter 2. Then, in Chapter 3 we illustrate what prin-
ciples a good graph database benchmark should obey. Analysis of any existing
benchmarking projects follows in Chapter 4. In Chapter 5 our proposed bench-
marks are designed. Finally, the benchmarking process and the final results are
discussed in Chapter 6.

3

1. NoSQL Movement

In recent years a new family of databases known as NoSQL1 has gained lots of
popularity, particularly because of the need of storing and effectively retrieving
huge volumes of data. Graph databases belong into this family despite their
slightly higher complexity; therefore, we provide a brief background to NoSQL
and its core technologies.

This chapter is organized as follows. First, NoSQL and its key features are
described in short. Second, the most popular types of NoSQL databases are
listed. Last, we provide a little more detailed description of graph databases and
define the most fundamental terms that will be used in this thesis.

1.1 Introduction to NoSQL

NoSQL is a common label for databases which reject the tradition of using
relational models as it is done in Relational Database Management Systems
(RDBMS). By contrast, the NoSQL family of databases focuses on providing
more scalable, distributed and efficient solutions for handling huge amounts of
data. This is made possible by a more relaxed consistency model and less schema-
oriented database designs in comparison to RDBMS.

In particular, NoSQL might be a good choice for an application when the data
that is needed to be stored does not conform to any easily definable schema or
when the tables in an RDBMS database would be too sparse (i.e. having many
columns, each of which is only used by the minority of rows). Furthermore, the
relational model expects the data stored in separate tables to be connected by
logical relations which are used for joining the tables when a more complex query
arrives. This works well when the tables’ size is not extensive, otherwise the
performance decreases with increasing size of the data and number of required
joins. NoSQL databases are usually optimized for handling very large data where
particular elements are not closely related; therefore there is no need for expensive
joins. How exactly the storage layer and other parts of NoSQL databases are
designed is different for each NoSQL database type.

1.2 Consistency in NoSQL

In order to really make efficient storing of large volumes of data possible in NoSQL
databases, the transactional model is usually relaxed and does not guarantee the
same assurances as it is in RDBMS. In NoSQL, performance and scalability is
preferred over consistency. In general, scaling can be performed using two distinct
techniques:

• Vertical scaling. This only means increasing a computational power (e.g.
adding memory, CPUs) of a single node so that the database system can
be more efficient.

1Often referred to as “Not only SQL” or “No to SQL”; however, none of these expansions
are precise or fully agreed upon.

4

• Horizontal scaling. Instead of running the software on a single machine,
the database is distributed on a number of nodes forming a cluster. The
distribution can be done for the purpose of replicating the database, i.e.
duplicating the data to distribute the load. That is opposed to partitioning
(or sharding) the database, which means dividing the database into dis-
junctive parts which are then managed by the nodes separately. The two
approaches can be combined for best results.

While horizontal scaling is seemingly the cheaper option because no superior
hardware is needed to be used, it presents complications with data consistency
and synchronization of the nodes.

1.2.1 CAP Theorem

To describe more precisely how the consistency and other important properties
of a horizontally scaled system can be balanced, the CAP theorem has been
formulated. It states that in a distributed system it is impossible to achieve all
three of the following properties:

• Consistency. Any two concurrent operations see the data in the same state.
This enforces a duplication of all data updates to all nodes in the cluster
before the writing transaction is concluded.

• Availability. All requests are guaranteed to be answered; in other words,
the system is expected to be available at all times.

• Partition tolerance. The distributed system has to continue to work even
in the event of a failure of a part of the system.

While RDBMS are not partition tolerant, NoSQL databases typically do not
guarantee that the data are completely consistent. That is, a write operation
executed on one of the nodes does not necessarily have to wait for the update to
be propagated across the entire system.

1.2.2 BASE

BASE is a set of properties defined to be a counterpart to much more pessimistic
ACID (i.e. atomicity, consistency, isolation and durability) transaction model.
BASE can be described as:

• Basically available. The database appears to work most of the time, al-
though partial failures are tolerated.

• Soft state. The state of the system can constantly change, even at times of
no requests.

• Eventual consistency. The state of the database will eventually become
consistent.

5

This set of properties gives the database system the freedom of not checking
that the data is consistent with every processed transaction; consequently, the
operation throughput gets higher and horizontal scaling can be put into practice
a lot easier. On the other hand, provided answers to database queries need not
be always accurate or even successful; the responsibility of assuring higher levels
of consistency is shifted onto the application.

1.3 Key-value Databases

Key-value stores are the simplest of NoSQL databases and are oriented towards
performance and horizontal scalability. Their name literally describes how key-
value stores work – as a hashmap data structure where opaque values are stored
and retrieved by a key. The power lies in the simplicity of the store; there is no
schema, the values can be of any type and the records are not considered to be
related.

In theory, the value is not structured or interpreted in any way and can only
be retrieved as a whole. Thus, no aggregated or other similarly advanced queries
are supported. Consequently, the need to parse the value is shifted onto the
application. There is a small risk presented by this architecture; if the application
often retrieves big chunks of data only to use a small portion of the filtered value,
it leads to wasting of resources and worse efficiency.

The choice of what entities will work as keys is mostly straightforward, it can
be any unique strings coming from the application’s domain (e.g. usernames,
emails, session IDs, etc.). In case a key is lost or cannot be computed for some
reason, key-value stores usually support some sort of full text search or can pro-
vide a list of all existing keys.

A lot of attention is understandably paid to scaling. The advantage is that
sharding is particularly easy to achieve; it is only needed to hash the key and use
a portion of the hash to determine on which node the record should reside. In ad-
dition, the data are often replicated to provide some level of fault tolerance. This
is done in a way that records are distributed into buckets which are duplicated
a specified number of times. Each node then stores a determined set of buckets
so that no machine is an exact replica of any other. Therefore, it is possible to
load-balance more efficiently during the recovery of a collapsed node [23].

1.4 Column-family Stores

Column-family databases are based on a more expressive data model than key-
value stores, yet they achieve comparable levels of scalability. A column denotes
a single key-value pair, and any number of columns can be combined into a super
column which has a key as its identifier. Furthermore, sets of columns or super
columns are stored in a row which is identified by its row key. Lastly, when
a row contains only columns, it is referred to as a column-family, whereas a row
containing only super columns is called a super column family.

This arrangement can be compared to relational tables because there are rows
and columns, too. However, the big difference is that in column-family stores
the columns do not necessarily have to be organized identically for each row;

6

consequently, the storage remains efficient even in the case when relational tables
would be very sparse. The database works as a nested hashmap; upon a query,
firstly the right column-family is identified by the row key, and, subsequently, the
value from the appropriate column is found by the provided column key. In case
of super columns one extra level of granularity is automatically considered.

Thanks to the higher expressiveness of the model, the application can struc-
ture the data to follow an arbitrary pattern (e.g., entities from a domain can be
stored as one column family per entity, and any details of the entity are stored in
particular columns). Therefore, database queries can contain elementary filtering
facilities based on the column values, because the basic column-family structure
is known to the database. Nonetheless, aggregated queries are usually not sup-
ported.

The columns in a column-family are designed to be mostly accessed together
and the database consistency model is often based on this assumption. There-
fore, atomicity is guaranteed at the column-family level; conversely, operations
spanning multiple rows are not necessarily treated as a single transaction.

1.5 Document-oriented Databases

As the name suggests, document-oriented databases use documents as their core
entity. The documents are usually retained in collections where they are expected
to have a similar schema, although it is not enforced in any way. Each document
has a unique identifier which can be assigned by the database or provided by
the application. In this aspect document-oriented databases are very similar to
key-value stores, because the identifier plays the same role as the key and the doc-
ument corresponds to the value. What is, however, different, is the way the store
looks at the value of the record. Documents have an examinable structure which
is distinguishable by the database and can typically contain basic types, arrays,
maps and so on. Moreover, the structure is stored and exposed in a specified
format, e.g. XML or JSON.

By definition, document-oriented databases should be able to provide an API
or query language that allows for retrieving documents based on the content.
Queries should support filtering, aggregating, etc. Typically, the database retains
an index on the document identifiers so that document retrieval by its key is fast.
In addition, adding additional indexes on arbitrary fields in the content is often
supported.

Atomicity of transactions is usually guaranteed at a single document level;
however, support for transactions of an arbitrary length can be provided, too.
Document-oriented databases, similarly to other NoSQL solutions, should be op-
timized for horizontal scaling, taking advantage of the fact that documents are
mutually independent. Therefore, sharding is usually based on the document
identifier, or a value of a specified field.

1.6 Graph Databases

In contrast to the other NoSQL implementations, in a graph database the rela-
tions between the objects are of primary importance. Graph databases support

7

a graph model which allows for a direct persistent storing of the particular objects
in the database together with the relations between them. In addition, a GDB
should provide an access to query methods that not only deal with the stored
objects, but also with the graph structure itself. The best known example of such
an operation is traversal, which in its most simple form can be used to obtain
the neighbors of a specified object, that is, the objects that the specified object
is directly related to.

The advantage of having a direct access to heavily interconnected data comes
at the cost of very complicated partitioning of the database. To be able to
efficiently partition the graph data onto a number of separate machines, the graph
must be reorganized so that the smallest possible amount of relations crosses the
boundaries of a single machine in the cluster. Algorithms for performing this
operation and then keeping the database in the same state after further data
changes have not been successfully put into practice; therefore, the problem of
efficient partitioning of graph data remains open [23].

1.6.1 Graph Model

The topology of a graph G can be expressed as G = (V,E), where V is the
set of vertices (also called nodes) and E is the set of edges (or relations). An
edge connects two vertices which both have to exist, i.e. no dangling relations are
allowed. Finally, a graph can be directed or undirected, which denotes whether the
graph’s edges have a direction or not. In addition to the topology, there usually
is more information contained within the graph, amount of which distinguishes
basic graph models:

• Labeled graph. All the edges have a label which denotes the type of the
edge. There also is a Vertex-labeled graph variant where even vertices can
have labels.

• Multi-graph. Multi-graph is a labeled graph where multiple edges can exist
between any two vertices, granted that these edges have different labels.

• Attributed graph. Graph elements can have attributes (also called proper-
ties) appended to them to carry additional data. Properties are usually
expressed as a map of keys and their associated values.

• Property graph is defined as an attributed directed multi-graph and it is the
model which is implemented by the majority of graph databases [1].

We note that this is only a limited selection of graph types that are later
referred to in this thesis.

1.6.2 Data Structures

The decision of the appropriate data structure for storing the graph, be it in the
memory or on a persistent storage, has crucial effects on the resulting performance
of the system. However, there is not an architecture which is ideal for all types
of graph operations; consequently, the choice of the data structure necessarily
depends on the way the application will be mostly used.

8

Adjacency Matrix

An adjacency matrix is represented as a bi-dimensional array of boolean values,
with the size of both the dimensions equal to the number of vertices in the graph.
The array is indexed by the identifiers of the vertices and each boolean value
determines whether the two corresponding vertices are connected by an edge or
not. It is a trivial observation that the adjacency matrix is symmetric when it
represents an undirected graph.

This data structure is very efficient for examining the connection of two given
vertices and for adding new edges; however, it lacks performance when all neigh-
bors of a specified vertex are required. Moreover, it is highly inefficient in terms
of occupied space; especially in the cases when the graph is sparse. Finally, this
structure is not well suited for adding vertices because such a task depends on
an allocation of space for a new row and a column.

Incidence Matrix

The arrangement of an incidence matrix is similar; it also has a form of a boolean
bi-dimensional array. The difference is that the incidence of vertices and edges
is recorded; thus, each row of the matrix represents a vertex and each column
represents an edge. The incidence of an edge and its two vertices is then indicated
by the values in the corresponding column. However, this data structure exhibits
similar drawbacks as an adjacency matrix; in addition, its space inefficiency is
even worse, because the array’s size coincide with the number of edges which is
usually higher than that of vertices.

Adjacency List

An adjacency list consists of a collection of lists, where each of these lists symbol-
izes the identifiers of neighbors of one vertex. This data structure has much lower
space requirements in comparison to the matrix representations. The storage ef-
ficiency can be further increased by employing compression techniques which are
usually based on the similarity of identifiers of neighboring vertices. Moreover, it
is a naturally efficient solution for the type of query demanding all neighbors of
a vertex, which is often needed when traversals are performed.

However, when it is needed to be decided whether two vertices are connected
by an edge, the performance becomes lower because in the worst case scenario
the algorithm must iterate over all the records in the list belonging to one of the
vertices.

1.6.3 RDF

The Resource Description Framework2 (RDF) is originally a standard designed by
W3C3 for representing data in the Web. It has become a popular representation
for graph data and adopted as a model by a number of graph databases (called
RDF stores) even though graph representation was not the primary designation
of RDF [2].

2Resource Description Framework, http://www.w3.org/RDF/
3World Wide Web Consortium (W3C), http://www.w3.org/

9

http://www.w3.org/RDF/
http://www.w3.org/

RDF defines triples as statements about resources, which consist of subject,
predicate and object parts. Such statements can be directly used to model a di-
rected labeled graph where each edge has its label represented by the predicate
and the source and target vertices are denoted by the subject or the object re-
spectively. A property graph can also be modeled; however, it is not as straight-
forward because properties must be stored as additional objects and the relation
of a vertex and a property described by another predicate.

Sail

Storage and Inference Layer (Sail) is a low-level interface created by OpenRDF4

as an abstraction of the accessing methods supported by different RDF engines,
so that various RDF stores can be used interchangeably by a single application.
Several implementations of Sail include MemoryStore, which uses only memory
as a data storage, and NativeStore (further referrred to as NativeSail), which is
persistent.

1.6.4 TinkerPop Stack

TinkerPop5 has been developing a stack of applications designed to simplify and
unite the way of working with graph databases engines. Most of the software
is created in Java, which is also meant to be the primary accessing language;
nevertheless, interfaces in other languages are provided as well. Majority of the
best known GDBs support the TinkerPop accessing methods together with their
own interfaces, which gives strong hope that it will become a respected standard.
A brief description of the most significant parts of the TinkerPop stack now
follows.

Blueprints

Blueprints6 is a set of interfaces enabling applications to take advantage of the
complete functionality provided by TinkerPop, once the chosen graph database
implements the common API. The interfaces are designed to be very transparent
and offer mostly elementary methods which can, however, be combined to build
much more complicated queries. Blueprints works with the property graph model;
consequently, if a GDB exposes a stronger model, that extra functionality can
only be utilized via its own native methods. In summary, Blueprints can be used
individually, but its fundamental role is to abstract away the implementation
differences of the database systems for the upper layers of the TinkerPop stack.

Rexster

Rexster7 is a configurable graph server which exposes any Blueprints-compliant
graph database through the REST HTTP protocol. A binary protocol, called

4http://www.openrdf.org/
5TinkerPop graph research team, http://www.tinkerpop.com/.
6Blueprints property graph model interface, https://github.com/tinkerpop/

blueprints/wiki
7Rexster graph server, https://github.com/tinkerpop/rexster/wiki

10

http://www.openrdf.org/
http://www.tinkerpop.com/
https://github.com/tinkerpop/blueprints/wiki
https://github.com/tinkerpop/blueprints/wiki
https://github.com/tinkerpop/rexster/wiki

RexPro, is also supported for better performance on a single machine. Dog House
is a browser-based user interface also offered by Rexster. The whole TinkerPop
stack is elegantly interconnected; communication with the Rexster server from
a Java application can be performed by instantiating the RexsterGraph class and
then using the standard Blueprints methods.

TinkerGraph

TinkerGraph8 is a lightweight in-memory implementation of the property graph
model, and is part of the Blueprints package. TinkerGraph doesn’t have any
support for transactions; it primarily serves only as a reference implementation
for Blueprints and its graph model. However, indexing of elements based on their
properties is supported and is implemented using a HashMap collection.

1.6.5 Graph Query Languages

There are a number of languages designed for querying graph databases; they
mainly differ in expressing power and what purpose the are designed to serve. A
brief description of the best known graph querying languages follows.

PQL

Pathway Query Language9 (PQL) is an SQL-like declarative language used for
matching subgraphs primarily in biological networks.

GraphQL

GraphQL10 is a declarative querying and manipulating language considering graphs
as the fundamental unit of information. GraphQL defines its own algebra where
each operator takes a collection of graphs as an input and returns a collection of
graphs generated according to specified rules. Structure of the graphs and even
attributes of the graph’s elements are considered during the calculation of the
queries. GraphQL is intended to be used generally; in other words, it was not
specifically designed for a single kind of graph databases.

SPARQL

SPARQL11 is another declarative language influenced by SQL. It was developed
for querying RDF and it is an official W3C Recommendation.

Gremlin

Gremlin12 is a part of the TinkerPop stack; therefore, it works over all graph
databases that implement the Blueprints interface. Gremlin is designed for itera-
tive traversing of the graph which is controlled by the application in a procedural

8TinkerGraph implementation of the Blueprints graph interface,
https://github.com/tinkerpop/blueprints/wiki/TinkerGraph

9http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii33.abstract
10http://dl.acm.org/citation.cfm?id=1376660
11http://www.w3.org/TR/rdf-sparql-query/
12https://github.com/tinkerpop/gremlin/wiki

11

https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
http://bioinformatics.oxfordjournals.org/content/21/suppl_2/ii33.abstract
http://dl.acm.org/citation.cfm?id=1376660
http://www.w3.org/TR/rdf-sparql-query/
https://github.com/tinkerpop/gremlin/wiki

manner. In addition, it supports graph manipulation and all other functionality
from Blueprints, because it directly utilizes its methods.

1.7 Summary

In this chapter, we depicted the principles behind NoSQL and briefly explained
its key features. Subsequently, the best known representatives of the NoSQL
family were summarized – with closer attention being payed to graph databases,
their available backend implementations and provided query methods.

12

2. Graph Database Systems

In the previous chapter we generally characterized Graph databases together with
other types of NoSQL database solutions; however, since one of the main goals of
this thesis is giving experimental analysis of a selected set of GDB systems, it is
necessary to understand what main features and implementation specifics these
systems have.

Consequently, in this chapter a detailed description of today’s mainstream
graph database management systems is provided. We believe that the most
interesting properties are:

• API. What interface is exposed by the database system. In other words,
how the database can be queried.

• Internals. How exactly the databases’ methods of storing data to persistent
storage, indexing and caching are implemented.

• Concurrency. What consistency model the databases support, possibly de-
scribing the mechanism behind transactions handling if available.

• Scalability. What approaches the database systems take to horizontal scal-
ing; in addition, whether partitioning (or sharding) is supported.

The list of the selected GDB systems with the description of their main fea-
tures now follows.

2.1 DEX

DEX1 is a closed-source commercial graph database written in Java with a C++
core. It was first released in 2007 and its goal is to be a high-performance and
scalable solution for working with very large graphs [17]. DEX is currently the
third most popular graph DBMS today [18].

The graph model this database exposes is called “Labeled and directed at-
tributed multi-graph” because the edges can be either directed or undirected,
all elements belong to arbitrary types and there can exist more than one edge
between two vertices. DEX provides a native API for Java, C++ and .NET
platforms; in addition, it is compliant with Blueprints interface and the database
server can be remotely accessed via REST methods. The database can therefore
be used in a variety of applications.

DEX uses its own bitmap-based highly compressed native persistent storage
which should be very effective and have a small memory footprint thanks to the
light and independent data structures [20]. The fundamental data structure used
is a “Link” which is a combination of a map and a number of bitmaps that
enables fast conversion between an object identifier and its value and vice versa.
When object’s value is needed, the map is used; whereas the bitmap can return
all object identifiers associated with a specified value. The whole graph can then
be stored as a following combination of links :

1DEX graph database, http://www.sparsity-technologies.com/dex

13

http://www.sparsity-technologies.com/dex

• One link for each element type which allows conversion between element
identifiers and their types (or labels).

• One link for each element attribute. The particular values in the link are
made up by the actual values of the attribute.

• Two links for each edge type, one for out-going and one for in-coming edge
endpoints. In this case the link values represent the identifiers of vertices
incident with the particular edge. Therefore, to traverse from a vertex to
its neighbors, firstly the appropriate bitmap in the link for out-going edges
is returned because it contains identifiers of edges connected to the vertex.
Then, the map in the other link is traversed to finally obtain the identifiers
of the vertex’s neighbors.

The structure used for the maps is a B+ tree2, the values are stored as UTF-8
strings and the element identifiers are 37 bit unsigned integers. The identifiers
are grouped and compressed in order to significantly reduce the size of the struc-
ture [20]. Attribute values can be indexed when required by the application to
accelerate the speed of the element scan based on properties; this is ensured by
adding the index on the values in the appropriate attribute link.

DEX offers a partial ACID transaction support, called “aCiD”, because the
isolation and atomicity cannot be always guaranteed [17]. The transaction con-
currency model is based on the N-readers 1-writer model3.

There is a DEXHA4 extension enabling horizontal scaling for larger work-
loads that are preferably read-mostly. The replication is achieved using the Mas-
ter/Slave5 model with the help of Apache Zookeper6. In the event of writing
data into the database, the current slave immediately synchronizes with the mas-
ter and then the changes get eventually propagated to the other slaves. Therefore,
the database’s consistency is relaxed to an eventual consistency in the DEXHA
mode. There is lots of work still to be done in this field; for example, when a slave
which is in the middle of a write transaction is disconnected from the master, the
whole system gets into a lock because the master cannot force the transaction
to be rolled back. Furthermore, the system cannot deal with the situation when
the master crashes. However, the automatic election of a new master will be
implemented in the future [21].

2.2 InfiniteGraph

InfiniteGraph7 is another commercial graph database written in Java with a C++
core. It was initially released in 2009. The priorities of this graph database system

2B+ Tree data structure, http://www.seanster.com/BplusTree/BplusTree.html
3N-readers 1-writer model allows any number of read transactions to be executed concur-

rently, whereas a write transaction can exist as the only transaction at a give time
4DEX high-availability,

http://www.sparsity-technologies.com/dex_tutorials4?name=Introduction
5Master/Slave replication. Multi server architecture where one of the servers is a master

which has to be communicated with upon any data update. By contrast, reading of data can
be performed without the supervision of the master.

6Apache Zookeper, http://zookeeper.apache.org/
7InfiniteGraph, http://www.objectivity.com/infinitegraph

14

http://www.seanster.com/BplusTree/BplusTree.html
http://www.sparsity-technologies.com/dex_tutorials4?name=Introduction
http://zookeeper.apache.org/
http://www.objectivity.com/infinitegraph

lie in scalability, distributed approach, parallel processing and graph partitioning
[22].

InfiniteGraph uses a “Labeled directed multigraph” model which also includes
bidirectional edges. The database can be exposed through an API in various
languages (Java, C++, C#, Python) and provides a distinct Traverser interface
which can also be used for distributed traversal queries. This is accompanied with
Blueprints support; as a consequence, the database can also be accessed using
Rexster or Gremlin facilities.

The database system conforms to a full ACID model. In addition, it also
offers relaxing of the consistency for accelerated temporary ingests of data [24].
The graph database uses Objectivity/DB as a backend; and thus adopts its dis-
tributed properties allowing scaling and replication. Unfortunately, we could not
obtain any more information on this matter because, to our knowledge, there is
no accessible technical report or publication with any description of transaction
handling or InfiniteGraph internals in general.

2.3 Neo4j

Neo4j8 is written completely in Java, it is an open-source project and its first
release dates back to 2007. Neo4j is a very well known graph database system,
in fact currently the most popular one by a great margin [22].

Neo4j features a graph model called “Property graph” which is in reality very
similar to the models the afore mentioned databases offer. The native API is
exposed through a whole range of different languages, e.g. Java, Python, Ruby,
JavaScript, PHP, .NET, etc. There also are many kinds of ways how to query
the database, for example via the native Traverser API, or using SPARQL or
Cypher query languages9. The database system also implements the Blueprints
interface and a native REST interface to further expand the versatility of ways
how to communicate with the database. Neo4j also supports custom indexes on
elements’ properties using external indexing engines, currently employing Apache
Lucene10 as the default engine.

Persistency of Neo4j database is provided by a native graph storage back-end
mainly using adjacency lists architecture. The three main components of the
graph (i.e. vertices, edges and element properties) are stored in three separate
store files. Vertices are stored with a pointer to their first edge and the first
property. Properties store is a group of linked lists, where there is one linked
list per vertex. Finally edges are stored as two double-linked lists (one for each
endpoint of the edge) along with the edge’s type and pointers to the current
edge’s endpoints and first property. All pointers are expressed in the form of an
integer object identifier and all records in the three files have a fixed size and
absolute position corresponding to the object identifier. Therefore, addressing in
the store files can be performed by directly computing the byte where the record
is starting. Such arrangement can simplify loading of the data from the persistent
storage and enables fast direct traversing of the graph [23]. Furthermore, there is

8Neo4j graph database, http://www.neo4j.org/
9Cypher query language, http://docs.neo4j.org/chunked/stable/cypher-query-lang.

html
10Apache Lucene search engine library, http://lucene.apache.org/core/

15

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://lucene.apache.org/core/

a two-tiered caching architecture in Neo4j which should limit the number of disk
reads. The lower tier, filesystem cache, divides the store files into pages which are
held in the application’s virtual memory so that their management can be left up
to the operating system. In the higher tear, object cache, the particular elements
and other graph’s objects are kept in a state much more closely resembling the
current application needs, which is achieved by analyzing read patterns in the
application [23].

Full ACID transaction concept is supported by Neo4j. This is achieved by
having in-memory transaction logs and a lock manager applying locks on any
database objects altered during the transaction. On successful completion of
the transaction the changes in the log are flushed to disk, whereas a transaction
rollback means only discarding of the log.

Neo4j database can be distributed on a cloud of servers using the Master/Slave
replication model and utilizing Apache Zookeeper to manage the process. Should
any write request be performed on a slave node, this slave will synchronize with
the master and the updates will be eventually pushed to all the other slaves. As
a consequence, the database consistency property is loosen to eventual consistency
while the rest of ACID characteristics stays the same [26]. However, the database
distribution solution applies only to replication of the data which helps the system
to handle higher read load; at the moment Neo4j does not support sharding of
the graph [27].

2.4 OrientDB

OrientDB11 is not only a graph database management system, but a wide-range
NoSQL solution providing a key/value store, document-oriented database and
finally a graph database. OrientDB is written solely in Java and has become very
popular shortly after its initial release in 2010 [22].

The GDB system adopts “Property graph” as its graph model and provides
API in many programming languages. Many approaches can also be used to query
the database, namely the native Traverser API for Java embedded solutions,
REST interface for remote access or an SQL-like query language which is called
Extended SQL and has been developed alongside OrientDB. The database is also
Blueprints compliant and thus several other ways of accessing the engine are
available. In addition, unlike the majority of other GDB systems, OrientDB
provides support for basic security management which is based on the users and
roles model.

OrientDB’s graph database is built atop the document database for which
a native model of a persistent storage was created. Specifically, the storage is
divided into three parts:

• Data segments. The contents of all the records are kept here. Each segment
is represented by one physical file and it is dependent on the configuration
provided by the application how exactly the data is segmented.

• Clusters. This part keeps the references to the content in the Data segments
part of the storage. The usage of clusters is application specific, usually one

11OrientDB Graph-Document NoSQL DBMS, http://www.orientdb.org/

16

http://www.orientdb.org/

cluster corresponds to one logical type of data. For the OrientDB graph
database implementation, separate clusters are used for the distinct entities
in the graph (e.g. vertices, edges, indexes, object identifiers, users, etc.).

• TxSegment. Logs for all the open transactions are kept at this place.

Both the Cluster and Segment parts further consist of two file types, namely
Data files, which store the data, and Hole files, which keep the information about
any free space left after records deleted from the Data files. This space can
be reused during successive allocation. All identifiers of objects in the database
consist of two parts, which are the cluster number and position within the cluster.
Therefore, whenever a record is to be loaded, the appropriate Cluster is queried
for the record location within the Data segments and that information is used to
obtain the record data from there. While the actual data can be accessed locally,
remotely, or can be stored only in memory, the principles of the storage stay the
same [30].

OrientDB uses its own data structure also for indexing properties of elements.
It is an innovative algorithm called MVRB-Tree which is a combination of a B+
tree and a Red-Black tree12 and which consumes only half as much memory as
a Red-Black tree while keeping the speed of balancing the structure after an insert
or update [28]. The caching mechanism is also quite sophisticated and is spread
over several levels; from caches exclusive to a single application thread to caches
on the physical storage level. However, each caching level has a different impact
on the isolation of the changes of records during the transaction and must be
manually configured or periodically invalidated in order to ensure that the data
is up to date [29].

Transactions in OrientDB have all ACID properties which is ensured by uti-
lizing the MVCC13 method. Thanks to this approach, there can be concurrent
reads and writes on the same records without the need to lock the database; how-
ever, all the records must carry their version so that the age of the record can be
checked on a transaction commit [31]. The resolution of any transaction conflicts
is left up to the application, which can either repeat or rollback the transaction.

This database system can also be distributed across a number of servers in
a cluster, using Hazelcast14 for the clustering management. Amongst the nodes
in the cluster the Multi Master15 replication method is supported. Therefore,
all of the servers are allowed to perform read and write operations on their own
replicas of the database while notifying the rest of the nodes in the cluster. Such
notification can be synchronous or asynchronous, the latter being faster, however
guaranteeing only eventual consistency property. Each node keeps its Operation
log in case an alignment operation with other nodes has to be executed. Fur-
thermore, Synchronization logs are kept for the situations when a conflict occurs

12Red-Black binary search tree data structure,
http://cs.wellesley.edu/~cs231/fall01/red-black.pdf

13Multiversion concurrency control method often used by database systems to provide data
integrity during a concurrent access by having each transaction work on a different version of
the database and merge changes during the commit. http://clojure.org/refs

14Hazelcast Open Source project, http://www.hazelcast.com/
15Multi Master replication. Multi server architecture where all the servers have an equal role

in the cluster and are allowed to modify the stored data. Any modifications to the data are
then propagated to the rest of the servers and any discovered conflicts resolved.

17

http://cs.wellesley.edu/~cs231/fall01/red-black.pdf
http://clojure.org/refs
http://www.hazelcast.com/

during the replication. The default policy behavior is that the older changes
take precedence over the newer ones, which get logged into the Synchronization
log instead. Entries in the log can be manually resolved later. Similarly to the
other graph database systems, the discussed distributed solutions only work with
replicas as sharding is not supported by OrientDB yet.

2.5 Titan

Titan16 is one of the newest graph database systems as it has emerged very
recently, in 2012. Similarly to other GDB engines, Titan is written in Java and it
is an open-source project. The authors claim that it is a highly scalable solution
specialized on handling graphs distributed across a cluster of many servers [33].

The “Property graph” model used by Titan can be accessed via two provided
interfaces. Titan can either be run as a standalone server which should be queried
by REST methods, or be embedded in the user’s Java application for which case
it supports the Blueprints interface. Compliance to Blueprints also naturally
opens up the Rexster and Gremlin possibilities. Furthermore, to index elements
by their properties users can choose between two external indexing engines de-
pending on the application needs. Specifically, the engines are Apache Lucene
and ElasticSearch17 which can be used to perform effective full-text searches or
numeric-range and geo searches respectively [34].

As a backend, Titan supports three particular key-value or column-family
databases which have a contrasting influence on the transaction and scalabili-
ty properties of the resulting system. Therefore, it is possible to choose between
Cassandra18, HBase19 and Berkeley DB20 depending on the application’s business
requirements. In particular, selecting Berkeley DB has the effect of very limit-
ed horizontal scalability and concurrency; nonetheless, it is the best performing
setup for databases running on a single machine. On the other hand, Cassandra
and HBase provide native support for distributed solutions at the cost of uncer-
tain consistency, or availability respectively [35]. The main features of the three
backends can be seen in Table 2.1.

Backend Consistency Scalability Replication
Cassandra eventually consistent linear yes
HBase vertex consistent linear yes

Berkeley DB ACID single machine not supported

Table 2.1: Backends supported by Titan [35].

In order to store the graph to a persistent storage Titan uses adjacency lists
data structure. Namely, one column family in the underlying backend repre-
sents one vertex’s adjacency list with a row key equal to the vertex’s identifier.
Moreover, each element property and edge is stored in a single column with the

16Titan: Distributed Graph Database, http://thinkaurelius.github.com/titan/
17ElasticSearch search engine server, http://www.elasticsearch.org/
18Apache Cassandra key-value store, http://cassandra.apache.org/
19Apache HBase column-family database, http://hbase.apache.org/
20Oracle Berkeley DB, http://www.oracle.com/technetwork/products/berkeleydb

18

http://thinkaurelius.github.com/titan/
http://www.elasticsearch.org/
http://cassandra.apache.org/
http://hbase.apache.org/
http://www.oracle.com/technetwork/products/berkeleydb

edge direction, label, or key saved as the column prefix [36]. An index can be
created on any vertex property so that the vertex can be retrieved faster when
the property’s key-value pair is provided. The index is then simply stored in the
database as another column family. Lastly, Titan uses a few other optimization
techniques (e.g. vertex-centric indexes, edge compression) to accelerate several
types of queries against the database [37].

2.6 Summary

This chapter provides the description of selected graph database management
systems and their most significant properties. Naturally, there are many more
databases in today’s market, but as it cannot be in the scope of this thesis to go
through them all, only a small representative set of the best known GDB systems
was picked.

The most important features of the databases are summarized in Table 2.2. In
short, all systems are programmed completely or at least partially in Java, which
also is their primary interface. All the databases also implement the Blueprints
interface with the advantage of an automatic support for Gremlin and Rexster.
While nearly all of the database vendors use a different name for the graph
model their database system exposes, it is always effectively equal to the Property
graph model; consequently, there is no need to make any distinction. Two of the
systems use a native persistent storage specifically developed for working with
graph data while the rest utilizes existing NoSQL databases. All the evaluated
systems support some level of transaction standards and replication strategies;
and only InfiniteGraph claims to be able to partition the data. Finally, none of
the engines take any support for security into consideration. This, however, does
not hold for OrientDB.

DEX InfiniteGr. Neo4j OrientDB Titan

Language Java, C++ Java, C++ Java Java Java

API Java, C++, .NET Java plenty plenty Java, REST

Querying BP BP, PQL BP, Cypher BP, SQL-like BP

Graph Model Property graph (or very similar)

Persistence native Objectivity/DB native own Doc. DB a Key/value DB

Concurrency aCiD ACID ACID ACID
backend

specificScalability
Master/Slave

sharding
Master/Slave

Multi-master
replication replication

Table 2.2: Database systems’ features [3, 38, 39].

19

3. Benchmarking

Benchmark is an experimental assessment of the performance of an object, in this
case a graph database system. To ensure that a benchmark provides meaning-
ful and trustworthy results, it is necessary to guarantee its fairness and accura-
cy. Doing so is not always straightforward as different graph database products
can target and be optimized for different scenarios. Therefore, a good GDB
benchmark should address a wide range of the most usual functionality expected
from graph databases while ensuring that the benchmarking environment and the
whole process in general is unbiased and deterministic.

The chapter is organized as follows. We begin by stating what the most
essential functional requirements from a graph database are nowadays. This will
help us to define categories of graph queries which should be examined by a graph
database benchmark. Finally, we will focus on the problem of obtaining datasets
that each benchmark must logically work with – and abilities of artificial graph
data generators.

3.1 Recommended Design

We believe that a comprehensive and thorough benchmark should address the
most significant features and usage patterns of the software being tested. As
a consequence, benchmarks written for graph database systems must inevitably
be different from the ones made for other types of databases. Specifically, graph
databases are optimized for working with relations between the stored objects
and their more complicated traversals. Although there are other database types
considering relations between objects (e.g. Object databases, XML databases),
benchmarks created for them cannot be efficiently used also for assessing graph
databases, because they do not take advantage of the relations to the necessary
extent [4, 6].

To be able to name the recommendations for a benchmark which reflects the
most common usages of graph databases, it is crucial to analyze typical operations
on graph databases and categorize them by their characteristics. Furthermore,
appropriate benchmark setting and results interpretation must be considered.

3.1.1 Graph Operations

There is a number of operations that are expected to be handled by a graph
database system and that vary in complexity and other aspects. Firstly, there
naturally are the elementary CRUD1 operations that work with graph elements
and their properties. Furthermore, relations between vertices are mainly exploited
by the traversal operations; be it the simplest traversal only giving the neighbors
of a vertex or complex operations exploring big parts of the graph. Two illus-
trative traversal operations are search and path algorithms which go across the
graph until a certain condition is met and return the desired visited elements.

1CRUD data operations (Create, Read, Update and Delete) and the elementary functions
of any persistent storage.

20

The afore mentioned set of generic operations is often used by applications
to compute more specific and complex procedures. Namely, this includes graph
analysis algorithms, calculations of graph properties, graph matching methods,
etc. These operations differ in the way they access the elements of the graph and
must be taken into account at the time of selecting the right representative set
of operations to be incorporated into the benchmark.

3.1.2 Query Classification

To be able to select a set of characteristic operations for a benchmark, it is useful
to begin with classifying the operations by different criteria respecting particular
aspects of dealing with the database. Specifically, there is a number of features
in which particular database queries contrast each other:

• Traversing/Non-traversing queries. This categorization is based on whether
the operation considers the relationships between vertices or not. While
graph databases’ main focus lies on vertex relationships and thus on traver-
sal queries, non-traversing operations cannot be ignored either as they are
important in many use-cases (e.g. counting elements with a certain at-
tribute).

• Respecting attributes or labels. Whether the query takes element properties
into account or not.

• Manipulation/Analysis queries. This means classifying the operations into
those transforming the database and those that do not modify the data
at all. It should be noted that queries storing any calculated intermediate
information into the properties of the graph elements, in fact, manipulate
the graph.

• Locality of the queries. We categorize the operations depending on the
number of elements processed. Local queries get into contact with only
a limited neighborhood of the starting point of the operation, whereas global
queries access significantly large parts of the graph.

• Using indexes. Distinguishing whether the operation utilizes any sort of
database indexing or not is also of importance.

All these categories should be represented by at least one operation so that the
various aspects of graph queries are covered by the resulting benchmark [4].

3.1.3 Benchmarking Process

Setting up the benchmarking environment correctly is crucial for the experiments
to be fair. In other words, all the tested graph databases should be run under
equal conditions; otherwise, the results are not guaranteed to be accurate. Name-
ly, the testing graph datasets and input parameters, should they be generated at
random, must be identical for all the analyzed systems. Equivalently, the order
of operations executed on the database must stay the same. The databases also
need to be configured correspondingly; for example, to work at the same level of
data consistency (having the same transaction properties) and so on.

21

There are many approaches to interpreting the benchmark results. Firstly, all
operations should be run a fixed number of times to provide average or similarly
aggregated results that can compensate any possible deviations caused by the
running environment. In addition, it is not only the execution time of particular
operations that can be measured; metrics like database’s persistent storage size
or memory footprint of the application can be also analyzed.

3.2 Benchmark Datasets

The right choice of datasets that will be used for running database benchmarks
is important to obtain precise and meaningful results. In addition, it is necessary
to test the databases on a sufficient number of datasets of different sizes and com-
plexity to get an approximation of the databases’ scaling abilities. The selection
of appropriate datasets is even more complicated in the graph data context as
there are many unforeseen aspects that have to be taken into consideration.

3.2.1 Real Graph Properties

Although graphs are used to represent networks in many diverse fields (e.g. social
networks, biological networks, citation networks, recommendation systems and
many more), they usually share a number of common properties which cannot be
observed in completely random graphs following the Erdös-Rényi2 model [40, 41].
The most significant properties of real networks are:

• They are scale-free which means that the degree distribution of the nodes in
the network follows a power law distribution3. Therefore, there is a minority
of nodes in the graph that have an extraordinarily high degree while most
of the vertices are very loosely connected with the rest of the graph.

• The clustering coefficient of the network is high, i.e. there are communities
of nodes which are connected much more densely within the community
than with the rest of the graph.

• They have the small world property because the average diameter4 of the
graph tends to be rather low. Consequently, graph traversals are usually
not very deep.

3.2.2 Graph Data Generators

In order to estimate a graph database’s performance in real situations, it would
be most accurate to benchmark the database on the authentic data coming from
these situations. However, it is often complicated to obtain data that match the
benchmarking application’s needs – in terms of both the format and the size of

2Erdös-Rényi model of a random graph defines that each edge in that graph appears between
a pair of nodes with an equal probability and independently of the other edges in the graph.

3Probability distribution of vertices follows the power of their degree,
http://www.sciencemag.org/content/287/5461/2115.short

4Average diameter of a graph is the mean length of the shortest path between any pair of
vertices in the graph.

22

http://www.sciencemag.org/content/287/5461/2115.short

the data. This is the reason why it is generally more convenient to use a graph
data generator which synthesizes the data according to provided parameters.
Nonetheless, such generator should build artificial graphs that are as similar as
possible to the ones created naturally; in other words, the generated graphs should
posses the above mentioned real graph properties.

The generators that were found to be utilized in existing graph database
benchmarks include:

• R-MAT generator5. R-MAT features a transparent and parameterized
method of a direct creation of the resulting graph’s adjacency matrix [4].
There is a minor limitation coming from the used algorithm; namely, the
number of vertices of the target graph must be a power of two. On the oth-
er hand, the model can be applied for the generation of weighted, directed
and bipartite graphs and, most importantly, the produced networks have
the power law distribution property [5].

• Barabasi-Albert model6. This graph model iteratively creates the network
by adding one vertex at a time until the desired size of the graph is achieved.
After a vertex is added, it is connected with a random set of already existing
vertices; this set is chosen proportionally to their degree. As a consequence,
the power law distribution property is necessarily present in the graph. The
algorithm can serve for the creation of both directed and undirected graphs
[42].

• LFR-Benchmark generator7. Similarly to the above mentioned models, this
generator also creates network datasets that have the power law distribution
property [6]. Moreover, artificial communities of tightly coupled vertices
can be automatically implanted within the generated networks so that the
result’s resemblance of real data is even stronger [7].

3.3 Summary

In this chapter, the problem of developing a graph database benchmark was de-
picted and the most elementary recommendations outlined. It is apparent that
the most detailed decisions always depend on the actual implementation of the
benchmark and cannot be generally summarized. Consequently, this chapter fo-
cused mainly on providing the testing data and distributing various operations
into categories so that no important aspects of a real graph database usage sce-
narios are omitted in the resulting benchmark.

In summary, there is a strong importance of traversal operations when working
with graph data [6]. In addition, the most important graph features a GDB should
be able to work with are: edge labels, edge direction and element attributes
[4]. Therefore, assessing the performance of operations addressing these factors
should become a center of attraction of a sound graph database benchmark. The

5R-MAT recursive artificial graph generator, http://repository.cmu.edu/compsci/541/
6Barabasi-Albert model is a growing model for generating synthetic scale-free networks.
7LFR-Benchmark artificial network generator,

https://sites.google.com/site/andrealancichinetti/

23

http://repository.cmu.edu/compsci/541/
https://sites.google.com/site/andrealancichinetti/

provided testing datasets and the benchmarking process should respect these
facts.

24

4. Related Work

In this chapter we describe and compare various existing works presenting a graph
databases benchmark. Any advantages and disadvantages will be discussed and
taken into account at the time of our own benchmark implementation.

4.1 GraphDB-Bench

GraphDB-Bench1 is an extensible graph database benchmarking framework built
on the TinkerPop stack, heavily using Blueprints, Pipes and Gremlin in order to
be easily executed on any Blueprints enabled graph database system. It provides
an interface for user-defined graph database testing operations, automatically
measures their execution time and logs all results. GraphDB-Bench also contains
scripts for an automatic generation of synthetic graphs and then plotting bench-
mark results, using the iGraph2 library. In case the users want to provide their
own graph data, thanks to Blueprints, input files in the GraphML notation are
accepted.

The project was started in the year 2010 and the original intention was to
become a main stream unbiased benchmarking tool which is open and easily
extensible. It would come to be a part of the TinkerPop stack and be used
to benchmark graph database systems automatically with every new version of
Blueprints. All the benchmark results would be kept in a public repository for
anyone’s reference. Therefore, if anyone could contribute with their own sets of
tests suites, gradually most of the bias related to benchmarking would be reduced
and a reasonably fair benchmarking tool developed [10]. However, GraphDB-
Bench has not been further expanded since about 2011 and is nearly a dead
project now, adopted only by individuals for their own private testing purposes.

Tested Scenarios

In the currently accessible package, the framework comes out with an example
benchmark (and with its results) comprising the following tests:

1. Simple breath first search traversals starting from a number of randomly
selected vertices, running to a range of depths.

2. Loading graph data from a GraphML file into the database.

3. Performance of writing into an index. In this test, all the graph’s vertices
and edges have a string property which is filled in the graph’s index.

4. Reading from an index. A number of random vertices are looked up in the
database’s index based on the vertices’ property.

1https://github.com/tinkerpop/tinkubator/tree/master/graphdb-bench
2http://igraph.sourceforge.net/

25

https://github.com/tinkerpop/tinkubator/tree/master/graphdb-bench
http://igraph.sourceforge.net/

All these tests are run against a dataset of a varying size, from a tiny graph of
a thousand vertices to a large graph consisting of a million of vertices. Nonethe-
less, the benchmark itself claims the results should not be taken too seriously but
only as the framework’s proof of concept.

Tested Systems

TinkerGraph, OrientDB and Neo4j were tested in this exemplary benchmark.
TinkerGraph, which is only an in-memory implementation of the Blueprints in-
terface, was much faster in almost all tests. Apart from that, Neo4j surpassed
OrientDB in graph loading and reading from the index. On the other hand, Ori-
entDB was faster during index writes. Interesting situation arrived during the
test measuring the performance of traversals. Neo4j was faster in traversals when
the depth was up to four and OrientDB began to dominate when the traversal
depth was higher than five.

Conclusions

GraphDB-Bench seems to be a very handy tool for quick assessing of any graph
database supporting the Blueprints interface. Thanks to Blueprints, any imple-
mentation details specific to the actually tested database are abstracted away.
The framework is written in Java as it is the primary graph databases accessing
language.

The benchmark attached to the distribution of GraphDB-Bench is a small-
scale one which is not surprising since it is only an example usage of the frame-
work. But it still shows that such a tool can be used for serious benchmarking in
the future.

There is a clear disadvantage of the project. Its dependency on Blueprints
and the TinkerPop stack in general does not allow any database which is not
Blueprints enabled to be benchmarked by the framework. In addition, for the
benchmarks to be really fair, some experts would be needed to fine tune the vari-
ous GDB systems’ configuration for the best performance. The truth is that this
problem could by easily bypassed by stating that only basic initial configuration
would be considered. This, however, would be inconsistent with the typical graph
database usage in a real production environment.

In summary, GraphDB-Bench is a very nice attempt to bring some standard
and routine into benchmarking of graph databases. We can only hope that the
project will be revived in the future and put into practice again.

4.2 Survey of Graph Database Performance on

the HPC-SGAB

In paper [3] the authors describe and implement guidelines from the HPC3 Scal-
able Graph Analysis Benchmark [4] which is normally used to assess the perfor-
mance of graph algorithm libraries.

3High Performance Computing.

26

Tested Scenarios

The benchmark consists of four testing scenarios where the execution time is
measured:

1. Loading the graph into the database. This includes all necessary indices
as well. The created graph is then used in the following tests and is not
changed any more.

2. A query against the database which ignores any relations. They implement
a simple query finding all edges having an attribute equal to a certain value.

3. A traversing query. Namely a number of breadth first search traversals to
the depth of three which are started from all edges found in the previous
test.

4. A query which traverses the whole graph. They calculate the Betwenness
centrality4 of the graph, which is a graph property that can be found only
by traversing the whole graph several times. The high number of traversals
gives the opportunity the estimate the TEPS5 value.

The graph data used in this benchmark do not come from a real environment
but are artificially created using the R-MAT generator [5]. R-MAT is capable of
building a graph with properties that are typical of graphs in real life situations,
most importantly having the power law distribution property.

The benchmark is implemented in Java as all the tested databases are either
written in Java or provide an interface in it; nevertheless, Blueprints or any similar
high level wrapper is not used to the advantage of being able to configure the
particular databases to perform as well as possible.

Tested Systems

Four databases were selected for the benchmark, namely Neo4j, DEX, Jena and
HypergraphDB. Regarding the results, DEX was shown to be the best perform-
ing of the analyzed engines in almost all of the tests. Apart from that, Neo4j
performed much better than Jena during traversing operations, and Jena sur-
passed Neo4j in the first two tests (loading the graph and scanning the edges).
HypergraphDB could not be assessed on most of the operations because it was
not possible to load the graph into the database for majority of the initial dataset
sizes in time.

Conclusions

All tests were conducted for various sizes of the initial graph, including sizes
where it is not possible to load the whole graph into the memory. This approach
does not only reveal how well the graph databases scale but also how advanced
caching techniques they employ. The authors also discuss possible improvements

4Betweenness centrality is a measure of each vertex and is defined as ratio of the number of
the shortest paths between any pair of vertices that pass through the mentioned vertex to all
the shortest paths that do not.

5Traversed edges per second, commonly used to express the speed of a traversal.

27

of the HPC Benchmark which would ensure the four tests would be balanced more
thoughtfully in terms of execution time and scaling; thus giving more accurate
results. The warm-up time of the operations, which basically means how long it
takes for all the necessary data and structures to be cached into the memory, is
also described in great detail. In addition, many different metrics are measured
and discussed (physical size of the data in the database, TEPS against the graph
size, objects loaded per second against the graph size, etc.), which leaves the
impression that this article is very thorough and precise.

4.3 Benchmarking Traversal Operations over Graph

Databases

The article [6] provides a thorough description of a benchmark created by the
same authors. The benchmark is implemented in Java, uses Blueprints API,
and most importantly, heavily utilises GraphDB-Bench6 framework. Graph data
used for the testing are synthesised via the LFR-Benchmark [7] generator which
produces graphs with properties similar to those of the real world graphs. It gen-
erates network data sets with power law distribution property and with artificial
communities implanted within the networks [6].

Tested Scenarios

The following tests are described in the paper and their execution time is mea-
sured by the benchmark:

1. Loading the graph into the database.

2. Computing the local clustering coefficient of ten thousand randomly chosen
vertices. To achieve that, breath first search traversals two hops away from
the chosen vertices are needed to be performed.

3. Performing breath first search traversals for three hops from ten thousand
randomly chosen vertices.

4. Running an algorithm for detection of connected components which re-
quires a traversal of the whole graph. The algorithm needs to store some
intermediate state information as it works its way through the graph. Two
possibilities were considered:

Store the information in memory (not using the database).

Use the GDB and store the information as a vertex attribute. Retrieve
it when needed.

Tested Systems

The benchmark described in this article is run against these GDB systems: Neo4j,
DEX, OrientDB, NativeSail and SGDB (which is their own research prototype

6GraphDB-Bench benchmarking framework,
http://code.google.com/p/graphdb-bench/

28

http://code.google.com/p/graphdb-bench/

of a GDB). The results of the benchmark are preliminary and not very clear,
but SGDB seemed to perform significantly better than the rest of the systems.
However, SGDB is only a research prototype with some concurrency issues and
not a ready product [15]. Amongst the rest of the engines, DEX and Neo4j
showed to be more efficient than OrientDB and NativeSail for most of the tested
operations.

Conclusions

The tests were also run on graphs of various sizes, where the biggest ones were so
large that it was not possible to load them into the actual database in time; and
thus were left out from the benchmark. The last of the tests which stores the tem-
porary information required by the algorithm either in memory or the database
itself proves the latter to be about an order of magnitude slower; therefore it
reveals quite a big room for improvement of the particular systems.

Another interesting observation was shown during the benchmark runs, which
is probably related to the way how some of the systems implement the Blueprints
API. For traversing, the authors tried to do the expansion either through outgoing
or through incoming edges, where both of them should give the same results and
execution times. However, half of the tested systems were significantly slower
when the approach of outgoing edges was used.

In summary, this paper and the corresponding benchmark are well written
and show a nice usage of Blueprints and GraphDB-Bench for benchmarking graph
databases. On the other hand, only traversing operations are tested on the GDB
systems and any operations ignoring relations and focusing mainly on attributes
are missing.

4.4 A Comparison of a Graph Database and

a Relational Database

In the article [8] a comparison between a chosen graph database and a more
traditional relational database is described in detail. Not only do the authors
compare the systems objectively using a benchmark, they also provide a sub-
jective view on other aspects of the systems, such as quality of documentation,
support, level of security, ease of programming etc. For the data generation of the
benchmark, they come up with their own generator of random directed acyclic
graphs. Those graphs, however, do not seem to be satisfying any of the real
world graphs’ properties (e.g., power law distribution property, small diameter,
high clustering coefficient).

Tested Scenarios

Following operations were tested and measured in this benchmark. They divide
into two groups, traversal and non-traversal queries:

1. Finding all vertices with the incoming and outgoing degree being equal to
zero.

29

2. Traverse the graph to a depth of 4 from a single starting point.

3. The same as the previous test with the depth of 128.

4. Count all nodes having their random integer payload equal to some value.

5. Count all nodes having their random integer payload lower than some value.

6. Count all nodes whose string payload contains some search string.

Using completely random strings of a certain length.

Using a dictionary.

For the non-traversal part of the queries, a few different types of payloads
were tried one by one.

The authors also considered various sizes of the random graph to point out
how the database systems scale. In addition, they measured the physical size of
the DB once all data were loaded; in other words they compared the systems in
terms of disk usage efficiency. On the other hand, the loading times of the data
into the DB were not covered at all.

Tested Systems

Neo4j was selected as a representative of graph databases and MySQL (accessed
via JDBC) was chosen for relational database systems. Regarding the results,
Neo4j clearly outperformed MySQL in the traversal tests. Performance results
of the non-traversing queries were mixed because MySQL was faster with integer
payload handling, in contrast to string payloads where Neo4j was faster in most
cases.

Conclusions

The article describes the objective and subjective comparison between the two
distinct database systems in a very neat and clear fashion. In also discusses
the main reasons behind any performance inconsistencies. On the downside, the
traversal tests of MySQL could have been implemented to benefit more from
various constructs SQL offers. Furthermore, the set of conducted tests could
have been larger to cover more aspects of a typical usage of a graph database
system.

In summary, this paper and the attached benchmark show an interesting
comparison between selected representatives of an SQL and a graph database
system. This is important to support the assertion that graph databases are really
performing much better in situations related to graph querying and updating.

4.5 Summary

In this chapter we described a few benchmarks tailored for comparison of graph
database systems. Each of them covers slightly different aspects of an overall
performance of a GDB and they all even come up with more or less different

30

results. All the benchmarks test traversing of a graph stored in the database
and some of them assess the speed of non-traversal queries (e.g., index lookups,
filtering based on properties of elements) against the DB system. All of them
are written in Java as it has been adopted as a main accessing language by all
the tested graph databases. To provide data for the testing all the works choose
artificial graph synthesizers over real world datasets; with the advantage of being
able to quickly obtain graphs having needed properties and sizes.

31

5. Final Design of BlueBench

In this chapter the constitution of our own benchmark suite, BlueBench, is dis-
cussed and designed. We begin with a brief summary of aspects of existing
benchmarks, focusing on their shortcomings. The description of the testing envi-
ronment and used platform then follows. Finally, the exact tests that BlueBench
consists of are specified and the software architecture of the benchmarking project
is explained.

5.1 General Goals

During the analysis of existing benchmarks we gathered some important facts
that could help in designing BlueBench. In this thesis we will try to confirm
the results from those benchmarks and come up with some more interesting tests
covering important aspects that have been neglected so far.

To begin with, in all of the existing works various sizes of the input graph data
are used – to the advantage of being able to determine how well the particular
database systems scale with data size. On the other hand, only size in terms
of vertex count is altered. None of the works considered varying the number
of edges, or average vertex degree. We will try to accommodate this feature to
be able to see how the graph density influences the performance of the assessed
database system. Furthermore, none of the described benchmarks were run on
real datasets, but only on synthesized graphs. Using generated data provides
the convenience of custom selection of the input graph properties; however, one
must fully rely on the utilized data generator. In BlueBench at least one set of
real data will be used to further support the results obtained from the runs on
generated datasets.

Another issue was well simplified in all the existing works. Namely, in all the
tests assessing graph traversal performance, only relations between vertices are
taken into account. Despite the fact that graph traversing is the most important
feature of graph database engines and all the engines support further traversal
parameters, such as filtering the traversing path by edge labels or vertex/edge
attributes, these parameters were completely ignored. Therefore, BlueBench will
also cover situations where the above mentioned attributes are employed for the
traversal queries.

There also is some room for improvement regarding the selection of tested
DBs. Even though various types of systems (e.g. traditional databases, RDF
data stores) were tested in the previous works, the choice still tends to be rather
narrow, with maximum being five. In addition, although relational database
systems are usually depicted as a typical example of DBs that are outclassed by
graph databases when it comes to graph traversals, only one of the mentioned
works benchmarked the performance of such a system on graph data. Thus, we
will try to include a bigger number of database systems in our benchmark while
keeping the versatile selection and including a representative of RDBMS.

In summary, the above mentioned disadvantages of existing benchmarks im-
pose some requirements on BlueBench. Namely, it is the variety of input graph
data, also the choice of tested scenarios, and lastly the richness of the selection of

32

tested database engines. By contrast, some of the common aspects of the existing
benchmarks seem to be handy; most importantly it is the environment to conduct
the tests in and how to interpret the results.

5.2 Used Technologies

For the implementation of the BlueBench benchmarking suite we have selected
Java as the main programming language. This was done for the following reasons:

1. Java is without doubt the primary API language for a majority of graph
database systems. Many of them are even implemented in Java. This fact
gives the advantage of accessing the GDBs using usually the best docu-
mented, feature richest and most debugged interface with lots of online
sources.

2. The same rule applies to many of the libraries or frameworks dealing with
graph data.

3. It is fairly easy to set the Java Virtual Machine (JVM) to reflect the needs
of the benchmark suite. From limiting the maximum allowed memory to
setting what type of garbage collector will be used.

4. The suite can be effortlessly run on any platform with the JVM installed.

5. Finally, it leaves the opportunity to run any of the GDBs inside the JVM
and thus saving interprocess communication and getting more accurate re-
sults.

Then it was crucial to decide how to access the particular databases; whether
to use their native Java APIs or use Blueprints interface from the Tinkerpop stack.
Blueprints could abstract away any implementation details, simplify the part of
the suite which communicates with the DBs and most importantly guarantee
the fairness of the algorithms; on the other hand, such abstraction also disables
the usage of any advanced specific speed-ups the DBs might provide. It was
eventually determined that Blueprints would be used primarily because it was
nearly impossible to find any common ground between all various interfaces that
the DB vendors provide. However, for any situations where at least some of the
interfaces followed similar principles the tests were programmed twice using both
ways. Therefore, it could be measured which of the implementations performs
better.

Another important decision to make was about where to run the tested
database systems. As already mentioned, most of the DBs enable their incorpo-
rating into the benchmark process, i.e. running them in its JVM. Unfortunately,
the databases that do not support this would be put into a slight disadvantage
because they would have to be accessed remotely, that implies at higher transfer
costs. In the end it was decided to run the systems in the same JVM since the
delays in communication with the remotely accessed DBs due to local network
usage were hardly noticeable. Furthermore, thanks to Blueprints as the primary
GDB interface, the option of running all the tested systems remotely through
Rexster was still left open in case it was needed.

33

Lastly, utilizing Gremlin for most of the graph queries was considered. Grem-
lin is the graph accessing language from the TinkerPop stack, so it would be
trivial to include it in the benchmark suite. However, since no extra functionali-
ty is offered by Gremlin because the methods from the Blueprints interface still
have to be called after parsing the query, we have decided to use the provided
Blueprints interface directly so as to have a better control over the execution.

To sum up, BlueBench is implemented in Java and the database engines are
run in the same JVM as the benchmark itself if possible. In addition, BlueBench
heavily utilizes Blueprints as the main but not only interface to access the test-
ed GDB systems. The latest version of Blueprints at the time of writing the
benchmark suite was 2.2.0.

5.3 Conducted Tests

BlueBench is divided into three different standalone benchmarks which, howev-
er, share most of the input data and most of the tested operations. That way
the individual operations in the particular benchmarks can be compared across
benchmarks while the consistency and fairness is guaranteed. How exactly this
is achieved is explained in this section.

5.3.1 Individual Operations

Each benchmark consists of operations which have clearly defined boundaries and
execution time of which is always measured. Each operation gets the Blueprints
graph (hiding the actual database system implementation) and when it is done,
it must leave the database in a consistent state. Every operation can receive any
number of arguments which are prepared by the benchmark itself. The set of
operations has been selected to reflect most of the requirements from a graph
database system and to incorporate operations from very complicated ones to
very trivial ones. This is the complete ordered list of all operations used in
BlueBench:

1. DeleteGraph. This operation completely clears the database along with the
data and indexes from the disk. It is essential to run DeleteGraph at the
very beginning of the benchmark to ensure that the database is in its initial
state.

2. CreateIndexes. Indexing of vertices by selected property keys is begun.
This operation has to be performed before any elements are loaded into the
database, as explained in Section 6.3.

3. LoadGraphML. This operation inserts elements into the database according
to a GraphML input file. Not only does LoadGraphML prepare the graph for
the rest of the benchmark; equally importantly, the execution time of this
operation gives away how efficiently the database system is able to insert
data. In addition, most engines work in a transactional mode by default,
and not respecting that fact would result into a very low performance as
every single insert operation would be wrapped in an individual transaction.

34

Therefore, to prevent this from happening the transactions are handled
manually and work with a buffer of a certain size.

4. Dijkstra. The shortest paths between a randomly selected vertex and all
other reachable vertices in the graph are computed. Only paths using edges
with a certain label are considered. This is the most complex traversal op-
eration in the benchmarks because it works with relations between vertices,
edge labels and even edge properties (weight of the edge). In addition, it
must inevitably traverse the whole graph.

5. Traversal. A simple breadth first search traversal to the depth of five from
a given starting vertex is conducted. Unlike the previous operation, only
a proportional part of the graph should be visited by this traversal.

6. TraversalNative. As opposed to the Traversal operation, the native API
of the underlying GDB engine is used instead of the standard Blueprints
API whenever possible. These two operations get executed with the same
parameters; it is thus possible to compare the performance of one against
another.

7. ShortestPath. This operation computes the shortest path between two ver-
tices while ignoring edge labels and all properties. An important differ-
ence between Traversal and ShortestPath operations is that the former us-
es getVertices() Blueprints method whereas the latter utilizes getEdges().
Both methods are crucial for any complicated graph algorithm; however,
their implementation and thus performance might be significantly different.

8. ShortestPathLabeled. The same as the previous operation; however, only
edges with a certain label are considered. On top of that, the path is
computed twice because the label restriction eliminates too many results.
Firstly, one of the vertices is taken as the source of the path and the other
as the target, then vice versa.

9. FindNeighbors. This is the most primitive traversal operation – it only finds
the closest neighbors of a randomly selected vertex.

10. FindEdgesByProperty. This is the first of the non-traversing operations
and it browses the graph database while looking for all edges with a certain
property equal to some string value. The value is not random but it is
chosen from a dictionary of all the values that the edges could posses.

11. FindVerticesByProperty. Precisely the same as the previous operation, with
the difference that the search is conducted for vertices instead of edges.

12. UpdateProperties. This operation tests how efficiently the database engine
updates properties of elements. A predefined set of vertices is firstly se-
lected, then this set is divided into pairs, and finally, every two vertices in
each pair swap their properties. The initial set is created by adding every
visited vertex during a shallow breath first search performed from a ran-
domly chosen starting vertex. However, the creation of the set does not
count towards the total execution time of the operation as only updating of

35

properties should be measured in this test. Similarly to the LoadGraphML
operation, the transaction buffer is used.

13. RemoveVertices. By contrast, this operation tests the performance in delet-
ing vertices. A set of vertices is selected identically to the previous opera-
tion, and those vertices are deleted from the graph database. This obviously
includes all edges that are attached to them. Again, the transaction buffer
is used to speed up the operation.

It should be noted that the graph database is not modified anymore once
all the data is loaded, naturally with the exception of the last two operations
which test the engines update/remove performance. Also, all the operations
except TraversalNative are implemented using the DB systems’ Blueprints API
whenever possible. Any exceptions to this rule are described in Section 6.3.

5.3.2 Benchmarks

The three benchmarks that are part of BlueBench constitute of individual oper-
ations as it is depicted in Table 5.1. Each benchmark focuses on measuring of
different aspects of the GDB system’s performance and the choice of operations
reflects it. As most of the operations are shared amongst the benchmarks, eventu-
ally the results could be compared BlueBench wide (i.e. observing the difference
of performance of a single test in two different benchmarks).

Operation Labeled Graph Property Graph Indexed Graph
DeleteGraph Yes Yes Yes
CreateIndexes Yes
LoadGraphML Yes Yes Yes

Dijkstra Yes Yes
TraversalNative Yes Yes Yes

Traversal Yes Yes Yes
ShortestPath Yes Yes Yes

ShortestPathLabeled Yes Yes Yes
FindNeighbors Yes Yes Yes

FindEdgesByProperty Yes Yes
FindVerticesByProperty Yes Yes

UpdateProperties Yes Yes
RemoveVertices Yes Yes Yes

Table 5.1: Operations performed in the benchmarks.

Labeled Graph Benchmark

As the name of the benchmark suggests, an input graph with only labels (i.e.
without properties) is accepted. The performance of basic traversals on the graph
where elements have no payload is measured and analysis of speed of loading
and deleting the vertices is included. Labels are taken into account during the
traversing.

36

Property Graph Benchmark

Property graph benchmark accepts the same format of input data; however, it
expects that the elements have certain properties to be able to run tests based
on them. These tests include traversing queries working with properties (e.g. Di-
jkstra) and also non-traversing queries where the relationships between vertices
could be ignored (e.g. FindEdgesByProperty). The UpdateProperties operation
is also included not only to measure how quickly the DB systems can read prop-
erties, but also write.

All the traversing tests from the Labeled graph benchmark are left in place to
be able to observe whether the presence of properties in the graph will have any
effect on the performance of operations that do not work with properties at all.

Indexed Graph Benchmark

This benchmark will be run on the precisely same data as the Property graph
benchmark. The only noticeable, although substantial, difference is the inclusion
of the CreateIndexes operation which sets the database engines to start indexing
values on some of the properties. This step should presumably influence the
performance of most of the successive operations, either positively or negatively.
For example, tests working directly with properties (e.g. FindEdgesByProperty)
should be completed much faster; on the other hand, tests directly changing the
indexed data (e.g. LoadGraphML) will have to take the indexes into consideration
and thus be noticeably slowed down. When the execution of the benchmark is
finished, it will be possible to compare the results to those of Property Graph
Benchmark in order to monitor how well the indexes are handled in various DB
systems.

Blueprints supports two ways of indexing elements’ properties in the database
through IndexableGraph and KeyIndexableGraph interfaces [16]. The former one
is less automatic and supports specific querying techniques with added parame-
ters, e.g. to achieve case insensitive searching. Nonetheless, it is implemented by
fewer database systems than KeyIndexableGraph, which is why we had to select
KeyIndexableGraph interface to facilitate indexing of the elements in the graph
database.

5.4 BlueBench Software Architecture

BlueBench is directly patterned on GraphDB-Bench and adopts all main architec-
tural features of the framework. The concept of Operations, Operation Factories
and Benchmarks was not changed because the core of the work on BlueBench
was adding new functionality, support for more database engines and various
graph operations. Although basically all source files had to be modified to ac-
commodate the new functionality, original GraphDB-Bench classes were left in
the com.tinkerpop.bench package and any newly created classes were saved under
package cz.cuni.mff.bluebench. The most important design decisions and features
are described in this section, accompanied with slightly concise UML diagrams.

37

5.4.1 Operation

Operation is an abstract ancestor for all measurable actions that are executed on
the currently assessed database. Before executing, each Operation is set with its
arguments which is an array of strings. The actual run of the Operation consists
of three phases: initialization, execution and conclusion. These three phases
are represented by corresponding methods, always call their counterpart which
should be overridden by child classes, and are executed one by one by the class
running the benchmark. While initialization or conclusion phases only prepare
the object with the arguments and do the cleanup respectively, the performance
of the execution phase is measured.

Figure 5.1: UML diagram showing Operation class hierarchy.

For the reason that sometimes it is necessary to approach particular DB en-
gines differently, the NativeOperation class was added. Any operation directly
extending this class serves as a wrapper for any specific implementations of the ini-
tialization, execution and conclusion phases, while it still could provide the phas-
es’ default behavior. This is achieved by the decideNativeImpl() method which
checks the class type of the graph that is currently worked upon, and initializes
the callerObj object with the result of the appropriate version of getNativeImpl()
method. This is performed only once during the operation’s onInitialize() phase,
and from then on the methods for the three phases are supplemented by initNa-
tive(), execNative() and conludeNative() respectively. It is convenient to override
the methods in a designated inner class such as in this example:

...

@Override

protected NativeOperation getNativeNeo4jImpl() {

return new Neo4j();

}

38

private class Neo4j extends TraversalNative {

@Override

public void initNative(String[] args) {

...

There are two scenarios when NativeOperation can be used with an advantage;
either in the case of any implementation specifics imposed by the tested database
engine, or for assessing some special functionality of the underlying database
system that is not covered by the common interface. The class hierarchy of
Operation is shown in Figure 5.1.

5.4.2 Operation Factory

OperationFactory is a class implementing Iterable and Iterator interfaces so that
it can by conveniently iterated in a “foreach” statement to successively return
particular Operations that are contained in the factory. A pair of methods initial-
ize() and onInitialize() is used to achieve the same effect as it is with Operations.
Method loadOperation() constructs a new Operation with the given type and
arguments; these are acquired by calling onCreateOperation() method. To help
with carrying these details between various classes the class OperationDetails is
provided.

Figure 5.2: OperationFactory and related classes.

The primary task of a descendant of the OperationFactoryBase class is gradu-
ally providing arguments and a single Operation which will use them. For exam-
ple, this behavior can be used to execute the same test multiple times, although
with different random parameters. However, a more advanced factory was needed
to implement some more complex comparisons of the DB systems. To assure that
two distinct operations can be run with identical arguments, the OperationFac-
toryMultiple was introduced. This factory works similarly to the basic one; the
difference is that it is initialized with an array of Operation classes and a list of
arguments. Then, when next() is called, the current operation and the following

39

argument are returned unless this was the last argument of the list. If that is
that case, the list of arguments is reset and the operation array pointer advanced
by one. Another capability of OperationFactoryMultiple is giving the exactly
same set of parameters for each consecutive run of a particular Operation. This
is achieved by OperationArgsProvider class which caches each list of arguments
once it has been required by a factory. Without such functionality it would not be
possible to compare performance results of the same tests in different benchmarks
(e.g. when the DB has set indexes and when it does not) because the parameters
of the tests would not be corresponding.

OperationFactory and the other mentioned classes are depicted in Figure 5.2.

5.4.3 Core Benchmark Classes

As can be seen in Figure 5.3, each concrete benchmark implements methods to
provide sufficient information about the testing; namely what operations and op-
eration factories will be used, what DB systems will be tested and what initial
datasets will the systems be filled with. So, when a Benchmark object is con-
structed, the run() method is automatically executed on the given set of tested
DB systems, and inside that method a new instance of BenchRunner class is
created to perform all provided operations on the DBs one by one. There are
three special operations used to ensure that the execution of every factory and its
operations has equal starting points. Specifically, the Graph is always closed and
execution of a garbage collector attempted after a factory has finished, and right
before the start of another factory, the Graph is opened again. This is taken care
of inside BenchRunner.

To alleviate the complexity of BenchRunner, the getOperationFactories()
method already combines all operations with all particular types of input da-
ta and returns a joined list of factories ready to process. Therefore, it is not
necessary for the list of initial datasets to leave the scope of the concrete imple-
mentation of a benchmark and BenchRunner can be used only to iterate through
the provided list of operation factories.

There are two helper classes to simplify work with different DB engines and
hide their implementation. GraphDescriptor provides methods to safely open,
close and delete a Blueprints graph. By contrast, DB is really an “enum” which
describes particular DB systems and contains core methods for manipulation with
the underlying engines.

5.4.4 Logging of Operations

Execution time and result of every Operation is stored in “csv” files, one file per
DB system and benchmark. However, operation logging is also used to record the
accurate sequence of operations and their input arguments. This is performed
at the beginning of each benchmark by the createOperationLogs() method; after
that, every successive execution gathers the data from the logs using method
loadOperationLogs. Thanks to that, it is evident that the operations order and
the arguments are identical for every tested DB system; in addition, the bench-
marks can be either entirely or partially re-run as long as the logs are kept. It
also means that it is not necessary to process the operation factories obtained by

40

Figure 5.3: UML digram of Benchmark and related classes.

getOperationFactories with every run of BenchRunner, but only during the exe-
cution of createOperationLogs() instead. Each regular iteration of the benchmark
is served by a special factory OperationFactoryLog which is employed to read the
operations from the log and pass them to the BenchRunner.

Some DB system must be provided for the creation of the operation logs be-
cause BenchRunner works equivalently during the logs creating and logs loading
phases. The chosen system is passed to Benchmark in the constructor; nonethe-
less, it is not important what system is selected since the performance is not
taken into account during the logs creation. As a result, we have decided to
create a trivial implementation of the Graph Blueprints interface, called Dum-
myGraph, which could be used for very fast logs creation, because no results are
computed during the execution of the implemented methods.

5.4.5 Loading the Graph

Populating the assessed graph database with graph data can be taken as an ex-
ample of NativeOperation utilization. Some differences are presented by several
DB engines and it was not possible to load the data in any unified way. Therefore
we have slightly rewritten the original Blueprints GraphMLReader and modified
it to accept an implementation of GraphFiller interface as a parameter. Because
the graph database is filled with data in a separate operation, it was convenient
to turn the operation into a native one and make it implement the GraphFiller
interface. As a result, methods for adding vertices or edges, committing trans-
actions and so on can be overridden to match the particular requirements of the
GDB engines.

41

5.4.6 Addressing Vertices across Scopes

Because BlueBench is a graph database benchmark suite, many operations deal
with the graph structure and begin on a preset vertex or edge. This starting
element should most often be decided at random and be identical during all the
test runs. It was important to decide how and in what form to keep identifiers
to those elements between runs of different benchmarks on different DB systems.
To slightly alleviate the problem, it has been decided to use only vertices for this
kind of task.

The first trivial solution would be identifying the vertices by the IDs they
were given upon the insertion into the database. However, according to the
Blueprints specification, the ID can be selected by the database engine itself so
the provided one could be completely ignored. A partial solution to this problem
is the IdGraph template class1 which could be used as a wrapper around those
Graph implementations that ignore the given custom ID. The solution is said
to be partial because for the functionality to work, the underlying Graph must
be an instance of KeyIndexableGraph so that the vertices can be indexed by the
wrapper. Unfortunately, not all of the DB systems we want to test implement
the mentioned KeyIndexableGraph.

Another plausible workaround might be using vertex properties to hold their
unique identifiers. It would then be effortless to select the right vertex by calling
the Blueprints getVertices() API. Nonetheless, since we were considering includ-
ing RDF data stores into BlueBench, it was impossible to utilize properties for
any task. For the same reason it is not possible to obtain a set of all vertices in
a predefined order and then iterate through, not to mention the performance of
such a query.

At last, we have decided to use our own helper “Map” data structure which
would contain pairs of vertex IDs, one of them being a simple number and the
other one the real identifier that the vertex was given at the time of inserting
the vertex into the database. This map is always filled at the beginning of the
DB benchmarking when the graph data are loaded into the DB and kept for all
successive operations. This approach, however, poses a minor limitation; it will
not be possible to use any BatchGraph2 implementations because in that case the
vertex ID does not necessarily have to be determined during the insertion.

5.5 Summary

In this chapter we discussed the most important design decisions that led to the
actual implementation of BlueBench. In summary, BlueBench is a benchmarking
suite consisting of three standalone benchmarks, focusing on traversing, element
properties and element indexing respectively. BlueBench is a direct extension
of GraphDB-Bench framework and therefore it adopts its main features, such as
using Java as the programming language and Blueprints as the common interface
for accessing the particular underlying DB systems.

1Blueprints IdGraph,
https://github.com/tinkerpop/blueprints/wiki/Id-Implementation

2Blueprints Batch,
https://github.com/tinkerpop/blueprints/wiki/Batch-Implementation

42

https://github.com/tinkerpop/blueprints/wiki/Id-Implementation
https://github.com/tinkerpop/blueprints/wiki/Batch-Implementation

6. BlueBench Results

In this chapter we begin with an explanation in what environment and on what
data BlueBench was executed. This is followed by a list of all the GDB systems
that were assessed, which includes any of their implementation specifics and nec-
essary workarounds coming from them. Lastly, the results from the benchmark
are described and plotted.

6.1 Testing Environment

The tests were executed on a computer equipped with a single core Intel Xeon
E5450 running at 3.00 GHz and 16GB of RAM, with Ubuntu Server 12.101. The
Java Virtual Machine of version 1.7 was started using the default parameterization
except for the starting and maximum heap size, set to 12GB. The remaining 4GB
of memory were left for other running system processes and, most importantly,
for two of the tested DB systems which could not be run inside the JVM. Further
description of this issue follows in Section 6.3.

6.2 Input Data

In BlueBench both artificially generated data and real graph datasets were used
to fill up the tested databases.

Specifically, the first benchmark which completely ignores how the databases
handle properties was run twice. Once on synthesized data and then on data col-
lected from Amazon’s co-purchasing network2 as it looked like in the year 2003.
This network forms a directed graph consisting of more than 260.000 vertices
and about 1.234.000 edges, where vertices represent products and a directed edge
from product a to product b means that product a was frequently purchased
together with the product b. This dataset was selected for the benchmark be-
cause of its appropriate size and also because the co-purchasing graph posseses
typical real-world network properties (e.g. power law distribution, high clustering
coefficient)[9].

For the rest of the benchmarks, which also work with vertex and edge prop-
erties, no suitable real datasets were found, so only artificially generated graphs
were used. The generation was performed with the igraph3 library, namely the
synthesizer implementing the Barabasi-Albert model. String labels were added
to all edges once the graph had been constructed. Afterwards, for all the bench-
marks with the exception of the first one, several properties were appended to
the edges and vertices of the graph so that all elements had one string and one
integer property.

All the benchmarks were executed on artificial directed graphs having 1, 50,
100 and 200 thousand vertices and an approximate mean vertex degree equal to

1Ubuntu Server Quantal Quetzal, http://www.ubuntu.com/
2Amazon product co-purchasing network, collected on 2nd of March 2003, http://snap.

stanford.edu/data/amazon0302.html
3The igraph library, http://igraph.sourceforge.net/

43

http://www.ubuntu.com/
http://snap.stanford.edu/data/amazon0302.html
http://snap.stanford.edu/data/amazon0302.html
http://igraph.sourceforge.net/

5 and 10. This gives the total of eight different graphs with sizes ranging from
only about 6.000 elements to as many as 2.200.000 elements.

The input data were stored in the GraphML file format for it being one of the
standards for handling graph data. The format is supported by the igraph library
and it is easy to be read in the application using only XML parsing standard
functions. GraphML might be a little slower to parse for its slightly smaller
storage efficiency; however, since this is the only file format used for input graph
data in the benchmark, at least in this aspect the fairness could be guaranteed.

6.3 Assessed DB Systems

During the first benchmark, where properties are ignored, the following DB sys-
tems were assessed: DEX 4.7.04, InfiniteGraph 3.0.05, MongoDB 2.2.36, our own
prototype MysqlGraph, NativeSail 2.6.47, Neo4j 1.8.18, OrientDB 1.3.09, Tinker-
Graph 2.2.010 and Titan 0.2.011. Thanks to the size of this set none of the best
known DB systems are left out, and several different technologies are represent-
ed (e.g. typical GDB, RDF store, Document, ...). In the rest of BlueBench all
of these databases except NativeSail were benchmarked as it is not possible to
naturally work with element properties in NativeSail DB.

Specific configuration can obviously be set for all of the systems to achieve
the best performance. However, the benchmark would not be fair if some of the
systems suffered from any possible lack of proper configuration and some did
not. Therefore, to avoid any fairness issues caused by insufficient knowledge of
the right configuration of the systems, we have decided to strictly use the initial
configuration only. Finally, all the GDBs were run with their transaction mode
enabled in order to be able to observe performance of their consistency ensuring
methods.

Although the DB systems share a common Blueprints interface, there still
are many differences in the way of how it is necessary to work with the engines.
More detailed commentary on why particular database systems were chosen and
description of any of their implementation specifics are laid out in this section.
General description of the systems is in Chapter 2.

DEX

This system had to be included in BlueBench for it being a well-established piece
of software in the graph database world. Also, the results of DEX in all of
the described existing benchmarks were very promising. In addition, there are
implementations of the most common graph algorithms offered by DEX; therefore,
performance of their graph traversal method was measured in the benchmarks,
too.

4http://sparsity-technologies.com/dex.php
5http://www.objectivity.com/products/infinitegraph/
6http://www.mongodb.org/
7http://www.openrdf.org
8http://www.neo4j.org/
9http://www.orientdb.org/

10https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
11http://thinkaurelius.github.com/titan/

44

http://sparsity-technologies.com/dex.php
http://www.objectivity.com/products/infinitegraph/
http://www.mongodb.org/
http://www.openrdf.org
http://www.neo4j.org/
http://www.orientdb.org/
https://github.com/tinkerpop/blueprints/wiki/TinkerGraph
http://thinkaurelius.github.com/titan/

On the other hand, Blueprints interface is not absolutely respected by DEX
and there are some peculiarities that had to be taken into account during the
implementation. Firstly, any collections of returned vertices or edges implement
CloseableIterable and must be explicitly closed to free native resources of the
engine when the work with the collection is finished. Furthermore, vertices have
labels in DEX similarly to edges. This had to be kept in mind as preceding
setting of the vertex labels is required for some important features to work, such
as creating custom indexes in the graph.

InfiniteGraph

Although InfiniteGraph has been around for quite a long time, we could not find
a single benchmark comparing it to other GDB systems. This might be the reason
of a quite specific interface this DB system provides. Despite the fact that the
Blueprints interface is also supported by InfiniteGraph, many operations with the
DB have to implemented completely differently, most often using native methods
of the engine. This includes working with transactions, where, as opposed to
Blueprints, a transaction has to be both started and stopped manually in order
to enclose multiple operations in it. In addition, handling with custom element
indexes must be done entirely through the native API because InfiniteGraph does
not conform to the Blueprints interfaces that are designed to make the work with
indexes easier.

Most importantly, the database does not naturally support labels; custom
Java classes for all vertices and edges must be created instead. This implies that
any operations adding vertices or edges to the graph or setting element properties
have to be done uniquely to the current implementation and Blueprints API
obviously cannot be used. Moreover, the native InfiniteGraph API had to be used
to execute a lot of other basic operations (e.g. finding elements with a certain
property). Therefore, quite extensive workarounds had to be implemented to be
able to incorporate InfiniteGraph into BlueBench.

A conceptually different interface of finding paths in the graph is contained
within InfiniteGraph. It could be elegantly used to perform graph traversals as
well; thus we added assessing of this operation’s efficiency to BlueBench.

MongoDB

Although it might be interesting to see how a non-graph NoSQL database would
perform in graph related tasks, such comparison has not been conducted in any
existing work. We have decided to include a NoSQL system in BlueBench to
reveal how big the difference in performance could be.

MongoDB was chosen as a typical example of a Document database system
employed for working with graph data. There currently is one more non-graph
NoSQL engine with an accessible Blueprints wrapper, which is ArangoDB12. How-
ever, at the time of implementation of BlueBench it was discovered that some
of the wrapper methods were performing very poorly or even returning wrong
results; and that includes the most important functionality, such as returning

12ArangoDB, http://www.arangodb.org/

45

http://www.arangodb.org/

neighbors of a vertex or returning all edges in the graph having a certain prop-
erty. Last but not least, MongoDB is currently the best ranked software of all
document-stores [19].

This is the reason why MongoDB was chosen over ArangoDB as a represen-
tative of the non-graph NoSQL world in this benchmark. There is only a slight
disadvantage for this engine in terms of competitiveness with other DB systems
coming from the fact that MongoDB cannot be run inside the Java Virtual Ma-
chine to avoid latency caused by inter-process communication. Nonetheless, this
latency should not be extensive as all the processes will be run on the same
computer.

MysqlGraph

In order to be able to compare the performance of a relational database sys-
tem with graph database systems, we implemented the Blueprints interface with
MySQL 5.5.2913 and included the newly created GDB, simply called MysqlGraph,
in the benchmarks. Having MysqlGraph in BlueBench can further support the
claims that relational database systems are not suitable for graph related queries;
on the other hand, it would be interesting to observe that some of the GDB sys-
tems perform worse in some scenarios, should such situation occur. MySQL was
chosen because of its widespread use in both academic and commercial fields.
Other reasons for the selection include the fact that it is not an object-relational
database like Oracle14 but a pure relational database [11]. Also, an extensive
support is provided to MySQL users which could greatly simplify the process of
implementing the application.

The MySQL server can be run in a standalone process and connected to the
rest of the program via JDBC15. Similarly to MongoDB, there could be some de-
lays coming from the communication between processes; nonetheless, such setup
of the access to a MySQL database is very usual across application fields and
technologies.

The architecture of MysqlGraph database is depicted in Figure 6.1. This
arrangement allows for a very straightforward implementation of the Blueprints
methods while keeping the queries efficient. It should be noted that the indexes
in the properties tables are required by the architecture to ensure the uniqueness
of property names for particular elements. Therefore, any calls to Blueprints
API for adding or removing indexes on properties are completely ignored and the
database system should perform identically regardless of the indexes being used
by the application or not. Another thing that could catch the attention is the type
of properties’ values; it is only a string with a set maximum length. In reality,
the format should be TEXT or similar to allow for unlimited size of properties,
yet such a decision would definitely degrade the performance. We have decided
to keep the VARCHAR format and leave open the possibility of extending the
schema by adding another table for very long strings having TEXT type.

13http://www.mysql.com/
14Oracle database, http://www.oracle.com/us/products/database/overview/index.

html
15The Java Database Connectivity,

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

46

http://www.mysql.com/
http://www.oracle.com/us/products/database/overview/index.html
http://www.oracle.com/us/products/database/overview/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

edgeProperties

edgeId INT(11)

name VARCHAR(256)

value VARCHAR(256)

Indexes

unique_edgeId_name

name

fk_edges

edges

edgeId INT(11)

sourceId INT(11)

targetId INT(11)

label VARCHAR(256)

Indexes

PRIMARY

sourceId

targetId

label

fk_vertices_1

fk_vertices_2

vertexProperties

vertexId INT(11)

name VARCHAR(256)

value VARCHAR(256)

Indexes

unique_vertexId_name

name

fk_vertices

vertices

vertexId INT(11)

Indexes

PRIMARY

∞

1

∞

1

∞

1 ∞1

Figure 6.1: EER model showing the design of MysqlGraph database.

As it is with true graph database engines, native implementations of some
algorithms are usually provided. We have considered writing the basic traversal
algorithm using either joins or inner selects ; unfortunately, such implementation
would be a little too complicated and very probably inefficient in comparison to
the original way the algorithm is conducted in BlueBench. Thus, we have decided
only to stick to the Blueprints interface.

NativeSail

To represent RDF stores in the benchmarks, assessing of NativeSail was incor-
porated into BlueBench. NativeSail was selected because Sail is the only RDF
product currently supporting the Blueprints interface and NativeSail is the only
alternative of Sail implementations that uses a disk to store the data.

There are some restrictions coming from NativeSail being an RDF store. First-
ly, there are syntactic constraints on the format of vertex identifiers and edge
labels; these must respect the URI format. This is the reason why all graph
datasets used in BlueBench follow this convention. Another peculiarity of RDF
stores is that element properties are not natively supported. In order to achieve
having properties, they would have to be simulated by adding a vertex per prop-
erty and connecting this vertex by an edge with the original parameterized vertex.
Then all Blueprints methods working with properties would have to be overrid-
den. We have decided that applying such workaround usable for only one DB
system should not be in the scope of this thesis and removed NativeSail from the
second (properties-testing) benchmark instead. In addition, no custom indexes
can be used while working with Sail; this in combination with the properties
restriction automatically disqualifies NativeSail from the third benchmark also.

In summary, it was decided that NativeSail performance would be assessed
only on the tests of the first benchmark.

Neo4j

Neo4j is one of the best known and most popular graph database systems; on
top of that, its results came out considerably good when assessed in any of the

47

existing benchmarks. Therefore, there was no question whether to include Neo4j
in BlueBench or not. Neo4j even provides several algorithm implementations out
of the box, graph traversal being one of them, so we have added Neo4j’s traversal
implementation test into BlueBench to measure its performance.

Including Neo4j in the benchmarks was exceptionally straightforward as there
is no significant deviation from the Blueprints interface presented by this graph
database system.

OrientDB

OrientDB is another well-established software in today’s graph database market.
It provides pretty flawless conformity with the Blueprints interface so incorporat-
ing OrientDB into BlueBench was easy. However, there is one exception; namely
that at the time of running OrientDB we could not achieve to maintain the trans-
action buffer as large as for the rest of the DB systems. The bigger the buffer
is, the less often fresh data need to be committed and thus the performance is
higher. Therefore, we lowered the size of the buffer for OrientDB only not to
have the rest of the systems suffer from the issue.

There is a native implementation of the traversal algorithm included in Ori-
entDB and exposed through the provided Java API; nevertheless, we could not
add the assessment of the method’s performance into BlueBench because the
results that were being returned from the method were evidently incorrect.

TinkerGraph

TinkerGraph is an in-memory direct implementation of the Blueprints interface
and is a part of the TinkerPop stack. Not having to work with the secondary stor-
age obviously gives big advantage in performance; however, it limits the size of the
database to the memory size. Therefore, inclusion of TinkerGraph in BlueBench
should be taken only as a proof of concept and to show what a supposedly ideal
performance would be like.

Titan

Titan is a quite new graph database system, taking Blueprints as the primary
interface to work with the graph database. This fact promises that this DB
system has been optimized for the Blueprints methods and so the performance
in BlueBench would be high. It is possible to choose from various storage back-
ends when working with Titan; we have selected Oracle Berkeley DB 5.0.5816.
This way the best possible performance should be guaranteed [12] because the
database will be used on a single server inside the JVM. More detailed description
of allowed back-ends and Titan in general is in Chapter 2.

There are some limitations imposed by Titan. To begin with, all elements
obtained from the database are automatically invalidated every time a new trans-
action is started. Therefore it is required to re-get any element which is needed to
be used again if the application is not in the same transaction context anymore.
This influences the beginning of every benchmark when all the vertices and edges

16Oracle Berkeley DB, http://www.oracle.com/technetwork/products/berkeleydb

48

http://www.oracle.com/technetwork/products/berkeleydb

are inserted into the database, and also the tests where lots of elements are up-
dated or deleted. As a solution, every cached vertex or edge is always refreshed
before it is used again. It would be a little too complicated and with a small
benefit to keep a set of elements that are valid in the current transaction because
such approach would only be a substitute for a similar structure used by Titan
itself [13].

Other limitations are related to index handling. Firstly, as of Titan 0.2.0,
indexing edge properties is not supported and thus only vertex index is used by the
indexing benchmark while creating indexes in Titan database. This workaround
has two consequences, namely inserting and deleting edges from the database will
be a little faster because the index can be ignored; on the other hand, looking
up edges by their property values will be slower because there is not any index
that could speed up the query. This will have to be taken into account at the
time of analyzing the benchmark results. The second index-related restriction,
which imposed some changes in BlueBench architecture, requires that an index
for any property name must be created prior to the first usage of that property.
Which specifically means that all the indexes must be created before the graph
database is filled with data; therefore it will be pointless to measure the time
of the indexes creation and we will instead try to compare the graph loading
times with indexes enabled and with indexes disabled. Nonetheless, these two
limitations accompanying indexes are only temporary [14]; as a consequence, the
workarounds can be removed from BlueBench in the future.

6.4 Results of the Tests

We examined the performance of the graph database systems on the operations
listed in Subsection 5.3.1, with the exception of DeleteGraph and CreateIndexes.
These two operations were excluded from BlueBench assessments for a number
of reasons. First, it would be complicated to run the tests multiple times, which
is necessary to guarantee a better precision. Second, such functionality is not
needed to be run very often in any kind of application; and when it is run, the
execution speed is not a factor. Third, DeleteGraph had to be implemented
individually for each system; and, thus, the performance would be incomparable.
Lastly, due to restrictions coming from the limitations of Titan, CreateIndexes
must be run when the database is clean of any objects, so it would not make
much sense analyzing it.

Each operation except LoadGraphML was executed ten times, two fastest and
two slowest times were discarded, and then the rest was averaged. This approach
should mitigate the impact on accuracy caused by temporary processes suddenly
run on the machine, and also dismisses the result of the first slower operation when
the system caches have not yet been loaded. Although assessing performance with
techniques not allowing the use of cache is also valuable, it would be misleading
to combine the raw non-cached result with the remainder because the cache was
not manually emptied. Using only six median values should ensure much more
accurate results; nonetheless, there still are other factors which can influence the
experiments – the testing machine was connected to the Internet and normal
system processes were running during the benchmark execution. Given that
the run time of the whole BlueBench suite was roughly a week on the testing

49

machine, it is very probable that some of the tests were slightly influenced by
system updates and so on.

6.4.1 Graph Loading

The database must be inevitably loaded for the rest of the operations to have
data to work with, and that can simultaneously be used to monitor how fast
the objects are inserted. The insertion speed was measured as Loaded objects
per second (LOPS) so that results from datasets of different sizes can be directly
compared.

Figure 6.2 depicts the LOPS value as it was measured in the Labeled Graph
Benchmark. DEX was the fastest system, closely followed by Neo4j, both steady-
ing at about 35.000 LOPS. InfiniteGraph and OrientDB placed on the other side
of the spectrum, with performance an order of magnitude lower. This shows quite
a difference in insertion speed of the assessed systems; however, the results also
show that most of the GDBs scale regularly with growing size of the network –
the decrease of LOPS is only sub-linear.

�

��
�

��

�

��

��

������
�

��

�

��

�

��

��

�

�

��

�

�

��

�

��

�

���

�������������

�������

�� !"�����

#���$����"

#���%

&�������

'����

�����	 ���

(
&
�
�

Figure 6.2: Objects loaded per second in Labeled Graph Benchmark.

The situation changes when element properties are involved in the second
benchmark as displayed in Figure 6.3. The overall speed understandably dimin-
ishes by nearly half and Neo4j surpasses the rest of the systems by a big margin.
There is no noticeable slowdown of Titan, and thus it gets on par with DEX. The
rest of the GDBs remain much slower. Another change occurs when the graph
elements are set to be indexed before the start of the loading (Indexing Bench-
mark). Specifically, Neo4j gets behind Titan and DEX which both do not seem
influenced by the indexes at all. The reason of Titan’s result is trivial, it does not
support indexing over properties of edges; therefore the insertion is constrained
with much less burden. By contrast, it will be seen in the forthcoming test results
that DEX does not take advantage of the indexes at all – and they evidently are
ignored during the insertion phase as well.

50

�

��
�

��

�

��

��

�

��

�

��

�

��

��

�

�

��

�

�

���

�������������

�������

����������

 ��!"

#�������

$����

�����	��%�

&
#
�
�

Figure 6.3: Objects loaded per second in Property Graph Benchmark.

6.4.2 Traversal

The performance of a breadth-first search traversal which follows the edge direc-
tion was monitored. To better estimate how the GDBs scale with growing data
size, the results were expressed as the Traversed edges per second (TEPS). Figure
6.4 shows an absolute dominance of Neo4j on sparser graphs with TEPS getting
as high as 300.000. It is followed by DEX, Titan and NativeSail. On the other
hand, MongoDB and InfiniteGraph do not seem to be optimized for this kind of
query at all, giving out TEPS of only around 1.000 which is further decreasing
with the growing graph size.

The set of denser graphs brought Neo4j much closer to the rest of the systems,
mainly to the benefit of DEX. As it can be seen in the plot, Neo4j’s TEPS values
have a decreasing tendency as the data get larger, whereas DEX’s performance is
gradually growing. We would probably see DEX surpassing Neo4j if the operation
was tested on even bigger data. Meanwhile, Titan and NativeSail became roughly
twice slower than DEX, but still clearly separated from the remaining GDBs.

The native implementation of the traversal algorithm provided by a subset of
the tested engines was executed with the same parameters within the Traversal-
Native operation. The performance is compared to the results of the conventional
methods in Figure 6.5. Apart from Neo4j, the GDBs showed some improvement
after using the native method; especially InfiniteGraph, TEPS values of which
are up to four times higher. A healthy margin in favor of the native method is
noticeable in DEX’s results also. However, we still conclude that once an applica-
tion uses Blueprints to work with the database, it is not worth making the effort
to accommodate the native interface, because the differences in performance are
not extensive.

The execution times of the Traversal operation when run in the three bench-
marks were very similar; in other words, it was shown that the presence of element
properties or custom indexes on these properties does not have any noteworthy
effect on the efficiency of traversal queries.

A very similar situation occurred in the FindNeighbors operation; after all,
the two operations are implemented using the same getVertices() method from

51

�

��
�

��

�

��

��

������
�

��

�

��

�

��

��

�

�

��

�

�

��

���

�������������

�������

��� !�����

"���#����!

"��$%

&�������

'����

�����	����

'
�
�
�

Figure 6.4: Traversed edges per second in Labeled Graph Benchmark.

�

��
�

��

�

��

��

������
�

��

�

��

�

��

��

�

�

��

�

�

��

���

������

�������������

����������������

����

���� ���

�����	!���

"
�

�
�

Figure 6.5: Comparison of native traversal implementations and their counter-
parts written in Blueprints (Labeled Graph Benchmark).

52

the Blueprints interface. Only NativeSail struggled and yielded surprisingly high
results reaching hundreds of milliseconds for the largest graphs. This behavior
was most probably caused by the FindNeighbors operation fetching all neighbors,
even in the opposite direction, in contrast to Traversal operation where edge
direction is respected. Besides that, the rest of the engines showed little or none
growth of the response time with the increasing graph data size.

6.4.3 Shortest Path

The breadth-first search and the shortest path algorithms both count as traver-
sals and so they could be expected to exhibit a similar performance diversity.
However, getVertices() method was used for Traversal operation implementation,
whereas ShortestPath employs getEdges() Blueprints API. The mechanism un-
derlying these two methods can be separate; in addition, the different algorithms
imply different query patterns, and thus dissimilar caching techniques can be
used. Two versions of the shortest path operation were executed, the first with-
out considering edge labels and the second following only edges having a label
which was previously selected at random. We again cannot confirm any degra-
dation of performance caused by properties or indexes attached to the elements;
consequently, only results from the first benchmark are discussed.

Figure 6.6 depicts the results of ShortestPathLabeled operation. Their differ-
ence from those of ShortestPath is negligible, with the exception of Titan, which
performed much better in the labeled version due to its vertex-centric indexes
optimization (the index could be used to quickly obtain only the edges having
the right label). In general, the results are distinct from those of Traversal op-
eration; namely, DEX is not the nearly best performing system as it was with
search traversals, as opposed to Titan which clearly improved. On the other
hand, InfiniteGraph, MongoDB and MysqlGraph remained to be very inefficient,
like they were in the Traversal operation.

�

��
�

��

�

��

��

������

�

�

�

�

�

��

��

��

���

�������������

�������

� !"#�����

$���%����#

$���&

'�������

(��)�������

(����

�����	!���

(
��

�
	*
�
!
+

�

��

�

��

�

��

��

�

�

��

�

,

,�

�

��

�

���

�������������

�������

� !"#�����

$���%����#

$���&

'�������

(��)�������

(����

�����	!���

(
��

�
	*
�
!
+

Figure 6.6: Run times of ShortestPathLabeled in Labeled Graph Benchmark.

The ShortestPath test results yield another interesting observation. As it is
clearly noticeable from the plotted run times, the GDBs took much longer to ex-
ecute the operation on the Amazon dataset than on the synthesized graph data,

53

in spite of the graph size being of similar magnitude. This was caused by the
fact that there mostly is not an existing oriented path between any two vertices
randomly selected from a graph generated by the Barabasi-Albert model. There-
fore, the executed algorithms usually finished prematurely and rather quickly.
By contrast, the network obtained from Amazon is well connected, and thus the
operations often ran until the path was completed, taking much more time to
return. This suggests that the graphs created by the selected generator do not
necessarily resemble real networks in every possible aspect.

As opposed to ShortestPath, Dijkstra operation represents a complex query
requiring the traversal of the complete graph, and making use of both element
properties and edge labels. Therefore, it is more complicated for the GDBs to take
advantage of their caches as they would normally do during simpler traversals.
This is likely to be the reason of MysqlGraph’s acceptable performance in relation
to the other systems and, equally importantly, in relation to its performance in
ShortestPath.

Neo4j is the most efficient engine for this task; it even outperforms Tinker-
Graph by a recognizable margin (by almost 30%). Given that TinkerGraph works
only in memory and can avoid any delays caused by persistent storages, an ex-
planation for this could be that Neo4j managed to load the entire graph into its
caches and calculated the algorithm there. The results of Dijkstra operation are
plotted in Figure 6.7.

�

��
�

��

�

��

��

�

�

��

�

���

�������������

�������

����������

��� !

"�������

#��$�������

#����

�����	��%�

#
�&
�
	'
&
�
(

�

��

�

��

�

��

��

�

)

�

*

+

,

-

�

���

�������������

�������

����������

��� !

"�������

#��$�������

#����

�����	��%�

#
�&
�
	'
&
�
(

Figure 6.7: Performance of Dijkstra’s algorithm in Property Graph Benchmark.

Only TinkerGraph’s efficiency was hindered by the presence of element index-
es; otherwise the GDBs were practically unaffected. Besides, with respect to the
understandable sovereignty of TinkerGraph in all above operations, its perfor-
mance in Dijkstra is surprising. Apparently, the algorithms and data structures
in TinkerGraph engine are optimized for less demanding tasks. However, the
Dijkstra’s algorithm appeared not to be the best possible choice of a complex
operation for GDB assessment. Considerable portions of the run time were spent
inside the algorithm itself, leaving only limited room for the differences in the
underlying systems to be fully revealed.

54

6.4.4 Non-traversing Queries

The performance of two operations which ignore relations between vertices was
analyzed; namely, FindEdgesByProperty and FindVerticesByProperty. Both the
operations filter the graph’s elements according to a string randomly chosen from
a set of strings which are stored in the elements’ attribute. Therefore, the op-
eration requires the database systems to iterate through all the objects in the
graph and perform string comparisons on the specified attribute of the objects.
In Indexed Graph Benchmark the GDBs are encouraged to use their indexing
mechanisms.

Analysis of FindEdgesByProperty operation’s execution times and the com-
parison between plain and indexed benchmark versions is depicted in Figure 6.8.
Once the indexes are used, an apparent performance improvement can be seen for
almost all the systems except for Titan, which does not support indexing edges,
MysqlGraph, where indexes are used permanently, and DEX – which is the on-
ly surprising case. The experiments clearly show that DEX completely ignores
the assigned index. This problem, in addition to DEX’s already slow one-by-one
filtering, renders the database system very impractical for this type of queries.
In fact, the indexing problem can be caused only by the implementation of the
Blueprints interface and not by the DEX engine itself, accuracy of which we could
not verify.

The most efficient persistent GDB for this operation is Neo4j, being at least
twice as fast as the other systems. Such a big difference is astonishing since
this purely non-traversing query should definitely be handled at least equally
efficiently by MongoDB, OrientDB, InfiniteGraph and Titan, which have their
backends based on standalone NoSQL databases (as described in Chapter 2).
MysqlGraph’s rapid growth of response time can be explained by the need of an
execution of a join to merge the tables where the edges and their properties are
stored.

�

��

�

��

�

��

��

�

�

�

�

�

�

�

�

�

���

�������������

������

�!"#$�����

%���&

'������

(��)�������

(����

�����	"�*�

(
�+
�
	,
+
"
-

�

��

�

��

�

��

��

�

�

�

�

�

�

�

�

�

���

�������������

������

�!"#$�����

%���&

'������

(��)�������

(����

�����	"�*�

(
�+
�
	,
+
"
-

Figure 6.8: FindEdgesByProperty in Property Graph Benchmark (left)
and Indexed Graph Benchmark (right).

FindVerticesByProperty operation provided similar results in most cases. How-
ever, MysqlGraph does not need to join tables to return vertices; thus, it is slightly

55

faster than most of the other engines in the Indexed Graph Benchmark. More-
over, Titan could use the index this time which made its performance considerably
better. Finally, Neo4j again excelled amongst the persistent GDBs, being about
twice faster than the second best performing engine.

6.4.5 Manipulation Queries

Extensive data manipulation queries were executed on the databases through
UpdateProperties and RemoveVertices operations in order to observe how the
systems cope with situations when data need to be changed, or deleted respec-
tively.

Performance of modifying properties in the second and third benchmark is
compared in Figure 6.9. The presence of indexes evidently has very negative
influence on the efficiency of updating data in all the systems, especially in In-
finiteGraph, MongoDB, Neo4j and also slightly on OrientDB. The other systems,
however, did not have to consider indexes for various reason discussed above.
In conclusion, Neo4j showed very good performance in updating data for being
more than three times faster than the second best performing system; and it also
handled indexes quite comfortably. OrientDB and InfiniteGraph ended up on the
other end of the scale because the former was more than an order of magnitude
slower when the data was indexed and the latter was very slow throughout the
entire test.

�

��

�

��

�

��

��

�

�

�

�

�

��

��

��

���

�������������

�������

��� !�����

"���#

$�������

%��&�������

%����

�����	��'�

%
�(
�
)
(
�
*

�

��

�

��

�

��

��

�

�

�

�

�

��

��

��

���

�������������

�������

��� !�����

"���#

$�������

%��&�������

%����

�����	��'�

%
�(
�
)
(
�
*

Figure 6.9: UpdateProperties in Property Graph Benchmark (left) and Indexed
Graph Benchmark (right).

Deleting a vertex is a rather expensive operation because it requires any edges
incident with the vertex to be deleted also. Since RemoveVertices was always
removing a significant part of the graph in one go, the execution times reached
tens of seconds for the slower systems. Therefore, as it can be seen in Figure
6.10, the density of the graph substantially influenced the performance. Neo4j,
DEX and Titan could cope with the situation much more efficiently than the
other GDBs. When the same operation was run in Indexed Graph Benchmark, all
engines apart from MongoDB and TinkerGraph ended up suspiciously unaffected.

56

This observation suggests that the indexes must have been updated in another
thread after the method had returned, as opposed to UpdateProperties operation
effect, where the deceleration was clearly noticeable.

RemoveVertices was also executed in the first benchmark, where InfiniteGraph
and MysqlGraph did not exhibit such big problems with graph density as they did
in Propery Graph Benchmark ; therefore, it is apparent that the process of deleting
too many edge attributes was the true cause of their slowdown. Finally, NativeSail
is part of the Labeled Graph Benchmark and was tested on this operation, too;
only to expose a surprisingly inefficient implementation of the vertex removal
method. To sum up, Neo4j was the fastest engine for deleting vertices from the
sparser version of the graph, while DEX performed slightly better on the denser
graph.

�

��
�

��

�

��

��

�

�

��

�

�

���

�������������

�������

����������

 ��!"

#�������

$��%�������

$����

�����	��&�

$

�'

�
	(

'

�

)

�

��

�

��

�

��

��

�

�

��

�

�

���

�������������

�������

����������

 ��!"

#�������

$��%�������

$����

�����	��&�

$

�'

�
	(

'

�

)

Figure 6.10: Run times of RemoveVertices in Property Graph Benchmark.

6.4.6 Summary of the Results

The results of a number of tests incorporated in BlueBench are depicted and dis-
cussed within this section. BlueBench is divided into three particular benchmarks
which differ in the amount of data stored in the database, but are identical in
the structure of the graph data and very similar in what operations get execut-
ed in them. Therefore, it is possible to compare the efficiency of the operations
on the set of the selected GDBs, while conducting the same comparison across
benchmarks also. This leaves the evidence of how well the databases scale with
growing size of the network and how much they are influenced by the presence of
attributes or indexes in the graph.

We divided the operations into several groups to make the analysis more
comprehensible: graph loading, traversal queries, non-traversal queries and data
manipulation. It is surprising to observe that the groups of experiments provided
results that are quite alike; in other words, the GDBs’ relative performance was
similar although it was measured in entirely different scenarios.

Arguably the strongest reason for GDBs to exist is the need of efficient im-
plementation of traversal operations on persistent graph data. In this area Neo4j

57

and DEX clearly outperform the rest of the systems, mainly because of the spe-
cialization of their backends for exactly this type of queries. Neo4j was constantly
achieving the best performance even in the other tests, followed by DEX and Ti-
tan. These results are in contrast with [4] which was written four years ago and
favored DEX over Neo4j. Clearly, Neo4j has made a lot of progress over the years.

On the other hand, it was shown that directly using a document-oriented
database or even relational database for graph operations is not very efficient.
MysqlGraph and especially MongoDB performed well only in tests which were
either lightly or not graph related at all. Finally, InfiniteGraph was revealed to
be the least performing implementation with notoriously slow traversals; often
struggling with scenarios where the final execution time was barely acceptable.
However, it must be stated that Infinitegraph is focused on distributed solutions
with horizontal scaling, not primarily addressing performance on a single machine.

The experiments also helped to discover an important difference between the
synthesized data and the data obtained from a real network. The graphs gen-
erated by the Barabasi-Albert model exhibited low oriented interconnection of
vertices and higher probability of nodes with an extensive degree; although the
latter feature could be altered by setting an appropriate parameter before running
the graph generation.

6.5 Summary

The process of executing BlueBench was depicted and its results were interpreted
in this chapter. We began with describing the machine which was used for the
benchmark runs and explaining what datasets were used to fill the databases with
data. We then proceeded to list the GDBs that were chosen for the experiments,
including the most important specifics that had to be respected during the im-
plementation of BlueBench. In addition, the design of our own representative of
the relational databases world, MysqlGraph, was portrayed. Finally, the results
gathered from the execution of BlueBench were plotted and analyzed.

58

Conclusion

This thesis addresses the need of creating a complex and fair benchmark for an
experimental assessment of various GDB implementations. We have elaborated
on the specific requirements of such a benchmark, and analyzed all possible ways
of accessing the databases and conducting the experiments, so that the benchmark
can cover all functionality expected from the GDBs and yet remain fair. We have
also examined the existing work in the field of graph databases benchmarking; and
found that some valuable results have been produced, yet the testing scenarios
were always limited in terms of the variety of assessed systems, input data or
tested operations.

The result of our efforts, BlueBench, can be run both on real and generated
graph datasets and is composed of a number of testing scenarios which reflect the
wide range of use-cases that GDBs have to face today. BlueBench is based on the
already existing GraphDB-Bench tool for its great generality and extensibility;
such an approach helped to guarantee the further extensibility of BlueBench itself.

We executed BlueBench on datasets of both varying sizes and graph models,
and evaluated an extensive set of particular database systems of different types,
which includes native GDB engines, an RDF store, a document-oriented database
and a relational database. Therefore, not only the performance of the best known
GDBs was compared, also the appropriateness of putting non-graph databases
into graph-related tasks was verified. However, it was considerably challenging
to include such different databases in the benchmarks as many peculiar imple-
mentation specifics had to respected.

The final results of BlueBench are engrossing; they confirm the assumption
that GDBs are much more suitable for graph-related queries than any other
database systems. Among the GDBs themselves, we have managed to separate
the really well performing systems from those that only claim to be the most
efficient.

Future Work

Although lots of effort was put into selecting the set of aspects to be tested by
BlueBench, there is much more work still to be done. For example, the perfor-
mance of the database systems was measured only on a single machine under
convenient conditions, i.e. the systems had as much memory as they needed.
Many interesting results could be obtained from executing the benchmarks on
a cluster of nodes where the GDBs would be replicated and a concurrent access
(with intentional conflicts) performed.

Moreover, due to the complexity of some testing operations included in
BlueBench, all the input graph datasets had to be rather small (no more than
a few millions of objects). It would be interesting to observe how the databases
would cope with data of much higher volumes if, of course, only the less demand-
ing operations were executed. The fact is that the GDB vendors claim that their
products can scale up to billions of objects in the graph.

Finally, a great success would be reviving the original, although never really
started, GraphDB-Bench project which would not be used only be individuals,

59

but by entire open communities with the intention of providing a universal graph
database benchmarking tool, which would periodically evaluate the performance
of all relevant graph database software. We hope that such a feat can still be
achieved.

60

Bibliography

[1] Rodriguez, Neubauer. Constructions from dots and lines. Bulletin of
the American Society for Information Science and Technology, 2010, Pages
35–41.

[2] Dominguez-Sal, Muntés-Mulero, Mart́ınez-Bazán,

Larriba-Pey. Graph Representation. Graph Data Management:
Techniques and Applications, 2012, Pages 1–28. ISBN 978-1-61350-053-8.

[3] Dominguez-Sal, Urbón-Bayes, Giménez-Vañó, Gómez-Villamor,

Mart́ınez-Bazán, Larriba-Pey. Survey of Graph Database
Performance on the HPC Scalable Graph Analysis Benchmark. Springer
Berlin Heidelberg, 2010, Pages 37–48. ISBN 978-3-642-16720-1.

[4] Bader, Feo, Gilbert, Kepner, Koester, Loh, Madduri, Mann,

Meuse, Robinson. HPC Scalable Graph Analysis Benchmark. 2009.
(http://www.graphanalysis.org/benchmark/index.html)

[5] Chakrabarti, Zhan, Faloutsos. R-MAT: A Recursive Model for
Graph Mining. 2004. (http://repository.cmu.edu/compsci/541/)

[6] Ciglan, Averbuch, Hluchy. Benchmarking traversal operations over
graph databases. 2012. (http://ups.savba.sk/~marek/papers/
gdm12-ciglan.pdf)

[7] Lancichinetti, Fortunato. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Phys. Rev. E 80, 016118, 2009. (https://sites.google.
com/site/andrealancichinetti/benchmark2.pdf?attredirects=0)

[8] Vicknair, Macias, Zhao, Nan, Chen, Wilkins. A comparison of a
graph database and a relational database: a data provenance perspective.
2010, ACM SE ’10 Proceedings of the 48th Annual Southeast Regional
Conference, Article No. 42. ISBN: 978-1-4503-0064-3.

[9] Leskovec, Adamic L., Adamic B.. The Dynamics of Viral Marketing.
2007, ACM Transactions on the Web (ACM TWEB)

[10] Averbuch Alex. Say hi to GraphDB-Bench. 2010. (http://
alexaverbuch.blogspot.cz/2010/10/say-hi-to-graphdb-bench.html)

[11] Oracle. What is MySQL?
(http://dev.mysql.com/doc/refman/5.0/en/what-is-mysql.html)

[12] Aurelius Team. Using Titan with BerkeleyDB.
(https://github.com/thinkaurelius/titan/wiki/Using-BerkeleyDB)

[13] Aurelius Team. Titan - Transaction Handling.
(https://github.com/thinkaurelius/titan/wiki/
Transaction-Handling)

61

http://www.graphanalysis.org/benchmark/index.html
http://repository.cmu.edu/compsci/541/
http://ups.savba.sk/~marek/papers/gdm12-ciglan.pdf
http://ups.savba.sk/~marek/papers/gdm12-ciglan.pdf
https://sites.google.com/site/andrealancichinetti/benchmark2.pdf?attredirects=0
https://sites.google.com/site/andrealancichinetti/benchmark2.pdf?attredirects=0
http://alexaverbuch.blogspot.cz/2010/10/say-hi-to-graphdb-bench.html
http://alexaverbuch.blogspot.cz/2010/10/say-hi-to-graphdb-bench.html
http://dev.mysql.com/doc/refman/5.0/en/what-is-mysql.html
https://github.com/thinkaurelius/titan/wiki/Using-BerkeleyDB
https://github.com/thinkaurelius/titan/wiki/Transaction-Handling
https://github.com/thinkaurelius/titan/wiki/Transaction-Handling

[14] Aurelius Team. Titan Limitations.
(https://github.com/thinkaurelius/titan/wiki/Titan-Limitations)

[15] Ciglan. SGDB3 – Simple Graph Database. (http://ups.savba.sk/

~marek/sgdb.html)

[16] TinkerPop. Blueprints – Graph Indices.
(https://github.com/tinkerpop/blueprints/wiki/Graph-Indices)

[17] sparsity technologies. Why DEX.
(http://www.sparsity-technologies.com/dex)

[18] DB-Engines. Ranking of Graph DBMS.
(http://db-engines.com/en/ranking/graph+dbms)

[19] DB-Engines. Ranking of Document Stores.
(http://db-engines.com/en/ranking/document+store)

[20] sparsity technologies. DEX - A High-Performance Graph Database
Management System.
(http://www.sparsity-technologies.com/dex)

[21] sparsity technologies. DEXHA - Architecture.
(http://www.sparsity-technologies.com/dex_tutorials4?
name=Architecture)

[22] Angles Renzo. Say hi to GraphDB-Bench. 2012. (http://dcc.utalca.
cl/~rangles/files/gdm2012.pdf)

[23] Robinson, Webber, Eifrem. Graph Databases. 2013, O’Reilly Media.
(http://graphdatabases.com/)

[24] Objectivity inc.. Understanding Accelerated Ingest.
(http://wiki.infinitegraph.com/3.0/w/index.php?
title=Understanding_Accelerated_Ingest)

[25] Objectivity inc.. InfiniteGraph 3.0 Technical Specifications.
(http://www.objectivity.com/products/infinitegraph/
technical-specifications/)

[26] Neo Technology. Neo4j HA Architecture.
(http://docs.neo4j.org/chunked/stable/ha-architecture.html)

[27] Redmond, Wilson. Seven Databases in Seven Weeks. 2012, O’Reilly
Media. ISBN: 978-1-934356-92-0.(http://it-ebooks.info/book/866/)

[28] NuvolaBase Ltd. OrientDB.
(https://github.com/nuvolabase/orientdb)

[29] NuvolaBase Ltd. OrientDB - Caching.
(https://github.com/nuvolabase/orientdb/wiki/Caching)

[30] NuvolaBase Ltd. OrientDB - Concepts.
(https://github.com/nuvolabase/orientdb/wiki/Concepts)

62

https://github.com/thinkaurelius/titan/wiki/Titan-Limitations
http://ups.savba.sk/~marek/sgdb.html
http://ups.savba.sk/~marek/sgdb.html
https://github.com/tinkerpop/blueprints/wiki/Graph-Indices
http://www.sparsity-technologies.com/dex
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/document+store
http://www.sparsity-technologies.com/dex
http://www.sparsity-technologies.com/dex_tutorials4?name=Architecture
http://www.sparsity-technologies.com/dex_tutorials4?name=Architecture
http://dcc.utalca.cl/~rangles/files/gdm2012.pdf
http://dcc.utalca.cl/~rangles/files/gdm2012.pdf
http://graphdatabases.com/
http://wiki.infinitegraph.com/3.0/w/index.php?title=Understanding_Accelerated_Ingest
http://wiki.infinitegraph.com/3.0/w/index.php?title=Understanding_Accelerated_Ingest
http://www.objectivity.com/products/infinitegraph/technical-specifications/
http://www.objectivity.com/products/infinitegraph/technical-specifications/
http://docs.neo4j.org/chunked/stable/ha-architecture.html
http://it-ebooks.info/book/866/
https://github.com/nuvolabase/orientdb
https://github.com/nuvolabase/orientdb/wiki/Caching
https://github.com/nuvolabase/orientdb/wiki/Concepts

[31] NuvolaBase Ltd. OrientDB - Concepts - Record Version.
(https://github.com/nuvolabase/orientdb/wiki/Concepts#
record-version)

[32] NuvolaBase Ltd. OrientDB - Transactions.
(https://github.com/nuvolabase/orientdb/wiki/Transactions)

[33] Aurelius. Titan. (https://github.com/thinkaurelius/titan/wiki)

[34] Aurelius. Titan - Indexing Backend Overview.
(https://github.com/thinkaurelius/titan/wiki/
Indexing-Backend-Overview)

[35] Aurelius. Titan - Storage Backend Overview.
(https://github.com/thinkaurelius/titan/wiki/
Storage-Backend-Overview)

[36] Broecheler Matthias. Big Graph Data.
(http://www.slideshare.net/knowfrominfo/big-graph-data)

[37] Rodriguez Marko. The Rise of Big Graph Data.
(http://www.slideshare.net/slidarko/
titan-the-rise-of-big-graph-data)

[38] Rodriguez Marko. The Rise of Big Graph Data.
(http://www.slideshare.net/slidarko/
titan-the-rise-of-big-graph-data)

[39] Rodriguez Marko. The Rise of Big Graph Data.
(http://www.slideshare.net/slidarko/
titan-the-rise-of-big-graph-data)

[40] Erdos, Renyi. On random graphs. Mathematicae 6, 1959, Pages 290–297.

[41] Leskovec, Lang, Dasgupta, Mahoney. Statistical properties of
community structure in large social and information networks. 2008.

[42] Barabási, Albert. Emergence of scaling in random networks. Science.
2008. Pages 509–512.

63

https://github.com/nuvolabase/orientdb/wiki/Concepts#record-version
https://github.com/nuvolabase/orientdb/wiki/Concepts#record-version
https://github.com/nuvolabase/orientdb/wiki/Transactions
https://github.com/thinkaurelius/titan/wiki
https://github.com/thinkaurelius/titan/wiki/Indexing-Backend-Overview
https://github.com/thinkaurelius/titan/wiki/Indexing-Backend-Overview
https://github.com/thinkaurelius/titan/wiki/Storage-Backend-Overview
https://github.com/thinkaurelius/titan/wiki/Storage-Backend-Overview
http://www.slideshare.net/knowfrominfo/big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data
http://www.slideshare.net/slidarko/titan-the-rise-of-big-graph-data

A. Contents of the CD

The enclosed files are organized as follows:

/kolomicenko.pdf
This thesis.

/results/
The genuine BlueBench results in a .csv format.

/charts/
The charts generated from the results.

/BlueBench/doc/api/
A very brief reference documentation to the source files.

/BlueBench/doc/install.txt
Instructions of how to install and execute BlueBench.

/BlueBench/src/java
Java sources.

/BlueBench/src/python
Python sources for generating the artificial graph datasets.

/BlueBench/lib
All necessary libraries.

/BlueBench/data/datasets
A directory for generated graphs.

/BlueBench/data/results
A directory for BlueBench results.

/BlueBench/data/DB
A directory for the tested databases’ persistent storages.

/BlueBench/run.sh
A script for building and running BlueBench.

64

	Introduction
	NoSQL Movement
	Introduction to NoSQL
	Consistency in NoSQL
	CAP Theorem
	BASE

	Key-value Databases
	Column-family Stores
	Document-oriented Databases
	Graph Databases
	Graph Model
	Data Structures
	RDF
	TinkerPop Stack
	Graph Query Languages

	Summary

	Graph Database Systems
	DEX
	InfiniteGraph
	Neo4j
	OrientDB
	Titan
	Summary

	Benchmarking
	Recommended Design
	Graph Operations
	Query Classification
	Benchmarking Process

	Benchmark Datasets
	Real Graph Properties
	Graph Data Generators

	Summary

	Related Work
	GraphDB-Bench
	Survey of Graph Database Performance on the HPC-SGAB
	Benchmarking Traversal Operations over Graph Databases
	A Comparison of a Graph Database and a Relational Database
	Summary

	Final Design of BlueBench
	General Goals
	Used Technologies
	Conducted Tests
	Individual Operations
	Benchmarks

	BlueBench Software Architecture
	Operation
	Operation Factory
	Core Benchmark Classes
	Logging of Operations
	Loading the Graph
	Addressing Vertices across Scopes

	Summary

	BlueBench Results
	Testing Environment
	Input Data
	Assessed DB Systems
	Results of the Tests
	Graph Loading
	Traversal
	Shortest Path
	Non-traversing Queries
	Manipulation Queries
	Summary of the Results

	Summary

	Conclusion
	Bibliography
	Contents of the CD

