
Charles University in Prague

Faculty of Mathematics and Physics

MASTER’S THESIS

Bc. Jakub Kúdela

Mining Parallel Corpora from the Web

Department of Software Engineering

Thesis supervisor: Doc. RNDr. Irena Holubová, Ph.D.

Thesis consultant: RNDr. Ondřej Bojar, Ph.D.

Study programme: Computer Science (N1801)

Specialization: Software Systems (2612T043)

Prague 2016

First, I would like to thank my supervisor Doc. RNDr. Irena Holubová, Ph.D. for
inspiring me when selecting the topic related to my interests, for her valuable and
professional advice, and for the time she has spent helping me with the thesis. I
would also like to express my gratitude to my consultant RNDr. Ondřej Bojar,
Ph.D. for introducing me to the domain of natural language processing and for his
time and ideas, which helped me a lot. I am very greatful to my parents Libuša
and Ivan for their determination to support me as much as possible. Next, I
would like to thank my brother Lukáš, who has always motivated me as a great
older sibling. Last but not least, I am thankful to my sweetheart Zuzana for her
patience and everything she does for me.

Once again, thank you!

V prvom rade chcem pod’akovat’ mojej vedúcej Doc. RNDr. Irene Holubovej,
Ph.D. za inšpiráciu pri výbere témy bĺızkej moj́ım záujmom, za jej cenné a od-
borné rady, ochotu a čas ktorý mi v priebehu ṕısania práce venovala. Rovnako
by som rád pod’akoval môjmu konzultantovi RNDr. Ondřejovi Bojarovi, Ph.D.
za uvedenie do problémov domény spracovania prirodzeného jazyka, za jeho čas
a nanápady, ktoré mi v práci nesmierne pomohli. Velká vd’aka patŕı mojim rodi-
čom Libuši a Ivanovi za ich velké odhodlanie podporit’ ma v živote najviac ako
sa len dá. Taktiež chcem pod’akovat’ svojmu bratovi Lukášovi, ktorý ma vždy v
mnohom motivoval ako skvelý starš́ı súrodenec. V neposlednom rade d’akujem
mojej priatel’ke Zuzane, za jej trpezlivost’ a za všetko čo pre mňa rob́ı.

Ešte raz Vám všetkým d’akujem!

I declare that I carried out this master’s thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

Prague, May 12, 2016 Jakub Kúdela

Title: Mining Parallel Corpora from the Web
Author: Bc. Jakub Kúdela
Author’s e-mail address: jakub.kudela@gmail.com
Department: Department of Software Engineering
Thesis supervisor: Doc. RNDr. Irena Holubová, Ph.D.
Supervisor’s e-mail address: holubova@ksi.mff.cuni.cz
Thesis consultant: RNDr. Ondřej Bojar, Ph.D.
Consultant’s e-mail adress: bojar@ufal.mff.cuni.cz

Abstract: Statistical machine translation (SMT) is one of the most popular ap-
proaches to machine translation today. It uses statistical models whose parame-
ters are derived from the analysis of a parallel corpus required for the training.
The existence of a parallel corpus is the most important prerequisite for building
an effective SMT system. Various properties of the corpus, such as its volume and
quality, highly affect the results of the translation. The web can be considered
as an ever-growing source of considerable amounts of parallel data to be mined
and included in the training process, thus increasing the effectiveness of SMT
systems. The first part of this thesis summarizes some of the popular methods
for acquiring parallel corpora from the web. Most of these methods search for
pairs of parallel web pages by looking for the similarity of their structures. How-
ever, we believe there still exists a non-negligible amount of parallel data spread
across the web pages not sharing similar structure. In the next part, we propose
a different approach to identifying parallel content on the web, not dependent on
the page structure comparison at all. We begin by introducing a generic method
for bilingual document alignment. The key step of our method is based on the
combination of two recently popular ideas, namely the bilingual extension of the
word2vec model and the locality-sensitive hashing. With the method applied to
the task of mining parallel corpora from the web, we are able to effectively iden-
tify pairs of parallel segments (i.e. paragraphs) located anywhere on the pages of
a web domain, regardless of their structure. The final part of our work describes
the experiments conducted with our method. One experiment uses pre-aligned
data, and its results are evaluated automatically. The other experiment involves
real-world data provided by the Common Crawl Foundation and presents a solu-
tion to the task of mining parallel corpora from a hundreds of terabytes large set
of web-crawled data. Both experiments show satisfactory results, implying that
our proposed method is a promising baseline for acquiring parallel corpora from
the web. We believe the amount of parallel data obtainable with our method
might enable SMT systems to get trained better and eventually achieve superior
translation results.

Keywords: mining parallel corpora, bilingual document alignment, word2vec,
locality-sensitive hashing

jakub.kudela@gmail.com
holubova@ksi.mff.cuni.cz
bojar@ufal.mff.cuni.cz

Názov: Rafinácia paralelných korpusov z webu
Autor: Bc. Jakub Kúdela
E-mailová adresa autora: jakub.kudela@gmail.com
Katedra: Katedra Softwarového Inženýrstv́ı
Vedúci práce: Doc. RNDr. Irena Holubová, Ph.D.
E-mailová adresa vedúceho: holubova@ksi.mff.cuni.cz
Konzultant práce: RNDr. Ondřej Bojar, Ph.D.
E-mailová adresa konzultanta: bojar@ufal.mff.cuni.cz

Abstrakt: Štatistický strojový preklad (SMT, statistical machine translation) je
v súčasnosti jeden z najpopulárneǰśıch pŕıstupov ku strojovému prekladu. Tento
pŕıstup využ́ıva štatistické modely, ktorých parametre sú źıskané z analýzy para-
lelných korpusov potrebných pre tréning. Existencia paralelného korpusu je naj-
dôležiteǰsou prerekvizitou pre vytvorenie účinného SMT prekladača. Viaceré vlas-
nosti tohto korpusu, ako napŕıklad objem a kvalita, ovplyvňujú výsledky prekladu
do značnej miery. Web môžeme považovat’ za neustále rastúci zdroj značného
množstva paralelných dát, ktoré môžu byt’ rafinované a zahrnuté do trénovacieho
procesu, č́ım môžu zdokonalit’ výsledky SMT prekladača. Prvá čast’ práce suma-
rizuje niektoré z rozš́ırených metód pre źıskavanie paralelného korpusu z webu.
Väčšina z metód hl’adá páry paralelných webových stránok podl’a podobnosti ich
štruktúr. Veŕıme však, že existuje nezanedbatelné množstvo paralelných dát roz-
ložených na webových stránkach, ktoré nezdiel’ajú podobnú štruktúru. V d’aľsej
časti predstav́ıme iný pŕıstup ku identifikácii paralelného obsahu na webe. Tento
pŕıstup vôbec nezáviśı na porovnávańı štruktúr webových stránok. Najskôr si
predstav́ıme generickú metódu pre bilingválne zarovnanie dokumentov. Kl’účová
čast’ našej metódy je postavená na kombinácii dvoch súčasne populárnych myš-
lienok, menovite bilingválneho rozš́ırenia modelu word2vec a lokálne-senzit́ıvneho
hašovania (locality-sensitive hashing). S metódou aplikovanou na úlohu źıskava-
nia paralelných korpusov z webu, sme schopńı efekt́ıvne identifikovat’ páry para-
lelných čast́ı (paragrafov) nachádzajúcich sa na l’ubovolných stránkach webovej
domény bez ohl’adu na štruktúru stránok. V poslednej časti naša práca opisuje
experimenty vykonané s našou metódou. Prvý experiment využ́ıva vopred za-
rovnané dáta a jeho výsledky sú vyhodnotené automaticky. Druhý experiment
zahŕňa reálne dáta poskytované organizáciou Common Crawl Foundation a pred-
stavuje riešenie pre úlohu rafinácie paralelných korpusov zo stoviek terabajtov
velkého množstva dát źıskaných z webu. Obidva experimenty ukazujú priaznivé
výsledky, čo naznačuje, že navrhovaná metóda môže tvorit’ nádejný základ pre
nový spôsob źıskavania paralelných korpusov z webu. Veŕıme, že množstvo pa-
ralelných dát, ktoré je naša metóda schopná źıskat’ by mohlo zabezbečit’ SMT
prekladačom objemneǰśı tréning a tým pádom aj lepšie výsledky.

Kl’účové slová: rafinácia paralelných korpusov, bilingválne dokumentové zarov-
nanie, word2vec, lokálne-senzit́ıvne hašovanie

jakub.kudela@gmail.com
holubova@ksi.mff.cuni.cz
bojar@ufal.mff.cuni.cz

Contents

Introduction 1

1 Related Work 4

1.1 Bitextor . 4

1.1.1 Bitextor: Procedure . 5

1.1.2 Bitextor: Results . 6

1.1.3 Bitextor: Summary . 6

1.2 PaCo2 . 7

1.2.1 PaCo2: Procedure . 7

1.2.2 PaCo2: Results . 9

1.2.3 PaCo2: Summary . 9

1.3 STRAND . 10

1.3.1 STRAND: Procedure . 10

1.3.2 STRAND: Results . 12

1.3.3 STRAND: Summary . 12

1.4 Mining Wikipedia . 13

1.4.1 Mining Wikipedia: Procedure 13

1.4.2 Mining Wikipedia: Results 15

1.4.3 Mining Wikipedia: Summary 15

1.5 Mining Common Crawl . 15

1.5.1 Mining Common Crawl: Procedure 16

1.5.2 Mining Common Crawl: Results 18

1.5.3 Mining Common Crawl: Summary 18

1.6 Summary . 18

2 Background Work and Prerequisities 20

2.1 Overview of Proposed Method . 20

2.2 CzEng 1.0 . 21

2.3 MorphoDiTa . 22

2.4 SyMGIZA++ . 22

2.5 bivec . 23

2.6 Annoy . 28

2.7 PyBrain . 29

2.8 Common Crawl . 29

2.9 Hadoop . 31

2.9.1 HDFS . 31

2.9.2 MapReduce . 32

2.10 WARC-Hadoop . 34

2.11 MetaCentrum . 34

2.12 jsoup . 35

2.13 language-detector . 35

3 Proposed Method 36

3.1 Task Definition . 36

3.2 Training Part I: Dictionary, Word Vectors 37

3.2.1 Preprocessing Training Parallel Data 37

3.2.2 Applying SyMGIZA++ 38

3.2.3 Generating Dictionary . 38

3.2.4 Applying bivec . 39

3.3 Training Part II: Classifier . 40

3.3.1 Preparing Documents . 41

3.3.2 Generating Document Vectors 42

3.3.3 Aligning Document Vectors (Annoy) 44

3.3.4 Scoring Alignments . 45

3.3.5 Training Binary Classifier 46

3.4 Running . 49

3.4.1 Preparing Documents . 49

3.4.2 Applying Binary Classifier 49

3.5 Discussion . 51

4 Prealigned Data (CzEng) Experiment 54

4.1 Experiment Procedure . 54

4.1.1 Preprocessing CzEng 1.0 54

4.1.2 Splitting and Cleaning CzEng 1.0 55

4.1.3 Training Part I: Dictionary, Word Vectors 56

4.1.4 Training Part II: Classifier 57

4.1.5 Running . 58

4.2 Experiment Results . 59

4.3 Experiment Time Duration . 62

4.4 Extension: Lemmatization . 62

5 Web Data (Common Crawl) Experiment 64

5.1 Experiment Procedure . 64

5.1.1 Distributed Execution . 66

5.1.2 Local Execution . 68

5.2 Experiment Results . 69

5.3 Experiment Time Duration . 71

Conclusions and Future Work 72

Bibliography 75

List of Figures 82

List of Tables 83

A CD-ROM Contents 84

Introduction

Statistical machine translation (SMT) [1] is the most popular machine translation
(MT) paradigm today. This approach to MT is preferred in organizations like
Google or Microsoft, which play significant roles in an applied field where heavily
used translation systems are deployed for the whole world to use. SMT utilizes
statistical models for the translation. These models are trained on vast amounts
of both monolingual data and parallel data, i.e. texts translated by humans.

The monolingual data help the system to understand what the target language
should look like while the parallel data help the system to learn to translate
smaller segments of one language into another. Monolingual data, also known as
text corpora, can be described as a simple text in a single language. Parallel data,
also known as parallel text corpora, bilingual text corpora (in the bilingual case)
or simply bitext, are collections of sentence pairs, the sentences being of different
languages, where one sentence is a translation of the other. One example of par-
allel texts in the human history is the famous Rosetta Stone (see Figure 1). The
discovery of this artifact, which contained the same decree inscribed in Hiero-
glyphic, Demotic and Greek, led to deciphering and understanding of the extinct
Hieroglyphic writing.

Figure 1: Rosetta Stone

1

The existence of parallel data is the most important prerequisite for building an ef-
fective SMT system. Today there exist a plenty of both monolingual and sentence-
aligned parallel data. Such a collection of corpora is for example OPUS [2]. One
of the richest sources of the parallel data included in OPUS are texts produced by
government organizations, such as the European Parliament Proceedings, which
are being translated into each of the 23 official languages of the European Union.
Other important sources we could mention are movie subtitles, books, news web-
sites, or localization files of computer software.

We believe that the web is a potential source of considerable amounts of parallel
data generated not only by well-known organizations like the European Parlia-
ment but also by organizations of smaller sizes and by individuals. In the field
of SMT there is also motivation and need for acquisition of parallel data from
various domains. To illustrate this motivation, an SMT system trained on just
the parallel data from the European Parliament Proceedings may seem cumber-
some in translation of standard speech language because of the formal nature of
the training data. We assume that by mining parallel data from the web, we can
obtain useful parallel corpora which would also reflect the natural distribution of
domains.

Goals

The main goal of our thesis is to propose a method for solving the task called
bilingual document alignment applicable in the field of mining parallel data from
the web. This problem can be generally stated as follows: assume we have a set
of documents written in two different languages, where a document is a plain text
not limited by length; it can be a sentence, a sequence of multiple sentences, or
even a single word. The solution of this task is a collection of all such pairs of
documents in different languages that are mutual translations of each other.

We would like to distinguish our method by taking a different approach than
the one shared by many others. The majority of methods developed in the field
primarily use the structure of the web pages in the alignment process. We believe
that by performing structure similarity filtering, we can lose a considerable part
of parallel data.

The aim is to propose a more generic method, not based on page structure com-
parison. The method is expected to find bitexts located on pages not at all similar
in structure. In other words, our motivation is to find the parallel segments, i.e.
paragraphs we consider as input documents to our method, contained on a given
bilingual web domain, regardless of the structure of its web pages. By moving
to these finer units, we also have to rely more on the actual content of the para-
graphs. To overcome the well-known problems of data sparseness, we plan to
use currently popular models like word2vec [3][4][5], and to deal with the possi-
bly large amount of input documents, we intent to make use of recently studied
strategies for locality-sensitive hashing [6][7].

2

Any finer alignment of the documents, such as sentence alignment, is beyond the
scope of our work. The methods for achieving sentence alignment for a document-
aligned parallel corpus are well examined [8] and can be easily applied to the
output of our method.

Moreover, our particular requirements for the target method are scalability and
reasonable behavior on noisy and sparse data, where only some of the input
documents will have a pair. Both these requirements are needed when processing
data from the web. It is also important to mention that the method is expected
to be supervised, which means it depends on the provided a priori knowledge in
the form of an already existing sentence-aligned bilingual text corpus that is used
in the training process. However, this does not mean that the training corpus
needs to cover every single word contained in the actual input documents.

Another goal of this work is to perform experiments with the proposed method
and present their results. Our experiments are solely focused on the Czech–
English [9] language pair. The first experiment is carried out using CzEng
1.0 [10]—a Czech–English sentence-aligned parallel corpus. This way we can
measure the quality of the results automatically. The second experiment uses
more realistic, noisy data provided by the Common Crawl Foundation [11]—a
non-profit organization with the goal of democratizing access to web informa-
tion. It produces and maintains an open repository of web-crawled data that is
universally accessible and analyzable.

Outline

The rest of this thesis is organized as follows. Chapter 1 introduces the related
work in this field, covering similar approaches that have been already explored.
They can still serve as an inspiration for the potential extension of ideas covered
in the thesis. In Chapter 2 we discuss technologies used in our work, together
with reasoning and motivation for their selection. Chapter 3 contains a detailed
description of the proposed method with all implementation details. Chapter 4
describes the experiment done on the CzEng 1.0 corpus. In Chapter 5 the exper-
iment done on the Common Crawl dataset is explained, along with a way how to
mine parallel corpora from the vast amounts of real-world web data. The final
chapter concludes the discussion and suggests potential directions of future work.

3

Chapter 1

Related Work

This chapter describes methods that are the closest to ours. All approaches
mentioned in the following text have one thing in common—their goal is to harvest
parallel corpora from the web.

1.1 Bitextor

Bitextor1 [12][13] is a well maintained free and open-source bitext generator which
obtains its base corpora from the Internet. First, it downloads an entire website,
keeping only the files in the plain text, HyperText Markup Language (HTML) [14]
or Extensible Markup Language (XML) [15] format. Then the system detects the
language of each file and applies a group of heuristics to find possible candidate
pairs of files which can have the same content. These heuristics include for ex-
ample file size comparison, HTML tag structure edit distance, and text blocks
length difference. Once it has identified the candidate pairs of files, it generates
a bitext output in the Translation Memory eXchange (TMX) [16] format.

Since the first release of Bitextor, the system has evolved and has been extended
with features like heuristics based on Uniform Resource Locator (URL) and uti-
lization of dictionaries with the bag-of-words model to help the candidate filtering
process. The following text describes the current state of the core pipeline of Bi-
textor according to the standard workflow.

1https://sourceforge.net/projects/bitextor/ (accessed March 20, 2016)

4

https://sourceforge.net/projects/bitextor/

1.1.1 Bitextor: Procedure

1. Bitextor downloads all text/HTML/XML files from a website provided by
seed URLs, while keeping their folder structure. For this purpose it inter-
nally uses a crawler called HTTrack2.

2. It extracts encoding, MIME type and Base64-encoded content of each down-
loaded file. The library called boilerpipe3 helps to remove menus and other
unwanted parts from the HTML files. Then the tool Apache-Tika4 is used
to repair the structure of the HTML files, obtaining XHTML [17] files. This
step also normalizes encoding of the files into uniform UTF-8.

3. The system identifies the language of the files. This step is done us-
ing langid.py5 [18], which is a standalone language identification tool pre-
trained for a large number of languages.

4. A so-called raspa representation is created for every HTML file. In order to
create such a representation every text block is replaced by the sequence of
apostrophes, of length log2(len(text)), where len(text) is the length (in char-
acters) of the given text block. This means that the representation preserves
the HTML tags in-place, only the text blocks are changed. These raspa rep-
resentations will later help the system to calculate the fuzzy-matching score
used to rank the parallel file candidates.

5. The next step uses the bag-of-words from each file and a provided dictionary
to compute an overlapping score between the files in both languages. For
each file in one language, it creates a list of ten highest scoring candidates
in the other language. The default dictionary contains English, Spanish,
Catalan, Croatian, and Basque languages.

However, the system provides a script for creating a custom dictionary. This
script gets a sentence-aligned bilingual corpus in the languages we want to
consider, lowercases it, and filters out overly long sentences. Then it runs
GIZA++6, a word-alignment tool that implements the series of IBM Models
introduced by Brown et al. [19]. Bitextor lets GIZA++ dump parameters
of the trained statistical models for both directions (one language as the
source and the other as the target, and vice versa). Finally, each word
pair appearing in both directions and having the value of harmonic mean
of parameters great enough is included into the dictionary.

6. With the candidate lists created, the system recalculates the scores pro-
vided by the previous step. It multiplies the score of each candidate by
the fuzzy-matching score between the raspa representations of the file and
the candidate. The fuzzy-matching score compares two raspa sequences on

2http://www.httrack.com/ (accessed March 20, 2016)
3https://github.com/misja/python-boilerpipe (accessed March 20, 2016)
4http://tika.apache.org/ (accessed March 20, 2016)
5https://pypi.python.org/pypi/langid (accessed March 20, 2016)
6http://www.statmt.org/moses/giza/GIZA++.html (accessed March 20, 2016)

5

http://www.httrack.com/
https://github.com/misja/python-boilerpipe
http://tika.apache.org/
https://pypi.python.org/pypi/langid
http://www.statmt.org/moses/giza/GIZA++.html

the basis of Levenshtein’s edit distance. To calculate the edit distance the
system internally uses the python-Levenshtein7 library.

7. Bitextor allows to create the candidate lists in both directions (one lan-
guage as the source and the other as the target, and vice versa). In this
situation, the score for a file pair is calculated as an average of scores for
both directions. If the file pair scores below the threshold in either of the
directions it is discarded altogether.

8. All aligned files are first concatenated and stored in two new files, one for
each language. Concatenation is done in the same order, while using a
system-specific separator. The presence of separators ensures that segment
alignment will happen only between the aligned files. Then the system runs
hunalign8 [20] to get the segment alignment. In the first pass, it uses Gale-
Church [21] sentence-length algorithm for the alignment. Next, it creates
an automatic dictionary from the first alignment. Then it realigns the text
in the second pass, using the automatic dictionary.

9. After running hunalign, the system removes all unaligned segments and
those with a confidence score below a specified threshold. Moreover, the
system allows a configuration in which the aligned pairs of segments coming
from a pair of files with too many problems are discarded. Finally, with the
segments aligned and filtered, Bitextor can, optionally, output them in the
TMX format.

1.1.2 Bitextor: Results

The system’s authors suggest favoring precision over recall. They performed an
experiment covering two websites. The system’s output was compared against hu-
man evaluations. The preliminary results show a great precision of approximately
100% at a reasonable recall of more than 63%.

1.1.3 Bitextor: Summary

We consider Bitextor as a mature, language independent tool which can handle
many typical scenarios when facing the problem of harvesting parallel corpora
from multilingual websites. Yet its functionality is based on a premise that par-
allel texts are stored in files with very similar HTML structure. However, there
are many websites which are designed in such way that all the information is
available in the primary language, with only a subset translated into secondary
languages. As an example, consider a news website where each article is written
in the primary language, starting with a summary followed with a body. But
each of these articles has a translation available only for the summary part. This

7https://pypi.python.org/pypi/python-Levenshtein/ (accessed March 20, 2016)
8http://mokk.bme.hu/resources/hunalign/ (accessed March 20, 2016)

6

https://pypi.python.org/pypi/python-Levenshtein/
http://mokk.bme.hu/resources/hunalign/

means that the page with the article written in the primary language has a dif-
ferent HTML structure than the page containing just the translated summary.
They probably differ in the number of paragraph tags, and thus Bitextor would
discard such pair due to the difference in both HTML structure and text length.
Also, in the case where a single page contains a same piece of text available in
both the languages, Bitextor would not find such bitext.

1.2 PaCo2

PaCo2 [22] is a fully automated tool for gathering parallel corpora from the web.
Unlike others, it is also focused on identification of potential websites containing
bilingual content for chosen languages. Being language independent, it is adapt-
able to any set of languages. The architecture of PaCo2 is designed as a pipeline
consisting of three main phases. In the first, phase the web is searched for web-
sites which might contain bilingual textual content. In the second phase, parallel
web pages are detected on the sites identified in the previous phase. In the third
and final phase, parallel web pages are aligned at the sentence level and a parallel
corpus is created. The details of each phase are described in the list below.

1.2.1 PaCo2: Procedure

1. PaCo2 handles bilingual website detection. This custom capability is a rela-
tively unique feature in the field. It has also been implemented in the previ-
ous approaches (e.g. STRAND); however, they were entirely dependent on
the AltaVista search engine, which had an application programming inter-
face (API) that allowed to search for multilingual websites. Unfortunately,
it is no longer available.

The system uses search engines for identification of potential bilingual web-
sites. As an input, it requires a language pair and a list of fifty or more
lemmatized words from the preferably less frequent of the two languages. It
then generates queries for the search engine. The queries are triplets from
the list of provided words. When querying the search engine, the system
uses its API to request the results for the other language. This way, a list
containing URLs of candidate websites is created.

2. The preliminary filter is applied to discard a priori unwanted candidates,
such as gigantic websites, blog platforms, and social media. Authors have
found out that these would bring a very negligible benefit. For each of the
URLs left in the filtered list, the system downloads a very small part of
the website and searches for elements of parallelism, e.g. hyperlinks with
anchor texts or alt attribute texts indicating presence of languages. If the
website passes the set of requirements on this smaller scale it is considered
as a website with parallel content.

7

3. For each website found in the previous step, the system harvests all of its
HTML files using Wget9. In order to compare each pair of the 𝑁 acquired
files, the system would need to perform 𝑁2 comparisons in the worst case.
However, various heuristics and statistical filters are applied to reduce this
number. These include language, file size, and length comparison. The
system compares only HTML files written in the exact two languages re-
quested by the user. It also excludes all file pairs outside a certain similarity
threshold with regard to the file size and length ratio. Language identifica-
tion is performed using TextCat10, and character encoding is standardized
to UTF-8 by means of BeautyfulSoup11.

Authors of PaCo2 decided to keep boilerplate12 parts because they consider
the menus and other elements such as breadcrumbs to contain useful parallel
information. In addition, each content having the same value regardless
the language of the text (e.g. copyright notes or contact information) is
removed from the results. The bitext detection module runs the following
three major filters when searching for parallel files:

(a) Link Follower Filter focuses on the hyperlinks located in HTML struc-
tures of the files. For example, let us assume we want to find parallel
HTML files for the language pair consisting of Czech and English. If
there exists an HTML file pair where the structure of the first file con-
tains a hyperlink to the second file and vice versa, and additionally,
if the links contain reasonable anchor texts like “English”, “anglicky”
and “Czech”, “česky”, the filter considers the pair of files as parallel.

(b) URL Pattern Search draws from the assumption that parallel web
pages have usually similar URLs. They often differ only in parts rep-
resenting language codes. For instance, the following two URLs refer-
encing parallel files differ only in this manner. Czech article contains
“cs” in its URL, while the English one contains “en” instead.

http://www.mff.cuni.cz/to.cs/verejnost/konalo-se/2016-03-cenaprop/

http://www.mff.cuni.cz/to.en/verejnost/konalo-se/2016-03-cenaprop/

To detect such scenarios, for each pair of file, PaCo2 first finds and
removes the language codes from both URLs. Then it calculates the
Longest Common Subsequence Ratio (LCSR). If the ratio reaches a
required threshold the system considers the candidates as parallel files.

(c) HTML Structure and Content Filter is useful in all other scenarios not
covered by the previous two filters. The system compares HTML tag
structure information [23] combined with content similarity. PaCo2

authors observed that by comparing only the HTML structures of the
files the results are poor due to the existence of numerous files with
similar HTML structures on an ordinary website.

9https://www.gnu.org/software/wget/ (accessed March 27, 2016)
10http://www.let.rug.nl/vannoord/TextCat/ (accessed March 27, 2016)
11http://www.crummy.com/software/BeautifulSoup/ (accessed March 27, 2016)
12surplus “clutter” (templates) around the main textual content of a web page

8

https://www.gnu.org/software/wget/
http://www.let.rug.nl/vannoord/TextCat/
http://www.crummy.com/software/BeautifulSoup/

In order to compare content similarity, the system works with ex-
tracted universal entities, e.g. numbers, email addresses and dates.
The algorithm for extraction of these language independent entities
has been adapted from the previous work in the field [24]. To compute
the content similarity of candidate parallel files, vector representation
consisting of extracted entities is prepared for each file. The order of
entities corresponds to the order of their appearance in the content.
The Ratcliff/Obershelp [25] pattern recognition algorithm is then used
to compare these vectors.

To calculate the total score for a given pair of candidate parallel files,
their HTML structure similarity and content similarity is calculated.
Both results are weighed, and those candidates that reach a certain
threshold are regarded as parallel files. If there are multiple candidates
that have reached the threshold to be a parallel file with one file, all
of them are ruled out.

4. Sentence alignment is done with the help of the hunalign tool. Then, a
series of post processing activities is applied. Translation units (i.e. pairs of
sentences) are sorted and deduplicated. Units containing solely elements like
numbers, email addresses, or URLs are excluded. Language identification
is done once again, but this time at the sentence level. Units that do not fit
the requested languages are discarded. At the end of the process, if there
are more than two unique target texts for the same source text, all units
containing this source text are omitted in favor of precision. The output
can be either in raw text or in the TMX format.

1.2.2 PaCo2: Results

PaCo2 authors report experiments on these language pairs: Basque–Spanish,
Spanish–English and Portuguese–English. In order to identify the bilingual web-
sites, PaCo2 utilized the Bing13 search engine. Results show acceptable precision
of 97% for the Basque–Spanish language pair. However, the precision levels for
the Spanish–English and Portuguese–English pairs were relatively poor, 67% and
78% respectively. Error analysis over the wrong candidates showed the accuracy
of the system to be low due to the fact that many of the web pages covered in
the experiment contained dynamically variable elements (e.g. tag-clouds).

1.2.3 PaCo2: Summary

PaCo2 is a language independent system. Its unique feature of identification of
websites containing parallel data is beneficial. The aligning process is entirely
unsupervised, which we also consider a valuable feature. The only a priori knowl-
edge required to run the whole process of parallel data acquisition is a list of fifty

13http://www.let.rug.nl/vannoord/TextCat/ (accessed March 27, 2016)

9

http://www.let.rug.nl/vannoord/TextCat/

or more lemmatized words from one of the two chosen languages. We appreciate
the focus on performance, where PaCo2 uses a set of heuristics. These identify
and handle common scenarios, which leads to faster delivery of results. Unfor-
tunately, like Bitextor, PaCo2 cannot handle alignment of parallel data segments
located in files with different HTML structure.

1.3 STRAND

STRAND [23][26][27] is a system performing structural translation recognition.
Its main objective is to identify pairs of parallel web pages. Its design is based
on an observation of how parallel content is usually distributed over an ordinary
website. The authors suggest that websites have a very strong tendency to present
parallel content via pages having a similar HTML structure. The text below
describes how the system works.

1.3.1 STRAND: Procedure

1. At the beginning of the process, STRAND tries to locate websites containing
parallel data. For this task, it used to utilize advanced search capabilities of
the AltaVista search engine which, unfortunately, is no longer active. The
engine helped with searching for two types of web pages:

∙ A parent page contains hyperlinks to web pages containing different
language versions of the same content. An example of such a page is
one containing two links to the same article written in English and
French. To perform search for such a page, the system queries the en-
gine with an expression (anchor:"english" OR anchor:"anglais")

AND (anchor:"french" OR anchor:"français"). Additionally, a dis-
tance filter is applied on the obtained results. If the positional distance
between the links within the HTML structure is more than 10 lines,
the page is filtered out. Authors believe that parent pages tend to have
links pointing to the corresponding pages closely located within their
HTML structures.

∙ A sibling page is a type of page in one language that contains a hyper-
link to a version of the same page in another language. A page written
in French containing an anchor with a label ”English”, which points
to another page with the same content in English, is an example of
a sibling page. The system searches for these by querying the engine
with an expression like (anchor:"english" OR anchor:"anglais").

After AltaVista search engine was shut down, authors added another com-
ponent to the system called spider. It can download all the web pages from
a provided initial list of websites.

10

2. Generating candidate pairs is simple when a search engine is used to acquire
the list of parent and sibling pages. For each parent page, the system takes
the two linked pages, and for each sibling page, the system takes the page
together with the linked one.

However, when all the pages from a website are under consideration, nat-
urally, the task of generating candidate pairs is more difficult. The spider
component contains a URL-matching stage which exploits the fact that
parallel pages have usually similar URL structure. The system knows sub-
stitution rules which help to detect if a URL of a page in one language can
be transformed into a URL of another page in a different language. If so,
these two pages are considered as a candidate pair. Web pages that are
mutual translations tend to have a very similar ratio of lengths; therefore,
the system requires from a candidate pair to have a reasonable value of this
ratio, otherwise it is discarded.

3. The key element of STRAND is a structural filter. It analyses HTML
structure of both pages of a candidate pair and decides whether they are
parallel or not. First, the system linearizes the HTML structure while
ignoring the textual content of the page. As a result, it generates a linear
sequence of tokens for each HTML structure. Such a sequence consist of
three types of tokens:

∙ [START:element_label];

∙ [END:element_label];

∙ [Chunk:text_length].

First two types of tokens are substitutes for HTML opening and closing
elements. The last type of token is a substitute for a non-markup text block.
The length is calculated as the number of non-whitespace bytes contained
within the block. The attributes of the HTML elements are treated similarly
as a non-markup block. For example would generate
a subsequence [START:font][Chunk:12]. These sequences, representing
linearized structure of both web pages, are aligned by means of an adapted
algorithm [28] based on dynamic programming. With alignment done, the
system calculates 4 scalar values, which eventually determine whether the
candidate pair is parallel or not. These values characterize the quality of
the alignment, but also the probability of the candidate pair to be parallel:

∙ dp The difference percentage of the non-shared tokens. It represents
the ratio of mismatches in the alignment. Mismatches are tokens from
one sequence not having a corresponding token in the other sequence
and vice versa. The greater ratio indicates that the two web pages
have different structure and therefore are less likely parallel. This can
also happen when the one page contains the full article while the other
contains only the translation of its introduction. The system requires
the value to be less than 20%.

∙ n The number of aligned non-markup text blocks of unequal length.
The aligning algorithm maximizes the number of matches of the iden-

11

tical tokens which represent markup. As a side effect, it also pairs
the tokens of the corresponding non-markup text blocks. The higher
number of aligned pairs of the non-markup text blocks is found, the
more likely it is the web pages are parallel.

∙ r The correlation of lengths of the aligned non-markup blocks. The
authors assume that for each pair of parallel web pages, it is likely that
the lengths of their corresponding text blocks are in linear relationship.
This means that shorter text blocks of one page correspond to the
shorter text blocks of the other page, and so it is with medium and
longer blocks. The Pearson [29] correlation coefficient is approximately
1.0 in such scenarios, indicating positive correlation.

∙ p The significance level for the correlation of lengths of the aligned
non-markup blocks. This measure describes the reliability of the pre-
vious one. The system requires the value to be less than 0.05, which
corresponds to more than 95% confidence that the correlation value
was not obtained by chance.

1.3.2 STRAND: Results

At first, the authors used a set of manually, empirically chosen thresholds for
the discussed scalar values based on their observations from an experiment with
English–Spanish development data. The thresholds seemed to perform well also
when testing on English–French and English–Chinese data. Later, they investi-
gated options of optimizing the binary decision task, whether to label the candi-
date pair of web pages as parallel or not, based on the mentioned scalar values.
They came up with the idea of building a supervised classifier utilizing the C5.014

decision tree software. With the original manually chosen thresholds, the system
achieved 68.6% recall at 100.0% precision, while using the learned classifier it
achieved 84.1% recall on average at the cost of lower 95.8% precision.

1.3.3 STRAND: Summary

STRAND is one of the pioneers in the field of tools for parallel corpora acquisition
from the web. Its authors have introduced some of the ideas still present in other
similar tools. We consider the later added supervised binary classification as an
effective approach.

14http://www.rulequest.com/demoeula.html (accessed April 3, 2016)

12

http://www.rulequest.com/demoeula.html

1.4 Mining Wikipedia

In previous related work, the researchers have developed a method [30] that can
build subject-aligned comparable corpora, which are later refined to obtain truly
parallel sentence pairs. The efficiency of the method is demonstrated on the
Polish–English Wikipedia15 content.

In order to better understand this method, the authors suggest distinguishing
between a few types of corpora according to their properties:

∙ A parallel corpus is the most valued and rare type. It can be defined as
a corpus that contains quality translations of documents in multiple lan-
guages. Such a corpus is already aligned or should be very easy to align at
the sentence level.

∙ A noisy-parallel corpus contains bilingual sentences that are not perfectly
aligned or the quality of the translations is poor. However, the majority of
documents should be present in the corpus, including their translations.

∙ A comparable corpus consists of bilingual documents that are neither sentence-
aligned nor mutual translations. Nevertheless, the documents should be at
least topic-aligned.

∙ A quasi-comparable corpus includes very heterogeneous and very non-parallel
documents that do not even have to be topic-aligned.

The authors have proposed a methodology which can extract a truly parallel
corpus from a non-sentence-aligned one, such as a noisy-parallel or comparable.
The implementation of the methodology has the form of a pipeline which includes
specialized tools for obtaining, aligning, extracting, and filtering text data. This
pipeline is explained in the following text.

1.4.1 Mining Wikipedia: Procedure

1. Web crawling is the first step in the process. The pipeline includes a spe-
cialized web crawler dedicated solely to processing the Wikipedia website.
The crawler requires a hyperlink to a specific article, preferably written in
the less frequent of the two languages. For the Polish–English language pair
this would be Polish. With the link to the Polish article, the crawler down-
loads its page and also other pages in the topic domain (following the links
on the pages), together with their corresponding English versions. With
the HTML web pages obtained, the crawler extracts and cleans their tex-
tual content. This means that all links, figures, pictures, menus, references,

15https://www.wikipedia.org/ (accessed April 3, 2016)

13

https://www.wikipedia.org/

and other unwanted parts of the data are removed from further processing.
The bilingual extracted texts are then tagged with unique IDs to form a
topic-aligned comparable corpus.

2. The system uses a two-step sentence alignment method provided by hu-
nalign. The pipeline does not provide any dictionary to hunalign. Without a
dictionary, hunalign first aligns the sentences using just the Gale-Church [21]
sentence-length algorithm. Then it builds an automatic dictionary based
on the sentence alignment from the first run. This dictionary is used in the
second run to realign the alignment, improving the result.

Like the majority of sentence aligners, hunalign does not perform well when
the order of corresponding segments is different for two languages. This
happens when segment “A” is followed by “B” in one language, while in
the other one “B” is followed by “A”. The method deals with this problem
by applying a posteriori filtering process on the results obtained from the
hunalign. The goal of the filtering process is to find the correct alignment
for each source sentence if such alignment exists, or to remove the sentence
from the resulting corpus otherwise.

3. The filtering strategy of the pipeline is to find the correct translation for
each Polish sentence using a translation engine. Given an MT system, the
filtering process first translates all the Polish sentences into English. Then
it uses a series of heuristics to compare the obtained machine-translated
sentences with the original English sentences. The authors have considered
many ways to measure the similarity of two sentences in the same language.

One of the measures is defined as the number of common words divided by
the total number of words in both sentences. Removing the stop words16

(e.g. “a” or “the”) prior to the measurement yields more precise results.
When comparing the machine translated sentence with the original one, the
translated one often contains a stem of a corresponding word (e.g. “boy”
vs “boys”). This cannot be detected by the described measure. Another
important aspect ignored by this measure is the order of words. To tackle
this, the authors added another measure based on the concept of string
similarity.

Synonyms are another problem. In order to take them into account the
method uses WordNet R○17 [31][32] together with the NLTK18 [33] Python
module. The method generates multiple derived sentences for each original
sentence using synonyms. The generated sentences are then compared in a
many-to-many relation.

To obtain the best results, the script that covers the filtering process pro-
vides the ability to let the user choose multiple filtering heuristic functions
with different acceptance rates. The faster functions, usually with lower
quality results, are calculated first. If they find a result with a very high
acceptance rate, their result is accepted as the final one. Otherwise, slower
functions, with higher precision in general, are used in the filtering process.

16usually the most common words in the language with very little meaning
17https://wordnet.princeton.edu/ (accessed April 3, 2016)
18http://www.nltk.org/ (accessed April 3, 2016)

14

https://wordnet.princeton.edu/
http://www.nltk.org/

The filtering procedure of the method requires a translation engine. A custom
one was built to be used. The training data included Polish–English parallel data
for various domains from OPUS. To increase the system’s precision, the authors
adapted it to Wikipedia using the dump of all English content as a language
model. The underlying MT system was based on Moses [34][35] toolkit.

1.4.2 Mining Wikipedia: Results

The conducted experiments show that the filtering method has quite good preci-
sion of more than 95%. The results also correlate with human evaluations. The
method is language independent and supervised, as it needs a parallel corpus for
the initial training of the SMT system. The amount of obtained data, in other
words, the method’s recall, is absolutely not satisfactory. Authors suggested that
an iterative approach could increase the recall. In such a scenario, after each it-
eration, the newly acquired parallel corpus would help to build a domain-specific
vocabulary for hunalign and to retrain the SMT system.

1.4.3 Mining Wikipedia: Summary

The described pipeline shares some common features with our method. In partic-
ular, both methods focus on extraction of truly parallel corpora from noisy data.
Unfortunately, it is hard to tell to what extent it would be possible to optimize
the set of chosen heuristic functions and their acceptance rates to gain better
overall recall. This would require further experiments with the system, which
would need to be obtained and deployed locally.

1.5 Mining Common Crawl

Another interesting project [36] closely related to ours is the one focused on mining
parallel corpora on the web-scale from the Common Crawl [11] dataset. This
work is heavily based on the previously described and discussed STRAND [23]
algorithm. Using a set of common two- or three-letter language codes, this method
achieved to mine parallel corpora for dozens of language pairs from 32 terabyte
(TB) large dataset in a time span shorter than a single day. The amount of
parallel data acquired in this way is large and the quality is reasonable. Moreover,
the parallel corpora obtained cover data from various domains. These corpora
provably increase the performance of machine translation systems if included in
the training process.

The authors argue that any sophisticated method for mining parallel corpora
from the web requires direct access to a larger dataset consisting of crawled web
pages together with the computing power to process them. They claim that

15

these large-scale web-crawled datasets were, until recently, available solely to
large companies with the resources to crawl, store, and process the data from
the entire web. Only recently, the Common Crawl non-profit organization began
to provide a large-scale partial copy of the web to researches, companies, and
individuals at no cost for research and analysis.

The Common Crawl corpus is stored and hosted by Amazon Web Services19 as
a part of Public Data Sets20 in Simple Storage Service (S3)21. It can be either
downloaded to a local cluster, accessed from Amazon Elastic Compute Cloud
(EC2)22, or processed using the Amazon Elastic MapReduce (EMR)23 service.
This section includes only a brief description of the Common Crawl dataset and
the MapReduce [37] framework necessary for us to understand this project. The
following text describes the flow of the method proposed by this project.

1.5.1 Mining Common Crawl: Procedure

1. The first step in the pipeline performs identification of potentially parallel
pairs of web pages, using the Amazon EMR framework. This is the only
step executed remotely on the Amazon servers. All the other steps are per-
formed locally, using the downloaded dataset created in the first step. The
Amazon EMR is chosen as the processing framework because the MapRe-
duce paradigm suits the task well. For the sake of brevity, we can describe
the Common Crawl corpus as a huge set of crawled and stored web pages
in the form of HTML requests and their responses. To briefly introduce
the MapReduce framework, it is a mechanism which allows us to iteratively
process all the crawled HTML requests and responses in the corpus in a
distributed manner.

The method starts by remotely executing the MapReduce application, which
implements two phases: map and reduce. The intention is to scale down
the vast amount of crawled web pages to a selection of candidates possible
to process locally.

During the map phase, the method iterates over each web page entry in the
corpus. It scans the URL of the page, searching for the occurrences of two
types of substrings:

∙ Language codes in ISO 639 format (two- or three-letter codes).

∙ Language names in English and also in the language of their origin.

If such a substring, surrounded by non-alphanumeric characters, is present
in the URL the page is identified as potentially having parallel versions.
In this case, the method outputs the URL of the page with the matching

19https://aws.amazon.com/ (accessed April 4, 2016)
20https://aws.amazon.com/public-data-sets/ (accessed April 4, 2016)
21https://aws.amazon.com/s3/ (accessed April 4, 2016)
22https://aws.amazon.com/ec2/ (accessed April 4, 2016)
23https://aws.amazon.com/elasticmapreduce/ (accessed April 4, 2016)

16

https://aws.amazon.com/
https://aws.amazon.com/public-data-sets/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticmapreduce/

substring replaced by a single asterix symbol. It also marks down the lan-
guage associated with the replaced substring. For example, when processing
the page with URL http://www.ksi.mff.cuni.cz/en/, the method would
output the following key-value pair with the composite value:

∙ Key: http://www.ksi.mff.cuni.cz/*/.

∙ Value:

∘ http://www.ksi.mff.cuni.cz/en/ (original URL);

∘ English (language associated with the code);

∘ full HTML structure of the web page.

In the reduce phase, the method obtains all the values having the same key,
i.e the language-independent URL. If there are at least two items associated
with the same key having different languages marked down, the method
outputs all the values for such a key.

Upon completion of the MapReduce execution, the resulting dataset is
downloaded to a local cluster for further processing. This dataset is rel-
atively small compared to the original one, and it can be processed locally.

2. The rest of the process is similar to STRAND (see Section1.3). In order to
determine which web pages are parallel, the method linearizes their HTML
structures in the same way as STRAND does. Additionally some HTML
elements are ignored (e.g. or <a>). The pairs of sequences are
aligned using an algorithm based on dynamic programming which optimizes
the number of matching tokens. The alignment is used to calculate the
same set of measures defined by STRAND. The result of this step is a set of
matching text blocks gathered from the pairs of corresponding web pages.

Also inspired by STRAND, the project’s authors tried to train the maximum
entropy classifier for the Spanish–English language pair by using a set of
101 manually aligned and annotated pairs of web pages. However, it turned
out that even when using the best performing subset of the features, the
classifier did not outperform a näıve one, which considers every pair of web
pages to be parallel. They argue that this was caused by the unbalanced
nature of the annotated training data, where 80% of the pairs were parallel.
In the end, they decided to exclude the classifier from the pipeline.

3. The pairs of matching text blocks then pass through the process of segmen-
tation. The method uses the Punkt sentence splitter from the NLTK [33]
Python module to perform segmentation at both the sentence and word
level.

4. With segmentation done, each of the matching text blocks is sentence-
aligned using the Gale and Church [21] algorithm. The output of the exe-
cution can be regarded as a parallel corpus.

5. Lastly, the process includes the final cleaning of the produced parallel cor-
pus. The whole pipeline does not perform any boilerplate removal in the

17

previous steps. Since the authors decided not to do so, they at least pro-
posed to remove the pairs of segments where either both segments are iden-
tical, or one of the segments appears multiple times in the corpus.

1.5.2 Mining Common Crawl: Results

To estimate the recall of the heuristic used for candidate selection, the same
method was applied on a set of previously mined parallel pairs of URLs included
in the French–English Gigaword [38] corpus. As a result, 45% of all pairs have
been discovered. Inclusion of one-letter language codes (e.g. “f” for French, “e”
for English) increased the recall of the method’s recall to 74%, but the authors
decided not to use such codes out of concern that the system might lose precision.
In order to estimate the method’s precision, a manual analysis was conducted,
where 200 randomly selected sentence pairs were compared for 3 language pairs.
For the German–English pair, 78% of the mined data represented perfect trans-
lations, 4% were paraphrases, and 18% represented misalignments. Additionally,
22% of true positives were probably machine translations, and in 13% of all true
positives, one sentence contained some extra content not present in the other.

1.5.3 Mining Common Crawl: Summary

In terms of large-scale processing, the project of mining Common Crawl dataset
is unique in the field. A special approach is needed when processing hundreds of
terabytes large datasets. The Common Crawl dataset is a perfect example of Big
Data [39], which are rising in popularity recently. The method is a baseline idea
of how to mine parallel corpora from vast amount of web-crawled data.

1.6 Summary

Bitextor searches for the pairs of parallel web pages by comparing their HTML
structures and contents. The structures are compared using a method based
on dynamic programming. When comparing the contents, Bitextor uses bag-of-
words model powered by a bilingual dictionary.

PaCo2 reduces the number of comparisons by using a set of heuristics including
length and file size comparison. To find pairs of parallel web pages, it applies
a set of filters. These include inspecting the links between a pair’s pages and
similarities in their URLs. However, the most important filter compares the
HTML structures and contents. Unlike Bitextor, PaCo2 compares the contents
by identifying the common universal entities (e.g. numbers or e-mail addresses).
This approach is unsupervised and language independent.

18

To reduce the number of comparisons, STRAND uses heuristics similar to those
in PaCo2. It comes with an idea to train a decision tree model to classify pairs
of web pages as parallel or not. The model uses a set of measures defined on the
differences between the two HTML structures. This approach is supervised, as it
needs to be trained using a set of, preferably, manually aligned web pages.

The method of mining parallel data from Common Crawl dataset uses the MapRe-
duce framework to refine the candidates, which are then processed locally by a
STRAND-like method. The web pages are considered to be candidates if they
have the same URLs stripped from the language codes.

The method of mining Wikipedia takes a different approach. For a particular
topic, it collects pairs consisting of an article and its version in the other language.
The method assumes that the two articles may have different HTML structure
and order of the textual context. The pair’s articles are aligned at the sentence
level, and the resulting alignments are refined with the help of a pre-trained SMT
system.

All of the described methods, except the one for mining Wikipedia, search for
parallel content only in the form of complete web pages with a similar HTML
structure. Although the method for mining Wikipedia does not require the pairs
of article pages to have similar structure, the quality of its results depends on the
degree of correspondence between the articles’ segments and their order.

19

Chapter 2

Background Work and
Prerequisities

This chapter is an introduction to the resources and tools used in our work.
It describes their features and properties and discusses their usefulness in our
method or experiments. Before we introduce these individual resources and tools,
let us first provide the context in which they are used by outlining the idea behind
our method.

2.1 Overview of Proposed Method

All the methods described in Chapter 1 operate on common basic principles.
They assume the parallel data are most often created in the form of complete
web pages with a similar HTML structure or matching URL, and they work well
under these circumstances. However, we believe that there still exists a non-
negligible amount of parallel data spread across the web pages that have different
HTML structure and URL. Also, the order of corresponding segments may vary
in different language versions of the same page. Moreover, some parallel content
can be a part of a single web page. We would like to address all these situations.

The majority of described methods start the process by identifying candidate
pairs of parallel web pages to be inspected. If a candidate pair has a similar
HTML structure then the segments of the two web pages are aligned according
to the structure.

In contrast to these methods, our approach is more generic. The method considers
as the input a set of plain text documents for both the languages. These can be
all the paragraphs from a bilingual web domain. The intention is to identify
candidate pairs of parallel documents. The problem is that for a given web
domain, the number of possible pairs of paragraphs is usually significantly greater
than the number of possible pairs of web pages. We have to reduce the number of

20

candidate pairs of documents to be inspected as much as possible. Our method
is supervised, and in order to be trained, it requires a sentence-aligned training
parallel corpus for the given language pair. It begins by learning distributed word
representations, i.e. word vectors, for both languages using the training corpus.
These word vectors are similar for context-related words, even cross-lingually.
They are used to calculate aggregate document vectors. Two parallel documents
have a similar document vector. The document vectors for one language are
subsequently hashed, forming a search index in such a way that similar vectors
end up close to each other. The search index is then queried to obtain a short
list of candidates for each document in the other language. At this stage, the
complexity of the problem is significantly reduced. The method inspects the
candidates to determine the best one using a bilingual dictionary. The bilingual
dictionary is pre-calculated statistically using the training parallel corpus. This
corpus is also used to train the binary classifier, that decides, at the end of the
process, whether the pair consisting of a document and its top candidate should
be considered parallel or not.

With the basic idea behind the method explained, let us describe the set of
resources and tools we use in our work. The details of our method are elaborated
in the next chapter.

2.2 CzEng 1.0

CzEng 1.0 [10] is the fourth release of a sentence-aligned Czech–English parallel
corpus, freely available for non-commercial research purposes. It consists of ap-
proximately 15 million sentence pairs (233 million English and 206 million Czech
tokens) from seven different types of sources. The proportion of these source
domains is summarized in Table 2.1.

To download CzEng 1.0, one must first apply for the registration1. The corpus
can be downloaded in multiple formats. In our experiments, we use all training
sections (packs 00–97) of CzEng 1.0 in the plain text, untokenized format. A
file in this format contains tab-separated values, where every line stands for a
different sentence pair and individual columns represent:

1. Sentence pair ID;

2. Filter score (indicating the quality of the sentence pair);

3. Czech sentence (untokenized);

4. English sentence (untokenized).

Because our method is supervised, it needs a sentence-aligned parallel corpus in
order to be trained. For this purpose, we use CzEng 1.0 in our experiments. In

1http://ufal.mff.cuni.cz/czeng (accessed April 5, 2016)

21

http://ufal.mff.cuni.cz/czeng

one of them, we also utilize the alignment of the corpus to perform the evaluation
of the method’s efficiency. It is important to note that when using CzEng 1.0
as both the training and testing dataset, we first split the data into two equally
sized parts: head and tail. The head is used for training, while the tail is used for
evaluation. The domains are not grouped together within the corpus, but they
are shuffled. This means that both head and tail should contain data from each
domain.

Table 2.1: CzEng 1.0 source domains distribution (Source: [10])

Source Domain Sentences Ratio (%)
Fiction 4,335,183 28.64
EU Legislation 3,992,551 26.38
Movie Subtitles 3,076,887 20.33
Parallel Web Pages 1,883,804 12.45
Technical Documentation 1,613,297 10.66
News 201,103 1.33
Project Navajo 33,301 0.22
Total 15,136,126 100.00

2.3 MorphoDiTa

MorphoDiTa [40][41] (Morphological Dictionary and Tagger) is an open-source
tool performing morphological analysis of natural language texts. Its features
include morphological analysis, morphological generation, tagging, and tokeniza-
tion. It can be used either as a standalone tool or a library.

In our experiment, we want to determine whether lemmatization helps our method
get better quality results. For these purposes, we use MorpohoDiTa. As our
experiments cover only the texts from the Czech–English language pair, we use
available MorphoDiTa models for both Czech [42] and English [43].

2.4 SyMGIZA++

SyMGIZA++ [44] is a tool for computing symmetric word alignment models. It
is an extension of MGIZA++, which in turn is a successor of the historically
original program called GIZA++.

GIZA++ is an implementation of the IBM Models 1–5 [19], the HMM model [45],
and the Model 6 [46]. Comparison of all these models was already analysed and
discussed [46]. In the alignment process, it uses an Expectation–Maximization [47]
(EM) algorithm. This iterative algorithm consists of two steps that are performed

22

in each iteration. In the first step, called the E-step (expectation step), the previ-
ously computed model (or the initial model) is applied to the data and expected
counts for individual parameters are computed using the probabilities of this
model. The second step, called the M-step (maximization step), then takes these
expected counts as a fact and uses them to estimate the probabilities of the next
model. Furthermore, prior to the training itself, GIZA++ uses the program called
mkcls [48] to create word classes. The notion of these classes helps in the training
process.

GIZA++ was designed as a single-threaded application. However, MGIZA++ [49]
extends GIZA++ with capabilities to run the alignment process in multiple
threads on a single computer. This helps the overall speed of the program and
reduces the time needed to accomplish the task.

All the models provided by the original GIZA++ are asymmetric. For a chosen
translation direction, they allow words to be mapped in a many-to-one, but not
in a one-to-many relationship. It is, therefore, quite common and popular to
train models for both translation directions and symmetrize the resulting word
alignments to allow more natural relationships between words. In this scenario,
models for both directions are trained independently and post-symmetrization is
applied as the final step of the process. However, the authors of SyMGIZA++
argue that introducing continuous symmetrization, during the whole training pro-
cess, results in a better quality alignment. Unlike its predecessors, SyMGIZA++
produces results of the symmetrized models. Moreover, it allows us to update
these symmetrized models between each iteration of the original training algo-
rithms. The general training scheme, depicted in Figure 2.1, illustrates all the
moments when the model parameters are combined during the process.

From all the available word aligning tools, such as GIZA++, MGIZA++, fast -
align [50], etc., we decided to use SyMGIZA++. The results presented by its
authors provide a convincing argument. They claim that the quality of the re-
sulting alignment is increased by more than 17% when compared to MGIZA++
or GIZA++, probably the most popular word alignment programs nowadays.

To train bilingual word vectors we need a parallel corpus together with its word
alignment. In order to get the word alignment for the provided training corpus,
we use SyMGIZA++. Furthermore, when running SyMGIZA++, the user can
request the final values of the IBM Model 1 “t” parameters for both directions.
In our method, these values are used to build the bilingual dictionary.

2.5 bivec

Word embedding is a common name for a set of techniques which map words
or phrases from a vocabulary to distributed word representations in the form of
vectors consisting of real numbers in a high-dimensional continuous space. This
section discusses bivec [51], a word embedding tool that creates bilingual word

23

Figure 2.1: General training scheme for SyMGIZA++ (Source: [44])

representations when provided with a word-aligned parallel corpus. The work is
an extension of previous research, which resulted in a tool called word2vec [3][4][5].

The original word2vec is a group of models producing monolingual word em-
beddings. These models are implemented as neural networks. They are trained
to reconstruct the contexts of words. A monolingual corpus is needed for the
training. During the training process, the algorithm iterates over the words in
the corpus while considering the context of the current word in the form of a
fixed-size window on its surrounding words. The two included models are:

24

∙ The Continuous Bag-of-Words (CBOW) model, trained to predict the word
when given its context (without the current word).

∙ The Skip-gram (SG) model, trained to predict the context of a given word.

Figure 2.2: Continuous Bag-of-Words model (Source: [52])

The main difference between these two models can be observed in Figure 2.2 and
Figure 2.3, which illustrate the structures of their underlying neural networks.
When working with these networks, all the words are encoded to so-called one-
hot vectors. This means that if 𝑤0, 𝑤1, . . . , 𝑤𝑉 are all the unique words of the
training corpus, word 𝑤𝑖 is encoded to a 𝑉 -dimensional vector, where the 𝑖-th
element is 1 and all other 0s.

In Figure 2.2, one can see the one-hot vectors 𝑥1,𝑘, 𝑥2,𝑘, . . . , 𝑥𝐶,𝑘, representing the
context of the current word in the input layer. In this model, the output layer
consists of the one-hot vector of the word, 𝑦𝑗. On the other hand, Figure 2.3
displays the one-hot vector of the word 𝑥𝑘 in the input layer, while the output
layer contains the one-hot vectors of the words in its context, 𝑦1,𝑗, 𝑦2,𝑗, . . . , 𝑦𝐶,𝑗.
In both these models, the user can choose the dimension of the hidden layer 𝑁
and the size of the context 𝐶. After the model is trained, it is used to map each
of the words in the corpus to a vector. This vector is obtained from the hidden
layer of the network and it represents the word’s relationship with other words.
The more the two words 𝑤𝑖, 𝑤𝑗 appear in the same context, the larger the cosine

25

Figure 2.3: Skip-gram model (Source: [52])

similarity of their vectors vec(𝑤𝑖), vec(𝑤𝑗) is. Given two vectors 𝑥 and 𝑦, the
cosine similarity is calculated as follows:

cos(x,y) =
x × y

‖x‖‖y‖
=

𝑛∑︀
𝑖=1

x𝑖y𝑖√︂
𝑛∑︀

𝑖=1

x2
𝑖

√︂
𝑛∑︀

𝑖=1

y2
𝑖

.

Word vectors obtained by training word2vec models have several interesting fea-
tures. The relationship among the words are projected onto their vectors to such
an extent, that for example the most similar vector to the resulting vector of an
operation vec(“king”) − vec(“man”) + vec(“woman”) is the vector vec(“queen”).
We will not pay further attention to more details about the advanced features of
the word2vec results as they are not used in our method. It is worth mentioning
that there are other related tools to word2vec, like for example GloVe [53].

The authors of bivec proposed an extension of the original Skip-gram model
in the form of a joint bilingual model called the Bilingual Skip-gram (BiSkip)
model. When trained, this model can predict the context of a given word in both
languages. In order to train, bivec requires a sentence-aligned parallel corpus and
its word alignment. In fact, the word alignment is not strictly necessary, and if it
is not provided, the system uses a simple heuristic. However, with the alignment
provided, the results are better.

26

The most important idea behind the BiSkip model is the method of training. To
gain insight into how the training works, let us look at the example illustrated in
Figure 2.4. Suppose that we have two parallel sentences with their word alignment
that says the English word “trade” is aligned with the German word “Handels-”.
We can use the associated German word “Handels-” to predict the surrounding
English context containing the words like “economic” and “financial”. Generally
speaking, given a word 𝑤1 in a language 𝑙1, and a word 𝑤2 in a language 𝑙2
aligned to 𝑤1, the BiSkip model uses the word 𝑤1 to predict not only its own
context in 𝑙1, but also the context of the word 𝑤2 in 𝑙2. The other word 𝑤2 is
handled analogously. This results in training of a single Skip-gram model with
a joint vocabulary on parallel corpora. In other words, BiSkip model is like a
single Skip-gram model trained jointly to predict words for each of the language
pairs 𝑙1 → 𝑙1, 𝑙1 → 𝑙2, 𝑙2 → 𝑙1, and 𝑙2 → 𝑙2 simultaneously. The resulting vector
representations have the same properties, except that in this case they appear not
only monolingually but also cross-lingually. It means, for example, that given a
big enough English–German parallel corpus, the resulting vector representations
of the words “car” and “Auto” would have greater cosine similarity.

Figure 2.4: Bilingual Skip-gram model (Source: [51])

Similarly to word2vec being not the only one among the monolingual word em-
bedding strategies, bivec also has some interesting relatives. We could mention
BilBOWA [54] (Bilingual Bag-of-Words without Alignments), a simple and com-
putationally efficient model, which also learns bilingual distributed representa-
tions of words. The method does not require word alignment; instead, it trains
directly on monolingual data using extracted bilingual signal from a potentially
smaller sentence-aligned parallel corpus.

We decided to use bivec for learning the bilingual word vectors from the training
parallel corpus. The results conducted by the authors suggest that bivec achieved
state-of-the-art results among other similar approaches when applied in the field
of cross-lingual document classification. Using the trained bilingual word vectors
and the proper weighting scheme, our method calculates the aggregate document
vectors. The similarities among the word vectors are reflected in the document
vectors; therefore, a pair of parallel documents have similar vectors.

27

2.6 Annoy

Annoy [55] is a C++ library with Python bindings implementing the approximate-
nearest-neighbors (ANN) search. The nearest-neighbor (NN) search is an opti-
mization problem defined as follows: given a set of points 𝑆 in a 𝑑-dimensional
space 𝑀 and a query point 𝑞 ∈ 𝑀 , find the closest point in 𝑆 to 𝑞. A general-
ization of this problem is the k-nearest-neighbors (k-NN) search, where we want
to find the 𝑘 closest points. The NN and k-NN searches require the results to be
optimal. Even the best algorithms to solve these problems are computationally
demanding in terms of time. However, certain applications do not require the op-
timal solution to be found; they just need a result that would be “good enough”.
In ANN search, the algorithm does not guarantee to find the optimum, but in
many cases it actually does. This relaxation enables the ANN algorithms to use
less resources than the k-NN strategies would need. In particular, it takes less
time to find the approximate neighbors, which is what we need in our method.

There are multiple libraries implementing the ANN search. When deciding which
one to choose, we were inspired by the results of the available benchmarks [56].
Annoy is fast and it is also user-friendly. It was developed during the Hack Week
event at the company called Spotify2, where it is being used to create an index for
billions of feature vectors representing individual songs. This index is distributed
and searched in parallel to provide music recommendations for the users.

Annoy has several useful features. First of all, the user can choose between
two different metrics: Euclidean distance and angular distance. The latter one
is explained by the authors to actually mean Euclidean distance of normalized
vectors. The testing results show that Annoy works better with less than 100
dimensions, but the results are still efficient with less than 1, 000 dimensions.
The library decouples index creation from lookup. The index needs to be built
on a single machine and cannot be altered afterwards. After adding new items,
the whole index needs to be rebuilt. The library allows storing the index to a
file and also loading it from a file into memory. This feature enables building the
index once and sharing it across all nodes in a cluster. This way, the index can
be used in parallel execution. At this moment, we are not using the library in
parallel execution; however, this feature may help to improve our system in the
future.

In the background, Annoy uses random projections [6][7] to build up a forest
of search trees—an index structure for the searching process. The algorithm
for building the index uses SimHash, which is a locality-sensitive hashing (LSH)
method. LSH is a family of hashing algorithms that perform dimensionality re-
duction of high-dimensional data. These algorithms hash items in such a way that
similar ones end up close to each other, i.e. in the same buckets, with relatively
high probability.

2https://www.spotify.com (accessed April 11, 2016)

28

https://www.spotify.com

We use Annoy in our method to approximate the search fo parallel documents.
We already know that a pair of parallel documents have similar document vec-
tors. Therefore, in order to search for the parallel document we can perform the
nearest-neighbour search in the set of document vectors associated with the other
language. In our opinion, the task of refining parallel data from the web is not the
kind of task that would require an algorithm to provide a perfect recall. When
it comes to processing web-scale amounts of data, one must accept certain trade-
offs. We believe that by preferring ANN to k-NN we can achieve an acceptable
speed of the process and, eventually, more desirable results.

2.7 PyBrain

PyBrain [57] (Python-Based Reinforcement Learning, Artificial Intelligence and
Neural Network Library) is a popular machine learning library for Python. It
provides a flexible, easy-to-use, yet powerful algorithms for common machine
learning tasks.

There is a part of our method, where we need to perform a binary classification
task: whether to accept the pair of documents as parallel or not. As there are
multiple features available for the task, it is hard to set up reasonable thresh-
olds manually. Therefore we decided to use the classification provided by the
feed-forward neural networks [58]. For this purpose we use the neural network
algorithms provided by the PyBrain library.

The model of neural network used in our method is multilayer perceptron learning
through the mechanism of backwards error propagation (backpropagation) [59].
This kind of model is widely popular and it is suitable for the type of classification
task the method is facing.

2.8 Common Crawl

In Section 1.5, we have discussed the previous work concerning refining parallel
corpora from Common Crawl dataset. The following text provides additional
information about the dataset. The Common Crawl Foundation [11] is a non-
profit organization with an aim of democratizing access to web information. They
produce and maintain an open repository containing web-crawled data freely
available for the public to use.

The underlying infrastructure of Common Crawl uses Apache Nutch3 as the pri-
mary web-crawling engine since 2013. Nutch runs in the form of Hadoop MapRe-
duce jobs, which perform most of the core work of fetching pages, filtering and
normalizing URLs and parsing responses to plug-ins. The plug-in architecture

3http://nutch.apache.org/ (accessed April 7, 2016)

29

http://nutch.apache.org/

of Nutch allows the Common Crawl organization to make all the customizations
they need, without maintaining a separate branch of the Nutch project. The in-
frastructure regularly crawls at aggregate speed of 40, 000 web pages per second.
The performance is largely limited by the politeness policy, which the organization
follows to minimize the impact on web servers the system crawls.

The time to release a new dataset (crawl) varies between one month to a quarter
of year. Each crawl covers billions of web pages and takes hundreds of terabytes
(TB) of disk space in an uncompressed form. Table 2.2 lists few of the crawls,
along with their uncompressed size and number of contained pages.

Table 2.2: Common Crawl dataset sizes

Crawl Size (TB) Pages (Billions)
April 2015 168 2.11
May 2015 159 2.05
June 2015 131 1.67
July 2015 149 1.84
August 2015 106 1.32

The crawls are hosted by the Amazon Web Services4 as a part of the Public Data
Sets5. They are stored in a Simple Storage Service (S3)6. The service allows the
user to download the whole crawls to a local cluster. There is also a possibility
to work with the datasets using the Amazon services, but these are paid. The
Common Crawl foundation provides the users with the latest crawls in 3 different
data formats:

∙ The WARC [60] (Web ARChive) format represents the raw archive of the
crawl. It is a container for storing web content together with the associated
network connections. It consists of series of records. There are three types
of records: HTTP request, HTTP response and metadata describing the
crawl process. Unlike the other two, it keeps the original HTML structure
of the responses.

∙ The WAT (Web Archive Transformation) format contains metadata ex-
tracted from the WARC records formatted in JSON [61]. These provide
information such as content length, timestamp, mime type and URL.

∙ The WET (WARC Encapsulated Text) format includes extracted plain text
from the archived documents in WARC along with some basic metadata
such as timestamp and URL.

Our other experiment uses realistic and noisy data from the July 2015 crawl.
For the experiment, we have downloaded all the WARC files to our cluster, to

4https://aws.amazon.com/ (accessed April 4, 2016)
5https://aws.amazon.com/public-data-sets/ (accessed April 8, 2016)
6https://aws.amazon.com/s3/ (accessed April 8, 2016)

30

https://aws.amazon.com/
https://aws.amazon.com/public-data-sets/
https://aws.amazon.com/s3/

be processed in our environment. We use the WARC format, because unlike
the WET format it holds also the original HTML structure for the stored web
pages. Using the HTML structure, we are able to extract paragraphs reliably.
We consider these paragraphs as an input documents to be aligned.

2.9 Hadoop

Common Crawl datasets belong to the category of Big Data [39]. When pro-
cessing hundreds of terabytes large datasets, one definitely needs a more com-
plex infrastructure and parallel processing paradigm. Apache Hadoop7 [62] is an
open-source Java-based [63][64] software framework, which provides distributed
storage along with means for distributed processing. It is designed to process
large datasets on computer clusters built from commodity hardware. Hadoop
is based on ideas originating in Google that invented an infrastructure able to
process the data from the web at a large scale. The original distributed storage
was called the Google File System [65] and the processing framework was named
MapReduce [37]. In the beginning, Hadoop was developed by employees of Ya-
hoo! company as a part of the Apache Nutch project. Later it was separated to
a standalone project.

Today, Hadoop is composed of many different components working together on
a single platform. Historically, there are two main components in Hadoop. The
storage for the data called HDFS (Hadoop Distributed File System) [66] and
computational framework for parallel executions—MapReduce.

2.9.1 HDFS

HDFS [67] is a scalable storage, which enables user to store large files to a cluster
in a distributed manner. It has a master/slave architecture illustrated in Fig-
ure 2.5. An HDFS cluster has a master server, called NameNode. It manages the
file system namespace and regulates file access rights. Moreover, there is a num-
ber of slaves, named DataNodes, present within the cluster, usually one per node.
Each of the DataNodes manages storage on its node. HDFS exposes the file sys-
tem namespace allowing the user to store the data. The internal implementation
splits a file into a group of blocks that are distributed across a set of DataNodes.
This allows huge files to be stored. The NameNode determines the mapping of
blocks to DataNodes. It is also responsible for operations like opening, closing
and renaming of files and directories. The DataNodes serve read and write re-
quests from clients. They also provide an interface for block creation, deletion
and replication to the main NameNode. The mechanism of data replication is
centrally managed by the NameNode.

7http://hadoop.apache.org/ (accessed April 9, 2016)

31

http://hadoop.apache.org/

Figure 2.5: HDFS architecture (Source: [67])

2.9.2 MapReduce

MapReduce [68] is a software framework, which allows to process vast amounts of
data on large clusters. It is reliable and fault-tolerant. A MapReduce job splits
the input data into independent chunks. These are first processed in parallel by
the map tasks (mappers). With map tasks finished, the framework sorts their
output and the results are passed to the reduce tasks (reducers). The framework
is responsible for scheduling, monitoring and re-execution of the tasks. In a
typical scenario, the MapReduce framework and HDFS are running on the same
set of nodes. This configuration allows the framework to effectively schedule
the tasks to nodes where the data reside. This way, the system minimizes the
amount of network traffic needed for job execution. Similarly to HDFS, also
MapReduce has a master/slave architecture. The framework consists of a single
master ResourceManager, multiple NodeManagers (one per node of a cluster),
and one MRAppMaster per application. The framework application has to specify
the input and output locations and supply the implementations for the map and
reduce tasks. These and other settings form a job configuration. The process
starts when a job client submits a job with a JAR file (Java Archive) or executable
to the ResourceManager. The ResourceManager then distributes the software and
configuration to the slaves and begins scheduling the tasks. During the execution,
it provides status and diagnostic information.

The framework operates exclusively using key-value pairs. It is a fundamental
data structure providing users with extensibility. In a key-value based data model
the information is stored within collections in which every item is a pair of key and
value. Within the framework, the input of a job is a set of key-value pairs. The
output of the job is another set of key-value pairs of possibly different types. The
classes of keys and values need to be serializable by implementing a dedicated
interface. Additionally, the key classes need to be comparable. The standard
dataflow of the MapReduce job execution is following:

32

1. The system first divides the input data into splits. These splits have usually
64–128 megabytes (MB). The framework assigns one split to each mapper.
Then it begins to read the input data from the HDFS, generating key-value
pairs. These pairs are passed to the mappers. In a typical case, if processing
plain text files, a key-value pair would be generated for each line in every
file located in an input directory.

2. The mapper gets a series of key-value pairs. While processing one input
pair it can generate zero or multiple output key-value pairs. The types of
input and output keys and values may differ.

Listing 2.1 shows an pseudo-code implementation of a map function from
the classical WordCount example which performs extraction of word fre-
quencies. In this case the function is called for every line contained in the
assigned split. The mapper gets the line and divides it into its words. Then
for each of these words it emits an output key-value pair, where key is the
word and value is 1. The value represents a single occurrence of the word.

3. Every output of each mapper is assigned to a specific reducer. The partition
function gets the mapper output key and the actual number of reducers and
it determines the associated reducer. Then the data are shuffled—they are
sorted in parallel, using the provided comparison function, and exchanged
between the nodes of mappers and reducers. The performance of this phase
is dependent on the speed of the network between cluster nodes.

4. For each unique key, in sorted order, a reducer is called. Reducer iterates
over all the values associated with the given unique key. It can generate
zero or multiple output key-value pairs. Like in mapper, also in reducer the
types of input and output keys or values may differ.

The implementation of a reduce function from the word count example is
presented in Listing 2.2. It sums all the partial counts emitted by mappers
into a total count for each of the unique words.

5. Finally, the system stores the output of the reducers to the HDFS. The
framework allows the user to define MapReduce batch jobs for executing
multiple jobs in a sequence.

Listing 2.1: WordCount: map

1 function map(String name, String line):

2 for word in line.split():

3 emit(word, 1)

In order to store and process the July 2015 dataset of the Common Crawl (149
TB, 1.84 billions of pages), we needed a distributed storage and framework for
parallel data processing. Therefore, we decided to use the Apache Hadoop for
these purposes. When wondering about other means of processing of such a
huge dataset, one can get inspired by the list of example projects using Common

33

Listing 2.2: WordCount: reduce

1 function reduce(String word, Iterator partial_counts):

2 total_count = 0

3 for count in partial_count:

4 total_count += count

5 emit(word, total_count)

Crawl data8. One of the examples mentioned in the list is the method described
in Chapter 1.

2.10 WARC-Hadoop

When processing data in a custom format (e.g. WARC file format) with Hadoop,
the user needs to implement a set of interfaces for the system to handle the data
properly. There exist a number of libraries which enable Hadoop to process the
WARC files with the MapReduce framework. We decided to utilize one such
library, called warc-hadoop [69] in our experiment.

The warc-hadoop is a Java library providing the functionality for reading and
writing WARC files in MapReduce environment. It also enables the framework
to serialize and transfer individual WARC records while shuffling the data between
the mappers and reducers. This library was created with an intention to help the
users explore the content of the Common Crawl datasets.

2.11 MetaCentrum

The Hadoop cluster we use for our experiments is provided by the MetaCentrum9

project, which is an activity of the CESNET10 association. MetaCentrum oper-
ates and manages distributed computing infrastructure, which consist of comput-
ing and storage resources owned by CESNET and cooperating academic centers
located in the Czech Republic. Moreover, MetaCentrum holds responsibility for
building the National Grid and its integration with related international activities.

The provided Hadoop cluster in MetaCentrum consists of 3 management nodes
and 24 worker nodes. The management nodes run components like front-end,
HDFS NameNode and MapReduce History Server. Every node of the configu-
ration has Intel R○ Xeon R○ CPU E5-2630 v3 (20 MB Cache, 2.40 GHz) and 128

8http://commoncrawl.org/the-data/examples/ (accessed April 10, 2016)
9https://www.metacentrum.cz/en/ (accessed April 10, 2016)

10https://www.cesnet.cz/?lang=en (accessed April 10, 2016)

34

http://commoncrawl.org/the-data/examples/
https://www.metacentrum.cz/en/
https://www.cesnet.cz/?lang=en

gigabytes (GB) of memory. The overall disk space available on the cluster is 1.02
petabytes (PB). The HDFS operates with a replication factor of 4, which means
that the cluster can hold de facto 261 terabytes (TB) of user data.

Access to computing and storage facilities owned by parties and projects con-
tributing to the National Grid Infrastructure MetaCentrum, provided under the
programme ”Projects of Large Research, Development, and Innovations Infras-
tructures” (CESNET LM2015042), is greatly appreciated.

2.12 jsoup

Processing data from the web is usually complicated. For example, there are many
web pages, that do not have valid HTML structure or are encoded in different
character sets. To tackle this we use a library called jsoup [70], a Java library for
working with real-world HTML structures. It transforms the HTML structure to
the Document Object Model (DOM) [71].

The jsoup library provides a way to extract data using DOM traversal or Cas-
cading Style Sheets (CSS) selectors. Furthermore it allows the user to clean the
HTML structure by keeping only the HTML elements and attributes present in
a provided whitelist.

In our real-world data experiment, we process Common Crawl dataset with the
native Java MapReduce library. Therefore we consider jsoup as suitable library
for our needs. We use the library in parallel execution environment to parse the
HTML structures of the web pages. The library allows us to scrape the contents
of the HTML elements <p> representing paragraphs of text that we consider as
input documents to be aligned by our method. We could also collect content of
other elements such as <h1>–<h6>, , <th>, <td>, etc., as well.

2.13 language-detector

Another Java library we use in our real-world data experiment is language-
detector [72]. As the name suggests, it is a library that performs language detec-
tion. It contains built-in profiles for 70 different languages, which were trained
using common texts available for each of the languages. The library also allows
the user to train a custom language profile when provided with a monolingual
corpus. Underneath, the library uses N-gram-based text categorization [73].

We use this library while running MapReduce over the Common Crawl dataset.
For each of the paragraphs scraped from the web pages, we identify the language
using the language-detector library. This way the MapReduce job is able to keep
only the paragraphs in the languages of our interest.

35

Chapter 3

Proposed Method

This chapter describes our solution to the task of bilingual document alignment.
The method has been already outlined in Section 2.1 of Chapter 2 containing an
introduction to all the resources and tools used in our work. The following text
discusses our method in a greater level of detail.

3.1 Task Definition

Our method solves an extended version of the bilingual document alignment task.
This version of the task can be defined as follows: let us assume we have a number
of sets containing documents from both the languages of our interest. We call
these sets bins. Each bin represents a stand-alone set of input documents for the
original task. The solution of this task is a collection of pairs of documents where
each pair consists of two parallel documents from the same bin.

A bin can contain up to millions of documents and is not required to have a
balanced language distribution. Individual bins may vary in size. The method
does not align the documents either belonging to the different bins or having the
same language. Intuitively, the smaller the size of bin, the better the quality of
the resulting alignment. It also takes more time and memory to align a larger
bin.

When mining bilingual parallel corpora from the web, one can form a bin for
every identified bilingual web domain. Such a bin can contain all the paragraphs
in both the languages, scraped from the domain. This way the method will
consider aligning of all the paragraphs from the domain regardless of the URLs
and HTML structures of its web pages.

36

3.2 Training Part I: Dictionary, Word Vectors

Our method is supervised and needs to be trained on an already existing sentence-
aligned corpus for the language pair we are interested in. For better clarity, we
distinguish between two parts of the training process. This section describes the
first part of training, while the other part is described in Section 3.3. When
trained, Section 3.4 explains how the method aligns the input data.

Let us describe the first part of the training process as depicted in Figure 3.1.
Within the diagram, rectangles represent data in various formats, ovals stand for
processing steps and arrows symbolize the flow of the process. The objective of
this part of the training, is to preprocess the training parallel corpus and create a
bilingual dictionary together with bilingual word vectors. The process is described
in the following text.

Figure 3.1: Proposed method: training part I

3.2.1 Preprocessing Training Parallel Data

The procedure begins with preprocessing of the sentence-aligned training paral-
lel corpus which may involve tokenization, lemmatization, stemming, truecasing,

37

lowercasing, removing unknown symbols, removing stop words, etc. For individ-
ual language pairs, different preprocessing steps might help to gain better quality
results. Any type of preprocessing done in this step needs be also applied to the
input data, before the alignment process starts, for the method to work properly.
However, this does not mean, that the user must end up with pairs of parallel
documents in preprocessed format. The method is easily extensible to be able to
track down the original documents.

In our experiments with Czech–English language pair, the preprocessing includes
either tokenization or lemmatization, followed by lowercasing. The tokenization
and lemmatization is done utilizing MorphoDiTa (see Section 2.3), an open-source
morphological dictionary and tagger.

3.2.2 Applying SyMGIZA++

The method follows the well-known recommendations to get a good-quality word
alignment. The resulting corpus from the previous step is further cleaned by
removing all the sentence pairs, where one of the sentences contains more than
50 tokens or does not contain a single letter from any alphabet.

Then SyMGIZA++ (see Section 2.4) is executed to obtain the word alignment for
the preprocessed and cleaned training parallel corpus. This step includes prepa-
ration of word classes and word co-occurrences which are used in the alignment
process. The results of the execution include the values of the IBM Model 1 “t”
parameters, after its last iteration, for both directions.

3.2.3 Generating Dictionary

The bilingual dictionary is built using the final IBM Model “t” parameters esti-
mated by SyMGIZA++. The algorithm is the same as the one implemented in
Bitextor’s script for creating a custom dictionary (see Section 1.1). Each word
pair that appears in both directions and has the harmonic mean of the “t” pa-
rameters (i.e. weight) great enough, is included into the dictionary. Unlike the
Bitextor’s one, this type of a dictionary includes also the weights.

We created a script merge_param.py which takes the SyMGIZA++ vocabulary
files for both languages, files containing “t” parameters for both directions, a
threshold for the weights and produces a bilingual dictionary. Listing 3.1 shows
a sample from the file containing bilingual dictionary created by this script.

By default, we keep all the pairs of words with weight more than 0.00001. The
threshold is set relatively low, producing large dictionaries. Searching through
a larger dictionary takes more memory and computational time which heavily
affects the overall performance of the method. The reasoning behind such a low
threshold is that we wanted to demonstrate the limits of our method’s preci-

38

Listing 3.1: Sample from a file with bilingual dictionary (training)

170724 řekl said 0.448062

170725 řekl told 0.162753

170726 řekl say 0.0364408

170727 řekl tell 0.0109902

sion rather than its performance. Yet, we consider the chosen threshold as still
acceptable when talking about the resource requirements of the method.

3.2.4 Applying bivec

The input files for bivec (see Section 2.5) training are obtained by vertically
splitting SymGIZA++ output file all.A3.final_symal. Each line of this file
contains a pair of parallel sentences along with their word alignment in a format
introduced by Pharaoh1, a machine translation decoder.

It is worth noting that bivec was built to accept alignment format of Berkeley
Aligner2, which is another word alignment tool. To transform the Pharaoh format
into the required one, all the dashes must be replaced with spaces.

The method follows the recommendations of how should be the training data
preprocessed. All the sequences of numbers are replaced with a zero symbol
and all the unknown symbols (e.g. non-printable Unicode characters) with the
specially dedicated tag <unk>.

With all the input files for training prepared, bivec is executed to create the
bilingual word vectors. It is set to generate vectors with 40 dimensions. Listing 3.2
and Listing 3.3 show samples taken from the files containing bilingual word vectors
produced by bivec. Additionally, Table 3.1 lists a sample of cosine similarities
between the word vectors. In the table, the order of the Czech and English words
is the same, so the diagonal represents translations.

There is a reason, why we keep the number of dimensions relatively low. The
word vectors are used to calculate the aggregate document vectors with the same
number of dimensions. The document vectors are then indexed using Annoy (see
Section 2.6). The authors of Annoy suggest that the tool works best with number
of dimensions less than 100. On the other hand, the authors of bivec conducted
the tests using 40, 128, 256 and 512 dimensions. We have decided to use the only
number of dimensions suitable for Annoy that has been tested.

1http://www.isi.edu/licensed-sw/pharaoh/ (accessed May 2, 2016)
2https://code.google.com/archive/p/berkeleyaligner/ (accessed April 13, 2016)

39

http://www.isi.edu/licensed-sw/pharaoh/
https://code.google.com/archive/p/berkeleyaligner/

Listing 3.2: Sample from a file with Czech word vectors (training)

89 řekl 0.610664 0.186801 0.586637 -0.305300 0.785947 -0.114462 -0.168189

-0.800271 0.761297 -0.286534 0.195719 -0.125131 -0.821144 0.049325

-0.603093 -0.183007 0.240985 0.083267 0.144988 -0.375526 0.269821

-0.266884 0.141238 0.163624 -0.385829 0.255967 -0.700835 0.451331

0.341263 0.333853 0.177087 -0.085332 -0.222975 0.753013 0.005252

0.023802 -0.520247 -0.062342 -0.485972 -0.216207

Listing 3.3: Sample from a file with English word vectors (training)

64 said 0.601102 0.260525 0.566347 -0.263702 0.673600 -0.114424 -0.137723

-0.704463 0.619913 -0.402364 -0.043697 -0.052677 -0.862785 0.107025

-0.665232 -0.119659 0.101142 -0.086549 -0.105953 -0.572788 0.379709

-0.309156 0.056748 0.016574 -0.131031 0.380851 -0.356606 0.340167

0.374560 0.466035 0.319632 -0.070731 -0.221821 0.630211 0.117143

0.033079 -0.416265 -0.012100 -0.469880 -0.166465

Table 3.1: Sample of cosine similarities between word vectors

řekl kočka pes káva čaj
said 0.9522 0.4480 0.4403 0.4492 0.5440
cat 0.4070 0.9383 0.8350 0.5053 0.5346
dog 0.4950 0.7727 0.9328 0.3900 0.5582

coffee 0.4682 0.4423 0.3880 0.8456 0.9041
tea 0.5014 0.4202 0.4232 0.8129 0.9698

3.3 Training Part II: Classifier

With the first part of the training done, the method has prepared the preprocessed
training parallel corpus (see Section 3.2.1), bilingual dictionary with weights (see
Section 3.2.3), and bilingual word vectors (see Section 3.3.2).

The second part of the training process is illustrated in Figure 3.2. The process is
almost the same as the procedure of running the trained method. The difference
is that in training, we are aligning a supervised dataset with the intention to train
a binary classifier able to decide whether to accept a pair of documents as parallel
or not. The trained classifier is then used when running the trained method on
the input data. The following text describes the procedure of the second part of
the training.

40

Figure 3.2: Proposed method: training part II

3.3.1 Preparing Documents

The first step creates the supervised dataset. The dataset consists of bins contain-
ing bilingual parallel documents. It is formed from the pairs of parallel sentences
contained in the preprocessed training parallel corpus (see Section 3.2.1). These
are considered as pairs of parallel documents for the training.

41

In Section 3.1, we have explained the concept of the bins. The method splits all
the pairs of documents into equally large bins (except the last one). The size
of the bin should be an estimate of an expected size of the bin in a real-world
dataset. In our experiment we split the documents into training bin consisting
of 50, 000 pairs of parallel documents, i.e. 100, 000 documents. We consider this
value as an upper-bound estimate of an average number of paragraphs in either
of the two languages located on an ordinary bilingual web domain.

Our implementation accepts the supervised dataset in the form of two files, one
for each language. Listing 3.4 and Listing 3.5 show samples of such a pair of files.
The format is a list of tab-separated values. The first column is an identifier of
the bin. The samples show those parts of the files, where the first bin ends and
the second bin starts. For the implementation to be able to iterate over both
these files simultaneously, it is required that the bins are sorted in an alphabetic
order. The second column is an identifier of the document. This identifier needs
to be unique at least within the bin. The third column it the textual content of
the document. The examples show documents from the tokenized and lowercased
training parallel corpus. For the training to be successful, it is essential that each
pair of parallel documents share the same bin and document identifier. This way
the method knows which pairs of the documents are parallel.

Listing 3.4: Sample from a file with Czech documents (training)

49999 00000000 49998 " stál jsem támhle u zdi , " řekl .

50000 00000000 49999 " nešpehoval jsem , harry .

50001 00000001 50000 nikam nechodı́me .

50002 00000001 50001 pokračujte pane farbere .

Listing 3.5: Sample from a file with English documents (training)

49999 00000000 49998 ’ i was standing there by the wall , ’ he said .

50000 00000000 49999 ’ i was n’t spying , harry .

50001 00000001 50000 we never socialize .

50002 00000001 50001 continue , mr . farber .

3.3.2 Generating Document Vectors

For each document, an associated vector is generated using the bilingual word
vectors obtained in the first part of the training (see Section 3.2.4) together with
the tf-idf (term frequency-inverse document frequency) weighting scheme. The
tf-idf weight of a term 𝑑𝑖 in a document 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) can be expressed as:

42

tf-idf(𝑑𝑖, 𝑑) = tf(𝑑𝑖, 𝑑) × idf(𝑡) = tf(𝑑𝑖, 𝑑) · log

(︂
𝑁

df(𝑑𝑖)

)︂

where tf(𝑑𝑖, 𝑑) is the number of occurrences of the term 𝑑𝑖 in the document 𝑑,
df(𝑑𝑖) is the number of documents containing the term 𝑑𝑖, and 𝑁 is the number
of all the documents in a dataset.

Our implementation processes both the files with documents one by one, bin by
bin. When processing a bin, all the duplicate documents present in the bin are
first discarded. Then, the inverse document frequencies are calculated for all
the words that appear in the bin. Lastly, the document vector for every unique
document 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) is generated as:

docvec(𝑑) =
𝑛∑︁

𝑖=1

tf-idf(𝑑𝑖, 𝑑) × wordvec(𝑑𝑖)

where wordvec(𝑑𝑖) is the word vector for the term 𝑑𝑖. The product operation in
the formula is a multiplication of a scalar with a vector and the summation is
derived from the operation of vector addition. If a word vector does not exist for
a given term, a zero vector is used instead.

The described procedure is implemented in a script called create_docvec.py.
When given a file with documents and a file with word vectors for the associated
language, it generates an output file containing document vectors. Listing 3.6
and Listing 3.7 show a sample of its output. These lines contain the document
vectors produced for the first pair of parallel documents displayed in Listing 3.4
and Listing 3.5. The output format of the script is very similar to the format
of a file with documents. The only difference is that the document contents are
replaced with document vectors.

Listing 3.6: Sample from a file with Czech document vectors (training)

49999 00000000 49998 8.180257 -6.041753 6.456024 -7.385942 4.504289

-2.480280 -2.110008 -6.952853 9.294062 -5.956102 0.873277 0.288546

-8.055108 3.530353 -13.852273 1.189734 6.368119 4.307136 2.640194

-5.734687 -3.508690 -3.307812 -4.178317 -5.088661 -2.772588

10.505361 -7.485562 5.391955 5.723570 6.392571 3.516147 -1.386106

-5.184054 11.635170 -7.812555 6.185200 -0.854625 2.147744 -5.315508

1.234217

43

Listing 3.7: Sample from a file With English document vectors (training)

49999 00000000 49998 3.407737 -6.297829 7.404373 -6.480918 3.653056

0.363053 -0.486428 -4.324950 7.306768 -3.102215 -0.762884 -1.544800

-6.174080 0.820872 -10.864064 -1.982250 4.873059 -1.361170 -2.714015

-4.592477 2.429560 -1.330689 -4.640379 -3.568162 -1.444272

10.333115 -5.498119 1.396311 3.515478 9.095764 2.544416 -1.068039

-5.637783 5.594423 -3.433248 4.237183 0.336851 -0.263934 -2.851157

2.225453

3.3.3 Aligning Document Vectors (Annoy)

For each bin, the following procedure is performed. First, a search index is built
containing the vectors of all the bins’ documents in target language. To build
the search index, the method uses Annoy (see Section 2.6) set to operate with
the angular distance. Then, for every bin’s document in the source language,
the index is searched to obtain 𝑘-approximate-nearest-neighbours to its vector.
This returns a list of candidate parallel documents in the target language to the
document in the source language. We call these preliminary alignments.

This procedure is implemented in a script called align_docvec.py. When given
files with the document vectors for both the languages, it creates an output file
containing preliminary alignments. Listing 3.8 shows a sample of its output. The
first column is the bin identifier. The second and the third columns represent the
identifiers of the documents in the source and the target language, respectively.
The last column contains the similarity derived from the distance provided by
Annoy calculated as 1−(𝑑/2), where 𝑑 is the returned angular distance explained
to be actually a Euclidean distance of normalized vectors. In the case presented
in the sample, the parallel document ended as the 9th best candidate (see line
4573319 in Listing 3.8).

Listing 3.8: Sample from a file with preliminary alignments (training)

457311 00000000 49998 44560 0.800532951951

457312 00000000 49998 11723 0.791310846806

457313 00000000 49998 9227 0.787315234542

457314 00000000 49998 33875 0.781678438187

457315 00000000 49998 18861 0.779217585921

457316 00000000 49998 24646 0.771993637085

457317 00000000 49998 9232 0.771212115884

457318 00000000 49998 48420 0.770708605647

457319 00000000 49998 49998 0.770486533642

457320 00000000 49998 20284 0.768467396498

44

3.3.4 Scoring Alignments

Within the preliminary alignments, the top candidates are not necessarily the
optimal ones. Therefore, the method applies a scoring function to reorder the
candidates. This increases the probability of the optimal documents to appear
higher in their candidate lists. Given the document 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑛) and its
candidate 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑚), the scoring function is defined as:

score(𝑑, 𝑐) = length sim(𝑑, 𝑐) × weight sim(𝑑, 𝑐)

Both the functions length sim(𝑑, 𝑐) and weight sim(𝑑, 𝑐) have the range of [0, 1].
The idea is that the higher the result they return, the greater the possibility that
the pair is parallel. These functions are defined as follows.

∙ length sim(𝑑, 𝑐) examines the ratio of the documents’ lengths. It is based
on the probability density function of the normal (Gaussian) distribution:

length sim(𝑑, 𝑐) = 𝑒
−

(len(𝑐)
len(𝑑)

− 𝜇)2

2𝜎2

where len(𝑐)
len(𝑑)

is the actual ratio of the documents’ lengths and 𝜇 is the ex-
pected ratio with the standard deviation 𝜎. The expected ratio of docu-
ments’s lengths with the associated standard deviation can be estimated
using the pairs of parallel sentences from the preprocessed training parallel
corpus. For the tokenized Czech–English parallel corpus these values are
estimated to be 𝜇𝑐𝑠→𝑒𝑛 ≈ 1.08 and 𝜎𝑐𝑠→𝑒𝑛 ≈ 0.28.

∙ weight sim(𝑑, 𝑐) is based on the IBM Model 1 [19] and uses the bilingual
dictionary created in the first part of the training. It is defined as:

weight sim(𝑑, 𝑐) =
𝑛∏︁

𝑖=1

𝑚∑︁
𝑗=1

weight(𝑑𝑖, 𝑐𝑗)

𝑚

where weight(𝑑𝑖, 𝑐𝑗) is the weight of the word pair ⟨𝑑𝑖, 𝑐𝑗⟩ provided by the
dictionary if the entry exists, otherwise it equals 10−9 (“null weight”).

A script called score_align.py implements the described procedure. Given a file
with preliminary alignments and files with the documents for both the languages,
it creates an output file containing scored alignments. Listing 3.9 shows a sample
of its output. The output format is almost unchanged when compared with the
format of a file with preliminary alignments. The only difference is that the
similarity in the last column is replaced with the calculated score. The presented
sample shows scored candidates from Listing 3.8. The matching document is now
considered as the top candidate.

45

Listing 3.9: Sample from a file with scored alignments (training)

457311 00000000 49998 49998 1.21903368318e-14

457312 00000000 49998 20284 9.19687934061e-20

457313 00000000 49998 11723 1.55923045256e-23

457314 00000000 49998 9232 9.73231577325e-25

457315 00000000 49998 18861 7.95893854924e-27

457316 00000000 49998 48420 8.82180461894e-28

457317 00000000 49998 33875 1.19519536122e-30

457318 00000000 49998 9227 1.70133029025e-38

457319 00000000 49998 44560 2.16354386116e-43

457320 00000000 49998 24646 9.5437947187e-55

3.3.5 Training Binary Classifier

It is required from the binary classifier to be able to decide whether to accept
a pair of documents as parallel or not. The chosen model for the classifier is a
feed-forward neural network [58]. The method uses an implementation provided
by PyBrain (see Section 2.7). The classification is based on 4 features. All of
these features have the range of [0, 1]. Given the document 𝑑 = (𝑑1, 𝑑2, . . . , 𝑑𝑛)
and its candidate 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝑚), the following list describes all the features.

∙ length sim(𝑑, 𝑐) has been already defined (see Section 3.3.4). This function
scores the ratio of the documents’ lengths against the expected ratio.

∙ length conf(𝑑, 𝑐) provides a supplementary information for the previous fea-
ture, which is not a reliable nor effective when scoring pairs of short docu-
ments; however, it is substantial when comparing pairs of long documents:

length conf(𝑑, 𝑐) = 1 − 𝑒−0.01×len(𝑑)

This is a monotonically increasing function, that provides the model with an
information of absolute length of the document 𝑑. The name of the feature
is an abbreviation of “length confidence”, which is justified by the fact that
the higher the value of the length conf(𝑑, 𝑐) is, the more authoritative is the
score of the length sim(𝑑, 𝑐).

∙ weight sim2(𝑑𝑖, 𝑐𝑗) is a modified version of weight sim(𝑑, 𝑐) (see Section 3.3.4).
The original version was tested for the purposes of the classification, but
the results were poor. This might be caused by the fact, that it returns
very small values affected by the number of words contained in both the
documents to a large extent. The modified version is defined as:

46

weight sim2(𝑑, 𝑐) =

𝑛∑︀
𝑖=1

len(𝑑𝑖) ×
𝑚

max
𝑗=1

(weight2(𝑑𝑖, 𝑐𝑗))

𝑛∑︀
𝑖=1

len(𝑑𝑖) × sgn(
𝑚

max
𝑗=1

(weight2(𝑑𝑖, 𝑐𝑗)))

where weight2(𝑑𝑖, 𝑐𝑗) is defined as the weight of the word pair ⟨𝑑𝑖, 𝑐𝑗⟩ pro-
vided by the dictionary if the entry exists; however, if it does not exist and
the two words are identical, then it equals 1, otherwise it returns 0.

Let us explain the reason behind the heuristic of weight2(𝑑𝑖, 𝑐𝑗) = 1 for
a pair of identical words not having entry present in the dictionary. The
same set of features is used in the running process where occurrences of new
words or special terms (e.g. URLs or email addresses) are expected. The
heuristic considers a pair of identical words to be a perfect translation only
if the dictionary does not contain other relation.

Additionally, let us discuss why the weights are multiplied by the lengths
of words. The assumption is that longer words are usually less frequent,
carry more meaning and are therefore more important for the sentence, in
contrast to short tokens (e.g. “,” or “a”). The definition of weight sim2(𝑑, 𝑐)
is an arithmetic mean of strongest relations between a source word from 𝑑
and any of the target words from 𝑐, weighted by the lengths of source words.

Figure 3.3 shows an example of weight sim2 calculation. In the example,
for every source word in the Czech document, there exists an entry in the
bilingual language dictionary with at least one of the target words from the
English candidate document. Arrows represent the strongest among the
relations (max weight2) for each of the source words. The calculation above
each of the source words is a multiplication of the length of the source word
and the weight of the associated strongest relation.

Figure 3.3: Example weight sim2 calculation

∙ weight conf2 is a supplementary feature for weight sim2. We can interpret
the weight sim2 feature as: “From what we know with the knowledge of pos-
sible incomplete dictionary, how likely are these two documents parallel?”.

47

The supplementary feature can be similarly interpreted as: “To what ex-
tent the dictionary covers the pairs of words we came across?”. The formal
definition is following:

weight conf2(𝑑, 𝑐) =

𝑛∑︀
𝑖=1

len(𝑑𝑖) × sgn(
𝑚

max
𝑗=1

(weight2(𝑑𝑖, 𝑐𝑗)))

𝑛∑︀
𝑖=1

len(𝑑𝑖)

With all the features designed for the classification defined, the process of train-
ing can be explained. It starts by creating a training dataset using the scored
alignments. For every document 𝑑 in the source language and its top candidate
𝑐 in the target language the following pair of input→output vectors is added into
the training dataset:

⎛⎜⎜⎝
length sim(𝑑, 𝑐)
length conf(𝑑, 𝑐)
weight sim2(𝑑, 𝑐)
weight conf2(𝑑, 𝑐)

⎞⎟⎟⎠→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︃
0

1

)︃
, if ⟨𝑑, 𝑐⟩ are parallel

(︃
1

0

)︃
, otherwise.

The input vector consists of the 4 defined features, while the output vector encodes
whether the documents ⟨𝑑, 𝑐⟩ are parallel or not. The first value of the output
vector represents the probability of the documents to be non-parallel. The second
value is complementary to the first.

Before the network is trained, the collected training dataset is subsampled to
contain an approximately equal number of items representing parallel and non-
parallel document pairs. This helps the network to be less affected by the ratio
of parallel and non-parallel pairs. At this moment, it is also possible to reduce
the size of the dataset to shorten the time it takes to complete the training.

This described procedure is implemented in a script called train_network.py.
When given a file with scored alignments and files with documents for both the
languages, the script trains a network and stores its configuration to a disk on a
requested location in the form of an XML file. This allows the method to load
and use the trained network at any time. It also enables the system to distribute
the trained model to other nodes.

48

3.4 Running

With the second part of the training done, the method has prepared a binary
classifier able to decide whether to accept a pair of documents as parallel or not
(see Section 3.3.5).

The process of running the trained method on the input data is illustrated in
Figure 3.4. The resemblance between this process and the procedure of the sec-
ond part of the training has been already discussed. Due to the large extent of
similarity the shared parts of the process are described briefly as they have been
discussed in detail in Section 3.3.

3.4.1 Preparing Documents

As mentioned earlier in Section 3.2.1, the input documents have to be prepro-
cessed in the same way as the training parallel corpus. Then, the preprocessed
documents have to be split into bins. As already noted (see Section 3.1), when
aligning paragraphs from the web, a bin can contain all the paragraphs for both
the languages, scraped from one bilingual web domain. In this scenario, the
names of the domains can be used as bin identifiers. This restricts the method to
align only the paragraphs originating from the same domain. On the other hand,
if aligning inseparable data, e.g. documents without a natural distribution into
groups, all the documents can be placed into a single bin with an arbitrary iden-
tifier. However, the method has better recall when aligning smaller bins. This is
caused mainly by Annoy, which has better accuracy when searching through an
index with less items.

Our implementation accepts the input dataset in a form of two files, one for
each language. It is the same format as for the supervised dataset, described in
Section 3.3.1. Listing 3.10 and Listing 3.11 show samples of such a pair of files
containing Czech and English paragraphs acquired from the web.

Listing 3.10: Sample from a file with Czech documents (running)

154290 europa.eu 154289 v praze se fórum zaměřilo konkrétně na jadernou

bezpečnost , politiky nukleárnı́ho odpadu , možné iniciativy v

oblasti odborné přı́pravy a vzdělávánı́ a transparentnosti .

3.4.2 Applying Binary Classifier

With the input dataset prepared, the process follows with the exact same steps
applied to the supervised dataset in the second part of the training. First, vectors

49

Figure 3.4: Proposed method: running

are generated for all the documents (see Section 3.3.2). Then, the document
vectors are aligned by searching for nearest neighbours of all documents in the
source language, resulting in preliminary alignments (see Section 3.3.3) and these
are subsequently scored (see Section 3.3.4).

50

Listing 3.11: Sample from a file with English documents (running)

1085753 europa.eu 1085752 at the prague meeting the forum has been

dedicated more particularly to nuclear safety , nuclear waste

policies , possible initiatives on training and education as well as

in the area of transparency .

As a final step, the trained classifier (see Section 3.3.5) is used to obtain the
refined alignments. For every document 𝑑 in the source language and its top
candidate 𝑐 in the target language the trained network is activated as follows:

⎛⎜⎜⎝
length sim(𝑑, 𝑐)
length conf(𝑑, 𝑐)
weight sim2(𝑑, 𝑐)
weight conf2(𝑑, 𝑐)

⎞⎟⎟⎠ ?−→
(︂
𝑎
𝑏

)︂

The input vector contains the same set of features as in the training. When acti-
vated, the second value from the output vector 𝑏 ∈ [0, 1] represents the confidence
of a prediction that the two documents ⟨𝑑, 𝑐⟩ are parallel. If the confidence 𝑏 is
greater than a user-defined threshold, the document pair ⟨𝑑, 𝑐⟩ ends up in the
resulting refined alignments.

A script called apply_network.py implements the described procedure. When
given a file containing the network configuration of a classifier, a file with scored
alignments and files with documents for both the languages, it creates an output
file containing refined alignments. Listing 3.12 shows a sample of its output. The
output format follows the convention of the files with preliminary and scored
alignments. This time, the last column represents the confidence returned by the
classifier. The presented sample shows that the two paragraphs from Listing 3.10
and Listing 3.11 are successfully aligned.

Listing 3.12: Sample from a file with refined alignments (running)

33683 europa.eu 154289 1085752 0.9996949388

33684 europa.eu 154287 1085750 0.999479551945

33685 europa.eu 154284 1163960 0.996325842675

33686 europa.eu 154285 1163962 0.996881020525

3.5 Discussion

The second part of the training process and its resemblance to the procedure of
running the trained method may seem cumbersome. However, in case of presence

51

of a different binary classifier able to tell whether the two documents are parallel
or not, the whole second part of the training could be excluded and the provided
classifier would be utilized.

An alternative classifier could be based on a pre-trained SMT system that would
be used to translate the document in the source language into the target one
to be compared with the other document. This idea was adapted in the related
project focused on mining Wikipedia (see Section 1.4).

Our classifier is more similar to the one used by STRAND (see Section 1.3).
The STRAND’s classifier is based on a decision tree built over a set of features
comparing the similarity between a pair of potentially parallel HTML structures.
In contrast to this, our method uses a neural network trained with a set of features
designed to compare two potentially parallel plain text documents.

In our method, the second part of the training process simulates the aligning of a
supervised dataset with the knowledge of the optimal solution. In the end of the
procedure, the model of the classifer is trained. This is a generic approach that
can be easily modified. One can redesign the set of features for the classification
or completely change the implementation of the learning model.

Inspired by STRAND’s classifier, we tried to swap the neural network model
with a model based on a decision tree using the same set of features. For these
purposes, we used the implementation provided by Scikit-learn [74], a Python
machine learning library. The tentative results were poorer; however, we did not
spend that much time with trying different parameters and testing.

It is important to note, that the method, in its present form, does not take into
account the order of the words when aligning parallel documents. The tf-idf
weighting scheme, the scoring function based on the IBM Model 1 and even all
the features used by the classifier completely ignore this aspect. Despite the fact
that the results are promising, there are places for improvement.

It is also important to highlight the fact that our method is asymmetric regarding
the fact that it generates different results if the source and the target languages are
swapped. The main reason behind this is that the document vectors associated
with the target language are indexed by Annoy while the other vectors for the
source language are used as query points for the approximate-nearest-neighbours
search. From our experience, a rule of thumb is to choose the language with more
documents to be the target one.

The method is designed to be able to run in parallel or distributed environment.
Bins with input documents represent independent isolable tasks. These can be
distributed across multiple nodes together with the once trained resources needed
for the execution. These include bilingual dictionary, bilingual word vectors and
the trained classifier.

52

The key idea behind our method is to use the combination of bilingual word
embedding and locality-sensitive hashing. Usually the most expensive operation
when solving the task of document alignment is the content comparison of the
two documents. A naive approach compares each of the 𝑁 documents in the
source language, with all the 𝑀 documents in the target language resulting in
𝑁 ×𝑀 comparisons. Our method reduces this number to 𝑁 ×𝑘+𝑁 . The 𝑁 ×𝑘
is the number of comparisons needed for the scoring of the 𝑘 candidates from all
the possible 𝑀 ones as returned by the approximate-nearest-neighbours search
and 𝑁 is the number of comparisons necessary for the final classification of the
top candidates.

53

Chapter 4

Prealigned Data (CzEng)
Experiment

This chapter describes the first experiment conducted with our method. The
experiment involves the prealigned parallel data. This type of data enable us to
automatically compare the method’s results with the original alignment. There-
fore, we can estimate the effectiveness of the proposed method.

For the experiment, we have selected Czech–English language pair. The most
important reasons behind this selection are that we can use the available Czech–
English parallel data and we understand both these languages well. The parallel
corpus used for this experiment consists of all the training sections (packs 00–97)
of CzEng 1.0 (see Section 2.2) in the plain text, untokenized format. It contains
14, 833, 358 pairs of parallel sentences.

4.1 Experiment Procedure

The main idea behind the experiment is the following. CzEng 1.0 is split hori-
zontally in half creating two smaller equally sized parallel corpora. We call these
head and tail. The head is used for the training, while the tail is used for evalua-
tion. The effectiveness of the method is measured after the individual steps of the
aligning process. The whole procedure is illustrated in Figure 4.1 and described
in the following text.

4.1.1 Preprocessing CzEng 1.0

The entire CzEng 1.0 is preprocessed, as a whole. All the sequences of charac-
ters that are neither letters from any alphabet nor whitespaces nor even ASCII
symbols are replaced with the Unicode symbol ∙ (U+2022). Then, the corpus

54

Figure 4.1: CzEng experiment

is tokenized and subsequently lowercased. The tokenization is done using Mor-
phoDiTa (see Section 2.3). When running MorphoDiTa’s script run_tokenizer

on the Czech and English parts of the parallel corpus, the argument --tokenizer
is set to czech and english respectively.

4.1.2 Splitting and Cleaning CzEng 1.0

Preprocessed CzEng 1.0 is split horizontally exactly in half creating two separate
parallel corpora, i.e. head and tail. The head is cleaned by excluding all pairs
where either of the two sentences contains more than 50 tokens (286, 318 pairs
are filtered out) or does not contain a single letter from any alphabet (more
103, 251 are discared). The tail is cleaned by only the latter of the two mentioned
filters (104, 103 pairs are exluded). The pairs containing overly long sentences
are removed from the head to get better quality word alignment, which heavily
affects the whole training process.

55

4.1.3 Training Part I: Dictionary, Word Vectors

As the first step of the training, SyMGIZA++ is applied (see Section 3.2.2) to
calculate the word alignment for the head. This includes the standard workflow
with the scripts: plain2snt, snt2cooc and mkcls, where we request 2 optimiza-
tion runs (-n2). For the execution of symgiza, we use the standard settings listed
in Table 4.1. From our experience, the method of final symmetrization yielding
the best results is the “union” method (-alig union).

Table 4.1: CzEng experiment: SyMGIZA++ settings

Description Argument
Number of threads -ncpus 4

Number of Model 1 iterations -m1 5

Number of Model 2 iterations -m2 5

Number of Model 3 iterations -m3 5

Number of Model 4 iterations -m4 5

Number of HMM iterations -mh 5

Dump Model 1 after 5th iteration -t1

Dump Model 2 after 5th iteration -t2

Dump Model 3, 4, 5 after 5th iteration -t345

Dump Model HMM after 5th iteration -th

Symmetrize Model 1 after 5th iteration -m1symfrequency 5

Symmetrize Model 2 after 5th iteration -m2symfrequency 5

Symmetrize Model 3, 4, 5 after 5th iteration -m345symfrequency 5

Symmetrize Model HMM after 5th iteration -mhsymfrequency 5

Symmetrization “t” tables multiplier -tm 2

Run final symmetrization -es 1

Use Union method in final symmetrization -alig union

Omit Diagonal option in final symmetrization -diagonal no

Omit Final option in final symmetrization -final no

Omit Both option in final symmetrization -both no

Probability for empty words -emprobforempty 0.0

Probability smoothing value -probsmooth 1e-7

Subsequently, the bilingual dictionary is generated (see Section 3.2.3) using the
script merge_param.py. The created dictionary contains 11, 567, 603 entries.

Then, bivec is applied (see Section 3.2.4) to create the bilingual word vectors.
Prior to the execution, the training dataset is preprocessed by replacing all the
Unicode symbols ∙ (U+2022) symbols with <unk> and the sequences consisting
of numbers with zero symbol. We use the standard settings listed in Table 4.2.
The resulting output contains 367, 393 vectors for the Czech and 179, 869 for the
English part of the corpus.

56

Table 4.2: CzEng experiment: bivec settings

Description Argument
Language code of source language -src-lang en

Language code of target language -tgt-lang cs

Use the provided word alignment -align-opt 1

Cross-lingual learning rate multiplier -bi-weight 1.0

Use biskip model -cbow 0

Discard less appearing words -min-count 3

Size of the output vectors -size 40

Maximal skip length between words -window 5

Number of negative examples -negative 5

Save output in textual format -binary 0

Do not use hierarchical softmax -hs 0

Threshold for high-frequency source words -sample 1e-4

Threshold for high-frequency target words -tgt-sample 1e-4

Number of threads -threads 4

Do not evaluate results -eval 0

Number of iterations -iter 10

4.1.4 Training Part II: Classifier

The pairs of parallel sentences from the head are distributed into artificial bins
to form a supervised dataset for the training of the classifier (see Section 3.3.1).
Each bin contains 50, 000 pairs of the parallel documents, i.e. 100, 000 individual
documents. We consider this value to be an upper-bound estimate of an average
number of paragraphs in either of the two languages located on an ordinary
Czech–English web domain. The created dataset consists of 141 bins. The last
bin is an exception containing only 27, 110 pairs.

The document vectors are generated (see Section 3.3.2) using the script cre-

ate_docvec.py. The supervised dataset contains 7, 027, 110 pairs of the parallel
documents for which the script generates 6, 467, 817 vectors for the Czech and
6, 420, 329 vectors for the English documents. The numbers differ because the
script discards duplicated documents within the bins.

The preliminary alignments are created (see Section 3.3.3) running the script
align_docvec.py. For every Czech document a list of 20 English candidate
documents is created. Annoy (see Section 2.6) is set to build search indices
with 500 trees and when performing a search it is requested to inspect 500 ×
20 × 2 = 20, 000 nodes. These settings greatly affect the results. We follow the
recommendations [55] to set the number of trees as large as possible given the
amount of available memory and the number of nodes to be inspected as large as
possible given the amount of available computational time.

The alignments are scored (see Section 3.3.4) with the script score_align.py. In
this experiment, we use the expected ratio of the documents’s lengths 𝜇𝑐𝑠→𝑒𝑛 =

57

1.08 with the standard deviation 𝜎𝑐𝑠→𝑒𝑛 = 0.28. These values were estimated
using the pairs of parallel sentences in the head.

The classifier is trained (see Section 3.3.5) with the script train_network.py.
The script creates the training dataset by randomly selecting approximately 20%
of all the available pairs of a Czech document with its top English candidate.
Additionally, the selection contains nearly as many parallel pairs as non-parallel.
The network model is provided by PyBrain (see Section 2.7). For completeness,
let us describe its configuration; however, we shall not go into details [58]. The
network is a multilayer perceptron learning through the backwards error propa-
gation. It has 4 input, 16 hidden and 2 output neurons. The input neurons are
linear, the hidden layer uses sigmoid function and the output layer uses softmax
function. The network is trained for 20 epochs with the 1% learning rate.

4.1.5 Running

The trained system is used to search for sentence pairs in the tail. The pairs of
parallel sentences from the tail are distributed into artificial bins in a same manner
as those from the head. Also, in this case, each bin contains 50, 000 pairs of the
parallel documents, i.e. 100, 000 individual documents. In this scenario, each
bin simulates a web domain with 50, 000 Czech and 50, 000 English paragraphs
that we want to align. In contrast to real websites, these are perfectly parallel,
all pages are available in both languages. This way, 147 bins are created. The
last bin is an exception containing only 12, 576 pairs. For the purposes of the
experiment, the original alignment of the tail is forgotten to not affect anyhow
the evaluation process.

For the input dataset, the procedure follows with the exact same steps as for the
supervised dataset in the second part of the training. Vectors are generated for
all the documents. Using Annoy, the document vectors are aligned into prelim-
inary alignments and these are subsequently scored. All of the settings remain
unchanged. The input dataset consists of 7, 312, 576 pairs for which 6, 750, 340
vectors for the Czech and 6, 703, 831 vectors for the English documents are gen-
erated. The differences between these numbers are caused again by the presence
of duplicate documents within the bins.

In the last step, the trained binary classifier is applied (see Section 3.4.2) to
obtain the refined alignments for the input dataset. This is done using the script
apply_network.py. The confidence threshold of the classifier is set to 50%. The
refined alignments represent a subset of all the pairs of Czech documents with
their top English candidates that the classifier accepts to be parallel.

58

4.2 Experiment Results

With the entire procedure of the experiment described, let us examine the results.
The effectiveness of the method is measured after the individual steps of the
aligning process. We present the results for the tail from the evaluation but also
for the head from the second part of the training. This way we can compare the
difference between the results when aligning the data used also in the first part
of the training and the data not covered in the training.

Table 4.3 shows the quality of the preliminary alignments. The row with an
index value 𝑘 shows how many times the parallel document ends up as a 𝑘th best
candidate. The one with an index value 𝑘 ≤ 20 tells how many times the parallel
document appears somewhere in the candidate list and the row with 𝑘 > 20 shows
how many times the parallel document is not in a candidate list at all.

Table 4.3: CzEng experiment: preliminary alignments

Head (Training) Tail (Evaluation)
Index Count Ratio (%) Count Ratio (%)

1 3,310,898 51.19 3,395,454 50.30
2 477,165 7.38 499,868 7.41
3 226,139 3.50 237,930 3.52
4 144,859 2.24 152,567 2.26
5 105,706 1.63 111,802 1.66
6 83,212 1.29 87,839 1.30
7 68,488 1.06 72,062 1.07
8 57,827 0.89 60,867 0.90
9 49,544 0.77 53,050 0.79

10 44,125 0.68 46,556 0.69
11 39,279 0.61 41,700 0.62
12 35,638 0.55 37,677 0.56
13 32,453 0.50 34,069 0.50
14 29,829 0.46 31,497 0.47
15 27,548 0.43 28,954 0.43
16 25,280 0.39 26,995 0.40
17 23,588 0.36 24,964 0.37
18 21,875 0.34 23,201 0.34
19 20,635 0.32 22,024 0.33
20 19,639 0.30 20,736 0.31

≤ 20 4,843,727 74.89 5,009,812 74.22
> 20 1,624,090 25.11 1,740,528 25.78

Total 6,467,817 100.00 6,750,340 100.00

The results for the head show, that 74.89% Czech documents have their parallel
English document included in the candidate list. This number is similar also
for the tail, where it equals 74.22%. The difference is surprisingly small, as the
training does not know anything about the tail. By further inspecting the results

59

for the tail, we can observe, that of all the situations when the parallel document
appears somewhere in the candidate list, in 67.78% it is the top one and in 94.18%
it is included in the top 10. This means that if we reduce the size of the search
from 20 to 10, we can still expect approximately 69.89% Czech documents to
have the parallel English document somewhere in the candidate list. Reducing
the size of the query increases the speed.

Table 4.3 shows the quality of the scored alignments. The process of scoring
does not change the number of the Czech documents having a parallel English
document present in the candidate list. Actually, it only reorders the candidate
lists. The intention is to push the parallel documents within their candidate lists
to the top as much as possible. The results show that the scoring function based
on IBM Model 1 combined with the length comparison is effective. Again, the
situation is obviously slightly better for the head. This is mainly caused by the
fact, that the bilingual dictionary used in process is built-up from the head only.
The results for the tail show that of all the times that parallel document appears
in the candidate list, in 96.07% it is the top one. We consider this a good reason
why should the following process consider only the top candidates.

Table 4.4: CzEng experiment: scored alignments

Head (Training) Tail (Evaluation)
Index Count Ratio (%) Count Ratio (%)

1 4,689,885 72.51 4,812,681 71.30
2 90,631 1.40 112,411 1.67
3 24,786 0.38 32,603 0.48
4 12,033 0.19 16,309 0.24
5 7,198 0.11 9,774 0.14
6 4,728 0.07 6,577 0.10
7 3,345 0.05 4,608 0.07
8 2,505 0.04 3,475 0.05
9 1,955 0.03 2,639 0.04

10 1,544 0.02 1,980 0.03
11 1,190 0.02 1,516 0.02
12 971 0.02 1,270 0.02
13 746 0.01 957 0.01
14 552 0.01 781 0.01
15 430 0.01 619 0.01
16 407 0.01 520 0.01
17 280 0.00 407 0.01
18 244 0.00 313 0.00
19 179 0.00 232 0.00
20 118 0.00 140 0.00

≤ 20 4,843,727 74.89 5,009,812 74.22
> 20 1,624,090 25.11 1,740,528 25.78

Total 6,467,817 100.00 6,750,340 100.00

60

The refined alignments are obtained with the 50% confidence threshold. By
gradually increasing the threshold and further filtering the alignments we measure
the recall and the precision of the classifier at different confidence levels. The
results are summarized in Table 4.5. The first column represents the confidence
threshold. The second column represents the number of the document pairs
correctly identified to be parallel, i.e. the number of true positives. The next
column shows the number of false positives, which is the number of document
pairs identified as parallel, but in fact they are not. The recall listed in the table
is relative to the input of the classification process. The precision is the ratio of
the true positives to all the positives. Figure 4.2 shows how the recall and the
precision change with respect to the confidence threshold of the classifier.

Table 4.5: CzEng experiment: classifier effectiveness

Conf.(%) True Pos. False Pos. Recall (%) Precision (%)
50.00 4,254,069 284,174 88.39 93.74
55.00 4,179,076 248,921 86.83 94.38
60.00 4,095,812 217,081 85.10 94.97
65.00 4,000,964 188,595 83.13 95.50
70.00 3,892,099 162,537 80.87 95.99
75.00 3,761,728 138,619 78.16 96.45
80.00 3,599,299 114,985 74.79 96.90
85.00 3,385,007 89,813 70.34 97.42
90.00 3,073,706 64,730 63.87 97.94
95.00 2,621,246 46,522 54.47 98.26
99.00 1,808,067 23,028 37.57 98.74

Figure 4.2: CzEng experiment: classifier effectiveness

61

The overall effectiveness of our method is listed in Table 4.6. These values are
measured using the refined alignments without any form of additional filtering.

Table 4.6: CzEng experiment: overall effectiveness

Recall (%) 63.02
Precision (%) 93.74

4.3 Experiment Time Duration

The computer used for the experiment execution has Intel R○ Xeon R○ CPU E5-
2630 v3 (20 MB Cache, 2.40 GHz) and 128 gigabytes (GB) of memory. Table 4.7
lists the approximate time durations of the individual steps of the experiment.

Table 4.7: CzEng experiment: time duration

Activity Duration (hh:mm)

Preprocessing
Tokenizing and lowercasing 00:08
Splitting and cleaning 00:05

Training part I
Applying SyMGIZA++ 13:21
Generating dictionary 00:10
Applying bivec 01:01

Training part II
Generating document vectors 00:37
Aligning document vectors (Annoy) 05:52
Scoring alignments 02:49
Training network classifier 01:29

Evaluation
Generating document vectors 00:45
Aligning document vectors (Annoy) 07:04
Scoring alignments 04:10
Applying network classifier 00:47

4.4 Extension: Lemmatization

As already noted (see Section 3.2.1), we believe that preprocessing of both train-
ing and input data plays an important role in our method. The extension of
the experiment described is this section is conducted with a goal to determine
whether the lemmatization helps the method to achieve better quality results for
the Czech–English language pair.

62

The procedure of the extended experiment is almost completely the same as in the
original experiment. The only difference is in the preprocessing of the data. The
lemmatization is added between the tokenization and lowercasing. The lemma-
tization is done with MorphoDiTa (see Section 2.3). When running the script
run_tagger on the Czech and English parts of the parallel corpus, it is provided
with the models czech-morfflex-pdt-131112.tagger-best_accuracy [42] and
english-morphium-wsj-140407.tagger [43] respectively.

Table 4.8: CzEng experiment (extended): scored alignments

Head (Training) Tail (Evaluation)
Index Count Ratio (%) Count Ratio (%)

1 4,639,484 72.10 4,813,195 71.64
...

...
...

...
...

≤ 20 4,813,165 74.80 5,022,948 74.76
> 20 1,621,610 25.20 1,695,537 25.24

Total 6,434,775 100.00 6,718,485 100.00

With the lemmatization included, the dictionary built-up from the head contains
only 6, 225, 379 entries (53.82% of the original size). The extension also reduces
the number of word vectors produced by bivec, which is 173, 861 (47.32%) vectors
for the Czech and 163, 993 (91.17%) for the English part of the corpus.

Table 4.8 shows how the lemmatization affects the results. It shows the quality
of the scored alignments. Although the table is not complete, it contains all the
relevant data. The results show minimal improvement. For the tail, the amount
of Czech documents having the parallel English document in the candidate list is
increased by only 0.54%. Additionally, Table 4.9 lists the overall effectiveness of
the method with lemmatization included. Again, the results are very similar.

Table 4.9: CzEng experiment (extended): overall effectiveness

Recall (%) 63.28
Precision (%) 94.32

Lemmatization can be thought of as a many-to-one mapping for words. By ap-
plying a transformation based on such a mapping we reduce the number of words
within a corpus. With less words in the corpus, it is easier for the method to learn
the associations between the words; however, the individual sentences are losing
their contextual diversity. Apparently, the CzEng 1.0 data are already sufficiently
large and the union word alignments do not benefit significantly from the denser
statistics due to lemmatization.

63

Chapter 5

Web Data (Common Crawl)
Experiment

In this chapter, the second experiment conducted with our method is discussed.
Unlike the first experiment (see Chapter 4) this one deals with the non-parallel,
real-word, noisy data acquired from the web. It illustrates effectiveness of our
method in a typical situation for which it is designed.

The selected language pair is the same as in the first experiment, i.e. Czech–
English. This experiment’s procedure utilizes the training artifacts created in the
first experiment, namely the dictionary, bilingual word vectors and the trained
classifier. The input data are obtained from the July 2015 dataset provided by
the Common Crawl organization (see Section 2.8).

The following text describes the procedure of the experiment with an example
approach to the task of mining parallel corpus from the Common Crawl dataset
for a specific language pair. It also discusses the manually evaluated quality of
the acquired Czech–English parallel corpus.

5.1 Experiment Procedure

The July 2015 dataset consists of approximately 1.84 billions of crawled web pages
and it takes about 149 terabytes (TB) of disk space in the uncompressed WARC
format. To process this large volume of data we use Hadoop (see Section 2.9)
cluster provided by MetaCentrum (see Section 2.11). The dataset is available in
a form of 33, 957 WARC files compressed by GNU zip (gzip)1. Each of these files
has less than 950 megabytes (MB) and is accessible via its own URL. The list
of these URLs can be obtained at the official website of the Common Crawl [11]
organization. The total size of the July 2015 dataset in the compressed format is
approximately 28.5 TB.

1http://www.gzip.org/ (accessed April 23, 2016)

64

http://www.gzip.org/

One of the options to get all the files into HDFS (see Subsection 2.9.1), is to
download them in sequence with cURL2 using one node of the cluster. During
the process, every downloaded file can be immediately copied into HDFS using
the command hadoop fs -copyFromLocal and afterwards deleted locally. To
reduce the time, the process can use multiple threads. In our environment, we
use 5 threads and the described process takes about 17 days to complete. Such a
long process can be interrupted by many circumstances (e.g. cluster maintenance).
Therefore, our script first checks which of the files are already present in HDFS
using the command hadoop fs -ls to avoid repetitive downloading. Hadoop
allows the user to process the WARC files compressed by gzip. We use this
feature to reduce the required disk space at the cost of slower execution.

Figure 5.1: Common Crawl experiment

With the entire July 2015 dataset stored in HDFS, the experiment illustrated in
Figure 5.1 is applied. The procedure starts with the distributed execution running
two MapReduce (see Subsection 2.9.2) jobs. This creates a dataset containing
Czech and English paragraphs from the web domains identified to be bilingual.

2https://curl.haxx.se/ (accessed April 23, 2016)

65

https://curl.haxx.se/

The paragraphs are then aligned with our method in a local execution and the
results are evaluated. The whole process is described as follows.

5.1.1 Distributed Execution

The part of the experiment’s procedure executed in the distributed environment
consists of two MapReduce jobs. The first job identifies the web domains con-
taining paragraphs in both the languages we are interested in. In order to enable
the MapReduce framework to read and write the WARC files properly we use
WARC-Hadoop (See Section 2.10).

Let us describe the implementations of the mapper and the reducer in the first
MapReduce job. The mapper is called WarcTextMapper. It iterates through
the WARC records processing only those which represent HTTP responses with
text/html content type, i.e. web pages. For every web page it resolves the char-
acter encoding and transforms its HTML structure into XHTML using jsoup
(see Section 2.12). Then, the textual contents of all the <p> HTML tags repre-
senting paragraphs are parsed and all those having less than 100 characters are
discarded. The shorter paragraphs are discarded because it is difficult to detect
their language reliably. For each paragraph the language is identified with a cer-
tain confidence using language-detector (see Section 2.13) . The mapper outputs
a key-value pair for each paragraph where the language is detected as one of
the two languages we are interested in with the confidence at least 99%. The
structure of an output key-value pair is following:

∙ Key: web domain name.

∙ Value:

∘ language detected by language-detector;

∘ confidence returned by language-detector;

∘ URL associated with the paragraph;

∘ textual content of the paragraph.

The implementation of the reducer is called WarcDomainReducer. For a given
web domain (i.e. key) it receives the values representing all the paragraphs for the
domain emitted by WarcTextMapper. The reducer iterates over all these values
counting the number of the unique paragraphs (using hashing) and their total
length for both the languages separately. It also counts the number of the unique
URLs. For every domain having at least one Czech and one English paragraph
the reducer outputs the key-value pair as follows:

66

∙ Key: web domain name.

∙ Value:

∘ number of unique URLs;

∘ number of unique English paragraphs;

∘ total length of unique English paragraphs;

∘ number of unique Czech paragraphs;

∘ total length of unique Czech paragraphs.

The first MapReduce job creates a list of web domains having at least some Czech
and English content. Listing 5.1 shows a sample from its output file. The format
contains tab-separated values, where the first column is a web domain, which is
the key. The other columns represent the individual items of the value in the
order they were listed. The list contains 12, 144 domains.

Listing 5.1: sample from a file with identified domains

3874 www.meuslany.cz 2 6 2813 16 4509

3875 www.mff.cuni.cz 7 37 14946 39 18162

As the next step, a filter is applied on the output of the first MapReduce job
reducing the number of web domains to be considered for the further processing.
The filter requires from a domain to meet the following condition:

min(𝑁𝑐𝑠, 𝑁𝑒𝑛)

max(𝑁𝑐𝑠, 𝑁𝑒𝑛)
> 1%,

where 𝑁𝑐𝑠 and 𝑁𝑒𝑛 are the numbers of Czech and English paragraphs for the do-
main respectively. The filtering discards all the domains having very unbalanced
language distribution. The output contains 8, 750 identified bilingual domains.

The second MapReduce job extracts the Czech and English paragraphs for all
the identified bilingual web domains. It uses the same mapper as the first job;
however, the implementation of the reducer is different. We call it WarcTex-
tReducer. In order to provide the reducer with the file containing the domains
Hadoop Distributed Cache is utilized. It is a facility provided by the MapReduce
framework enabling the user to cache files for a MapReduce job. Once a file is
cached for a job the framework makes it available locally at each node of the
cluster for the time of the execution allowing mappers and reducers to read the
cached file. When initializing, WarcTextReducer reads the entire file with the
bilingual domains creating a set of hash codes for all their names. When running,

67

it outputs only those incoming key-value pairs emitted by WarcTextMapper that
are associated with one of the domains. Additionally, all the values representing
duplicate paragraphs are discarded. The structure of the output key-value pairs
emitted by both WarcTextMapper and WarcTextReducer is identical.

Listing 5.2 and Listing 5.3 show samples of two lines from the output file of the
second MapReduce job. These two lines contain parallel paragraphs that are
mutual translations. The single output file contains the paragraphs for both the
languages. The format is a list of tab-separated values. The first column is a web
domain, which is the key. The following columns represent the individual items
of the value in the order they were listed in the text describing the structure of
the output key-value pairs emitted by WarcTextMapper. The output file con-
tains 5, 931, 091 paragraphs for both the languages, namely 801, 116 Czech and
5, 129, 975 English. The Czech and English paragraphs originate from 127, 570
and 744, 074 unique URLs, respectively. The average length of a Czech paragraph
is 352.78 characters, while for an English one, it is 417.03.

Listing 5.2: sample from a file with extracted paragraphs (Czech)

3185636 czechfolks.com cs 0.99999445885996 http://czechfolks.com

/2009/11/25/how-well-do-you-know-the-czech-republic-sweepstakes-

results-jak-dobre-znate-ceskou-republiku-a-vysledky-souteze/ Zde

je otázka, kterou jsme položili a jejı́ správná odpověd’: Otázka: Kdo

byl Karel IV? Odpověd’: Český král a řı́mský cı́sař.

Listing 5.3: sample from a file with extracted paragraphs (English)

3185639 czechfolks.com en 0.9999980969126909 http://czechfolks.com

/2009/11/25/how-well-do-you-know-the-czech-republic-sweepstakes-

results-jak-dobre-znate-ceskou-republiku-a-vysledky-souteze/ Here

is the question that we asked with the correct answer: Question: Who

was Charles IV? Answer: The king of Bohemia and Holy Roman Emperor.

5.1.2 Local Execution

The file containing the extracted paragraphs is transferred from HDFS to a one
node of the cluster. The process continues in a single-node execution. The input
dataset for our method is formed by distributing the paragraphs into the bins
according to domain names. For each bilingual web domain, a bin is created with
all the associated paragraphs in both the languages. This restricts the method
to align only the paragraphs belonging to the same domain.

The rest of the procedure is similar as for the tail in the first experiment with
CzEng 1.0 (see Section 4.1.5). The input dataset is preprocessed by tokenization

68

and lowercasing and our method is executed creating refined alignments for the
paragraphs. The method is provided with the training artifacts created during
the first experiment using the head of CzEng 1.0, namely the dictionary, bilingual
word vectors and the trained classifier. The only difference in the settings is the
changed confidence threshold for the classifier, which is required to be 99%. The
precision is favoured over the recall.

It is important to note that for this experiment the Czech language is selected as
the source language. Therefore, the paragraph vectors associated with the En-
glish language are the ones indexed by Annoy. This selection follows the already
mentioned rule of thumb (see Section 3.5) to let the method index the document
vectors for the language having more documents.

5.2 Experiment Results

Table 5.1 lists the most frequent web domains appearing in the extracted pairs
of paragraphs. The full list contains 2, 178 domains having altogether 114, 711
pairs of aligned paragraphs. This means, that the output of our method con-
tains an alignment for 14, 32% of all the extracted Czech paragraphs. The ex-
tracted paragraph-aligned parallel corpus contains in total 7, 235, 908 Czech and
8, 369, 870 English tokens.

Table 5.1: Common Crawl experiment: web domains of paragraph pairs

Source Domain Paragraph Pairs Ratio (%)
europa.eu 23457 20.45
eur-lex.europa.eu 15037 13.11
windows.microsoft.com 11905 10.38
www.europarl.europa.eu 8560 7.46
www.project-syndicate.org 2210 1.93
www.debian.org 2191 1.91
support.office.com 1908 1.66
www.esa.int 1308 1.14
www.eea.europa.eu 1299 1.13
www.muni.cz 1206 1.05
...

...
...

Total 114,711 100.00

The quality of the extracted corpus is evaluated manually on a set of randomly
selected 500 paragraph pairs. The inspected pairs are divided into few categories.
The results of this subjective evaluation are displayed in Table 5.2. The pair of
paragraphs is considered to be a human translation if it seems like created by a
human. These are the most favorable ones. If the translation of the pair seems
cumbersome, it is labeled as a product of machine translation. The partial match
represents a situation when a paragraph is a translation of only a part of the
other having some extra content. Everything else is labeled as a mismatch.

69

Table 5.2: Common Crawl experiment: evaluation (500 paragraph pairs)

Category Count Ratio (%)
Human translation 466 93.20
Machine translation 7 1.40
Partial match 13 2.60
Mismatch 14 2.80
Total 500 100.00

To estimate the precision of our method, let us consider the pairs of paragraphs
belonging to the categories of human and machine translation as the true posi-
tives. This way all the other pairs are regarded as the false positives. Table 5.3
shows how the precision of the method changes with respect to the confidence
threshold of the classifier.

Table 5.3: Common Crawl experiment: precision (500 paragraph pairs)

Conf.(%) True Pos. False Pos. Precision (%)
99.00 473 27 94.60
99.10 464 25 94.89
99.20 456 23 95.20
99.30 446 20 95.71
99.40 435 17 96.24
99.50 415 16 96.29
99.60 404 16 96.19
99.70 386 12 96.98
99.80 357 7 98.08
99.90 286 3 98.96

The task of estimating the recall of our method is more difficult. We would
need to manually inspect all the paragraphs from every web domain selected
for the evaluation. Therefore, let us perform the recall estimation for only one
web domain with smaller number of paragraphs present in the input dataset.
The selected web domain is www.csa.cz, the official website of Czech Airlines
containing human-translated content. For the domain, the input dataset contains
68 Czech and 87 English paragraphs. These are manually aligned, creating what
we consider to be the ideal alignments. When evaluated, the ideal alignments
contain 44 paragraph pairs, of which 42 appear also in the corpus extracted by
our method. Additionally, the corpus include 1 extra pair subjectively regarded
as mismatch. Table 5.4 shows the effectiveness of our method evaluated for the
www.csa.cz web domain. The results are satisfactory; however, www.csa.cz is
a website with a large proportion of the content provided in both the languages.
This fact makes it one of the cleaner sources of parallel Czech–English content.

70

Table 5.4: Common Crawl experiment: effectiveness (www.csa.cz)

Recall (%) 95.45
Precision (%) 97.67

5.3 Experiment Time Duration

The cluster used for the distributed execution of the MapReduce jobs is described
in Section 2.11. The rest of the procedure, i.e. the local execution, is done on one
node of the cluster having Intel R○ Xeon R○ CPU E5-2630 v3 (20 MB Cache, 2.40
GHz) and 128 gigabytes (GB) of memory. Table 5.5 contains the approximate
time durations of the individual steps of the experiment.

Table 5.5: Common Crawl experiment: time duration

Activity Duration (hh:mm)

MapReduce framework
Identifying cs-en domains 11:58
Refining cs-en paragraphs 11:38

Local Execution
Tokenization and lowercasing 00:09
Generating document vectors 00:58
Aligning document vectors (Annoy) 01:13
Scoring alignments 03:42
Applying network classifier 00:39

71

Conclusions and Future Work

The main objectives of our thesis were to propose a new method for bilingual
document alignment, applicable in the field of mining parallel data from the
web, and to conduct experiments with the method, presenting its capabilities
and effectiveness. The method is partially inspired by the related work, but it is
based on a different approach.

The majority of the known methods search for pairs of parallel web pages by the
similarity of their HTML structures. They also rely on HTML structures when
aligning contents of web pages already identified as parallel. In contrast to these
methods, our method does not depend on any kind of page structure comparison
at all.

The proposed method is supervised and generic in nature. First, it needs to be
trained using a provided sentence-aligned parallel corpus for a given language pair.
When trained, the method solves the task of bilingual document alignment—given
a set of documents in the two languages, it finds the pairs of parallel ones. With
the method applied to the task of mining parallel corpora from the web, we are
able to effectively identify the pairs of parallel segments (i.e. paragraphs) located
anywhere on the pages of a web domain, regardless of their structure.

The most important step of our method is based on the combination of re-
cent ideas, namely the bilingual extension of word2vec—bivec—and the locality-
sensitive hashing (LSH). The method uses bivec to learn vectors for the words in
both languages from a provided training parallel corpus. The word vectors are
used to calculate the aggregate vectors for the documents to be aligned. These
document vectors belong to a common vector space, where pairs of parallel doc-
uments tend to have similar vectors. To effectively search the space of document
vectors for parallel document candidates, we use Annoy—an implementation of
the approximate-nearest-neighbours search based on SimHash, one of the LSH
algorithms. In order to decide whether to accept a pair of document and its can-
didate as parallel or not, a binary classifier is trained using the provided training
parallel corpus. The classifier model is based on a neural network, and it uses a
set of defined features for the classification.

72

Results

To verify the idea of our method, we have performed two experiments focused
on the Czech–English language pair. The first one uses prealigned data, and its
results are evaluated automatically. It simulates a scenario with 147 web do-
mains, each of them containing approximately 50, 000 Czech and 50, 000 English
paragraphs to be aligned. In the experiment, the ideal solution consists of an
alignment for each paragraph. The results of the experiment are 63.28% recall
at 94.32% precision. In an extension of the experiment, we have observed that
including lemmatization into the standard preprocessing (tokenization and low-
ercasing) of both the training and input data does not improve the quality of the
resulting alignments notably.

The second experiment involves the real-world data provided by the Common
Crawl Foundation. It demonstrates an application of our method to mining par-
allel corpora from a hundreds of terabytes (TB) large set of web-crawled data.
We have managed to extract the Czech–English parallel corpus from a 149 TB
large dataset consisting of 1.84 billions of web pages. By implementing and run-
ning two MapReduce jobs, we were able to identify 8, 750 web domains having
detectable amount of Czech–English bilingual content, and we have managed to
extract 801, 116 Czech and 5, 931, 091 English paragraphs from these domains.
The extracted paragraphs were aligned with our method, creating a paragraph-
aligned parallel corpus containing 114, 771 pairs from 2, 178 domains, having in
total 7, 235, 908 Czech and 8, 369, 870 English tokens. The quality of the acquired
corpus has been evaluated manually on a set of 500 randomly selected pairs. The
precision was estimated to be 94, 60%. To evaluate the recall, we have selected
one web domain (www.csa.cz) with a smaller number of paragraphs present in
the input dataset. The results for the domain were estimated to be 95.45% recall
at 97.67% precision.

We were surprised by the size of the corpus created in the second experiment, as
we have expected to extract larger quantities of parallel paragraphs. However,
we are convinced that the size is not affected that much by inferior recall of our
approach, but the fact that the dataset does not contain many Czech–English web
pages. The size of the corpus is comparable with the amount of Czech–English
parallel data acquired by the previous project, focused on mining the Common
Crawl datasets described in the related work [36]. Additionally, our approach
achieves a higher precision.

The datasets produced by Common Crawl usually contain only a small subset
of all the pages available on a web domain at the crawling time. Therefore, the
approach described in the second experiment could be extended. We could use
the list of web domains with identified Czech–English content to run our own
targeted crawling that would navigate through the pages in more depth.

73

Future Work

Both experiments show satisfactory results, implying that the proposed method
is a promising baseline for acquiring parallel corpora from the web. Nevertheless,
there is still some room for improvement. First of all, our method does not
consider word order in the aligning process at any stage. Both the scoring function
and the features designed for the classification could be extended to take this
aspect into account.

Then there is the asymmetric nature of our method, meaning it generates different
results if the source and the target languages are swapped. It could be extended
to run the alignment for both directions and the results could be symmetrized.
This might help the method achieve an even higher precision.

Finally, we have run our method only in a single-node environment so far. This
is largely because we were aligning a relatively small sets of documents (not
more than 15, 000, 000). However, the method is designed to run in distributed
fashion. Bins with input documents represent independent isolable tasks. Once
the method is trained, these tasks could be distributed across multiple cluster
nodes together with the resources needed for the aligning process. This would
increase the throughput of our method and hence decrease the execution time.

74

Bibliography

[1] Philipp Koehn Statistical Machine Translation, Cambridge University Press,
2009

[2] Jörg Tiedemann, ’Parallel Data, Tools and Interfaces in OPUS’ in Proceed-
ings of the 8th International Conference on Language Resources and Evalu-
ation (LREC’12), pages 2214–2218, European Language Resources Associa-
tion (ELRA), 2012

[3] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean ’Efficient Estimation
of Word Representations in Vector Space’ in In Proceedings of Workshop at
ICLR, 2013, http://arxiv.org/abs/1301.3781 (accessed April 6, 2016)

[4] Tomas Mikolov, Quoc V. Le, Ilya Sutskever ’Exploiting Similarities among
Languages for Machine Translation’ in Computing Research Repository,
arXiv, 2013, http://arxiv.org/abs/1309.4168 (accessed April 6, 2016)

[5] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean ’Dis-
tributed Representations of Words and Phrases and their Compositionality’
in Computing Research Repository, arXiv, 2013, http://arxiv.org/abs/

1310.4546 (accessed April 6, 2016)

[6] Moses S. Charikar ’Similarity estimation techniques from rounding algo-
rithms’ in Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 380–388, ACM New York, NY, USA, 2002

[7] Alexandr Andoni, Piotr Indyk ’Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions’ in Near-optimal Hashing Algo-
rithms for Approximate Nearest Neighbor in High Dimensions, pages 117–
122, ACM New York, NY, USA, 2002

[8] Jörg Tiedemann, ’Bitext alignment’ in Synthesis Lectures on Human Lan-
guage Technologies, pages 1–165, Morgan & Claypool Publishers, 2011

[9] Ondřej Bojar ’Čeština a strojový překlad: Strojový překlad našinc̊um,
našinci strojovému překladu’, Institute of Formal and Applied Linguistics,
Charles University in Prague, Czech Republic, Faculty of Mathematics and
Physics, 2015

[10] Ondřej Bojar, Zdeněk Žabokrtský, Ondřej Dušek, Petra Galuščáková, Mar-
tin Majlǐs, David Mareček, Jǐŕı Marš́ık, Michal Novák, Martin Popel,
Aleš Tamchyna ’The joy of parallelism with CzEng 1.0’ in Proceedings of

75

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1309.4168
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546

the 8th International Conference on Language Resources and Evaluation
(LREC’12), European Language Resources Association (ELRA), 2012

[11] Common Crawl Foundation ’Common Crawl’ http://commoncrawl.org/

(accessed March 19, 2016)

[12] Miquel Esplà-Gomis, Mikel L. Forcada ’Bitextor, a free/open-source software
to harvest translation memories from multilingual websites’ in Proceedings
of the workshop Beyond Translation Memories: New Tools for Translators
MT, Association for Machine Translation in the Americas, 2009

[13] Miquel Esplà-Gomis, Mikel L. Forcada ’Combining Content-Based and URL-
Based Heuristics to Harvest Aligned Bitexts from Multilingual Sites with
Bitextor’ in The Prague Bulletin of Mathematical Linguistics, volume 93,
pages 77–86, 2010

[14] Ian Hickson, Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle
Navara, Edward O’Connor, Silvia Pfeiffer ’HTML5 – A vocabulary and as-
sociated APIs for HTML and XHTML’, October 2014, http://www.w3.org/
TR/2014/REC-html5-20141028/ (accessed March 27, 2016)

[15] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau ’Extensible Markup Language (XML) 1.0 (5th Edition)’, November
2008, https://www.w3.org/TR/2006/REC-xml-20060816/ (accessed March
27, 2016)

[16] Yves Savourel ’TMX 1.4b Specification’, June 2011, https://www.

gala-global.org/tmx-14b (accessed March 27, 2016)

[17] Steven Pemberton et. al. ’XHTMLTM 1.0 The Extensible HyperText Markup
Language (2nd Edition)’ January 2000, https://www.w3.org/TR/2002/

REC-xhtml1-20020801 (accessed March 27, 2016)

[18] Marco Lui, Timothy Baldwin ’langid.py: an off-the-shelf language identifi-
cation tool’ in Proceedings of the ACL 2012 System Demonstrations, pages
25–30, 2012

[19] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, Robert L.
Mercer ’The mathematics of statistical machine translation: parameter esti-
mation’ in Computational Linguistics - Special issue on using large corpora:
II, volume 19, issue 2, June 1993 pages 263–311, MIT Press Cambridge, MA,
USA, 1993

[20] Dániel Varga, László Németh, Péter Halácsy, András Kornai, Viktor Trón,
Viktor Nagy ’Parallel corpora for medium density languages’ in In Proceed-
ings of the RANLP 2005, pages 590–596, 2005

[21] William A. Gale, Kenneth W. Church ’A program for aligning sentences
in bilingual corpora’ in Computational Linguistics - Special issue on using
large corpora: I, volume 19, issue 1, March 1993, pages 75–102, MIT Press
Cambridge, MA, USA, 1993

76

http://commoncrawl.org/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3.org/TR/2014/REC-html5-20141028/
https://www.w3.org/TR/2006/REC-xml-20060816/
https://www.gala-global.org/tmx-14b
https://www.gala-global.org/tmx-14b
https://www.w3.org/TR/2002/REC-xhtml1-20020801
https://www.w3.org/TR/2002/REC-xhtml1-20020801

[22] Iñaki San Vicente, Iker Manterola ’PaCo2: A Fully Automated tool for gath-
ering Parallel Corpora from the Web’ in Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC’12), European
Language Resources Association (ELRA), 2012

[23] Philip Resnik, Noah A. Smith ’The Web as a parallel corpus’ in Compu-
tational Linguistics - Special issue on web as corpus, volume 29, issue 3,
September 2003, pages 349–380, MIT Press Cambridge, MA, USA, 2003

[24] David Nadeau, George Foster ’Real-time identification of parallel texts from
bilingual newsfeed’ in CLINE 2004, Computational Linguistics in the North
East, 2004

[25] John W. Ratcliff, David Metzener ’Pattern Matching: The Gestalt Ap-
proach’ in Dr. Dobb’s Journal, volume 7, page 46, 1988

[26] Philip Resnik ’Mining the Web for Bilingual Text’ in Proceedings of the
37th annual meeting of the Association for Computational Linguistics (ACL),
pages 527–534, University of Maryland, College Park, Maryland, 1999

[27] Philip Resnik ’Parallel Strands: A Preliminary Investigation into Mining the
Web for Bilingual Text’, in In 3rd Conference of the Association for Machine
Translation in the Americas, pages 72–82, Springer, 1998

[28] James W. Hunt, Malcolm D. McIlroy ’An Algorithm for Differential File
Comparison’ in Technical Memorandum 75-1271-11, Bell Laboratories, 1975

[29] Karl Pearson ’Notes on regression and inheritance in the case of two parents’
in Proceedings of the Royal Society of London, volume 58, pages 240–242,
1895

[30] Krzysztof Wo lk, Krzysztof Marasek ’Building subject-aligned comparable
corpora and mining it for truly parallel sentence pairs’ in Procedia Technol-
ogy, volume 18, pages 126–132, International workshop on Innovations in
Information and Communication Science and Technology (IICST), 2014

[31] George A. Miller ’WordNet: A Lexical Database for English’ in Communi-
cations of the ACM, volume 38, pages 39–41, 1995

[32] Christiane Fellbaum ’WordNet: An Electronic Lexical Database’, MIT Press,
1998

[33] Edward Loper, Steven Bird ’NLTK: The Natural Language Toolkit’ in Pro-
ceedings of the ACL 2012 Workshop on Effective Tools and Methodologies
for Teaching Natural Language Processing and Computational Linguistics,
volume 1, pages 63–70, 2002

[34] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-
cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, Evan Herbst
’Moses: open source toolkit for statistical machine translation’ in Proceedings

77

of the ACL 2012 Workshop on Effective Tools and Methodologies for Teach-
ing Natural Language Processing and Computational Linguistics, volume 1,
pages 63–70, 2002

[35] Philipp Koehn ’MOSES User Manual and Code Guide’ 2016, http://www.
statmt.org/moses/manual/manual.pdf (accessed April 5, 2016)

[36] Jason R. Smith, Herve Saint-Amand, Magdalena Plamada, Philipp Koehn,
Chris Callison-Burch, Adam Lopez ’Dirt Cheap Web-Scale Parallel Text from
the Common Crawl’ in Proceedings of the 37th annual meeting of the Associa-
tion for Computational Linguistics (ACL) on Interactive Poster and Demon-
stration Sessions, Pages 177–180 , Association for Computational Linguistics,
2007

[37] Jeffrey Dean, Sanjay Ghemawat ’MapReduce: simplified data processing on
large clusters’ in Proceedings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation volume 6, pages 137–149, USENIX
Association, 2004

[38] Chris Callison-Burch, Philipp Koehn, Christof Monz, Omar F. Zaidan ’Find-
ings of the 2011 workshop on statistical machine translation’ in Proceedings
of the 6th Workshop on Statistical Machine Translation, pages 22–64, Asso-
ciation for Computational Linguistics, 2011

[39] Holubová Irena, Kosek Jǐŕı, Minař́ık Karel, Novák David ’Big Data a NoSQL
databáze’, Grada Publishing, a.s., 2015

[40] Straková Jana, Straka Milan and Hajič Jan ’Open-Source Tools for Mor-
phology, Lemmatization, POS Tagging and Named Entity Recognition’ in
Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 13–18, Association for Compu-
tational Linguistics, 2014

[41] Drahomı́ra Spoustová, Jan Hajič, Jan Raab, Miroslav Spousta ’Semi-
Supervised Training for the Averaged Perceptron POS Tagger’ in Proceedings
of the 12th Conference of the European Chapter of the ACL (EACL 2009),
pages 763–771, Association for Computational Linguistics, 2009

[42] Straka Milan, Straková Jana ’Czech Models (MorfFlex CZ + PDT) for Mor-
phoDiTa’, 2013, LINDAT/CLARIN digital library at Institute of Formal
and Applied Linguistics, Charles University in Prague, http://hdl.handle.
net/11858/00-097C-0000-0023-68D8-1 (accessed April 7, 2016)

[43] Straka Milan, Straková Jana ’English Models (Morphium + WSJ) for Mor-
phoDiTa’, LINDAT/CLARIN digital library at Institute of Formal and Ap-
plied Linguistics, Charles University in Prague, 2014, http://hdl.handle.
net/11858/00-097C-0000-0023-68D9-0 (accessed April 7, 2016)

[44] Marcin Junczys-Dowmunt, Arkadiusz Sza l ’SyMGiza++: A Tool for Parallel
Computation of Symmetrized Word Alignment Models’ in Proceedings of
the 5th International Multiconference on Computer Science and Information
Technology, pages 397–401, 2010

78

http://www.statmt.org/moses/manual/manual.pdf
http://www.statmt.org/moses/manual/manual.pdf
http://hdl.handle.net/11858/00-097C-0000-0023-68D8-1
http://hdl.handle.net/11858/00-097C-0000-0023-68D8-1
http://hdl.handle.net/11858/00-097C-0000-0023-68D9-0
http://hdl.handle.net/11858/00-097C-0000-0023-68D9-0

[45] ’HMM-based word alignment in statistical translation’ in Proceedings of the
16th conference on Computational linguistics - Volume 2, pages 836–841,
Association for Computational Linguistics, 1996

[46] Franz Josef Och, Hermann Ney ’A systematic comparison of various statis-
tical alignment models’ in Computational Linguistics, volume 29, number 1,
pages 19–51, 2003

[47] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin ’Maximum Likeli-
hood from Incomplete Data via the EM Algorithm’ in Journal of the Royal
Statistcial Society, series B, volume 39, number 1, pages 1–38, 1977

[48] Franz Josef Och ’An Efficient Method for Determining Bilingual Word
Classes’ in Proceeding EACL ’99 Proceedings of the 9th conference on Euro-
pean chapter of the Association for Computational Linguistics, pages 71–76,
Association for Computational Linguistics, 1999

[49] Qin Gao, Stephan Vogel ’Parallel implementations of word alignment tool’
in SETQA-NLP ’08 Software Engineering, Testing, and Quality Assurance
for Natural Language Processing pages 49–57, 2008

[50] Chris Dyer, Victor Chahuneau and Noah A. Smith ’A simple, fast, and
effective reparameterization of IBM model 2’ in Proceedings of NAACL-HLT
2013, pages 644–648, 2013

[51] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning ’Bilingual
Word Representations with Monolingual Quality in Mind’ in Proceedings of
the 1st Workshop on Vector Space Modeling for Natural Language Processing,
pages 151-–159, 2015

[52] Xin Rong ’word2vec Parameter Learning Explained’ in Computing Research
Repository, arXiv 2014, http://arxiv.org/abs/1411.2738 (accessed April
6, 2016)

[53] Jeffrey Pennington, Richard Socher, Christopher D. Manning ’GloVe: Global
Vectors for Word Representation’ in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1532–
1543, Association for Computational Linguistics, 2014

[54] Stephan Gouws, Yoshua Bengio, Greg Corrado ’BilBOWA: Fast Bilin-
gual Distributed Representations without Word Alignments’ in Computing
Research Repository, arXiv 2014, http://arxiv.org/abs/1410.2455 (ac-
cessed April 7, 2016)

[55] Erik Bernhardsson et al. ’Annoy: Approximate Nearest Neighbors in
C++/Python’, 2016, https://github.com/spotify/annoy (accessed April
11, 2016)

[56] Erik Bernhardsson et al. ’Benchmarks of approximate nearest neighbor li-
braries in Python’, 2016, https://github.com/erikbern/ann-benchmarks
(accessed April 11, 2016)

79

http://arxiv.org/abs/1411.2738
http://arxiv.org/abs/1410.2455
https://github.com/spotify/annoy
https://github.com/erikbern/ann-benchmarks

[57] Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank
Sehnke, Thomas Rückstieß, Jürgen Schmidhuber ’PyBrain’ in The Journal
of Machine Learning Research, volume 11, pages 743–746, 2010

[58] Jiri Sima, Roman Neruda ’Theoretical Issues of Neural Networks’, Matfyz-
Press, Prague, 1996

[59] David E. Rumelhart, Geoffrey E. Hinton, Ronald J.Williams ’Learning inter-
nal representations by error propagation’, in Parallel distributed processing:
explorations in the microstructure of cognition, volume 1, pages 348–362,
MIT Press, Cambridge MA, 1986

[60] ’ISO 28500:2009 - Information and documentation – WARC file for-
mat’, International Organization for Standardization, Geneva, Switzerland.
2009, http://www.iso.org/iso/catalogue_detail.htm?csnumber=44717
(accessed April 8, 2016)

[61] Timothy W. Bray ’The JavaScript Object Notation (JSON) Data Inter-
change Format’, March 2014, https://tools.ietf.org/html/rfc7159 (ac-
cessed April 18, 2016)

[62] Tom White ’Hadoop: The Definitive Guide, 4th Edition’, O’Reilly Media,
2015

[63] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, Alex Buckley ’The Java
Language Specification, Java SE 8 Edition’, Addison-Wesley Professional,
2014

[64] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley ’The Java Vir-
tual Machine Specification, Java SE 8 Edition’, Addison-Wesley Professional,
2014

[65] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung ’The Google File Sys-
tem’ in Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples, pages 29–43, ACM New York, NY, USA, 2003,

[66] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler ’The
Hadoop Distributed File System’ in Proceedings of the 2010 IEEE 26th Sym-
posium on Mass Storage Systems and Technologies (MSST), pages 1–10,
2010, IEEE Computer Society

[67] Apache Software Foundation ’HDFS Architecture’, 2016 https://

hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/

HdfsDesign.html (accessed April 18, 2016),

[68] Apache Software Foundation ’MapReduce Tutorial’, 2016 https:

//hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/

hadoop-mapreduce-client-core/MapReduceTutorial.html (accessed
April 22, 2016),

[69] Martin Kleppmann ’warc-hadoop: WARC Input and Output Formats for
Hadoop’, 2014, https://github.com/ept/warc-hadoop (accessed April 10,
2016),

80

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44717
https://tools.ietf.org/html/rfc7159
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://github.com/ept/warc-hadoop

[70] Jonathan Hedley et al. ’jsoup: Java HTML parser’, 2015, https://jsoup.
org/ (accessed April 10, 2016),

[71] Anne van Kesteren, Aryeh Gregor, Ms2ger, Alex Russell, Robin
Berjon ’W3C DOM4’, November 2015, https://www.w3.org/TR/2015/

REC-dom-20151119/ (accessed April 10, 2016)

[72] Fabian Kessler et al. ’language-detector: Language Detection Library
for Java’, https://github.com/optimaize/language-detector (accessed
April 10, 2016)

[73] William B. Cavnar , John M. Trenkle ’N-Gram-Based Text Categorization’ in
In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, 161–175, 1994

[74] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay ’Scikit-learn:
Machine learning in Python’ in The Journal of Machine Learning Research,
volume 12, pages 2825–2830, 2011

81

https://jsoup.org/
https://jsoup.org/
https://www.w3.org/TR/2015/REC-dom-20151119/
https://www.w3.org/TR/2015/REC-dom-20151119/
https://github.com/optimaize/language-detector

List of Figures

1 Rosetta Stone . 1

2.1 General training scheme for SyMGIZA++ (Source: [44]) 24

2.2 Continuous Bag-of-Words model (Source: [52]) 25

2.3 Skip-gram model (Source: [52]) 26

2.4 Bilingual Skip-gram model (Source: [51]) 27

2.5 HDFS architecture (Source: [67]) 32

3.1 Proposed method: training part I 37

3.2 Proposed method: training part II 41

3.3 Example weight sim2 calculation 47

3.4 Proposed method: running . 50

4.1 CzEng experiment . 55

4.2 CzEng experiment: classifier effectiveness 61

5.1 Common Crawl experiment . 65

82

List of Tables

2.1 CzEng 1.0 source domains distribution (Source: [10]) 22

2.2 Common Crawl dataset sizes . 30

3.1 Sample of cosine similarities between word vectors 40

4.1 CzEng experiment: SyMGIZA++ settings 56

4.2 CzEng experiment: bivec settings 57

4.3 CzEng experiment: preliminary alignments 59

4.4 CzEng experiment: scored alignments 60

4.5 CzEng experiment: classifier effectiveness 61

4.6 CzEng experiment: overall effectiveness 62

4.7 CzEng experiment: time duration 62

4.8 CzEng experiment (extended): scored alignments 63

4.9 CzEng experiment (extended): overall effectiveness 63

5.1 Common Crawl experiment: web domains of paragraph pairs . . . 69

5.2 Common Crawl experiment: evaluation (500 paragraph pairs) . . 70

5.3 Common Crawl experiment: precision (500 paragraph pairs) . . . 70

5.4 Common Crawl experiment: effectiveness (www.csa.cz) 71

5.5 Common Crawl experiment: time duration 71

83

Appendix A

CD-ROM Contents

The contents of the companion CD-ROM are as follows:

∙ Thesis/ the thesis in PDF format and its zipped LATEX source code;

∙ Output/ the acquired parallel corpus and the experiments’ results;

∙ CommonCrawl/ utilities for processing of the CommonCrawl dataset;

∙ CzEng/ utilities for processing of the CzEng 1.0 dataset;

∙ Tools/ tools and resources required by the method;

∙ Align/ set of scripts implementing the method;

∙ README.txt manual for repeating the experiments;

∙ LICENSE.txt Apache License, Version 2.0.

84

	Introduction
	Related Work
	Bitextor
	Bitextor: Procedure
	Bitextor: Results
	Bitextor: Summary

	PaCo2
	PaCo2: Procedure
	PaCo2: Results
	PaCo2: Summary

	STRAND
	STRAND: Procedure
	STRAND: Results
	STRAND: Summary

	Mining Wikipedia
	Mining Wikipedia: Procedure
	Mining Wikipedia: Results
	Mining Wikipedia: Summary

	Mining Common Crawl
	Mining Common Crawl: Procedure
	Mining Common Crawl: Results
	Mining Common Crawl: Summary

	Summary

	Background Work and Prerequisities
	Overview of Proposed Method
	CzEng 1.0
	MorphoDiTa
	SyMGIZA++
	bivec
	Annoy
	PyBrain
	Common Crawl
	Hadoop
	HDFS
	MapReduce

	WARC-Hadoop
	MetaCentrum
	jsoup
	language-detector

	Proposed Method
	Task Definition
	Training Part I: Dictionary, Word Vectors
	Preprocessing Training Parallel Data
	Applying SyMGIZA++
	Generating Dictionary
	Applying bivec

	Training Part II: Classifier
	Preparing Documents
	Generating Document Vectors
	Aligning Document Vectors (Annoy)
	Scoring Alignments
	Training Binary Classifier

	Running
	Preparing Documents
	Applying Binary Classifier

	Discussion

	Prealigned Data (CzEng) Experiment
	Experiment Procedure
	Preprocessing CzEng 1.0
	Splitting and Cleaning CzEng 1.0
	Training Part I: Dictionary, Word Vectors
	Training Part II: Classifier
	Running

	Experiment Results
	Experiment Time Duration
	Extension: Lemmatization

	Web Data (Common Crawl) Experiment
	Experiment Procedure
	Distributed Execution
	Local Execution

	Experiment Results
	Experiment Time Duration

	Conclusions and Future Work
	Bibliography
	List of Figures
	List of Tables
	CD-ROM Contents

