
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Luboš Kulič

Adaptability in XML-to-Relational Mapping
Strategies

Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.

Studijńı program: Informatika

2009

Na tomto mı́stě bych rád poděkoval vedoućı mé práce RNDr. Ireně Mlýnkové,
Ph.D. za zaj́ımavé téma, mnoho informaćı, které mi pomohly zač́ıt s jeho řešeńım
a v neposledńı řadě za bezpočet připomı́nek k textu práce i algoritmům, které
napomohly dostat práci do finálńıho stavu.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použit́ım
citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım zveřejňováńım.

V Praze dne 17. 4. 2009 Luboš Kulič

2

Contents

Abstract 6

1 Introduction 7
1.1 Thesis organization . 8

2 Background Technologies 9
2.1 XML . 9
2.2 DTD . 11
2.3 XML Schema . 11

2.3.1 Namespaces . 12
2.3.2 Elements . 12
2.3.3 Attributes . 13
2.3.4 Data Types . 13

2.4 DOM . 15
2.5 Querying XML . 15

2.5.1 XPath . 16
2.6 Relational Model . 16

3 Managing XML Data 18
3.1 Adaptive XML-to-Relational Mapping 21
3.2 Related Work . 22
3.3 Motivation . 24

4 Analysis 26
4.1 Adaptive XML-to-Relational Mapping Problem 26
4.2 Internal Schema Representation – NSchema 27
4.3 Schema Normalization . 30

4.3.1 Removing of Local Type Definitions in Global Elements . 31
4.3.2 Removing of Element References 31

3

4.3.3 Normalization of Type Structure 32
4.3.4 Removing of Shared Global Types and Groups 36
4.3.5 Type and Group Names Handling 37

4.4 NSchema to Relational Schema Translation 39
4.5 Schema Transformations . 39
4.6 Cost Estimation . 41

4.6.1 fcost Calculation . 44
4.6.2 Calculation of Variables for fcost 46

4.7 Gathering Sample XML Data Statistics 48
4.8 Loading XML Data to a Relational Schema 50
4.9 AntMap System Architecture . 51

5 Mapping Selection Algorithm 53
5.1 Choice of Heuristic . 53
5.2 Ant Colony Optimization Metaheuristic 53
5.3 Ant Colony System . 55
5.4 Main Mapping Algorithm Using ACS 56

5.4.1 State Transition . 56
5.4.2 Local Pheromone Updating 57
5.4.3 Global Pheromone Updating 58
5.4.4 Termination Condition for One Iteration 58
5.4.5 Placing Ants to a Starting Position 59
5.4.6 Termination Condition for the Whole Algorithm 60
5.4.7 Parameter Settings . 60

6 Dynamic Adaptation 62

7 Implementation 65
7.1 Schema Normalization . 65
7.2 Pheromone Handling . 66

8 Experiments 68
8.1 Experimental Setup . 68
8.2 Overall Performance . 69
8.3 Diversification of the Search . 70
8.4 Impact of the Set of Transformations 71
8.5 Impact of q0 . 72
8.6 Dynamic Adaptation . 72

4

9 Conclusions and Future work 74

Bibliography 76

A Supplied CD 80

5

Název práce: Adaptability in XML-to-Relational Mapping Strategies
Autor: Luboš Kulič
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.
e-mail vedoućıho: irena.mlynkova@mff.cuni.cz
Abstrakt:
Jednou z možnost́ı jak pracovat s XML dokumenty je využit́ı (objektově-)relačńıch
databáźı. Nejd̊uležitěǰśım úkolem je v tomto př́ıpadě nalezeńı optimálńıho mapováńı
mezi XML a databáźı, tedy zp̊usobu jak ukládat XML data do relaćı. Aktuálně
nejefektivněǰśı řešeńı, tzv. adaptivńı metody, prohledávaj́ı prostor možných řešeńı
a vyb́ıraj́ı to, které nejlépe vyhovuje př́ıklad̊um dokument̊u a dotaz̊u. V této práci
řeš́ıme problém mapováńı XML do relaćı pomoćı heuristiky zvané Optimalizace
pomoćı koloníı mravenc̊u (ACO). Navržený algoritmus jsme také adaptovali pro
použit́ı v dynamické verzi problému. Vlastnosti obou algoritmů jsou ověřeny v
řadě experiment̊u, ze kterých vyplývá, že algoritmy založené na ACO jsou nejen
vhodné pro daný problém, ale umožňuj́ı i řešeńı jeho dynamické verze.
Kĺıčová slova: XML, ukládáńı XML v databáźıch, XML Schema, dynamické
adaptivńı metody

Title: Adaptability in XML-to-Relational Mapping Strategies
Author: Luboš Kulič
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: irena.mlynkova@mff.cuni.cz
Abstract:
One of the ways how to manage XML documents is to exploit tools and functions
offered by (object-)relational database systems. The key aim of such techniques is
to find the optimal mapping strategy, i.e. the way the XML data are stored into
relations. Currently the most efficient approaches, so-called adaptive methods,
search a space of possible mappings and choose the one which suits the given
sample data and query workload the most. In the thesis we exploit a general
heuristic method called Ant Colony Optimization (ACO) to solve the XML-to-
Relational mapping problem. We also adapt the algorithm so it can be used
on a dynamic variant of the problem. The algorithms are evaluated in a set of
experiments with a conclusion that the ACO-based algorithms are suitable for the
problem and can be even used as a basis of a dynamic mapping mechanism.
Keywords: XML, storing XML in databases, XML Schema, dynamic adaptation

6

Chapter 1

Introduction

Since its birth, XML1 has become a frequently used format for representing, ex-

changing and manipulating data both in traditional applications and on the Inter-

net. Because of that, there is naturally a need for efficient and reliable methods for

managing and storing XML data. Many solutions of this task have been proposed

using different approaches.

In this thesis we first review the most important methods and their advantages

and disadvantages. Since the most usable are in our opinion the methods using

(Object-)Relational Database Management Systems (simply because relational

databases have a long practical and theoretical history and Relational Database

Management Systems are wide spread), we focus mainly on them.

Of course, when using a relational database to store XML documents a map-

ping from the XML definition to a relation one has to be found. This can be

accomplished using various methods, the most promising ones are so called adap-

tive (or flexible) techniques. These methods exploit various information about the

target application (such as a sample set of XML documents or queries) to create

a schema most suitable for it.

The main goal of this thesis is to propose an adaptive mapping selection al-

gorithm which would address selected drawbacks of the existing methods. This

solution will be then evaluated by a set of experiments.

1standardized in [W3C: XML]

7

1.1 Thesis organization

The rest of the thesis is organized as follows: Chapter 2 summarizes used tech-

nologies and terms.

Chapter 3 introduces the problem of XML-to-Relational mapping and gives a

motivation for the thesis. The problem is then further analyzed in Chapter 4.

Chapter 5 describes the proposed algorithm for solving the XML-to-Relational

mapping problem. Chapter 6 then discusses the possibility to adapt the proposed

algorithm to the dynamic variant of the problem.

In Chapter 7 we summarize the most important implementation-related topics.

Our experiments with the proposed algorithms are described in Chapter 8.

Finally, Chapter 9 concludes the thesis and gives an outlook on future work.

8

Chapter 2

Background Technologies

In this chapter we provide a brief description of the technologies used in the rest

of the thesis – especially XML, DTD, XML Schema, XPath and the Relational

model. It serves primary as a summary of used terms and definitions, the reader

is given references to detailed information on the topics in corresponding sections.

Note that we simplified the description in some cases on purpose – we did not

want to bother the reader with specific parts of the technologies, which are not

used in the rest of the thesis anyway.

2.1 XML

XML (Extensible Markup Language), standardized in [W3C: XML], is a general-

purpose markup metalanguage, i.e. a specification for creating custom languages

including custom mark-up elements. The main components of the XML language

are elements – they are denoted by a mark (the name of the element, called also

tag) in angle-brackets, the element could be either empty or have some content

(called children) – other elements (subelements), attributes, textual data and some

others. An example of an XML fragment with an element called item is given

in Figure 2.1a. It has two attributes (id and featured) and four child elements

(location, quantity, name and incategory).

When a document fulfills some basic syntactic rules (the starting and ending

parts of its elements are always properly paired and do not cross other elements’

9

<item id="item2"

featured="yes">

<location>

United States

</location>

<quantity>1</quantity>

<name>subtle</name>

<incategory

category="category1"/>

<incategory

category="category2"/>

</item>
(a) item XML Element

<!ELEMENT item (location, quantity,

name, incategory+)>

<!ATTLIST item id ID #REQUIRED

featured CDATA #IMPLIED>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity(#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT incategory EMPTY>

(b) The DTD for item

Figure 2.1: An XML Element with its schema in DTD

<xs:complexType name="item">

<xs:sequence>

<xs:element name="location" type="xs:string"/>

<xs:element name="quantity" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element maxOccurs="unbounded" name="incategory" type="incategory"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="featured" type="xs:string"/>

</xs:complexType>

Figure 2.2: The XML Schema definition for item

10

definitions, the whole document is enclosed by exactly one root element etc.), it

is called a well-formed XML document.

It is also possible to further restrict the structure of a set of documents by

a schema for them. A schema is a set of constraints on both the structure and

textual content of an XML document. It can be defined in various languages,

probably the two most common are DTD and XML Schema (see Section 2.2 resp.

2.3). If a document fulfills these constraints, it is valid against this schema.

2.2 DTD

DTD (Document Type Definition), defined directly in [W3C: XML], is a method

of declaring a structure of XML documents. It uses element declarations which

specify the allowed set of elements in a valid document together with the spec-

ification whether and how many times a particular element can be contained in

the other ones. Another declaration is an attribute-list which specifies the set

of allowed attributes for every element including a type of such attribute. An

example of a DTD fragment for the element item is given in Figure 2.1b.

2.3 XML Schema

XML Schema [W3C: XML Schema] is a much more sophisticated language for

defining schema of XML documents (such a definition of a schema in XML Schema

language is called XML Schema Definition, or XSD). Besides declarations of ele-

ments, their subelements and attributes it allows to define quite a complex type

system. The types can be derived from each other and reused (shared) by many

elements. The following sections summarize the most important components of

XML Schema used in this thesis. An example of an XSD fragment for the element

item is given in Figure 2.2.

Note that the syntax of XSD is based on XML, i.e. we use XML elements

with proper tags to define elements (. . .) in the target XML document. Every

XSD must have exactly one root element called schema which cannot appear in

the XSD on any other position.

11

<auction:item xmlns:loc="www.locations.org/loclist"

xmlns:name="www.namedirectory.org/names"

xmlns:auction="www.sothebys.com/auctions"

id="item2" featured="yes">

<loc:location>United States</location>

<auction:quantity>1</quantity>

<name:name>subtle</name>

<auction:incategory category="category1"/>

<auction:incategory category="category2"/>

</item>

Figure 2.3: XML Element with Namespaces

2.3.1 Namespaces

A namespace is a space where the tags of all contained elements (and in the

context of one element also the names of the attributes) are unique. Namespaces

enable to define an XML Schema using sets of marks. An example of an XML

fragment with the item element rewritten to use namespaces is given in Figure

2.3.

2.3.2 Elements

Elements are the basic components of an XML document, in XML Schema they

are defined using element xs:element. They associate a tag (given in the name

attribute of xs:element) with a data type (see Section 2.3.4). There are basically

two types of elements:

• Global or globally defined elements are defined as children of the root element

schema and are visible in the whole XSD.

• Local or locally defined elements are defined as a part of a definition of some

complex type (see Section 2.3.4) and can be used only in its context.

The global elements have two functions besides the definition of a structure of the

document. They can be used as root elements of an XML document valid against

12

this XSD and they can be referenced in the XSD. A reference means a definition

of a (local) element which does not contain any tag name or type but only a ref

attribute which tells a global element definition should be used in this place.

2.3.3 Attributes

Attributes are defined in special subelements of the element definition (see Figure

2.2). They again associate a name with a type, in this case only a simple one.

2.3.4 Data Types

Data types are used in XML Schema to define a structure of the XML Document

as well as a format of the textual values. They can be classified according to two

main aspects – what they define (see Section 2.3.4) and where in the schema they

are defined (see Section 2.3.4).

Simple and Complex Types

A Simple type is a set of constraints on a textual value, it can only contain some

text and not any elements or attributes. A simple type can be either built-in

(i.e. defined in the XML Schema specification [W3C: XML Schema], for example

xs:string, xs:integer, . . .) or user-defined. The user-defined types are derived

from another simple type (either built-in or another user-defined one) by:

• Restriction – restricting the values, for example minimum/maximum length,

allowed characters etc. The type which is restricted is denoted by an at-

tribute base.

• List – creates a type which can contain a list of values of some (simple)

type.

• Union – creates a type which can contain values from any of the values

allowed by the types in the union.

A Complex type is a set of declarations of attributes and content of element.

The content can be defined using one of the following constructs:

13

• Sequence – creates a sequence of elements (or possible nested constructs

from this list) with a strictly defined order.

• Choice – corresponding element in the XML document can contain only one

subelement which is chosen from the ones contained in the choice definition.

• All – a sequence of elements in any order.

• Simple content – contains a restriction of a simple type or an extension of

such type by a set of attributes.

• Complex content – is a derivation of a complex type by a restriction (the new

type is a subset of the original one) or an extension (the new type contains

both the original and the new one).

Note that in sequence and all definition, the minimum and maximum number of

occurrences of the particular children can be set using attributes minOccurs and

maxOccurs.

Another construct in the XML Schema is a Group which contains a set of

elements (either in a sequence, all or a choice). It is defined globally (i.e. as

a subelement of the root element schema) and can be referenced in the schema

definition in a way similar to referencing global elements – by inserting an element

with the tag group and the attribute ref with the name of the referenced group.

Groups can be seen as some special (globally defined) data types, but instead of

defining a type of an element, they define a set of elements.

Global and Local Types

A data type can be defined locally (as a subelement of an element definition) or

globally, i.e. as a subelement of the root element schema, in which case the type

has to be named. The globally defined (or global) types can be reused (shared) by

more than one element. An example of a global complex type categories with

a subelement category with a local type is given in Figure 2.4.

14

<xs:complexType name="categories">

<xs:sequence>

<xs:element maxOccurs="unbounded" name="category" >

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="description"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

Figure 2.4: Global type with an element with a local type

2.4 DOM

DOM (Document Object Model) [W3C: DOM] is a platform- and language-

independent interface for representing and interacting with documents in XML.

In DOM, the XML document is represented as a graph in the application mem-

ory which consists of nodes which represent elements, textual content, attributes

and other XML constructs. The fact that the whole XML document is stored

in the memory makes the DOM usage problematic for large documents. On the

other hand, it allows fast traversing and manipulating of the graph (and thus the

document).

2.5 Querying XML

Since XML is used widely for storing data, there is a natural need for querying

XML documents and there is a couple of languages specified. The most important

ones are XQuery [W3C: XQuery] and its subset, XPath [W3C: XPath].

15

2.5.1 XPath

XML Path Language (XPath) is a language used especially for selecting parts of

an XML document (mainly sets of nodes). The main construct of XPath language

is a path – it denotes a path in a model of XML data. This is a graph of nodes

corresponding to elements, textual nodes, attributes and other parts of the XML

document. The graph has some specifics which make it different from the DOM

graph, for example the root of the graph is a special node (denoted by /) different

from the root of the document.

An expression in the XPath language is then a regular expression which ad-

dresses such a path. The expression can either start in the root node, then it

represents an absolute path, or it can be a relative path which starts in a context

node given together with the query. An example of an XPath query is given in

Figure 2.5. It assumes an XML document whose fragment is in Figure 2.1a and

retrieves all items in the document which have a specification of a category (i.e.

childrent category).

//item[incategory]

Figure 2.5: An XPath query

2.6 Relational Model

Relational model is probably the most widely used database model (if we count

Object-Relational model also as a relational one). It was firstly proposed in

[Codd (1969), Codd (1970)]. It describes a database as a collection of predicates

on predicate variables with constraints on the possible values. The content of the

database is a finite model of it, i.e. set of relations.

In practice, the relations are often called tables and their attributes are referred

as columns. The actual data values are stored in the tables as a set of rows. Also

the existing database management systems (DBMS) use SQL (the latest version

is standardized in [SQL:2008]) as a query and data definition language. Note

that the model of SQL is slightly different from the original relational model. An

16

example of an SQL script creating a relational table called item is given in Figure

2.6.

CREATE TABLE item (

ID integer PRIMARY KEY,

FEATURED char(1),

LOCATION varchar(100),

QUANTITY integer,

NAME varchar(50)

)

Figure 2.6: SQL Create table

17

Chapter 3

Managing XML Data

As we briefly mentioned in Chapter 1, there have been proposed many solutions

for storing and managing XML data and these solutions use a couple of different

approaches. These approaches are summarized in the following list with their pros

and cons and comparison of main attributes such as effectiveness, round tripping

etc.

• filesystem based methods – these methods store XML documents as text

files in a filesystem, to process the data, content of the files has to be loaded

using some other method such as DOM or SAX.

+ : simple storing of data, no mapping mechanism needed,

+ : stored data are easily accessible and readable by humans

+ : maximum level of round tripping (the same document character by

character)

− : data cannot be processed without additional technique which requires

reading content of the files to other structures and, hence, processing

is often slow

• (O)RDBMS-based methods – this approach uses an (Object-)Relational

Database Management System to store the data, which has to be properly

mapped into DB structures.

+ : usage of wide-spread, reliable and efficient technology

18

+ : solutions do not have to be built from scratch

− : efficiency is highly dependent on the mapping from XML data to rela-

tional tables, designing of such mapping is not trivial and, generally, it

has to consider a lot of factors

− : queries over XML data have to be translated to SQL, this transla-

tion can also be nontrivial especially for advanced query languages like

XQuery

• methods using object-oriented approach – these methods store directed graph

of objects, use special indexes to access them.

− : new query evaluation methods and tools have to be developed

• native XML methods – these methods are proposed from the beginning for

XML and the storage strategy is fully optimized for its structure.

+ : the methods respect natural tree structure of XML data

+ : easy and efficient querying

+ : flexibility

− : the whole solution, i.e. data structures, data management system and

tools, has to be built from scratch

The native XML methods are by intuition the most efficient and in fact they

would probably perform better than other solutions. However, in context of

practical world, their disadvantages cannot be ignored. Not only a new tech-

nology has to be developed (or purchased, however the market is still very young

[Harold (2007)]), but also analysts, developers and sometimes power users have

to learn and adapt to the new principles and tools. And native XML technologies

have neither very long theoretical nor practical history, so the technology is not

yet really mature and verified.

On the contrary, relational (or object-relational) databases have been theoret-

ically studied for a long time, widely used in real-world applications and they have

become the most popular way of storing any kind of data. Modern database man-

agement systems are reliable, efficient and scalable, they have highly optimized

19

query processors and provide concurrency control, crash recovery and many other

features.

For these reasons, (O)RDBMS-based ways to process XML data are very pop-

ular and in our opinion they will still be important XML management systems

for at least a couple of next years, if not longer. Thus there is still a reason for

studying and improving these methods.

The main aspect of methods using relational databases is how they transform

or map a XML tree into relations. Generally there are three different approaches

to creating such a mapping:

• Generic – these methods use universal mapping regardless of an existing

schema of the stored data.

• User-defined – this approach avoids automatic creating of the mapping by

leaving all the decisions to the user.

• Schema-driven – methods which employ information of a schema of the XML

data (described in DTD, XML Schema etc.1) to create mapping optimized

for the given situation.

Naturally, all of these methods have their pros and cons. Generic methods

are the most universal and simple ones and they are suitable for situations, where

there is no schema given for stored documents, or the schema may vary a lot

over the time. However, the created relational schema cannot be optimal for all

documents and will probably be inefficient.

User-defined approach, on the other hand, leaves all the logic on the user,

so this method can theoretically achieve the best outcome. But it requires very

skilled user in both XML and database technologies and also creating a relational

schema for large and complex documents is not easy.

The last mentioned approach, schema-driven methods, seems to be a good

compromise in a situation of a known schema (or schemas) of stored documents.

It can be fully automated and thus it does not require any knowledge or help from

the user. It takes advantage of a given schema of the data and tries to optimize the

1list of languages to define schema of XML data can be found for example in
[Wikipedia: XML schema]

20

mapping for it. This optimization starts with some initial relational schema, such

as a trivial schema, where there is a separate table for each XML element, and

tries to improve it using a set of transformations such as inlining and outlining,

splitting and merging types, etc.

The aim of these methods is to produce the most suitable and efficient schema.

So the question is, how to determine the quality of a particular schema. There

are generally two ways – fixed techniques, which tell which mapping is better

using general rules and heuristics (such as that the number of tables should not

be too small but neither too large) and adaptive (or flexible), which use additional

information about the application and its intended usage to optimize the result

to a particular case. The latter approach is apparently the most promising and,

hence, suitable for further improvements and it is discussed in the rest of this

thesis.

3.1 Adaptive XML-to-Relational Mapping

The main principle of adaptive schema driven methods is not only the awareness

of a structure of stored data but also employing other information about the

target application, such as a sample of XML data, queries or various statistics.

This information is used in the process of creating the target relational schema to

evaluate the cost of a particular result according to given set of data and queries

and thus to tune the created relational schema to a particular situation and usage.

Advantages of this approach are obvious – it takes into account the in-

tended usage and so the created schema is customized to it. Hence, in an av-

erage case, querying over such a schema is more efficient. On the other hand,

there are two principal problems with this approach. First, the space of pos-

sible relational schemas generated using various transformations is very large,

possibly infinite, and it was proven (for example in [Zheng et al. (2003)] or

[Xiao-ling et al. (2002)]), that even for a simple set of transformations the prob-

lem is NP-hard. Therefore various heuristics and terminal conditions are used

and, hence, only a suboptimal solution can be found.

Second, the adaptation of the schema to the application is usually done only

once at the beginning and the quality of the result is consequently highly depen-

21

dent on how good the given samples are. But of course giving a good sample of

data or even queries before the application is even created can be hard and the

real usage may change quite a lot, which causes the created schema to be less

efficient or even worse then a result of fixed methods.

3.2 Related Work

The problem of XML-to-Relational mapping and adaptive methods in particular

has been studied in a number of papers. To start, [Mlýnková, Pokorný (2006)]

gives a comprehensive list of various methods, their principles and discusses their

pros and cons. In this section we provide a brief summary of adaptive methods

with focus on their advantages and disadvantages and their possible improve-

ments.

In [Klettke, Mayer (2000)] the authors use a hybrid approach, where some

parts (fragments) of an XML document are stored in a classical way using re-

lational tables for elements and some fragments using a special XML datatype.

This proposed datatype provides path expressions evaluation as well as fulltext

operation on #PCDATA parts of the stored fragment. Which fragments of the given

XML document would be stored into this special type is determined using a sim-

ple weight computing mechanism which takes into account the DTD structure,

sample data and queries. The main idea is that for the well structured document

parts storing in relations is suitable, but for the semi-structured ones it is better

to use the XML datatype.

This approach, however quite simple, can easily be deployed since most modern

database management systems contain an XML type which corresponds to that

defined in the paper [Klettke, Mayer (2000)]. And even in more sophisticated

algorithms, the idea of storing an XML fragment in a special single attribute can

be used.

In [Ramanath et al. (2003)], a FlexMap framework is proposed which enhances

the LegoDB system from [Bohannon et al. (2001), Bohannon et al. (2002)]. It

uses a greedy heuristic and proposes a comprehensive set of schema transforma-

tions – Inlining and Outlining, Type Split and Merge, Commutativity and Asso-

ciativity, Union Distribution and Factorization, Splitting and Merging repetitions

22

and Simplifying unions2. Nevertheless, the set of actually implemented and used

transformations is much smaller.

Another feature of the proposed solution is usage of

StatiX [Freire et al. (2002)], an XML Schema-aware framework, for collect-

ing statistics of the input schema and sample data. These statistics are stored

in the schema (resp. its internal representation) and preserved while applying

transformations so that they can be used (together with sample queries) to get

the cost of a given schema. Also the statistics are computed on fully decomposed

schema (i.e. schema where all possible split operations have been performed)

and then updated at each XML-to-XML transformation. Hence every XML

document has to be fully processed only once.

[Zheng et al. (2003)] uses a broader set of transformations – a combination

of transformations similar to those in the previous approaches. The search for

(sub)optimum is done using the Hill Climbing heuristic. The authors conducted a

set of performance experiments (sample queries were obtained from XMark XML

benchmark [Schmidt et al. (2001)]), which tested not only the performance of the

proposed algorithm itself, but also an impact of initial schema. They conclude,

that this choice is crucial for a good result of their algorithm.

Authors of this paper also propose quite complex cost function for their solu-

tion. It exploits sample data statistics gathered at the beginning of the algorithm

and computes or estimates other necessary variables. All of these are then used

to determine the cost of a query by simulating the cost of joining relational tables

corresponding to particular schema fragments.

In [Xiao-ling et al. (2002)] so called Adjustable and Adaptable Method (AAM)

is proposed. This method searches for a (sub)optimal mapping using principles

of genetic algorithms, which bring some level of randomness into decisions (in

creating initial population, computing cost, mutation between populations etc.).

The method does not use any sample set of queries or documents, instead only

probabilities of retrieval of particular elements are used.

[Atay et al. (2007)] propose schema-aware mapping algorithm which simplifies

DTDs and then maps a DTD graph (graph constructed from the DTD by making

2For detailed summary of schema transformations and an explanation of their function see
Section 4.5

23

nodes from all elements and join them in a hierarchy as defined in the DTD) into

a relational schema by inlining child nodes. Although the algorithm is of fixed

type, it provides some interesting features, especially the capability to reconstruct

the original XML document with its order and also support for more efficient

evaluation of queries with preceding/descending axes. Two efficient data loading

algorithms were proposed as well.

3.3 Motivation

As we have shown in previous sections, there is a couple of approaches to mapping

XML to relational schema and the adaptive schema-driven methods seem to be

the most promising ones. There is a number of papers and implementations

based on these adaptive principles, however all of them have both advantages and

disadvantages.

Especially because of the disadvantages, we think there is still a space for

improvements of these methods and in this thesis we propose a method which

addresses some of these drawbacks while still taking advantage of the adaptive

approach.

Here are in our view the most important drawbacks in current solutions and

naturally these are the domains which we want to find an improvement in and,

thus, form goals for our work:

• Choice of heuristic – as already found out by [Mlýnková (2008)], most of the

proposed solutions use only a basic greedy search strategy, which has its dis-

advantages (especially the possibility of getting stuck in local suboptimum).

So our first aim is to use a more sophisticated one.

• Set of schema transformations – existing algorithms use only a subset of

proposed schema transformations. It could be interesting to evaluate the

results of a solution which uses more of them and to compare their impact

on the result.

• Dynamic adaptation – the main problem of all adaptive techniques is that

the schema is adapted to future usage only once at the beginning. One

24

of our goals is to study a possibility of a mechanism which would enable

dynamic adaptation of used database schema.

25

Chapter 4

Analysis

In this chapter we formalize the XML-to-Relational mapping problem, provide

the analysis of our way to solve it and describe the design and architecture of our

prototype implementation of proposed solution called AntMap.

4.1 Adaptive XML-to-Relational Mapping

Problem

As introduced in Section 3.1, adaptive methods map an XML schema to relations

using various information about the application, usually a sample set of documents

or statistics counted from them and a set of queries representing the usage of the

data. The problem can be generally formalized as follows:

• Input: an initial XML schema Sinit, a set of sample data and queries Dsample

and a cost function fcost which determines the efficiency of given relational

schema R considering the set Dsample.

• Output: an optimal relational schema Ropt which minimizes the cost func-

tion, i.e. the value of fcost(Ropt, Dsample) is minimal.

In practice, the adaptive algorithms have some other common features and can

be generalized as a simple process:

26

• Input: Sinit, Dsample, fcost

• Additional parameters:

– a set of XML schema transformations Trans = {t1, t2, . . . , t|Trans|}
where every ti ∈ Trans transforms an XML schema S1 to another

XML schema S2 = ti(S)

– a fixed mapping strategy fmap capable of transforming the given XML

schema S to a relational schema R

• Mapping selection process:

– Search Σ – the space of possible transformed schemas, it can be defined

as:

Σ = {Sinit} ∪ {Si|Si = ti1(ti2(· · · (tin(Sinit)))) ∧ tij ∈ Trans}

– Find Sopt ∈ Σ such that fcost(fmap(Sopt), Dsample) is minimal.

The most important aspect of adaptive algorithms is that while the set Trans

is always finite, the set of possible solutions Σ can be infinite or, at least, very

large. As already mentioned in Section 3.1, the problem was proven to be NP-

hard even for a small set of transformations. Results of the mapping algorithms

are therefore usually only suboptimal.

Consequently the most interesting feature of any flexible algorithm is how it

searches Σ for the solution, how effective and time-consuming the search algorithm

is and how good (i.e. how close to the optimum) the found solution is. The search

algorithm used in our solution is described in detail in Chapter 5. However,

the mapping system has many other aspects and problems whose solution is not

trivial. The rest of this chapter discusses them in detail.

4.2 Internal Schema Representation – NSchema

In the description of a general mapping algorithm it is assumed that both the

fmap function and the schema transformations work with the XML schema whose

27

actual form is not further specified. Various algorithms represent the schema

differently and sometimes the schema is even transformed before the main search

algorithm is applied to enable simple translation to a relational schema. However,

most of these representations use some form of a graph which corresponds to the

nature of as an XML schema.

In our view, there are two principle variants of such a representation:

• Use one of the defined XML schema format directly.

• Define the graph independently and then create it from an input format (or

possibly enable the system to create the internal graph from various schema

formats).

The advantage of defining own schema representation is a control over it,

however usage of a standard form enables to use already implemented and verified

tools and technologies. Our solution tries to include features of both of these

approaches – we decided to base our representation on XML Schema format.

This format keeps the natural structure of the schema while being in fact an XML

document so we can represent it as a DOM graph and use standardized APIs for

parsing and tracing which are implemented for various environments. Also it is

a more general format than for example DTD, which can be transformed to it.

However, we define some transformations and constraints on the schema which

ease other parts of the system while technically they still keep the schema in a

DOM tree.

The mapping function fmap should be well defined on every instance of our

schema representation and we want it to be as simple as possible – every logic

which influences the actual relational schema should be kept in the mapping

search algorithm, i.e. the internal schema representation should directly cor-

respond to the relational storage. Because of that, the input schema needs

to be somehow transformed, or normalized, so that it can be directly mapped

to relations and all schema transformations have to produce only this nor-

malized form. To achieve that we employ a concept of p-schemas introduced

in [Bohannon et al. (2001), Bohannon et al. (2002)], we call our representation

NSchema (as Normalized Schema). NSchema fulfills all requirements for simple

fixed mapping to relations and it is also enriched by some features which simplify

the search algorithm.

28

The requirements for the NSchema come from the NSchema-to-Relational

translation algorithm (see Section 4.4) and are defined on the basis the require-

ments on p-schema (as described in [Freire, Siméon (2003)]):

• Every global element in the schema uses named (i.e. globally defined) type.

• There are no element references.

• There are no shared globally defined complex types and groups, i.e. every

globally defined complex type can be used by only one (or possibly none)

element and every group can be referenced only once.

• Every type defines a structure that can be directly mapped into a relation.

This means that any type definition (both local and global) can be a simple

type definition or, in case of complex type, can contain either:

– Subelements with a simple (either built-in or user-defined) type.

– Complex regular expression (e.g. repetitions of elements, unions etc.)

made of items which do not directly hold values (i.e. the textual con-

tent). So every such complex expression can contain only elements

with a globally defined complex type and/or group references.

Such a schema can be easily mapped to relations by simply creating a relation for

every globally defined complex type and for every group, for details see Section 4.4.

The most important and also most difficult to understand is the last constraint.

From the point of view of the relational database world it is, however, quite natural

so let us rephrase it this way.

Say we have a one-to-many relation between two entities A and B, which

corresponds to a repetition of some item in the NSchema. It is natural that

it would not be modeled using only one relational table since it would require

a duplication of the data in the database – let a be an instance of the entity

A which is in the relation with b1, b2, . . . , bn, instances of B. If we model this

situation using only one table, it would have to contain n rows, each of which

would have to contain all the attributes of a and then attributes of some bi.

This data duplication is avoided in most database schemas (and in general

algorithms and guidances for creating a relational schema) for two main reasons:

29

ID A name A address A ID B name B function B

1 Firm ltd. New York 5 John Smith CEO
1 Firm ltd. New York 8 David Gates programmer
1 Firm ltd. New York 15 Michael Door analyst

Table 4.1: Single table for entities A, B

ID A name A address A

1 Firm ltd. New York

(a) Table A

ID B ID A name B function B
5 1 John Smith CEO
8 1 David Gates programmer
15 1 Michael Door analyst

(b) Table B

Table 4.2: Separate tables for A, B

• Inefficiency – data representing the same instance of an entity are contained

more then once in the database.

• Updatability – when some attribute of the entity changes, it has to be

updated in all records containing the attributes of the given instance.

The natural way to model such a situation is to create two separate tables –

for both entities A and B. This way every instance of B can contain a reference

to appropriate instance of A and no data are duplicated. And this is exactly what

we achieve with the constraint – when the complex regular expression is modeled

using a group or globally defined type reference, the resulting relational schema

will also contain only a reference between two tables and data are not duplicated.

An example of this situation is given in Tables 4.1 (single table) and 4.2 (separate

tables).

4.3 Schema Normalization

In Section 4.2 we defined NSchema and constraints it should fulfill, here we

provide a method which is used to transform the original XML Schema def-

inition into NSchema. It is based on a normalization algorithm sketched in

30

[Freire, Siméon (2003)], however it is adjusted to usage with a DOM represen-

tation of an XML Schema document (i.e. we exploit the fact that a schema in the

XML Schema format is still an XML document) and elaborated in more detail.

The contract for the normalization algorithm consists of four goals:

• Remove local type definitions in global elements.

• Remove element references.

• Remove shared globally defined types and groups.

• Change the structure of defined types so that they can be directly mapped

into relations.

Algorithms solving all of these goals are described in the following sections.

4.3.1 Removing of Local Type Definitions in Global Ele-

ments

Removing of local type definitions from global elements is quite simple, the process

is described in Algorithm 4.1.

Algorithm 4.1 Removing local type definitions from global elements

GlobalElements← All globally defined elements
for all ge ∈ GlobalElements do

if ge has a local type definition (denote it Tge) then
Insert a new globally defined type T with the same content as Tge
Remove the local type definition from ge, add an attribute denoting that
ge is of type T

end if
end for

4.3.2 Removing of Element References

After local type definitions in global elements have been removed, we can remove

element references. The global elements are exactly the only ones which can be

referenced. Algorithm 4.2 describes how to do that.

31

Algorithm 4.2 Removing of Element References

ElementsWithRef ← All element definitions which reference a (global) element
for all e in ElementsWithRef do
g ← the global element being referenced by e
T ← the type of g
Change e so that it uses type T instead of reference to g

end for

Since all local type definitions have been removed from the global elements, g

must have a globally defined type.

Note that while the algorithm removes the references to global elements, the

global element definitions have to remain in the schema because their function is

not only to be used as reference but also can act as a root element of an XML

document valid against the schema.

Also note that the algorithm is defined as a simple loop over all elements with

a reference (which have to be somehow obtained, for example using an XPath

query), it can be nevertheless also implemented as a simple recursion over the

nodes of the DOM graph of the schema and possibly merged with other parts of

the normalization algorithm.

4.3.3 Normalization of Type Structure

The normalization of the type structure, described in Algorithms 4.3, 4.4 and 4.5,

ensures the possibility to directly translate a normalized schema into a relational

one. To explain the particular steps, we use an example XML Schema definition

derived from the DTD of XMark benchmark data [XMark] (which has also been

used for the experiments, see Chapter 8).

Algorithm 4.3 Normalization of the type structure

GlobalTypes← All globally defined complex types and groups
for all T ∈ GlobalTypes do

Normalize the type/group definition, i.e. apply Algorithm 4.4 on T .
end for

32

Algorithm 4.4 Normalization of a single node

Input: T – a part of the definition of some type or group
for all T ′ ∈ Child elements of T do

Recursively process T ′, i.e. apply Algorithm 4.4 to T ′

end for
Normalize the T node itself according to the type of the node:

• Atomic type (i.e. string): Let T unchanged

• User-defined simple type: Let T unchanged

• Optional element declaration (i.e. an element with attributes
minOccurs = 0 and maxOccurs = 1): Let T unchanged

• Sequence: Let T unchanged

• All : Change T to a Sequence of the child items. See Figure 4.1 for an
example.

• Choice (called also Union): Create a new group definition Gc for every
possible choice c of the union. Then change the original choice to a choice
of group references to every newly created group Gc.

Solve possible repetition, i.e. apply Algorithm 4.5 to T

Algorithm 4.5 Solving repetitions

Input: T – a part of the definition of some type or group
if T is a Repetition, i.e. an element or other construct with attribute
maxOccurs > 1 then

Insert a new group definition G, containing T without the min/maxOccurs

attributes
Replace T in the schema with g – a reference to G
Add the min/maxOccurs attributes from T to g.
An example is given in Figure 4.3

end if

33

<xs:complexType name="regions">

<xs:all>

<xs:element name="africa"

type="africa"/>

<xs:element name="asia"

type="asia"/>

<xs:element name="australia"

type="australia"/>

<xs:element name="europe"

type="europe"/>

</xs:all>

</xs:complexType>

(a) Before normalization

<xs:complexType name="regions">

<xs:sequence>

<xs:element name="africa"

type="africa"/>

<xs:element name="asia"

type="asia"/>

<xs:element name="australia"

type="australia"/>

<xs:element name="europe"

type="europe"/>

</xs:sequence>

</xs:complexType>

(b) Normalized

Figure 4.1: Normalization of All

The normalization algorithm basically processes all globally defined complex

types and groups, for every one of them it processes its whole definition recursively

and normalizes every node.

Note that all steps of the normalization except of solving All keep the set of

the XML documents valid against the schema unchanged. The change from an

unordered sequence (i.e. All) to an ordered one is caused by the fact that the

schema of the XML Schema does not allow All to contain groups. This constraint

makes it impossible to normalize the content of All properly and also to use some

of the schema transformations. However, XML documents valid against Sinit can

be transformed to suit the normalized schema – the elements in the All construct

have to be just reordered to fit the order of the definition in the schema.

When inserting a new group definition containing only single item, for example

while solving a repetition in Algorithm 4.5, the group will in fact be defined as a

sequence of this one item. This is also required by the schema of XML Schema

because a group cannot directly contain an element.

Also note that there are some XML Schema constructs omitted in the algo-

rithm. These are especially attributes and the Simple content, which can be,

however, handled simply the same way as subelements (or the algorithm in Sec-

tion 4.3.1 can be adjusted to also remove attribute definitions and change them

34

<xs:complexType name="description">

<xs:choice>

<xs:element name="text"

type="xs:string"/>

<xs:element name="parlist"

type="parlist"/>

</xs:choice>

</xs:complexType>

(a) Before normalization

<xs:complexType name="description">

<xs:choice>

<xs:group ref="parlist_choice"/>

<xs:group ref="text_choice"/>

</xs:choice>

</xs:complexType>

<xs:group name="parlist_choice">

<xs:sequence>

<xs:element name="parlist"

type="parlist"/>

</xs:sequence>

</xs:group>

<xs:group name="text_choice">

<xs:sequence>

<xs:element name="text"

type="xs:string"/>

</xs:sequence>

</xs:group>

(b) Normalized

Figure 4.2: Normalization of Choice

35

<xs:complexType name="categories">

<xs:sequence>

<xs:element maxOccurs="unbounded"

name="category" type="category"/>

</xs:sequence>

</xs:complexType>

(a) Before normalization

<xs:complexType name="categories">

<xs:sequence>

<xs:group maxOccurs="unbounded"

ref="category_rep"/>

</xs:sequence>

</xs:complexType>

<xs:group name="category_rep">

<xs:sequence>

<xs:element name="category"

type="category"/>

</xs:sequence>

</xs:group>

(b) Normalized

Figure 4.3: Solving Repetitions

to subelements). Other feature is so-called Complex content, i.e. a way to derive

a complex type as an extension or restriction of an existing type. The restriction

can be quite simply solved by replacing the derived type by its parent type, how-

ever the extension would need a deeper analysis, so we omit the complex content

completely as it is out of scope of this thesis. For the same reason we forbid the

input schema to contain any wildcards, i.e. the element any.

4.3.4 Removing of Shared Global Types and Groups

The removal of the shared globally defined types is necessary for the possibil-

ity of gathering schema statistics once at the beginning and then only updat-

ing them while performing a schema transformation [Ramanath et al. (2003),

Bohannon et al. (2001), Bohannon et al. (2002)].

Since our representation of the normalized XML Schema is (after the normal-

ization) used in the rest of the mapping process and since almost all of its parts

often work with globally defined types and groups, we hold their list in a special

structure of the NSchema. And while we extract this list from the schema DOM

graph, we also count and remember how many times every type or group is used

36

(i.e. how many group references to the particular group are in the schema and

how many elements with a particular type are defined in the schema).

These usage counts enable us to remove shared types or groups very simply.

We just loop over the list of global types and groups and for those with more than

one usage we copy them as many times as their usage count is. Every usage of the

type (or reference to the group) is then changed to one of the copies. An example

is given in Figure 4.4.

Note that this step can be performed after the rest of the normalization process

but it can be also done as the first step and all other parts of the normalization

can be simply adjusted so that they do not create shared types.

4.3.5 Type and Group Names Handling

Every time any of the presented algorithms inserts a new globally defined type or

group into the schema, it uses a simple algorithm (depicted in Algorithm 4.6) to

determine a final name of it.

Algorithm 4.6 Determining the name of a newly inserted type or group

Input: n a desired name for the type
counter ← 1
newName← n
while There is a globally defined type or a group with name = new name do
newName← concatenate(n, counter)
counter ← counter + 1

end while
return newName

The desired name for the type is determined by the situation which leeds to

the insertion of a new type, usually the name of the element with the type (or

contained in the group) is used. A suffix denoting the particular situation is then

added (for example “ rep” for repetition, “ choice” for unions etc.).

37

<xs:complexType name="item">

<xs:sequence>

<xs:element name="location"

type="xs:string"/>

<xs:element name="quantity"

type="xs:string"/>

<!-- other definitions -->

</xs:sequence>

</xs:complexType>

<xs:complexType name="africa">

<xs:sequence>

<xs:element name="item"

type="item"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="asia">

<xs:sequence>

<xs:element name="item"

type="item"/>

</xs:sequence>

</xs:complexType>

(a) Before normalization

<xs:complexType name="item">

<xs:sequence>

<xs:element name="location"

type="xs:string"/>

<xs:element name="quantity"

type="xs:string"/>

<!-- other definitions -->

</xs:sequence>

</xs:complexType>

<xs:complexType name="africa">

<xs:sequence>

<xs:element name="item"

type="item"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="item_2">

<xs:sequence>

<xs:element name="location"

type="xs:string"/>

<xs:element name="quantity"

type="xs:string"/>

<!-- other definitions -->

</xs:sequence>

</xs:complexType>

<xs:complexType name="asia">

<xs:sequence>

<xs:element name="item"

type="item_2"/>

</xs:sequence>

</xs:complexType>

(b) Normalized

Figure 4.4: Removing shared types and groups

38

4.4 NSchema to Relational Schema Translation

Once we have a normalized XML schema, NSchema, the translation to relational

schema is quite straightforward:

• Create a relation RX for every globally defined type and group X.

• For each relation RX create a key that identifies the corresponding element.

• For each relation RX create a foreign key PX to all relations RPX
such that

PX is a parent type or group of X.

• Create a column in RX for every simple type element a inside the type or

group X.

– Built-in (atomic) type – translate to an equivalent SQL type.

– User-defined simple type – translate its basis to an SQL type.

• If the data type is contained within an optional type then the corresponding

column can contain a null value.

A globally defined type or group PX is considered as a parent type of X if the

definition of PX contains an element with a type X or a group reference to X.

Every user-defined simple type is derived from a built-in type (possibly in

more than one step) by some restrictions or extensions. We call this built-in type

a basis of the user-defined type and use it in the translation. Note that similarly

to Section 4.3.3, we do not handle possible user defined simple types derived by

an extension.

Before the created relational schema can be loaded into the database, the

tables have to be topologically sorted according to parent/child relationships (i.e.

according to foreign keys).

4.5 Schema Transformations

The mapping selection algorithm (see Chapter 5) uses a set of schema transfor-

mations to derive variations of Sinit. The possible transformations proposed in

various papers (see Section 3.2) are summarized in the following list:

39

• Inlining & Outlining – The inline and outline transformations change the

place where an element e stored – either directly in a table T corresponding

to the parent type of e (inlined) or in a separate table (outlined). Because

of the way of creating a relational schema for the NSchema (see Section 4.4),

inlined elements are those which have a locally defined type or a simple type.

Those which have a globally defined type or are members of a group, which

is referenced from T , are outlined. There are two variants of the outline

transformation:

– Local type elements outlining – this transformation is applicable on

elements with a locally defined type, it creates a new globally defined

type with the same definition and changes e so it uses the new type.

– Simple elements outlining – this variant outlines elements with a simple

type (either user-defined or built-in) and also sets of such elements. It

does that by creating a new group containing the outlined elements.

An example of inlinlined and outlined element category is given in Fig-

ure 4.5.

• Commutativity & Associativity – these transformations alter the structure

of the schema and the order of the contained items. Associativity groups

different elements into a single relational table, while commutativity changes

the order of elements and, thus, can change which elements are grouped

by associativity. The same effect can be achieved by applying the simple

elements outlining though, so we do not use these two transformations. An

example of associativity is given in Figure 4.6.

• Splitting & Merging types or groups – Split breakes a shared type or a

group (i.e. a type or group used by more than one type definition) into

separate definitions while merge does the exact opposite. Because of the

way we gather and manage schema statistics (see Section 4.7), we perform

all possible split operations at the beginning (see Section 4.3.4) and only

allow merge in the algorithm.

• Simplifying unions – this transformation exploits the fact that a union is al-

ways contained in a sequence of optional elements. This, of course, extends

the set of valid documents but as the transformed schema is used only to

40

create a relational one this does not cause any problem. After the simplify-

ing, the types of the elements of the union can be inlined which can improve

the cost of the whole schema. An example of this transformation is given in

Figure 4.7.

4.6 Cost Estimation

An important part of the mapping selection process is the cost function, fcost. It

is used to represent a RDBMS engine which creates an execution plan for every

query and is usually capable of evaluating it by a cost value. So naive but quite

illustrative way to get a cost of some transformed schema would be to translate

it into a relational one, load that with sample XML documents, translate sample

XML queries to SQL and get a sum of their cost. When the best schema according

to this cost is found, it would be then also the best one in the real usage.

Nevertheless, this process would be quite time-consuming and probably render

the whole algorithm useless. Only the load of the sample data can take a couple of

seconds or even minutes and it would have to be done for the evaluation of every

constructed schema and the number of schemas constructed during the search can

be very large.

An improvement of this method is presented in [Ramanath et al. (2003)]

and previous publications on LegoDB ([Bohannon et al. (2001),

Bohannon et al. (2002)]). Instead of loading data to a database, the pre-

sented systems count various statistics about the document (such as a number

of instances of particular element) and store it directly in their schema repre-

sentation. These statistics are then updated with every schema transformation.

When a schema is to be evaluated, the statistics are translated into appropriate

relational statistics for the derived relational schema and they are then used

(together with sample queries) as an input for a relational optimizer to obtain

cost.

Another approach is to avoid the usage of relational optimizer or database

completely and define a true cost function, which simulates the relational opti-

mizer and derives the cost of a query directly from the schema and statistics.

This approach obviously does not produce so accurate costs as the use of a real

41

<xs:complexType name="categories">

<xs:sequence>

<xs:element maxOccurs="unbounded" name="category" type="category"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="category">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="description"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

(a) Outlined category

<xs:complexType name="categories">

<xs:sequence>

<xs:element maxOccurs="unbounded" name="category" >

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="description"/>

</xs:sequence>

<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

(b) Inlined category

Figure 4.5: Inlined and outlined element

42

<xs:complexType name="category">

<xs:sequence>

<xs:element name="name"

type="xs:string"/>

<xs:sequence>

<xs:element name="text"

type="text"/>

<xs:element name="parlist"

type="parlist"/>

</xs:sequence>

</xs:sequence>

<xs:attribute name="id"

type="xs:ID" use="required"/>

</xs:complexType>

(a)

<xs:complexType name="category">

<xs:sequence>

<xs:sequence>

<xs:element name="name"

type="xs:string"/>

<xs:element name="text"

type="text"/>

</xs:sequence>

<xs:element name="parlist"

type="parlist"/>

</xs:sequence>

<xs:attribute name="id"

type="xs:ID" use="required"/>

</xs:complexType>

(b)

Figure 4.6: Associativity

<xs:complexType name="desc">

<xs:choice>

<xs:element name="text"

type="text"/>

<xs:element name="parlist"

type="parlist"/>

</xs:choice>

</xs:complexType>

(a)

<xs:complexType name="desc">

<xs:sequence>

<xs:element name="text"

type="text"

minOccurs="0" maxOccurs="1"/>

<xs:element name="parlist"

type="parlist"

minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

(b)

Figure 4.7: Simplyfying unions

43

database management system, nevertheless, it has some advantages. First, an ar-

tificial cost function does not depend on a particular RDBMS system and, hence,

it can be general enough to be a satisfactory simulation of a set of such systems.

Thus the schema can be optimized regardless the given target RDBMS.

Second, a cost function implemented as a part of the mapping system itself is

usually much more efficient and, hence, the whole algorithm can either run much

faster or search a much larger subspace of Σ.

In our solution, we have chosen to define an artificial cost function and after

detailed analysis we decided to use the one presented in [Zheng et al. (2003)]. It

exploits statistics about the schema and simulates the join of the relational tables

necessary for evaluating the query.

The original fcost is defined over a relational schema R and a sample set Dsample

which consists of a set of sample XML documents Xsample and a set of sample XML

queries Qsample:

fcost : R×Dsample → R+
0 (4.1)

Thus it takes a relational schema and sets of sample documents and queries and

returns a cost as a (non-negative) real number. We made some adjustments to

the definition of fcost, so our cost function is defined as

fcost : S ×Qsample → N+
0 (4.2)

where S is a normalized XML Schema (NSchema) which also contains statistics

(see Section 4.7), Qsample = {(Qi, wi)i=1,2,...,n} is a set of sample queries (Qi) with

assigned weights (wi). Note that in our solution we set weights of all queries to 1

(i.e. we omit the weighting of queries completely).

4.6.1 fcost Calculation

The calculation of the cost function, as defined in [Zheng et al. (2003)], uses a

couple of variables and information explained in the following list. The model

is based on fi – a schema fragment rooted in element Ei. In our situation, the

relevant fragments for the calculation of the cost are the definitions of global types

and groups because all elements in such a definition are then contained in a single

relational table.

44

• |Ei| – the number of instances of element Ei from the schema in Xsample

• Ci – the width of the field corresponding to an element Ei with a simple

value

• Fan-out(i, j) – the average number of instances of Ej in Ei (where Ej is a

subelement of Ei) derived from Xsample, i.e. |Ej|/|Ei|

• |Di| – the number of instances of all elements in the schema fragment fi

• |fi| – the size of all elements in the schema fragment fi

• Sel(e1/e2/ . . . /ek) – the selectivity of a simple path e1/e2/ . . . /ek

• Seli – the selectivity of the path from the root of the schema to the fragment

fi

The function is then calculated as follows:

fcost(S,Qsample) =
n∑
i=1

wi · cost(Qi, S) (4.3)

where cost(Qi, S) is a cost of evaluating a query Qi on the schema S. In

[Zheng et al. (2003)] it is defined for a query Qi which accesses {fi1, . . . , fim},
a set of m fragments in S:

cost(Qi, S) =

{
|fi1| when m = 1∑

j,k(|fij| · Selj + δ · (|Eij+|Eik|)
2

) when m > 1
(4.4)

where fj, fk are two joined fragments while evaluating the query and δ is a coef-

ficient. To simulate common hash join of the corresponding relational tables, δ is

set to 3 [Zheng et al. (2003)].

Note that we assume, similarly as the authors of [Zheng et al. (2003)], that the

queries are defined using only simple path expressions and that every path starts

at the root of the schema. Since complex regular expressions can be translated

into a set of simple path expressions exploiting the schema, this assumption is not

too restrictive.

45

Consequently, if a simple path query Qi = e1/e2/ . . . /ek can be rewritten

using corresponding fragments (which are globally defined types or groups) as

fi1/fi2/ . . . /fim/, then fragments fix, fiy are joined only if y = x+ 1. Thus

cost(Qi, S) =

{
|fi1| when m = 1∑m−1

j=1 (|fij| · Selj + δ · (|Eij+|Eij+1|)
2

) when m > 1
(4.5)

4.6.2 Calculation of Variables for fcost

The fcost equation (4.5) has a couple of variables which have to be computed. The

most important observation is that most of the variables can be computed only

once, at the beginning, and they do not change after any transformation except

of merging of shared types. This observation (based on a similar observation

in [Bohannon et al. (2001), Bohannon et al. (2002)]) has only one precondition –

the statistics (and the derived variables) have to be obtained on a fully decomposed

schema, i.e. a schema where there is no shared type or group. But we have defined

NSchema exactly this way, so we can safely use the observation and, hence, only

count most of the variables at the start of the mapping process.

Let us show this observation for a schema S and particular variables:

• |Ei| depends only on Xsample, it can only change with a merge transforma-

tion, but in that case the new value can be derived:

– When merging two types with definitions in elements Ei, Ej, denote

the resulting element Em. The value of |Em| can be counted as |Em| =
|Ei|+ |Ej|

• Ci is given by the definition of |Ei| in S, so it even does not depend on

Xsample

• Fan-out(i, j) depends only on |Ei|, |Ej| so again it does not change with any

transformation except of merge, when the new value can be derived from

the old ones.

• Seli is the same regardless of any transformation except of the merge since

the path from the root of S to Ei is the same. Only the elements on it may

46

change the type which they are contained in, but this is only a different way

to define a schema for the same document.

What changes with a different schema is the set of types or groups accessed

when evaluating the query since the definitions of the types change. And conse-

quently, |Di| and |fi| also change as the set of the descendant elements of these

types changes as well. These variables are thus computed at the time of evaluating

the cost of S using following formulas:

|Di| =
∑
Ej∈fi

|Ej| (4.6)

|fi| =
∑
Ej∈fi

|Ej| · Cj (4.7)

Note that the values of |Di| and |fi| only have to be computed for the fragments

corresponding to globally defined types or groups which are accessed by any of

the queries in Qsample.

The value of Seli is estimated using a Markov table [Zheng et al. (2003),

Aboulnaga et al. (2001)] from the selectivity of a single step (i.e. a path with

length 2) which is equal to the Fan-out between the two elements. As intro-

duced in [Aboulnaga et al. (2001)], the selectivity of a path of the length n can

be estimated using already known selectivities of paths of the lengths m < n:

Sel(e1/e2/ . . . /en) = Sel(e1/e2/ . . . /em) ·
n−m∏
i=1

Sel(ei+1/ei+2/ . . . /ei+m)

Sel(ei+1/ei+2/ . . . /ei+m−1)
(4.8)

When we set m = 2, we get:

Sel(e1/e2/ . . . /en) = Sel(e1/e2) ·
n−2∏
i=1

Sel(ei+1/ei+2)

Sel(ei+1)
(4.9)

Of course, the selectivity of a single element path is 1, i.e. Sel(ei+1) = 1. And,

as we already mentioned, the selectivity of a path of two element is equal to the

47

Fan-out of these nodes, i.e. Sel(ei/ej) = Fan-out(i, j). So we get:

Sel(e1/e2/ . . . /en) = Fan-out(e1/e2) ·
n−2∏
i=1

Fan-out(ei+1/ei+2)

Sel(e1/e2/ . . . /en) =
n−1∏
i=1

Fan-out(ei/ei+1) (4.10)

Finally, we can express Sel(e1/e2/ . . . /en) using Sel(e1/e2/ . . . /en−1) as:

Sel(e1/e2/ . . . /en) = Sel(e1/e2/ . . . /en−1) · Fan-out(en−1/en) (4.11)

Using equation (4.11) we can simply determine the selectivities of all schema

elements. We trace the whole schema from the root element and count Seli
using selectivity of the parent node Epi

and the Fan-out(i, pi). Note that in this

algorithm we consider two nodes e1, e2 in a parent-child relationship when they

fulfill one of these conditions:

• e1 is a parent node of e2 in the schema XML document, i.e. the definition

of e1 directly contains the definition e2

• e1 contains as a child a definition of an element using type with definition

in node e2

• e1 contains as a child a reference to a group with definition in node e2

4.7 Gathering Sample XML Data Statistics

The cost function used in our solution, as introduced in Section 4.6, does not

need to access sample documents, it only uses simple statistics from them. We

obtain these statistics before the mapping selection algorithm starts and store

them directly into the NSchema. Since the statistics are needed on an element

basis, we count them for every particular element and the result is then stored

directly to the element representation. This way the cost function algorithm can

acquire the statistics as it traces the schema.

48

The statistics gathering is done in two steps which are sketched in Algorithms

4.7 and 4.9. The first one is called on every sample XML document, it traces it

and counts occurrences of every element in the document (denoted as count(e)).

The second one is then called on the root document element of the NSchema.

It processes the whole schema and propagates the statistics to the schema nodes

which does not directly appear in XML documents. These are especially various

constructions used to denote a type and a structure of elements (e.g. schema

elements like complexType, sequence, choice etc.).

Algorithm 4.7 Gathering schema elements statistics

Input: XML document D, NSchema S
root← The root element of D
Troot ← The type of root according to S {All globally defined elements in S
must have a globally defined type}
Apply Algorithm 4.8 on (root, Troot)

Algorithm 4.8 Gathering statistics from a single element

Input: element e, parent type or group Tp
if e has a globally defined type Te then
es ← a root of the definition of Te
T ′p ← Te

else if e is a reference to a group Ge then
es ← a root of the definition of Ge

T ′p ← Ge

else
find es – a schema element in the definition of Tp corresponding to e
T ′p ← Tp

end if
count(es)← count(es) + 1
for all e ∈ Children of e do

Apply Algorithm 4.8 on (e, T ′p)
end for

49

Algorithm 4.9 Consolidation of the statistics – processing of a single element

Input: NSchema element e, Cp, a value of count(p), where p is the parent
NSchema element of e
if count(e) is not defined then
count(e)← Cp

end if
if e is a reference to a group G then

Apply Algorithm 4.9 on (G, count(e))
end if
Children← All child elements of e
for all ch ∈ Children do

Apply Algorithm 4.9 on (ch, count(e)
end for

4.8 Loading XML Data to a Relational Schema

The loading of the XML data to created relational schema is not truly a part

of the XML-to-Relational Mapping Problem, however in a real-world system for

storing XML data using RDBMS it cannot be left out. So in this section we

provide a brief discussion about the possible load algorithm.

The first idea is to use an algorithm similar to statistics gathering (Algo-

rithm 4.7). When we have a corresponding schema element es for the XML

document element e and also a parent type or group Tp, we can determine the

exact relational table and its column which e should be stored in – the name of

the table is the same as the name of Tp and the column name is the name of e.

Of course we would have to enhance the algorithm so it also generates and tracks

the identification of the instances of type/group Tp and its parent type/group.

With that the loading algorithm would be able to construct the whole tuple cor-

responding to an instance of type/group Tp including a key of the appropriate

tuple in the parent type.

50

4.9 AntMap System Architecture

Figure 4.8 shows a high-level architecture of our solution, called AntMap. The

key algorithms and procedures used in the application are detailed in previous

sections and Chapter 5, here we provide only a brief summary.

The main application module, called simply Application, is responsible for

managing the whole run of the application and for a communication of other

modules.

The application run starts by the Input Parser module which takes input

XML Schema definition and sample XML documents and queries, parses them

and produces NSchema with data statistics and our internal representation of

queries.

These structures are then passed to the Schema Transformator, which is a

module providing the key function of the whole application – it searches for the

optimal mapping of the given NSchema to a relational schema. It uses Cost

Estimator to determine the quality of the particular schemas.

The resulting transformed NSchema is then translated to a relational schema

by the Relational Translator which is capable of exporting it as a set of SQL

CREATE statements in proper order.

51

A
p
p
li
c
a
ti
o
n

C
o
s
t

E
s
ti
m
a
to
r

R
e
la
ti
o
n
a
l

T
ra
n
s
la
to
r

S
c
h
e
m
a

T
ra
n
s
fo
rm
a
to
r

X
M
L

S
c
h
e
m
a
,

D
T
D

…
.

X
M
L
 Q
u
e
ri
e
s

(X
p
a
th
)

S
a
m
p
le
 X
M
L

D
a
ta

N
S
c
h
e
m
a
 w
it
h
 s
ta
ti
s
ti
c
s

Q
u
e
ri
e
s

T
ra
n
s
fo
rm
e
d
 N
S
c
h
e
m
a

D
B

C
re
a
te
 O
p
ti
m
a
l

M
a
p
p
in
g

m
a
n
a
g
e
s

m
a
n
a
g
e
s

m
a
n
a
g
e
s

v
ia
 O
D
B
C
 o
r
S
Q
L
 I
n
s
e
rt
 S
ta
te
m
e
n
ts

In
p
u
tP
a
rs
e
r

F
ig

u
re

4.
8:

A
n
tM

ap
d
es

ig
n

ov
er

v
ie

w

52

Chapter 5

Mapping Selection Algorithm

5.1 Choice of Heuristic

The proposed solutions of the XML-to-Relational mapping problem often use quite

simple heuristics (e.g. greedy search) and thus suffer from their problems. One

of the most painful one is the possibility of getting stuck in some local optimum.

Thus we choose a more promising heuristic called Ant Colony Optimization, resp.

its variant called Ant Colony System, both of which are described in detail in the

following sections.

This heuristic not only solves the local suboptimum problem but has some

other nice features. From its nature this algorithm is capable of exploring quite

wide area of the search space but also tries to use information about good solu-

tions explored so far to give the search some direction. Also this heuristic has

been adjusted and applied to dynamic optimization problems which is especially

important for our problem. As mentioned in Section 3.3, in this thesis we want

to explore the possibility to adapt the schema dynamically.

5.2 Ant Colony Optimization Metaheuristic

Ant Colony Optimization (ACO) is a family of algorithms for solving various

computational problems. First of these algorithms was initially proposed in

53

[Dorigo et al. (1991)] for the Traveling Salesman Problem and since then there

has been many other variants and applications. The main idea is inspired by the

behavior of ants looking for food [Dorigo et al. (2006)] – every ant spreads a sub-

stance called pheromone on its way to and from the food source, other ants notice

the presence of pheromone and tend to follow paths with higher concentration of

the pheromone. This way the ants in fact communicate or share information they

have learnt.

The ACO has been formalized as a metaheuristic (i.e. general-purpose algo-

rithm which can be applied to different problems) for Combinatorial optimization

problems. A Combinatorial optimization problem (COP) can be modeled as a set

P = (Sigma,Ω, f) where

• Sigma is a search space defined over a finite set of variables.

• Ω is a set of constraints over these variables.

• f : Sigma→ R+
0 is an objective function to be minimized

Using this model, the ACO algorithm can be described as a search for an

optimal path in so-called construction graph which is build from a set of solution

components. A solution component means an assignment of a particular value to

a particular variable.

Algorithm 5.1 General ACO Algorithm

Initialization – i.e. creating a set of artificial ants and initialization of
pheromones
while final termination condition do

repeat
Build partial solutions
Choose one solution

until each ant has constructed a solution
Update path pheromones

end while

See Algorithm 5.1 for an overview of the ACO algorithm, important parts of

it are detailed in the following list. Note that the outer loop (while loop) is called

iteration and the inner one (repeat-until loop) is called step.

54

• Build partial solutions – in every step an ant extends its partial solution by

adding some feasible solution component (i.e. the path in the construction

graph is extended by adding an edge to it). It first constructs all possible

partial solutions which can be derived from the actual one. Then every such

partial solution is assigned a probability depending on the quality of it and

a pheromone value for the corresponding step (i.e. for the corresponding

edge in the construction graph).

• Choose one solution – the ant chooses from the possible steps randomly

however with respect to counted probabilities, so the best possible step is

most likely to be chosen, however the ant can also choose another one.

• Update path pheromones – after all ants have constructed their solutions,

the pheromones of the paths in the construction graph are updated, usually

in two steps:

– Decreasing pheromone values of all paths – this simulates the evapora-

tion of the pheromones of the real ants.

– Increasing pheromone values on paths leading to good solutions (or

letting every ant to increase every pheromone on its path by an amount

depending on the quality of constructed solution).

• Final termination condition – can vary depending on the problem, usually

it means a predefined number of iterations or reaching a defined threshold

quality of the constructed solution.

5.3 Ant Colony System

In our proposed solution we choose Ant Colony System (ACS), a variant of the

ACO algorithm introduced in [Dorigo, Gambardella (1997)]. Its main contribu-

tion is the introduction of a so called local pheromone update – this is performed

after every step of every ant and it diversifies the search performed by subsequent

ants so that it is less likely that different ants will construct the same solution.

This is quite important in our problem because we implement the whole algo-

rithm based on ACO because we want to improve variants with simple greedy

55

techniques. If some ants will follow same paths, it reduces the advantage of the

algorithm. Another argument for ACS variant is the fact that convergence to

the optimal solution has been proved for this variant of ACO (as mentioned in

[Dorigo et al. (2006)]).

5.4 Main Mapping Algorithm Using ACS

The structure of the main application algorithm using ACS is presented in Algo-

rithm 5.2, in the next sections we analyze all its steps in detail.

Algorithm 5.2 Main application algorithm

Initiate the algorithm
while Final condition do

Position each ant on a starting schema
repeat

Perform a state transition (i.e. build partial solutions, choose one)
Perform local pheromone updating

until Iteration termination condition
Perform global pheromone updating

end while

5.4.1 State Transition

First, every ant a (positioned on a schema Sa) constructs all possible steps to

take from its current position, i.e. the set of solutions Sol = {S|S = ti(Sa) ∧ ti ∈
Trans}. Then every such solution is evaluated – its cost fcost(S) is counted and

it is given a probability according to it. In original ACO/ACS the probability is

counted as defined in equation (5.1):

ταST · η
β
ST∑

U∈Sol τ
α
SU · η

β
SU

(5.1)

where

• τST means the pheromone value for edge ST .

56

• ηST is a measure of quality of a given step, in our case the difference between

costs of the schemas S and T (the lesser fcost(T), the better the step is).

• α and β are parameters which control the relevance of the quality of the

step versus the pheromone value.

Note that for the purpose of the implementation of the algorithm the proba-

bility itself is not relevant, we only need the ratio of probabilities of all possible

steps so we can only count the numerator part of the fraction (5.1).

An ant in a schema S then chooses a schema T to move to using so-called

pseudorandom proportional rule. It depends on a random variable q uniformly

distributed over 〈0, 1〉 and a parameter q0 which controls how often the ants

explore new possibilities and how often they follow the best possible way. The

resulting schema is then chosen as follows:

T =

{
arg maxU∈Sol τ

α
SU · η

β
SU if q ≤ q0

ACO otherwise
(5.2)

where ACO means the solution is chosen according to rule presented by original

ACO – as a random variable with distribution given in equation (5.1). In other

words, when q ≤ q0, the ant takes the step to the best resulting solution possible,

otherwise the schema is chosen in a standard ACO way.

5.4.2 Local Pheromone Updating

After every step performed by an ant the pheromone of the last used edge is

updated according to the following rule:

τST ← (1− ρ) · τST + ρ · τ0 (5.3)

where

• 0 < ρ < 1 is a parameter of evaporating for the local pheromone updating.

• τ0 is the initial pheromone level. Note that the authors of the ACS algo-

rithm also proposed 2 other versions of the formula (5.4), however, the one

57

presented here has been observed both performing better or equal than the

other ones and the simplest so we focus on it.

The local pheromone update prevents possible following ants to take the same

step and so diversifies the set of constructed solutions.

5.4.3 Global Pheromone Updating

Only the best Ant abest (i.e. the ant with the best solution from the beginning of

the run of the algorithm) deposits a pheromone along its path in this phase. The

value of the pheromone for the edge between schemas S and T – τST – is counted

as follows:

τST ← (1− ϕ) · τST + ϕ ·∆τST (5.4)

where

• ∆τST =

{
C/fcost(abest) when edge ST belongs to the global best solution found

0 otherwise

• fcost(abest) is the cost of the best solution found

• C is a constant

• 0 < ϕ < 1 is the pheromone evaporation parameter for the global pheromone

updating.

5.4.4 Termination Condition for One Iteration

The ACS algorithm is, in general, defined for combinatorial optimization prob-

lems. It assumes the problem is defined over a set of variables and the solution

is built from a set of solution components. This situation does not exactly corre-

spond to our problem, because every schema we produce by performing a trans-

formation on some of its nodes is in fact a possible solution of the problem. This

forces us to define our own iteration termination condition.

We can define the algorithm to perform only one step (or a constant number

of steps) in each iteration, it however seems like a more natural choice to use a

58

number of iterations dependent on the scale of the problem. This will correspond

to the original idea of the ACO metaheuristic where the ants perform steps till

they construct the whole solution and this number of steps is of course equal to

the size of the construction graph.

We can redefine our problem as a COP to fit ACO better, the COP model can

be defined for example this way:

• S = Σ, a search space where the decision variables are particular schema

nodes, the values assigned to these variables are chains of transformations

performed on the node.

• Ω contains only one constraint – any chain of transformation assigned to a

node can contain only transformations which can be applied on given node

transformed by previous applied transformations.

• f = fcost

This definition, however, still does not really divide the solution into a set of

components all of which have to be built during an iteration, but it can help us

to define the number of iteration dependent on the size of the problem. We can

see the components as an assignment of transformations to particular nodes and

so we grant every ant a number of steps dependent on the number of types in

the initial schema (i.e. the number of nodes which can be transformed) and leave

it to every ant whether it would use some transformation on every type or leave

some types untransformed while others would contain a chain of transformations.

5.4.5 Placing Ants to a Starting Position

In the original ACO and ACS algorithms, the ant are placed randomly in the

construction graph. However, in our situation we cannot actually construct the

graph, we build it by performing the transformation.

So we start with all ants in Sinit. After every iteration, ants a1, a2, . . . , am
reach positions S1, S2, . . . , Sm. The ants with a good solution need to continue

their search. But for those with bad solutions it would be better to search from a

different point. We exploit both of these ideas and let a half of the ants in their

positions, while the rest is placed on the original starting position, i.e. Sinit.

59

Another situation is when an ant reaches a schema which cannot be further

transformed, we called such an ant dead and remove it from the set of ants for

the rest of the iteration. Before the next one, a new ant is created and placed on

Sinit.

5.4.6 Termination Condition for the Whole Algorithm

Another important part of the algorithm design is the final termination condition,

i.e. the condition which stops performing iterations and ends the whole algorithm.

Usually, there is a predefined maximal number of algorithm iterations and/or a

threshold value of fcost which ends the algorithm.

The first idea is to set the number of iterations to a number which depends on

the size of the problem, in our case the number of types of Sinit. Our experiments

however showed, that the final solution is found much earlier, so we have proposed

additional condition.

The second condition is inspired by the greedy algorithms – they end when they

cannot improve the solution any more. Similarly to that, we stop the algorithm

when an improving solution has not been found for some number of iterations.

We set this number proportionally to the maximum number of iterations defined

above.

5.4.7 Parameter Settings

The algorithm presented in previous section has a couple of parameters. We

summarize them in the following list together with an explanation of their setting:

• α, β – parameters which influence the determination of the quality

of possible steps, in particular the bias between the information from

other ants (pheromone) and fcost. We use the settings proposed in

[Dorigo, Gambardella (1997)] and, hence, set α = 1 and β = 2.

• ρ, ϕ – pheromone evaporation coefficients which ensure that some solution

from the beginning of the algorithm does not prevent the ants from ex-

ploring other possibilities. We set both of these to 0.1, as do authors of

[Dorigo, Gambardella (1997)].

60

• q0 – parameter for the state transition decision, it diversifies the search

and prevents the ants from taking the same steps. The authors of

[Dorigo, Gambardella (1997)] set q0 = 0.9 however in our situation this

caused many ants to construct exactly the same solutions, so we have per-

formed some experiments (see Section 8.5) and finally set it to 0.5.

• C – a constant which influences the amount of pheromone deposited. Au-

thors of [Dorigo, Gambardella (1997)] simply use 1 but experiments showed

that this is not suitable for our situation as the pheromone value is too low

(since the costs can be very high). We set it to a cost of the initial schema

so that the deposited pheromone value is always greater than 1.

• τ0 – an initial value of the pheromone, the authors of

[Dorigo, Gambardella (1997)] propose a value of

1

fcost(Sest)

where Sest is a solution found by another method. We in fact adjust this

equation to
C

fcost(Sinit)

as Sinit is also a solution and used equation is consistent with the (global)

pheromone updating.

• The number of ants – we set it to 10, i.e. the value proposed in

[Dorigo, Gambardella (1997)].

61

Chapter 6

Dynamic Adaptation

As mentioned in Section 3.3, the main problem of all adaptive techniques is that

the schema is adapted to future usage only once at the beginning. When the

application changes or when the usage differs from samples given by the user at

the time of creating database schema, the resulting efficiency may considerably

worsen. Consequently, there is a need for a dynamic schema adaptation mecha-

nism.

Note that such a mechanism is not an easy task because the idea naturally

implies database schema reconstruction (at least to some extent) which could be

very expensive in both time and space. Nevertheless, when we exploit the idea

of gradual small (or local) changes, the performance gain could outweigh the cost

of reconstructing the schema. The idea is based on a presumption that a real

application and its usage would probably also evolve gradually and in cases of

radical changes the underlaying data storage have to be reconstructed anyway (as

it usually happens in the case of pure database-based applications).

The ACO heuristic has been successfully applied to some dynamic problems

and, hence, our mapping selection algorithm using this heuristic can be adjusted

to handle dynamic adaptation problems as well.

There are in principle two different possibilities how the situation can change:

1. Change of the input XML schema

2. Change of sample data and/or queries

62

While the first one may be relevant in some situations, it would require a recon-

struction of the whole relational schema or, at least, the data and query mapping

mechanism anyway. In our view, the second case is more often since the real usage

of an application will usually differ from the predicted one given to the algorithm.

And the usage will probably change also while the application is being used.

For our problem, this change means a change of Xsample, which implies a

change in data statistics, and a possible change of Qsample. Both of these changes

influence the computation of the value of fcost.

The adaptation of an ACO algorithm to some dynamic problem is discussed

for example in [Angus, Hendtlass (2005)] and [Eyckelhof, Snoek (2002)]. While

the papers explore different types of the dynamic adaptation of TSP, they both

contain basically the same ideas:

• The ants in the ACO algorithm are capable of adapting to a new situation

from the nature of the algorithm – even when some very good solution has

been found, some of the ants will still explore different paths because of the

state transition rule (see Section 5.4.1).

• When some route in the construction graph has very high values of the

pheromones, the exploration of new paths is less probable. This is especially

problematic in case of dynamic adaptation. Both papers propose a similar

solution of that – when the situation changes, the pheromone values are

normalized to remove large differences between the pheromone values, while

still preserving the order of the edges according to them.

Using the ideas presented in the previous list, the adaptation of our algorithm

is quite simple. We only need to store the information about pheromone values

and when the adaptation algorithm is used again with a different set Dsample, we

use these values instead of the default value τ0. Before the algorithm is started,

the pheromone values are normalized to lower the differences. The normaliza-

tion rules proposed in [Angus, Hendtlass (2005)] and [Eyckelhof, Snoek (2002)]

are presented in equations (6.1) and (6.2):

τij ←
τij
τmax

(6.1)

63

τij ← τ0 · (1 + log
τij
τ0

) (6.2)

where τ0 is the initial pheromone level and τmax is the maximal pheromone value

set so far. The first one seems to be more effective while still keeping the order of

the pheromone values unchanged, so it seems like the more promising choice.

After this normalization the paths of the previous solution are still preferred

but new good solutions are likely to be found near the original one. This suits

the problem of dynamic schema adaptation in case of gradual and rather small

changes of the application. And also note that this way we can obtain not only the

new schema, but also an information about the changes from the last one (i.e. the

different steps taken in the path), which could be then used for the reconstruction

of the relational schema.

While the main mapping selection algorithm can be adjusted to the dynamic

version of the problem quite easily, there are other aspects to be considered.

Most importantly, even with a slight change in the resulting relational schema,

the schema has to be altered and the stored data have to be either moved and

adjusted on the way or reimported from the original XML documents. Both

of these tasks are difficult to perform automatically and can be quite expensive.

Hence the algorithm should also exploit the cost of the schema reconstruction and

decide, whether it is worth the benefit of the newly adapted schema. Designing

such an algorithm needs a further detailed analysis.

64

Chapter 7

Implementation

We have implemented the most important parts of proposed algorithm in the

Java language (version 1.6)1 so we can evaluate our solution in experiments (see

Chapter 8).

Since we wanted to focus on the algorithm itself, we have used as many of

various libraries and tools as possible. In particular, we used Xerces Java XML

parser and APIs2 and Xalan APIs3 for XPath querying. We keep the schema in a

DOM graph trough the whole algorithm and we use standard DOM API to work

with it together with XPath expressions to obtain specific nodes from the graph.

7.1 Schema Normalization

The normalization is implemented as a set of DOM graph visitors which have

shown as very suitable for the problem. We have implemented a generic XML

Schema definition visitor which handles the types of the schema elements and

then only reimplemented the particular methods to do a particular part of nor-

malization process.

Other method considered was usage of a standard XML transformation tool –

XSLT[W3C: XSLT]. The reason for such a solution is a usage of well defined and

1http://java.sun.com/
2http://xerces.apache.org/xerces2-j/
3http://xml.apache.org/xalan-j/

65

http://java.sun.com/
http://xerces.apache.org/xerces2-j/
http://xml.apache.org/xalan-j/

known technology which is suited for transforming XML documents. Nevertheless,

our solution using DOM graphs and visitors enables us to construct advanced

structures to help the work with the schema. And more importantly, in XSLT

many of the normalization tasks would have to be rather cumbersome.

7.2 Pheromone Handling

Pheromone values for the algorithm have to be stored for every possible step, i.e.

for every two schemas S1, S2 such that ∃ti ∈ Trans : S2 = ti(S1). Nevertheless,

to construct a structure which hold all these values from the beginning would

be expensive as well as useless since the algorithm usually does not evaluate all

possible steps. Hence, we implemented a map (specifically a hash map) which is

capable of storing and retrieving the pheromones and in case it does not contain

a value for the given schema pair, it returns a default value τ0.

Of course, the problem with such a map (or any other structure for holding

pheromones) is how to index it. In other words, a way to encode the whole

schema. Another possible way would possibly be to index the steps by the chains of

transformations together with the elements they have been applied on. This would

however require proper analysis of equality between two chains of transformations

applied on the same initial schema which can be more expensive than the encoding

of the schema.

We choose to encode every particular transformed schema into a unique iden-

tifier called schema code. Schema code is a string obtained by a pre-order

traversal of the schema DOM representation. The process is sketched in Algo-

rithm 7.1, it is applied on the root of the encoded schema. It uses a lookup table

ftext : {text values in S} → N+ for all textual values (including the XML tags and

attribute names) present in the schema. ftext can be extracted from the initial

schema since no transformation changes any textual value. To save memory, a

hash of the resulting string is used instead of the code itself.

66

Algorithm 7.1 Schema Encoding

Input: e an schema node, ftext
Output: a code of e
c← an empty string
for all ch ∈ Children and attributes of e do

Apply Algorithm 7.1 on ch
Append the result to c

end for
if e is an attribute then

Append ftext(name of e) to c
Append ftext(value of e) to c

else if e is an element then
Append ftext(tag of e) to c

else if e is a text node then
Append ftext(value of e) to c

end if
return c

67

Chapter 8

Experiments

To test how the proposed solution of the adaptive XML-to-Relational mapping

problem performs and also to fine tune some of the parameters of the algorithm,

we conducted a sequence of experiments.

8.1 Experimental Setup

The machine used for the experiments has following specifications:

• Dual core 1.66 GHz CPU

• 3 GB RAM with no page file on the disk

• 5400 rpm hard disk

The algorithm has been implemented in the Java language, the heap space for the

virtual machine has been set to 1 GB.

The data used for the experiments were obtained from [XMark], an XML-

Benchmark project which provides a tool for generating XML documents accord-

ing to a predefined DTD. We transformed the DTD to a corresponding XML

Schema Definition and used it as Sinit. A set of sample documents were gener-

ated (a total size about 8 MB) to obtain schema statistics and four sets of XPath

queries were derived from the ones provided by [XMark]. The first three of them

68

Workload-1 Workload-2 Workload-3 Combined
Workload

Cost of the
initial schema

42 510 422 12 978 202 59 736 854 128 820 398

Table 8.1: Initial costs according to query workloads

contain a couple of queries related to a subset of entities in the schema, while the

fourth one combines the queries from the other three sets.

The costs of the initial schema according to these workloads are presented in

Table 8.1.

We have also implemented a simple Greedy algorithm proposed in

[Bohannon et al. (2001), Bohannon et al. (2002)] so we can compare the results

of our algorithm to another one. In the following sections we refer to these two

algorithms simply as Greedy and Ant.

8.2 Overall Performance

First we ran the algorithms on our four workloads to compare them. The graph

of resulting costs is depicted in Figure 8.1a. It shows, that although the Ant

algorithm gives better results on all of the workloads, the difference between it

and the Greedy one is not big. In fact it varies from almost 0% to about 11% and

grows with the complexity of the query workload. This supports a hypothesis,

that the Greedy algorithm works very well since by taking the best step in its

iteration it in fact does not block other good steps from choosing in the following

iterations. This is true especially when the queries focus on only a subset of the

schema. When the workload become more complex, the Greedy algorithm starts

to miss some possibilites and the Ant algorithm becomes better.

69

workload.1 workload.2 workload.3 workload.combined

C
os

t

2e
+

04
5e

+
04

2e
+

05
5e

+
05

2e
+

06
5e

+
06

2e
+

07

Greedy
Ant

(a) Overall performance

●

●

●

●

●

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10 12 14

2
4

6
8

10

Steps

N
um

be
r

of
 d

iff
er

en
t p

os
iti

on
s

(b) Diversification of search

Figure 8.1: Performance and diversification of search

8.3 Diversification of the Search

An important feature of the Ant algorithm (especially since we choose the ACS

variant of ACO) is the fact that it searches a wide subspace of Σ. To see whether

different ants really search different possible paths, we ran the algorithm on one

of the workloads and observe the paths created by particular ants. Figure 8.1b

summarizes the number of ants in different positions in the first 15 steps of the

algorithm. We can see that from the start of the algorithm the ants follow different

paths and after a couple of steps about 8 of them are in different places on an

average.

Another observation can be made from the behavior of the Ant algorithm – it

usually finds more than one solution with the best cost. This can be important

in a real usage of the algorithm. Although the variants have the same cost, other

characteristics may differ, for example the readability of the relational schema

for the users. And the cost model in the algorithm cannot simulate a particular

RDBMS absolutely, so tests of different variants in the database can give different

real costs.

70

8.4 Impact of the Set of Transformations

We implemented most of the transformations proposed in related papers (which

usually focus on only a subset of them) so we tried to find out how the choice of

the transformations influences the resulting cost. Figure 8.2 shows results of both

Greedy and Ant using a different sets of transformations: all but the Simplifying

unions, all but the Type merge, all but the Outline of simple elements and finally

only Inline and Outline of local types were used. Note that workload-3 was used

for the whole experiment.

We can see that the difference is not really remarkable which supports the

hypothesis that the inlining and outlining are the most important transformations.

However, the result can also be caused by fcost function model.

Also note that while Greedy and Ant give almost the same results with the

restricted set of transformations, the difference grows with the size of the set.

This indicates that the more possibilities to transform the schema the better the

Ant algorithm is.

w.o.union w.o.merge w.o.outline.simple only.inline.outline

C
os

t

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

Figure 8.2: Impact of the number of transformations

71

8.5 Impact of q0

Our Ant algorithm has quite important parameter q0 which controls how much

the ants explore and how much they follow the best possible way. We ran Ant

algorithm on workload-3 with a different setting of parameter q0. Although the

experiment showed that the lesser q0 is the better the result is, the result is not

quite conclusive. The difference between the best and the worst result was under

1h. Nevertheless, there is no disadvantage in setting a lower value and, hence,

we used a value q0 = 0.5 for the rest of the experiments since the differences may

enlarge with a more complex workload.

8.6 Dynamic Adaptation

Finally we conducted a simple experiment to verify the possibility and benefits

of the dynamic adaptation mechanism described in Chapter 6. We let the Ant

algorithm to find a solution on workload-3 and then we changed the workload

to combined workload. But this time we provided the already used pheromone

map to the algorithm (before that we performed the pheromone normalization,

see Chapter 6).

Figure 8.3 shows our results. The Subfigure 8.3a compares the resulting costs

on the combined workload for Greedy, Ant which has run from scratch and an

Ant which used the dynamic mechanism. It can be seen, that the dynamic Ant

found a worse solution than the standard one (by about 8%), but it is still better

than the one from Greedy (by about 4%). Note that the y scale of Subfigure 8.3a

is logarithmic. The second graph (Figure 8.3b) is much more important in our

view. It compares the times of the runs of these three algorithms. As we can see,

the time of the dynamic Ant is significantly better than the one of the standard

Ant algorithm. In fact, it is only 11% of the standard one, i.e. it is almost 10

times better.

This confirms a hypothesis that the ACO-based algorithms for the adaptive

XML-to-Relational mapping problems are definitely promising and can be used

to solve the dynamic variation of the problem as well.

72

Greedy Ant.From.Start Ant.Dynamic

C
os

t

2.
0e

+
07

2.
1e

+
07

2.
2e

+
07

2.
3e

+
07

2.
4e

+
07

(a) Cost

Greedy Ant.From.Start Ant.Dynamic

se
co

nd
s

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

(b) Time

Figure 8.3: Dynamic version of Ant algorithm

73

Chapter 9

Conclusions and Future work

In this thesis we analyzed various methods of mapping XML data to a rela-

tional schema and conclude that the adaptive schema-driven methods are the

most promising ones. Nevertheless, all of these approaches have some drawbacks

and we proposed a solution addressing selected ones of them.

The first goal was a choice of more sophisticated heuristic which would address

the flaws of the ones used in most of the papers – variants of a simple greedy

algorithm. We designed an algorithm based on Ant Colony Optimization and our

experiments have shown, that it in fact gives better mappings.

The difference between our algorithm and a simple greedy one is not vast,

nevertheless, the problem is quite suitable for the greedy heuristic since it does

not really block possible steps by taking the best ones. And, as can be seen from

our experiments, the lag between our algorithm and the greedy one grows with

the complexity of the query workload used to estimate the cost.

Our algorithm also usually finds more than one solution with the same cost,

which can be useful in a practical usage of the mapping system since no cost

model can simulate all database management systems perfectly.

Second goal was to evaluate the influence of the selected set of schema transfor-

mations on the result. We implemented most of the transformations presented in

related papers and conducted an experiment to discover the behavior with differ-

ent sets. It has shown that although more transformations enable the algorithms

to find a better solution, the difference is not radical. We can however see from

74

the experiment that the more complex situation (i.e. more transformations) suits

our algorithm better, i.e. the difference between its result and the result of the

greedy algorithm enlarges with the number of transformations.

Finally, we wanted to explore the possibility of a dynamic schema adaptation.

Since the ACO algorithms are from their nature well suited to dynamic problems,

we could adapt our algorithm to the dynamic version of our problem. We per-

formed a simple experiment to evaluate the dynamic version of the algorithm and

the results are promising.

We ran the dynamic version of the algorithm on one query workload first and

than again on a changed one. Then we compared its results with both the greedy

algorithm and the original version of our algorithm which ran only on the changed

workload. Although the dynamic algorithm did not find the best solution, it was

still better than the one from the greedy algorithm. And more importantly, the

runtime of the dynamic algorithm was almost 10 times better than the time of

the original algorithm.

Our future work will focus on further enhancing our algorithm based on ACO.

There is a couple of variants of Ant Colony Optimization and it can be interesting

to evaluate their ideas in our situation.

But in our view the most important feature enabled by the usage of ACO is the

dynamic adaptation. And the need for a dynamic adaptation is simultaneously

the most painful problem of the existing XML-to-Relational mapping algorithms.

Consequently, further analysis of possible solutions of the dynamic adaptation

problem will be our most important future goal.

75

Bibliography

[Aboulnaga et al. (2001)] A. Aboulnaga, A. R. Alameldeen, J. F. Naughton: Es-

timating the Selectivity of XML Path Expressions for Internet Scale Applica-

tions, Proc. of the International Conference on Very Large Data Bases, pages

591-600, Roma, Italy, September 2001.

[Amer-Yahia et al. (2004)] S. Amer-Yahia, F. Du, J. Freire: A Comprehensive

Solution to the XML-to-Relational Mapping Problem, Proc. of the 6th an-

nual ACM international workshop on Web information and data man-

agement, pages 31-38, Washington DC, USA, 2004. www.cs.utah.edu/$\

sim$juliana/pub/shrex-widm2004.pdf

[Angus, Hendtlass (2005)] D.Angus, T. Hendtlass: Dynamic Ant Colony Optimi-

sation, Applied Intelligence vol. 23, pages 33-38, 2005.

[Atay et al. (2007)] M. Atay, A. Chebotko, D. Liu, S. Lu, F. Fotouhi: Efficient

schema-based XML-to-Relational data mapping, Information Systems, v.32

n.3, pages 458-476, May, 2007.

[Bohannon et al. (2001)] P. Bohannon, J. Freire, P. Roy, and J. Siméon: From

XML Schema to Relations: A Cost-based Approach to XML Storage, Tech-

nical report, Bell Laboratories, 2001.

[Bohannon et al. (2002)] P. Bohannon, J. Freire, P. Roy, and J. Siméon: From

XML Schema to Relations: A Cost-based Approach to XML Storage, In ICDE

’02: Proceedings of the 18th International Conference on Data Engineering,

page 64, Washington, DC, USA, 2002.

76

www.cs.utah.edu/$\sim $juliana/pub/shrex-widm2004.pdf
www.cs.utah.edu/$\sim $juliana/pub/shrex-widm2004.pdf

[Christ, Rundensteiner (2002)] S. Christ, E. A. Rundensteiner: X-Cube: A fleX-

ible XML Mapping System Powered by XQuery, Technical Report WPI-CS-

TR-02-18, Worcester Polytechnic Institute, 2002.

[Codd (1969)] E.F. Codd: Derivability, Redundancy, and Consistency of Rela-

tions Stored in Large Data Banks, IBM Research Report RJ599, 1969.

[Codd (1970)] E.F. Codd: A Relational Model of Data for Large Shared Data

Banks, Communications of the ACM 13, no. 6, pages 377—387, 1970.

[Dorigo, Gambardella (1997)] M. Dorigo, L. M. Gambardella: Ant colony system:

A cooperative learning approach to the traveling salesman problem, IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pages 53–66, 1997.

[Dorigo et al. (1991)] M. Dorigo, V. Maniezzo, A. Colorni: Positive Feedback as

a Search Strategy, Technical Report No. 91-016, Politecnico di Milano, Italy,

1991.

[Dorigo et al. (2006)] M. Dorigo, M. Birattari, T. Stutzle: Ant Colony

Optimization - Artificial Ants as a Computational Intelligence Tech-

nique, Technical Report No. TR/IRIDIA/2006-023, IRIDIA, Bruxelles,

Belgium, September 2006. http://iridia.ulb.ac.be/IridiaTrSeries/

IridiaTr2006-023r001.pdf

[Eyckelhof, Snoek (2002)] C. J. Eyckelhof, M. Snoek: Ant Systems for a Dynamic

TSP: Ants caught in a traffic jam, Ant Algorithms – Proc. of ANTS 2002 –

Third International Workshop, vol. 2463, pages 88–99, 2002.

[Freire et al. (2002)] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Siméon:

Statix: Making XML count. In Proc. of SIGMOD, 2002.

[Freire, Siméon (2003)] J. Freire, J. Siméon: Adaptive XML Shredding: Archi-

tecture, Implementation, and Challenges, Proceedings of the VLDB 2002

Workshop EEXTT and CAiSE 2002 Workshop DTWeb on Efficiency and

Effectiveness of XML Tools and Techniques and Data Integration over the

Web-Revised Papers,pPages: 104 - 116, 2003.

[Harold (2007)] E.Harold: The State of Native XML Databases, August 2007.

http://cafe.elharo.com/xml/the-state-of-native-xml-databases

77

http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2006-023r001.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2006-023r001.pdf
http://cafe.elharo.com/xml/the-state-of-native-xml-databases

[Klettke, Mayer (2000)] M. Klettke, H. Mayer: XML and Object-Relational

Database Systems – Enhancing Structural Mappings Based On Statistics,

Lecture Notes in Computer Science, volume 1997, pages 151-164, 2000.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1766

[Mlýnková, Pokorný (2006)] I. Mlýnková, J. Pokorný: Adaptability of Meth-

ods for Processing XML Data using Relational Databases – the State of

the Art and Open Problems, Technical report 9/2006, Charles University,

Prague, Czech Republic, October 2006. http://kocour.ms.mff.cuni.cz/

∼mlynkova/doc/tr2006-9.pdf

[Mlýnková (2008)] I. Mlýnková: Standing on the Shoulders of Ants: Towards

More Efficient XML-to-Relational Mapping Strategies, XANTEC ’08: Pro-

ceedings of the 3rd International Workshop on XML Data Management Tools

and Techniques of DEXA ’08: 19th International Conference on Database and

Expert Systems Applications, pages 279 - 283, Turin, Italy, September 2008.

[Ramanath et al. (2003)] M. Ramanath, J. Freire, J. R. Haritsa, P. Roy: Search-

ing for Efficient XML-to-Relational Mappings, XSym 2003: Proc. Proc. of 1st

International XML Database Symposium, volume 2824, pages 19-36, Berlin,

Germany, 2003. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.14.7412

[Schmidt et al. (2001)] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I.

Manolescu, M. J. Carey, R. Busse: The XML Benchmark Project, Technical

Report INS-R0103, CWI, Amsterdam, The Netherlands, April 2001. http:

//monetdb.cwi.nl/xml/

[Simanovsky (2008)] A. A. Simanovsky: Data Schema Evolution Support in

XML-Relational Database Systems, Programming and Computer Software,

Vol. 34, No. 1, pages 16–26, 2008.

[SQL:2008] SQL:2008, ISO standards ISO/IEC 9075(1-4,9-11,13,14):2008.

[Xiao-ling et al. (2002)] W. Xiao-ling, L. Jin-feng, D. Yi-sheng: An Adaptable and

Adjustable Mapping from XML Data to Tables in RDB, In Proc. of the VLDB

2002 Workshop EEXTT and CAiSE 2002 Workshop DTWeb, pages 117-130,

Springer-Verlag, London, UK, 2003.

78

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1766
http://kocour.ms.mff.cuni.cz/~mlynkova/doc/tr2006-9.pdf
http://kocour.ms.mff.cuni.cz/~mlynkova/doc/tr2006-9.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.7412
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.7412
http://monetdb.cwi.nl/xml/
http://monetdb.cwi.nl/xml/

[XMark] XMark: The XML-Benchmark Project, http://monetdb.cwi.nl/xml

[W3C: DOM] V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le

Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood: Document Object

Model (DOM) Level 1 Specification, W3C Recommendation, October 1998.

[W3C: XML] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau:

Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommen-

dation, August 2006. http://www.w3.org/TR/REC-xml

[W3C: XML Schema] D. C. Fallside, P. Walmsley: XML Schema Part 0: Primer

Second Edition, W3C Recommendation, October 2004. http://www.w3.org/

TR/xmlschema-0

[W3C: XPath] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J.

Robie, J. Siméon: XML Path Language (XPath) 2.0, W3C Recommendation,

January 2007.

[W3C: XQuery] S. Boag, D. Chamberlin, M. F. Fernández, D.a Florescu, J. Robie,

J. Siméon: XQuery 1.0: An XML Query Language, W3C Recommendation,

January 2007.

[W3C: XSLT] J. Clark: XSL Transformations (XSLT) Version 1.0, W3C Rec-

ommendation, November 1999. November1999

[Wikipedia: Genetic algorithm] Genetic algorithm, Wikipedia, the free encyclo-

pedia, http://en.wikipedia.org/wiki/Genetic_algorithms

[Wikipedia: XML schema] XML schema, Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Xml__schema

[Zheng et al. (2003)] S. Zheng, J.-R. Wen, H. Lu: Cost-driven Storage Schema Se-

lection for XML, Proc. of DASFAA 2003, pages 337-344, Kyoto, Japan, 2003.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3079

79

http://monetdb.cwi.nl/xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-0
November 1999
http://en.wikipedia.org/wiki/Genetic_algorithms
http://en.wikipedia.org/wiki/Xml__schema
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3079

Appendix A

Supplied CD

We included our implementation AntMap on the supplied CD together with an

electronic form of this document and a couple of other resources.

The structure of the CD is described in the following list:

• The root folder – contains an electronic form of this document called Diplo-

maThesis.pdf and also an example of input XMS Schema, a normalized

version of it and the result of the mapping selection algorithm in the form

of both transormed XML Schema and create scripts for a relational schema.

• Implementation

– AntXMLMap – contains the implementation.

∗ doc – contains a Javadoc code reference.

∗ experiments – contains various resources and sample files used for

the experiments.

∗ lib – library files necessary for the work of the application (when

compiling from source).

∗ src – contains all source files of the implementation.

∗ unittest – source files of the unit tests.

∗ unittest data – resources used by the unittests.

– Documents – contains some documents about the implementation –

diagrams of the application, notes etc.

80

There is a compiled runnable version of the application in the folder An-

tXMLMap, called AntMap.jar. Its usage is, however, limited since it does not take

any attributes but only reads the schema definition in “experiments/auction.xsd”,

normalizes it (“auction normalized.xsd”) and finds a (sub)optimal mapping of it

(“result schema.sql”). It uses the list of sample documents given in the file “sam-

ple data.txt” and sample queries from file “XPath query 01.txt”.

The set of experiments is also included in a runnable form, called Experi-

ments.jar. Note that for both of these jars the JVM heap size has to be set to 1G.

To simplify the run of the applications, batch commands are provided as run.bat

and runExperiments.bat.

81

	Abstract
	1 Introduction
	1.1 Thesis organization

	2 Background Technologies
	2.1 XML
	2.2 DTD
	2.3 XML Schema
	2.3.1 Namespaces
	2.3.2 Elements
	2.3.3 Attributes
	2.3.4 Data Types

	2.4 DOM
	2.5 Querying XML
	2.5.1 XPath

	2.6 Relational Model

	3 Managing XML Data
	3.1 Adaptive XML-to-Relational Mapping
	3.2 Related Work
	3.3 Motivation

	4 Analysis
	4.1 Adaptive XML-to-Relational Mapping Problem
	4.2 Internal Schema Representation -- NSchema
	4.3 Schema Normalization
	4.3.1 Removing of Local Type Definitions in Global Elements
	4.3.2 Removing of Element References
	4.3.3 Normalization of Type Structure
	4.3.4 Removing of Shared Global Types and Groups
	4.3.5 Type and Group Names Handling

	4.4 NSchema to Relational Schema Translation
	4.5 Schema Transformations
	4.6 Cost Estimation
	4.6.1 fcost Calculation
	4.6.2 Calculation of Variables for fcost

	4.7 Gathering Sample XML Data Statistics
	4.8 Loading XML Data to a Relational Schema
	4.9 AntMap System Architecture

	5 Mapping Selection Algorithm
	5.1 Choice of Heuristic
	5.2 Ant Colony Optimization Metaheuristic
	5.3 Ant Colony System
	5.4 Main Mapping Algorithm Using ACS
	5.4.1 State Transition
	5.4.2 Local Pheromone Updating
	5.4.3 Global Pheromone Updating
	5.4.4 Termination Condition for One Iteration
	5.4.5 Placing Ants to a Starting Position
	5.4.6 Termination Condition for the Whole Algorithm
	5.4.7 Parameter Settings

	6 Dynamic Adaptation
	7 Implementation
	7.1 Schema Normalization
	7.2 Pheromone Handling

	8 Experiments
	8.1 Experimental Setup
	8.2 Overall Performance
	8.3 Diversification of the Search
	8.4 Impact of the Set of Transformations
	8.5 Impact of q0
	8.6 Dynamic Adaptation

	9 Conclusions and Future work
	Bibliography
	A Supplied CD

