
Charles University in Prague
Faculty of Mathematics and Physics

MASTER’S THESIS

Bc. Viktor Maš́ıček

XSLT Benchmarking

Department of Software Engineering

Supervisor: RNDr. Irena Mlýnková, Ph.D.

Study Program: Informatics, ISS

2012

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for
her helpfulness and time, which she willingly gave me. As well, I would like
to thank for her suggestions and tips, which were valuable clue for me for
realization of this thesis.

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Charles University in Prague has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60
paragraph 1 of the Copyright Act.

In Prague date 24.7.2012 Bc. Viktor Maš́ıček

Název práce: XSLT Benchmarking
Autor: Bc. Viktor Maš́ıček
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Irena Mlýnková, Ph.D.
E-mail vedoućıho: mlynkova@ksi.mff.cuni.cz

Abstrakt: Hlavńım ćılem této práce bylo vytvořeńı XSLT Benchmarku,
tedy srovnáńı dostupných XSLT procesor̊u. Nejprve jsme si stanovili hlavńı
kritéria XSLT procesor̊u (cena, korektnost, rychlost, využit́ı paměti, pod-
pora, OS a UX), která budeme diskutovat. Poté jsme shrnuli existuj́ıćı
XSLT procesory, popsali jednotlivé typy procesor̊u (program, knihovna a
prohĺı̌zeč) a ohodnotili kritéria cena, podpora, OS a UX. Abychommohli ohod-
notit kritéria korektnost, rychlost a využit́ı paměti, museli jsme si vytvořit
vhodné testovaćı prostřed́ı. Vytvořený program XSLT Benchmarking je
jedńım z hlavńıch př́ınos̊u této práce. Součást́ı programu jsou také připravené
testy. Při jejich vytvářeńı, jsme vycházeli z 5 787 stažených XSLT sou-
bor̊u. Testy byly vytvořeny na základě analýzy těchto soubor̊u. Zaprvé
jsme zkoumali obecné vlastnosti XSLT soubor̊u (použité elementy, použité
XSLT verze, formát výstupu atd.). Zadruhé jsme zkoumali zaměřeńı je-
jich použit́ı. Daľśım velkým př́ınosem této práce je shrnut́ı výsledk̊u test̊u z
r̊uzných pohled̊u. V tomto shrnut́ı jsme okomentovali daľśı kritéria a vlast-
nosti testovaných procesor̊u. Na závěr jsme shrnuli možná rozš́ı̌reńı našeho
programu i naš́ı analýzy.

Kĺıčová slova: XSLT, benchmarkováńı, analyzováńı, generováńı

Title: XSLT Benchmarking
Author: Bc. Viktor Maš́ıček
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, Ph.D.
Supervisor’s e-mail address: mlynkova@ksi.mff.cuni.cz

Abstract: The main goal of this work was to create an XSLT Benchmark, to
compare available XSLT processors. At first, we determined main criteria of
XSLT processors (price, correctness, speed, memory usage, support, OS and
UX), which we discussed. Next, we summarized existing XSLT processors,
described individual types of processors (program, library and browser) and
measured criteria price, support, OS and UX. We had to create appropriate
test environment to measure criteria correctness, speed and memory usage.
Created program XSLT Benchmarking is one of the main benefits of this
work. The program also includes tests. We created tests based on 5 787
downloaded XSLT files. Tests were created based on the analysis of these
files. Firstly, we researched common features of XSLT files (used elements,
used XSLT versions, output format etc.). Secondly, we researched focuses
of their usages. Next big benefit of this work is a summary of results of
tests from different views. We discussed other criteria and features of tested
processors. Finally, we summarized possible extensions of our program and
also of our analysis.

Keywords: XSLT, benchmarking, analyzing, generating

Contents

1 Introduction 5

1.1 Benchmarking . 5

1.2 Motivation . 6

1.3 The Goal of the Work . 6

1.4 Contents Overview . 6

2 Summary of XSLT Technology 9

3 XSLT Benchmarking 13

3.1 Overview of XML Benchmarking 13

3.2 Criteria of XSLT Processors 14

4 XSLT Processors 15

4.1 Saxon . 17

4.2 Xalan . 17

4.3 XT . 17

4.4 Libxslt . 18

4.5 MSXML . 18

4.6 Sablotron . 18

5 Existing XSLT Benchmarking Projects 19

5.1 XSLTMark . 19

5.2 Hello World . 20

5.3 XSLT is Way Faster Using Java 5 20

5.4 Summary . 21

6 Structure of Testing 23

1

7 Collecting of XSLT Documents 25

7.1 Downloading Methods . 26

7.2 Merging and Cleaning Data 27

7.2.1 Merging . 28

7.2.2 Incorrect files . 28

7.2.3 Duplicates or Similarities 29

7.3 Summary . 31

8 Analysis of XSLT Documents 33

8.1 Scan . 33

8.1.1 Process of Scanning . 34

8.1.2 Feature: Maximum Depth 34

8.1.3 Feature: Depth of Nesting 34

8.1.4 Feature: XSLT Version 36

8.1.5 Feature: Fan-out of Elements 38

8.1.6 Feature: Element Numbers 38

8.1.7 Feature: Size of files 39

8.1.8 Feature: Recursion . 39

8.1.9 Feature: Output Format 40

8.1.10 Typical XSLT document 41

8.2 Categories . 42

8.2.1 Process of Categorization 43

8.2.2 Category: RSS . 45

8.2.3 Category: Google Search Appliance 46

8.2.4 Category: GraphML 46

8.2.5 Category: XGMML, LOGML 47

8.2.6 Category: DocBook . 48

8.2.7 Category: RDF, RDFS, RGML 49

8.3 Summary . 50

9 Test Environment 51

9.1 Parameterization . 52

9.2 Generating Tests . 53

9.3 Running Tests . 55

9.4 Reports . 57

9.5 Extension Proposals . 61

9.6 Summary . 63

2

10 Tests 65
10.1 Features . 66
10.2 Categories . 67
10.3 Others . 68
10.4 Summary . 68

11 Results 69
11.1 Different OS, RAM or CPU 69
11.2 Different Processors Versions 71
11.3 Different Languages . 72
11.4 Encoding . 72
11.5 Categories . 72
11.6 Small vs. Large Files . 73
11.7 Procedural vs. Non-Procedural

Approach . 74
11.8 XSLT Version . 75
11.9 XSLT Namespace . 76
11.10Average Time and Memory Usages 76
11.11Summary of Processors . 76

12 Conclusions 83

13 Future Works 85

Bibliography 87

A Content of CD 95

B Scan Data - Features 97

C Scan Data - Criteria for Categories 105

D Test Environment - Description of Parameters 113

E Test Environment - Deffinitions of XML Files 117

F The List of Tests 121

G Reports 125

3

4

Chapter 1

Introduction

In thich chapter, we describe the term benchmark. Next, we summarize our
motivation for creating XSLT Benchmarking and we determine the goal of
this thesis. Finally, we summarize contents of individual chapters.

1.1 Benchmarking

The benchmarking is a process used in many areas. It is widely used in
business world, hardware world or software world. However, all of them are
based on the same principles. Their principles lie in comparison of competing
products and assessing which is the optimal solution for set criteria.

The criteria depend on consumer’s needs and requirements and usage of
the product. For example, we have to test balloons for parents or children.
All of them use a balloon for playing (typically together). However, some
criteria are different for them. Price and endurance are the main criteria for
parents, whereas color and endurance are the main criteria for children. As
we can see, some criteria depend on consumer, so they are different, others
depend on usage, so they are identical.

Firstly we have to define our consumers and their criteria so that we can
compare them afterwards.

5

1.2 Motivation

XML technologies are rising in importance and thus it is needed to be in-
terested in them. Many products exist in this field and many are being
developed, so it is beneficial to benchmark them.

As stated in [1], XML technologies are very comprehensive now and they
grow very fast, so it is impossible to create a universal and functional bench-
mark. It is necessary to focus on particular areas. Many areas are not
discussed in any benchmarking or their benchmarking is obsolescence.

XSLT [2] is one such area. Some benchmarking exists for XSLT, but it
is outdated. The absence of parameterization of these benchmarks is a big
reason of their outdated. Hence, we try to make actual benchmark with
enough parameters.

1.3 The Goal of the Work

The main goal of this work will be to create an XSLT Benchmark, to compare
available XSLT processors. Other goals will be related to this main goal. We
will have to create flexible test environment including enough tests. It will
be required that tests will be based on real XSLT files. Thus, next goals will
be to collect enough real-world XSLT files and analyze them. Of course, we
will have to sufficiently discuss results of tests at the end of the work. We
will have to create comparison of tested XSLT processors. At the beginning
of the work, summary of existing XSLT benchmarks will be inspiring for us.

1.4 Contents Overview

Chapter 1 determines goals of this work and the term benchmark. In addi-
tion, it describes our motivation for creating XSLT Benchmarking.

Chapter 2 describes a brief overview of XSLT technology used in this
thesis.

Chapter 3 defines main criteria for comparing XSLT processors in next
analysis.

Chapter 4 provides an overview of existing XSLT processors and discusses
of some of their characteristics.

Chapter 5 describes existing XSLT benchmarking projects.
Chapter 6 describes the approaches of our testing of XSLT processors.

6

Chapter 7 describes approaches of collecting real XSLT templates.
Chapter 8 analyzes collected XSLT templates. The first part describes

analysing of common features of XSLT templates. The second part describes
analysing of categories of XSLT templates, thus focuses on their usages.

Chapter 9 descibes our created program XSLT Benchmarking for com-
paring of some criteria of XSLT processors.

Chapter 10 makes an overview of our tests used in the program.
Chapter 11 discusses the results of our tests. There are discussions from

various points of view.
Chapter 12 summarizes the whole thesis.
Chapter 13 summarizes all possible extensions of our analysis, our pro-

gram and other parts of our thesis.

7

8

Chapter 2

Summary of XSLT Technology

XSLT is in the center of interest of this thesis. XSLT technology comes
from the family of XML technologies [3]. A detailed description of XML
technologies can be found in [4].

An XSLT document is an XML-based document intended for transfor-
mation of XML documents. The output is in a plain text format. A typical
output is another XML document or an HTML [5] document. An XSLT
document has a typical extension xslt or xsl.

The transformations are made by an XSLT processor (e.g. Saxon [6] or
xsltproc [7]). An XSLT document contains “xsl:template” elements for
transformation of input XML documents and the processor generates the
output according to the content of these templates.

Templates have two variants of usage. The first one is with attribute
“match” that contains an XPath [8] expression. The expression defines a
part of data from the input XML document to be transformed by the con-
tent of the template. Thus, the using of attribute “match” can be understood
as non-procedural approache. The second variant is with attribute “name”.
This variant is explicitly called from another template. Data for transfor-
mation are passed by parameters into the template. Thus, templates with
attribute “name” can be understood as functions, thus it can be understood
as procedural approache. Note that all templates are explicitly defined. In
addition, XSLT language contains implicit templates to be applied in case
there is no explicit template, so even an empty XSLT document typically
returns a non-empty output.

XSLT also supports constructs like if, for, variable or parameter and it is
possible to process multiple input documents.

9

There are currently two versions of XSLT, XSLT 1.0 [2] and XSLT 2.0 [9].
XPath 1.0 [8] is used in XSLT 1.0 and XPath 2.0 [10] in XSLT 2.0. There
are many extensions in the second version: e.g. the output can be generated
into multiple documents, it is possible to define own functions that can be
used in XPath expressions, there is support for grouping nodes in ’for’ and
many others.

Here are some examples for better notion. The first one is an input XML
document containing lists of films. There are two types of lists of films (dvd
and avi), in Example 2.1.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <films >

3 <dvd>

4 <item category="fantasy">Duna</item>

5 <item category="action">Blade</item>

6 <item category="fantasy">Harry Potter 1</item>

7 <item category="drama">Fountain </item>

8 <item category="action">RED</item>

9 <item category="fantasy">Narnia 2</item>

10 <item category="sci -fi">Twelve Monkeys </item>

11 <item category="mute">Rosen på Tistel ön</item>

12 </dvd>

13 <avi>

14 <item category="action">Blade</item>

15 <item category="comedy">Ace Ventura </item>

16 <item category="comedy">Mask</item>

17 <item category="drama">Trainspotting </item>

18 <item category="action">Die Hard</item>

19 </avi>

20 </films >

Example 2.1: films.xml: An input XML document containing two types of lists of

films (dvd and avi).

The XSLT script (listed in Example 2.2) transforms an input XML docu-
ment into an HTML document. It makes a list of film categories with list of
their films (see Example 2.3). Categories are grouped from all types of lists.
There are used constructs from XSLT 1.0 such as “template” with “match”
and “name” attributes, “value-of”. Also, there are used constructs from
XSLT 2.0 “for-each-group” and “character-map”.

10

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version=’2.0’

xmlns:xsl=’http: //www.w3.org /1999/ XSL/Transform ’>

3
4 <xsl:output method="html"

use-character-maps="specChar"/>

5
6 <xsl:character-map name="specChar">

7 <xsl:output-character character="å"

string="&aring;" />

8 <xsl:output-character character="ö"

string="&ouml;" />

9 </xsl:character-map >

10 <xsl:template match="/">

11 <html>

12 <xsl:call-template name="head" />

13 <body>

14 <xsl:for-each-group select="//item"

group-by="@category">

15 <h1>

16 <xsl:value-of select="@category" />

17 </h1>

18 <p>

19 <xsl:value-of

select="current-group ()"

separator=", " />

20 </p>

21 </xsl:for-each-group >

22 </body>

23 </html>

24 </xsl:template >

25 <xsl:template name="head">

26 <head>

27 <title>Films - category </title>

28 </head>

29 </xsl:template >

30 </xsl:stylesheet >

Example 2.2: films.xslt: The XSLT script transforms the input XML document into

an HTML document.

11

This is the output HTML document, in Example 2.3.

1 <html>

2 <head>

3 <meta http -equiv="Content -Type"

content="text/html; charset=UTF -8">

4 <title>Films - category </title>

5 </head>

6 <body>

7 <h1>fantasy </h1>

8 <p>Duna , Harry Potter 1, Narnia 2</p>

9 <h1>action </h1>

10 <p>Blade , RED , Blade , Die Hard</p>

11 <h1>drama</h1>

12 <p>Fountain , Trainspotting </p>

13 <h1>sci -fi</h1>

14 <p>Twelve Monkeys </p>

15 <h1>mute</h1>

16 <p>Rosen på Tistelön</p>

17 <h1>comedy </h1>

18 <p>Ace Ventura , Mask</p>

19 </body>

20 </html>

Example 2.3: films.html: The output HTML document of the XSLT transformation.

A new norm XSLT 3.0 [11], is being created too. However, an analysis
in this thesis (see Chapter 8) showed, thad XSLT 1.0 is used mainly and
XSLT 2.0 a little. One of the reasons could be, that XSLT 3.0 is only a draft
of expected final recomendation. Thus, we will focus mainly on XSLT 1.0
and partly on XSLT 2.0 in this thesis.

12

Chapter 3

XSLT Benchmarking

The puprpose of benchmarking was described in general in Chapter 1.1. In
this chapter, we define our consumers and their criteria for comparing XSLT
processors.

XSLT documents are XML-based, thus XML benchmarking can have
some common features. So, we describe their specifics at first. Secondly, we
define criteria of XSLT processors important for our consumers.

3.1 Overview of XML Benchmarking

As we have already mentioned, XSLT is XML-based, therefore many XML
benchmarking projects and frameworks exist. So, we can learn from XML
benchmarking, theses or reports about XML benchmarking. Report [1] de-
scribes different XML benchmarks and divides them into categories by the
type of testing. There are two main classifications. The first one distin-
guishes XML benchmarks by data origin. We have real-world data and syn-
thetic data. The second classification distinguishes XML benchmarks by data
parameterization. We have fixed data and data that are user-configurable.

Next, there are some described problems relevant for XSLT. Some bench-
marks use simple data and do not cover all constructs. Typically, it is as-
sociated with real-world data. On the other hand, synthetic data are typ-
ically user-configurable. Although they cover all constructs, they are very
complicated. Excessive specialization is the next problem. Very complex
benchmark may be confused, but, on the other hand, some benchmarks are
too specialized and easy.

13

We made some conclusions from report [1]. We will use both origins of
data, real-world and synthetic (or combination of them). It allows us to cover
a big part of constructs and makes data user-configurable and extensible.
Next, we try to cover only aspects of tested XSLT processors that we deem
important.

3.2 Criteria of XSLT Processors

XSLT processing belongs to computing and software areas and XSLT proces-
sors are typically used by programmers, administrators and IT professionals.
They are our consumers. However, using of XSLT processors can be very
diverse. IT professionals have typically the same criteria, but they have dif-
ferent priorities of criteria. For example, the speed of a processor is not the
main criterion for infrequent using. Conversely, consumer can be a beginner
and thus a good documentation is important for him. On the other hand,
possibility of running a processor from a command line as a script can be the
main criterion for other consumers (e.g. administrators).

These are the main criteria for all consumers together: price, correctness,
speed, memory usage, support (timeliness, liveliness, availability, documenta-
tion), OS1 and UX2 (simplicity of installation, user friendliness, running in
scripts). As we discussed in Chapter 3.1, we want to cover the main aspects
of processors. So, we include all listed criteria into our final benchmark of
XSLT processors.

We compare each criterion separately. Then, consumers can select rel-
evant criteria for them. Price, support and layout can be described and
compared easily. A big part of this thesis discuses correctness, speed and
memory usage of processors. We have to create a special tool for their com-
parison.

1Operating System (OS)
2User Experience (UX)

14

Chapter 4

XSLT Processors

In this chapter, we describe types of XSLT processors. Next, we make an
overview of existing XSLT processors and discuss some of their criteria (price,
support, OS and UX), features and important aspects.

XSLT processors exist as separate programs (either programs allowing
only XSLT transformations or programs allowing XSLT transformations and
other functions), downloadable libraries for programming and scripting lan-
guages (C++, Java, PHP etc.) or components of web browsers. These types
of processors will be called program, library and browser, respectively.

Note that some processors can be classified into several types. For exam-
ple, XSLT processor “Some XSLT Processor” can be downloaded as library
and this library can be used in a web browser. Then, “Some XSLT Processor”
is classified into types library and browser.

The list of XSLT processors with their types and criteria price, support
and layout is provided in Table 4.1. The processors we used for testing are
listed at the beginning of the table. These processors are described in next
chapters. In addition, there are not tested processors at the end of the table.
These processors are not tested because they would be too complicated or
they are small or outdated processors. These processors are listed for fuller
view.

15

XSLT Processor Type Price Support UX OS
Tested processors

Saxon [6]
program free full good all
library money

Xalan [12]
program free almost partial all
library full

XT [13]
program free little partial all
library

libxslt [14]
program free almost almost all
library full good

MSXML [15]
browser money full good windows
library

Sablotron [16]
program free no almost windows

good linux
Not tested processors

4Suite [17]
library free half unknown all

TransforMiiX [18]
browser free almost good all

full

xslt.js [19]
library free half partial all

ajaxslt [20]
library free little unknown all

Unicorn XSLT [21]
program free half good windows

AltovaXML [22]
program money full almost windows
library good

XmlPrime [23]
program money almost good windows
library full

Table 4.1: List of XSLT processors: The list of XSLT processors with some of their

properties.

16

4.1 Saxon

Saxon [6] is one of the most famous XSLT processors. It is implemented in
Java, which enhances its portability. It is available as a library in Java and
Java jar file for easy running directly from the command line. It is available
free of charge up to version 6.5.5. Currently, it is available in free version HE
and commercial versions PE and EE. Saxon comes with high-quality user
and API documentation. It is still continuously updated. Basic usage of the
XSLT transformation is simple with a few command line switches, so it can
be used in batch scripts. The only disadvantage is less clear command line
help for HE version.

4.2 Xalan

Xalan [12] is a fairly widespread XSLT processor. It is available as a Java
and C++ library and Java jar file to be run from the command line. So,
it is available practically on all operating systems. However, installation is
sometimes awkward. When using Java jar file version, we need to download
multiple files and choose the right one to use. We need to download a pack-
age containing a large number of exe files and select the correct file for the
command line variant on Windows. The installation is without problems via
command line variant on Linux if we use a packaging system. Basic use is
simple with a few command line switches. Xalan is easily downloadable and
the available documentation is good. However, its latest version is from the
year 2007, so it has not been updated recently. Nevertheless, the project
seems to be living and perhaps more recent version will be created.

4.3 XT

XT [13] is an XSLT processor also implemented in Java. Therefore, it can
be used on almost all operating systems. It is freely downloadable in the
form of a Java library and Java jar files (so it can be run from the command
line). However, the last version is from 2005 and it is a dead project, which
is a big disadvantage. Another disadvantage is the necessity to download
external XP [24] (XML Parser) and SAX [25] for its full functioning. API
documentation is good, but the help for the first run is insufficient. The
advantage is the ability to run the XT processor as a script.

17

4.4 Libxslt

Libxslt [14] is one of the most famous libraries for XSLT transformation. It
is implemented in C and freely downloadable in the form of a C library, a
PHP library (and others) or a command line program called xsltproc [7].
The project is currently living and developers are working on it. However,
the last version is from 2009. The documentation is very good for both the
library and the xsltproc program. The library is available for most operating
systems. The main disadvantage is however the uncomfortable installation
of xsltproc for Windows. It is necessary to download additional libraries
(libxml2 [26], iconv [27], zlib [28]). Subsequent usage of the command line
running is easy.

4.5 MSXML

MSXML [15] is a library for working with XML, XSLT etc. It is a part of
Windows [29]. It is commercial and only available for Windows, which is
its major disadvantage. Internet Explorer [30] uses it and it can be used in
standalone JavaScipt. No installation is required, since it is natively included
in Windows OS. It has a good documentation. If we want to use it as a
command line program, we need to write own script and use the program
cscript [31] to run it. This is not a disadvantage because it is not primarily
intended for use from the command line.

4.6 Sablotron

Sablotron [16] is an XSLT processor written in C++. It is available as a
command line program for Linux (installable as a package) and Windows
(downloadable as a zip file). It should be available as a library for C++,
Python etc. However, we found only the binary version. Unfortunately, the
project is already dead. The latest version is from 2006. We found the
documentation only for the Python version. Other versions probably are not
available. If we want to use Sablotron on Windows, we must download and
install the Expat XML parser [32], which is a little disadvantage.

18

Chapter 5

Existing XSLT Benchmarking
Projects

In this chapter we describe the existing XSLT Benchmarking projects. We
compare their advantages and disadvantages for better determination of pa-
rameters for our benchmark. Criteria defined in Chapter 3 will be discussed
too.

5.1 XSLTMark

XSLTMark [33] is one of the best known XSLT benchmarks. Many other
benchmarks are based on it (e.g. Caucho [34] or David Parshley [35]). Un-
fortunately, it is outdated. The published results are from 2001, it is no
longer maintained and it is not downloadable now. Nevertheless, XSLTMark
is a famous XSLT benchmark.

It contains 40 synthetic tests and it has good metrics for measurement
of transformation speed. It uses kilobytes-per-second value for each test,
where kilobytes are the average of input and output document size. The
result for one XSLT processor is the sum of kilobytes-per-second value for all
tests. Note, that authors discussed the metrics based on nodes-per-second,
but they did not use it. The real time (instead of CPU1 time) is measured
during tests. It is good idea, because real time is important for the major
part of consuments. Each test has to be run multiple times for measurability
of real time.

1Central Processing Unit (CPU)

19

Result verification is achieved by normalizing the output. Normalizing
means sorting attributes alphabetically, removing insignificant white spaces
etc. It allows us to compare the outputs with the expected normalized result.

XSLTMark rates only speed and correctness. Unfortunately, it does not
cover other criteria, such as documentation and manageability, that can be
important for some consumers. It is possible to upgrade XSLTMark by new
tests and to add new tested processors. However, upgrades are no longer
possible, because it is not downloadable at this moment. On the other hand,
we can take inspiration by some used processes like measurement of trans-
formation speed, using real time for measuring and normalizing the output.

5.2 Hello World

Hello World benchmarks [36] contain two XSLT benchmarks. Both bench-
marks contain one test. They do not aim to be full benchmarks. They aim to
test different XSLT processors run under the Apache web server [37]. They
want to detect the major faults of the tested processors.

The published results are from April 2003. Benchmarks are downloadable
now, but they have not been updated since publication of results. Only speed
of transformation is tested and other aspects are not taken into account. So,
these benchmarks probably do not contain anything for inspiration. However,
they are one of the few benchmarks focused on XSLT.

5.3 XSLT is Way Faster Using Java 5

This benchmark [38] is focused on a different area than ours. However, it is
one of the few benchmarks focused on XSLT, thus we mention it.

It was designed to compare speed of Java Virtual Machines2 (JVMs). The
test runs 1 000 times parsing a small XML document through a small XSLT
template. The used XSLT processor is irrelevant, but the same XSLT pro-
cessor has to be used in all JVMs. The published results are from February
2005 and the project is no longer maintained.

2Java Virtual Machine (JVM) is a set of computer programs and data structures that
uses the virtual machine to run other computer programs and scripts created in program-
ming language Java.

20

The question is whether this simple test is relevant. We do not know what
would be the results of more complex tests. However, this benchmark could
be an inspiration for us. We should compare Java XSLT processors under
different JVMs. On these bases, we can assess JVMs and combinations of
JVMs with XSLT processors.

5.4 Summary

Currently, there are very few XSLT benchmarks, the existing ones are out-
dated and have many faults. Nevertheless, we can take inspiration from
some of them – e.g. the measurement of speed and normalizing of output
documents like in XSLTMark or the possibility of testing different Java Vir-
tual Machines like in XSLT is Way Faster Using Java 5. Infact we will not
test XSLT processors in different Java Virtual Machines in our tests. How-
ever, we will prepare our test environment enough flexible for it. For more
information about test environment see Chapter 9.

21

22

Chapter 6

Structure of Testing

XSLT processors with some of their criteria (defined in Chapter 3.2) were
described in Chapter 4. Still, we have to assess criteria speed, correctness
and memory usage. However, testing of these criteria is complex.

We have to make a set of tests for testing of speed, correctness and mem-
ory storage and an environment allowing to test different types of XSLT
processors. Repeated set up tests, extensibility of test sets and addition of
new XSLT processors are required.

We should base the tests on XSLT documents used in real applications
for real applicable of the results. The first step is to collect enough XSLT
documents (see Chapter 7).

Firstly, we will determine frequency of all elements from the downloaded
data. The created test will be similar to real-world documents. Likewise,
we will determine additional features of the downloaded documents (depth
of XML tree, version of XSLT, fan-out of elements etc.) for creating tests.
Moreover, we will create a test for typical file which combines all most fre-
quently occuring values of features together.

Secondly, we will try to detect the usage of downloaded documents. So,
we will make list of categories with their specifics. It can be expected that
different categories will have different results of analysis. Thus, we will make
a diferent set of tests for each category. We will describe both parts of the
analysis in Chapter 8.

After analyzing the data we need test environment. Thus, we will create a
program that allows to add new configurable tests, testing of different XSLT
processors and results reporting. The program will be able to run on different

23

operating systems and to influence its by settings. This environment will be
described in Chapter 9.

After creating test environment, we will create tests based on our analysis.
Most tests will be crated configurable for future extension. The tests are
described in Chapter 10.

Finally, we will run the tests to get results. Results will be many numbers
in many tables. It will be necessary to analyze results and presented inter-
esting findings. The findings are presented separately from different views in
Chapter 11.

24

Chapter 7

Collecting of XSLT Documents

An important part of XSLT benchmarking is analysis of real-world XSLT
documents for real applicable of the results of tests. Thus, we have to collect
a representative set of them. All scripts used for collecting data are saved on
the attached CD (see Appendix A.1).

The crawler1 Wget [39] was used for downloading the analyzed data from
the Internet. We used various methods for searching addresses for down-
loading the data and we downloaded 19 650 XSLT files. The downloading
methods are described in Chapter 7.1. Note, that we will denote these data
as dirty. It means, there are some duplicities of documents in data or there
are some non-XSLT documents.

We had to merge all the data downloaded by all methods, correct their
contents, remove non-XSLT files, duplicities and similarities. Finally, we col-
lected 5 787 documents for analysis after such cleaning. Merging and cleaning
of data are described in detail in Chapter 7.2.

The success2 of downloading was about 30%. It is a good success due
to the nature of the Internet which includes many duplicates and incorrect
data in all areas.

1A crawler is program for automatic downloading of web sites from the Internet. An
important feature is automatic following of links on the sites.

2A success is comparing the amount of downloaded dirty data and data after cleaning.

25

7.1 Downloading Methods

At first, we used the Google Search [40] with requests “filetype:xslt” and
“filetype:xsl” (via [41]). The contents of the results were acquired by console
web browser W3M [42]. Next, from the downloaded contents all found ad-
dresses were selected. The list of selected addresses is saved on the attached
CD (see Appendix A.1). The addresses were used for two cases. Firstly, we
downloaded the documents themselves. Secondly, we made seeds3 from the
addresses and the data were downloaded recursively. The seeds were created,
because an analysis showed that Google Search did not find all XSLT docu-
ments and other XSLT documents were found manually on some sites. So,
we tried to go through whole sites.

Note, that some addresses were deleted from the list of addresses searched
on Google. In particular, these were addresses involving string “/fmi/”. A
research showed, that these sites are engines for searching which include
many links. Most of the links on these sites have an extension “xsl”, but the
content of the files is in HTML. To be precise, about 100 addresses included
“/fmi/”, hence their usage as seeds would take too much time without any
benefit.

A similar method was used for collecting addresses from the Google
Code [43] with requests “label:xslt” and “label:xsl”. The content was ac-
quired by W3M and addresses were selected again. The list of selected ad-
dresses is saved on the attached CD too. The addresses link to project sites,
that have a format “http://code.google.com/p/[project name]/” which
include SVN4 repositories of projects that include many XSLT documents.
Unfortunately, the files are shown in HTML layout. On the other hand, for
all collected addresses with described format exist addresses with a format
“http://[project name].googlecode.com/svn/”. These addresses link to
SVN of projects without HTML layout. So we created new addresses from
original ones (collected from the Google Code) and used them as seeds for
recursive downloading.

Next, we searched some addresses manually and used them as seeds for
the recursive download, too. We collected these addresses during reserching

3A seed is a web site for start searching by crawler. We have to use restrictions for
downloading, otherwise too many uninteresting sites are visited by following this links.

4The Subversion (SVN) is a software versioning and a revision control system. It allows
us to merge differences, to access old verions and to share of source code, documentation,
pictures etc.

26

for this thesis. Only addresses not found by Google were included into the
list. The list of these addresses is saved on the attached CD too.

Finally, we selected addresses from a log file of downloading that include
the string “xslt?” or “xsl?”. These files were not downloaded. We used
restriction on file names by wildcards “*?.xsl” and “*?.xslt” in the crawler,
thus links on XSLT files with parameters after question mark were skipped.
So, we made a list of these files without parameters after question mark and
downloaded them non-recursively. The list of these addresses is saved on the
attached CD too. Note, that we could make better restriction, that covers
files with parameters after question mark. Unfortunately, we noticed the
mistake after time-consuming downloading. Thus, it was faster to download
not downloaded files non-recursively instead of repeating all downloads.

There were also lines containing links to non-XSLT files in a log file,
but links containing a link to an XSLT file as such parameter. Typically a
parameter named “xslfile”. Links from parameters were downloaded non-
recursively, too.

The numbers of addresses or seeds, downloaded documents and efficiency
of downloading are listed in Table 7.1 for each method.

downloading method #addr. #files effic.
manual 10 227 22.70
search 1 437 1 339 0.93
seeds (Google Search) 1 793 9 881 5.51
seeds (Google Code) 476 7 872 16.53
nonrecursive 391 331 0.85

sum 4 107 19 650 4.78

Table 7.1: Downloaded dirty data: Numbers of downloaded dirty files for each

method of downloading. There are also numbers of addresses or seeds used for col-

lecting dirty data for each method and efficiency of each method (files/#addr.).

7.2 Merging and Cleaning Data

Firstly, we had to merge all the data downloaded by all methods.
Next, we had to detect incorrect files and repair or delete these files. We

repaired about 100 files manually and deleted about 700 files.

27

Last but not least, we had to detect duplicates and similarities in the
data. We deleted 4 733 files detected as duplicates and any files detected as
similar.

Generally, we deleted about 5 500 files together. Finally, we have 5 787
XSLT files for the analysis after all the cleaning. The comparison of data
before and after merging and cleaning is in Table 7.2.

data type #files data type #files
dirty 19 650 merged 10 512
clean 5 787 clean 5 787
efficiency 0.29 efficiency 0.55

Table 7.2: Clean data: Numbers of downloaded files and numbers of files after

merging and cleaning. There is also the efficiency of cleaning (“clean data/dirty data”

and “clean data/merged data”).

7.2.1 Merging

The dirty data was saved separately for each method. Then, we copied them
together. However, some files can be downloaded several times by different
methods. Each method of downloading can download file a separately. So,
we had 10 512 XSLT files after merging all files.

7.2.2 Incorrect files

Unfortunately, some downloaded files had a correct extension (xslt or xsl),
but the content of files was not an XSLT stylesheet (typically it was in
HTML). So, we had to detect correct and incorrect XSLT files. The program
xmllint [44] was used for testing validity of data.

We had three types of incorrect files in dirty data. First, there were
files which included HTML sites that shown content of XSLT document plus
another features of software for versioning (e.g. SVN or CSV). Then we had
to select only the source of XSLT documents. Secondly, there were files which
included pure HTML data. And, finally, there were XSLT files with small
mistakes.

The files which contained XSLT with mistakes or XSLT included in
HTML were detected by an easy test for inclusion of string “xsl:”. Mistakes

28

were repaired manually. For XSLT files included in HTML, clean XSLT doc-
uments were downloaded manually. Overall, there was about 100 files of such
type.

Naturally, files which contained pure HTML were deleted. This was the
case of about 700 documents.

7.2.3 Duplicates or Similarities

There were numerous duplicates or similar files downloaded into different
directories in all the data. We can distinguish two cases.

The first one is when duplicate or similar files were downloaded from
different domains. This case is desirable, because if the document is used
in different domains, then it is typically used in a different way. It is of no
importance, if duplicate or similar documents are created by two different au-
thors independently or they use the same file (e.g. copied from the Internet).
Anyway, the importance of a file is bigger in global, than the importance of
its features in the analysis.

The second one is duplicates or similarities downloaded from the same
domain. This case is undesirable, because they would distort the analy-
sis. Typically, they are from different versions of the same project, different
projects that used the same framework etc. On the other hand, duplicates
or similarities with different names are desirable as well as duplicates or sim-
ilarities within different domains. Typically, these files are used for different
problems, so we want to enhance the importance of their features in the
analysis.

Therefore, we had to detect duplicates or similarities within each domain.
However, we compared only files with the same names. To detect duplicates
and similarities we used the diff program [45]. For each domain we compare
each two files with same names. The divergence value DV was counted for
each pairs of compared files.

DV =
number of different lines

number of all lines in both files together
DV ∈ [0; 1] (7.1)

As we can see in Equation 7.1, the DV corresponds to the percentage diver-
gence of compared files. So, a pair of files with identical contents has DV = 0
and it was marked as duplicate.

For example, if we compare Example 7.1 and Example 7.2, thenDV = 0.2
which means that their divergence is 20%. Files have 20 lines together and

29

the diff program [45] detected 4 different lines. There are two different lines
in each example contrary to the second, thus DV = 4/20 = 0.2. Note, that
the different lines are lines 6 and 7 in both examples.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version=’1.0’

xmlns:xsl=’http://www.w3.org /1999/ XSL/Transform ’>

3 <xsl:output method="html" indent="yes"

encoding="UTF-8" />

4 <xsl:template match="/">

5 <html><body>

6 <h1>Number of users</h1>

7 <xsl:value-of select="count (// user)" />

8 </body></html>

9 </xsl:template >

10 </xsl:stylesheet >

Example 7.1: dv a.xslt: The first file for demonstration of calculation of the

divergence value.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version=’1.0’

xmlns:xsl=’http://www.w3.org /1999/ XSL/Transform ’>

3 <xsl:output method="html" indent="yes"

encoding="UTF-8" />

4 <xsl:template match="/">

5 <html><body>

6 <h1>Number of orders </h1>

7 <xsl:value-of select="count (// order)" />

8 </body></html>

9 </xsl:template >

10 </xsl:stylesheet >

Example 7.2: dv b.xslt: The second file for demonstration of calculation of the

divergence value.

A log file was generated for pairs of files with their divergence values and
their differences for further checking and detection of similar files. Only pairs
with divergence less than 10% (DV ∈ [0; 0.1)) were logged, because pairs of
files with divergence greater than 10% cannot be considered as similar files.
We checked the log file manually and only about 50% of differences were

30

significant, regardless the value of similarity. And the number of highly
significant differences was too small. Therefore, we did not delete any files
marked as similar.

Duplicate files (DV = 0) were deleted automatically. Of course, we
deleted only one file from the pairs of files. In particular, 4 733 identi-
cal files were detected and deleted. Typically, only several duplicates files
were detected and deleted in each domain, but in some domains a signif-
icant number of files was deleted. About 50% of deleted files were from
“docbook.sourceforge.net”. The domains with significant number of de-
leted files are listed in Table 7.3.

SIGNIFICANT DOMAINS # deleted files
docbook.sourceforge.net 2 208
scm.dspace.org 737
svn.openlaszlo.org 688
tecfa.unige.ch 262
www.w3.org 161
svn.repoze.org 151
quexml.svn.sourceforge.net 96

number files from significant domains 4 303
number files from other domains 430

sum 4 733

Table 7.3: Deleted duplicates in domains: There are numbers of deleted duplicate

files per domain that have significant numbers of deleted files and the sum of all

deleted files.

7.3 Summary

In total we downloaded 19 650 potencial XSLT files using different methods
for getting address of files for downloading. The main tool for getting address
was Google Search. Downloaded files had to be checked for duplicities and
detecting non-XSLT files. Finally, after cleaning we colected 5 787 XSLT files
for subsequent analysis.

31

32

Chapter 8

Analysis of XSLT Documents

After collection of documents, we analyze their content and identify cate-
gories of documents. The particular parts of the analysis are described in
this chapter. All scripts used for analysis of data are saved on the attached
CD (see Appendix A.2).

8.1 Scan

After collecting enough data, we scan all of them. Firstly, we describe the
scanning. Secondly, we describe features watched during the scanning and
discuss the results. Percentage results are counted against the total number
of scanned files, which is 5 787. Finally, typical XSLT document is described.

Note that, in our analysis, we will not focus on XPath expressions. It is
important to any part of XSLT transformations. Hovewer, it involves very
complex issues, which should be discussed in a separate thesis. Nevertheless
it can be built on our work and on our knowledge. Thus, we focus on the
analysis of other parts.

It would be possible to analyze many aspects of downloaded XSLT files.
We focused only on some of them for creating basic set of tests (see Chap-
ter 10). It is possible to extend these tests. Our test environment is very
flexible (see Chapter 9).

33

8.1.1 Process of Scanning

All downloaded files were scanned with a PHP [46] script called “scan.php”
(see Appendix A.2). The PHP built-in class XMLReader, that reads doc-
uments by a SAX1 method, was used for scanning. The SAX method was
selected, because its memory requirements are not dependent on the size of
the document it processes. The measured results were stored into files (sepa-
rately for each feature) for further analysis. Some results will be represented
by graphs for better idea. Exact values of all results are listed in tables in
Appendix B.

8.1.2 Feature: Maximum Depth

Maximum depth of an XSLT document is one of its basic features. So, we
measure it for each downloaded file and consider results in tests.

Graph 8.1 shows measured results. It is limited to files with maximum
depth between 0 and 20 for better visualization, which represented 99% of
scanned files. In Table B.1 are all exact results.

8.1.3 Feature: Depth of Nesting

Constructs of XSLT language “for-each”, “choose” and “if” (see Chap-
ter 2) increase complexity of XSLT stylesheets (as similar constructs in other
programming languages). Complexity increases more rapidly when these
constructs are nested. Thus, we will measure the depth of nesting of se-
lected elements. The depth of nesting will be measured separately for each
construct (see Example 8.1).

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsl:stylesheet version=’2.0’

xmlns:xsl=’http://www.w3.org /1999/ XSL/Transform ’>

3 <xsl:template match="/">

4 <xsl:if test="...">

5 <xsl:for-each select="...">

6 <xsl:if test="...">

7 <xsl:if test="...">

8 <xsl:for-each select="...">

9 ...

1SAX (Simple API for XML) [47] is an event-based sequential access parser API.

34

10 </xsl:for-each >

11 </xsl:if >

12 </xsl:if >

13 </xsl:for-each >

14 </xsl:if >

15 </xsl:template >

16 </xsl:stylesheet >

Example 8.1: nesting.xslt: Depth of nesting of construct “if” is 3 and depth of

nesting of construct “for-each” is 2.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r

of
 fi

le
s

Maximal depth

Graph 8.1: Maximum depth of files: The graph shows numbers of files (axis Y)

with the respective maximum depth (axis X). The graph shows only files with maximum

depth less than or equal to 20, that in sum represent 99% scanned files.

From the measured results, we found out that more than 99% of files
have maximum depth of nesting of all selected elements less than or equal
to 5. Results for depth of nesting between 0 and 5 are shown in Graph 8.2.
All exact measured results are in Table B.2. Note, that 0 nesting means non
occurence of a element in a file.

35

Note that, constructs “choose” and “if” could be analyzed together, be-
cause they are very similar constructs. Hovewer, it is not necessary, because
of their very small nesting. Next, analyses would be focused on nesting of in-
cluded XSLT files (by element “include” or “import”). Nevertheless, basic
analyses is sufficient for our basic set of tests.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5

N
um

be
r

of
 fi

le
s

Depth of nesting

Foreach
Choose

If

Graph 8.2: Depth of nesting: The graph shows numbers of files (axis Y) with the

respective depths of nesting (axis X) separately for elements “for-each”, “choose”

and “if”. The graph shows only files with depth of nesting less than or equal to 5,

that in sum represent more than 99% scanned files.

In Table 8.1, we can see percentage representation of selected groups of
depth of nesting. As we can see a large percentage of files have no nesting
(depth of nesting is 0 or 1).

8.1.4 Feature: XSLT Version

XSLT version used in an XSLT document is its important feature. It deter-
mines which constructs can be used in a stylesheet in accordance with W3C
XSLT specification [2, 9] (see Chapter 2). Thus, we detect distribution of

36

Depth of nesting Foreach Choose If
0 63% 54% 48%
1 27% 28% 34%

0-1 90% 82% 82%
2-5 9% 17% 17%
0-5 99% 99% 99%

Table 8.1: Depth of nesting - percentage of significant groups: In the table there

are percentages representations of significant groups of depth of nesting for elements

“for-each”, “choose” and “if”.

XSLT versions in scanned files. XSLT version can be simply found out from
attribute “version” in root element (“stylesheet” or “transform”).

About 85% of scanned files have version “1.0”. Given such a large rep-
resentative only version “1.0” will be used in tests. However, about 7% of
scanned files have version “2.0”, so we will create a few tests explicitly test-
ing elements of version “2.0” used in scanned files (see Chapter 8.1.6). The
results are shown in Table 8.2.

XSLT Version Number of files Percentage
1.0 4 884 84.4%
1.1 79 1.4%
2.0 430 7.4%
3.0 1 0.0%

unknown 393 6.8%

Table 8.2: XSLT version: In the table there are detected XSLT versions of scanned

files and their numbers and percentage.

An extended analysis of this feture would analyse of combination of XSLT
version and occurence of particular XSLT elements. For example, we can
detect not using of elements from XSLT 2.0 in XSLT file, that declare using
of XSLT 2.0. Or even, we might detect using of elements from XSLT 2.0 in
XSLT file, that do not declare using of XSLT 2.0.

37

8.1.5 Feature: Fan-out of Elements

Fan-out of an element in an XML document is a number of its sub-elements
(child elements). Average fan-out of an document is an important feature,
because it gives us an idea about structure and complexity of the document.
Also, it is a potential aspect that could influence memory usage of XSLT
transformation.

From the measured results, we found out that 98% of files have the
average fan-out 1, whereas other files have average fan-out 0 (see Table 8.3).

Average fan-out Number of files Percentage
0 111 2%
1 5 658 98%

Table 8.3: Average of fan-out: In the table there are average of fan-out of scanned

files and their numbers and percentage.

However, 86% scanned files have maximum fan-out between 0 and 40 (see
Graph 8.3). In Table B.3 there are all exact measured results.

8.1.6 Feature: Element Numbers

W3C XSLT specification [2, 9] defines many elements in namespace “xsl”.
However, not all of them are used in practice. Thus next, we determine
which elements are used in practice. Also, the usage of selected attributes of
some elements were monitored too (e.g. attributes “name” and “match” for
element “template”).

An important finding was that 99% elements (from namespace “xsl”)
were from XSLT version “1.0” (see Table 8.4).

Moreover, about 95% of all elements are the same 16 elements. These
elements with their rates are shown in Graph 8.4. We also noticed that 80%
elements “template” are used with attribute “match”, which suggests the
non-procedural approach.

List of all elements from namespace “xsl” found in scanned files is in
Table B.4.

38

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

N
um

be
r

of
 fi

le
s

Maximal fan-out

Graph 8.3: Maximum fan-out: The graph shows numbers of files (axis Y) with

the respective maximum fan-out (axis X). The graph shows only files with maximum

fan-out less than or equal to 40, that in sum represent 86% of scanned files.

8.1.7 Feature: Size of files

The size of a file is a very important feature. Some XSLT processors may
have a problem with big XSLT templates due to lack of the memory.

The sizes of all scanned files were determined by console program du [48].

About 74% of scanned files are smaller than 10 kB and 96% files are
smaller than 50 kB (see Graph 8.5). They are very small files, thus it is not
necessary to create tests with regard to the size of files. All measured files
sizes are listed in Table B.5.

8.1.8 Feature: Recursion

The recursion is one of the basic practices in programming. Named templates
in XSLT (element “template” with attribute “name”) can be understood as
functions. Thus, we wanted to find their recursive calls in scanned files. The

39

XSLT Version Number of rate Percentage
1.0 708 765 99%
2.0 7 692 1%

unknown 224 0%

sum 716 681 100%

Table 8.4: Elements versions: In the table there are numbers of rates and percentage

of elements in sum for individual XSLT versions.

number of recursions (a cycle of calling named templates) and the longest
cycle (the longest cycle of calling named templates) was found.

We found out, that recursion is not very frequent. 87% scanned files do
not involve recursion and 7% have only 1 recursion cycle (see Table 8.5).
Moreover, the longest recursion cycle in files has length 1 (the template calls
itself) in 95% (see Table 8.6). All measured numbers of recursions are listed
in Table B.6 and all measured longest recursion cycles in files are in Table B.7.

Number of recursions Number of files Percent
0 5 058 87%
1 414 7%

2-5 251 4%

sum 5 723 99%

Table 8.5: Numbers of recursions: In the table there are numbers of scanned files

and percentage of their relevant measured numbers of recursions for significant groups.

8.1.9 Feature: Output Format

Output format of an XSLT document is one of its bases features.
The output format can be simply found in attribute “method” in top-

level element “output”. When output format is not set, we assume it to be
“XML”. However, if the first output element of transformation is element
“html”, we assume the output format to be “HTML”.

The explicitly set output format (by element “output”) was saved dur-
ing scanning of every file. Next, potential output of element (as element
“<html>” or by element “<xsl:element ...>”) was searched for.

40

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

va
lu

e-
of

te
xt

ap
pl

y-
te

m
pl

at
es

w
he

n

te
m

pl
at

e

w
ith

-p
ar

am

if

ca
ll-

te
m

pl
at

e

at
tr

ib
ut

e

va
ria

bl
e

ch
oo

se

fo
r-

ea
ch

pa
ra

m

ot
he

rw
is

e

co
py

-o
f

el
em

en
t

N
um

be
r

of
 r

at
e

Element name

Graph 8.4: Number of elements rates: The graph shows rates of elements in

scanned files. The graph is restricted to 16 most frequent elements, which in sum

represent 95% of all found out elements from namespace “xsl”.

We found out that in more than 50% of all scanned files there is no preset
output format. 87% of these files have default output format “XML”. Within
files with explicitly set output format (using “output” element), 50% are of
type “XML”, 35% of type “HTML” and 11% of type “TEXT”. In total 71%
of files generate output in “XML”, 23% in “HTML” and 5% in “TEXT”.

The results of output types occurences are summarized in Table 8.7.

8.1.10 Typical XSLT document

Based on the results of scanning we can describe a typical XSLT document.
A typical XSLT document is quite small (it has maximum size of 10kB). It
has maximum depth 5, it does not contain any nested elements “for-each”,
“choose” and “if”, it does not contain any recursive calling of named tem-
plates, it has default output format “XML”, it has average fan-out of ele-
ments 1 and maximum fan-out between 0 and 40 and it uses only 16 typical

41

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0-10 10-20 20-30 30-40 40-50

N
um

be
r

of
 fi

le
s

Size (kB)

Graph 8.5: Size of files: The graph shows numbers of files (axis Y) with respective

size of file (axis X). The graph shows only files with maximum size less then or equal

to 50 kB, that in sum represent 96% of scanned files.

elements from XSLT version 1.0. And elements “template” are used with
attribute “match”.

8.2 Categories

After scanning all files and describing all their main features, we detect
whether they fit into one of the predetermined categories. Firstly, we de-
scribe detecting of categories. Secondly, we describe each category separately
and discuss results.

The categories were selected based on another research of the Internet.
Scripts saved on CD (see Appendix A.2) were used for analyze the categories.
Thus, it is possible to analyze other categories by the scripts.

42

Longest recursion Number of files Percent
1 677 95%
2 25 4%

3 and more 9 1%
sum 711 100%

Table 8.6: Lengths of the longest recursions: In the table there are numbers of

scanned files and percentage of their relevant measured lengths of longest recursion

cycle for significant groups.

Mode
Default

All Percentage
Set

XML
2626

4091 71%
1465

HTML
381

1334 23%
953

TEXT
0

316 5%
316

XHTML
0

46 1%
46

Table 8.7: Output: In the table there are numbers of scanned files and percentage

of their relevant measured output type. There are numbers for default output and set

output explicitly too.

8.2.1 Process of Categorization

All files were scanned and for each file we determined categories the file
belongs to.

In particular, for each file we found the number of occurences of properties
from the list. The sum of these numbers of occurences, multiplied by a weight
assigned to specific property, is called “Property Value” (PV).

PV =
∑

properties

(number of occurrences of property) ∗ (weight of property)

(8.1)

43

All PV s were compared to threshold values that were set for each cat-
egory. On this basis, it was decided which files belong to which categories
and for which files decisions have to be made manually.

The list of properties was created separately for each category, as well
as threshold values. Lists of properties and threshold values were set by
research and repeatedly running of scan and correcting based on files marked
for handmade decisions. Finally, lists of files belonging to categories were
returned.

The main results of this chapter are numbers of files belonging to cate-
gories that are shown in Table 8.8.

Category Number of files Percentage

1
RSS reader 81 1.40%
RSS generator 30 0.52%

2 Google Search Appliance 13 0.22%
3 GraphML 4 0.07%

4
XGMML 8 0.14%
LOGML 0 0.00%

5
DocBook reader 719 12.42%
DocBook generator 1 0.02%

6

RDF reader 18 0.31%
RDF generator 141 2.44%
RDFS reader 6 0.10%
RDFS generator 1 0.02%
RGML reader 0 0.00%
RGML generator 0 0.00%

Table 8.8: Number of files belonging to categories: In the table there is the list

of all categories with numbers of files belonging into them.

Because some of the properties occur multiple times in one file, we created
a script that returns the number of occurences or existence of a distinct
property in each file. These scripts will be used in tests detecting categories.
There is the list of all properties that can be detected in files. Note, that for
all string comparisons the case insensitive comparison was used.

1. File substring – the number of occurences of the input string

44

2. File name – the file name is identical with entered name

3. File name substring – the file name includes entered string

4. Variable name – the file includes entered XSLT variable

5. Template name substring – the number of occurences of templates
with attribute “name” with input string

6. Template match substring – the number of occurences of templates
with attribute “match” with input string

7. Template name count – the number of templates with attribute
“name”

8. Template match count – the number of templates with attribute
“match”

9. Element name – the number of generated elements by “element”,
with name equal to input string

8.2.2 Category: RSS

RSS [49] is an XML format for publication of news. RSS Feeds are intended
for reading news. Channels (links to XML files in the RSS format) are
registered into RSS Feed for showing news from them filtered by required
criteria.

RSS is very widespread format so we decided to analyze it. We watched
two types of XSLT templates. First, there are templates for transformation
of XML data into the RSS format, typically into the HTML format. This
category is marked as “RSS reader”. Second, there are templates for generat-
ing XML data into the RSS format from any of XML formats. This category
is marked as “RSS generator”.

In Tables C.1 and C.2 there are listed criteria used for selecting templates
belonging to categories “RSS reader” and “RSS generator”, with their input
values and weights. The threshold values are 8 and 13 for both categories
“RSS reader” and “RSS generator” (see Chapter 8.2.1).

Of all downloaded files, 243 templates (4.2%) were found to belong to
the category “RSS reader”. When we checked these templates manually, we
found out, that only 33% were categorized successfully. Thus, 81 templates

45

(1.4%) belong to the category. Most of them are similar, so we create typical
template based on them for our tests. The template “newsfeeds.xslt” is
very frequent so this template will be used as a test too.

Of all downloaded files, 34 templates (0.59%) were found to belong to
the category “RSS generator”. When we checked these templates manually,
we found out, that only 4 templates do not belong to the category, which is
a good result. Thus, 30 templates (0.52%) belong to the category. Most of
them are similar, so we create typical template based on them for our tests.

We manually checked all templates that were identified as potential can-
didates for categories “RSS reader” and “RSS generator” and found out that
none of these templates belongs to these categories, so we can state that the
criteria were created correctly.

8.2.3 Category: Google Search Appliance

Google Search Appliance [50] is a hardware solution for local searching of
documents within a local network of a company. The layout of the result
of searching can be modified by special XSTL template [51]. The template
includes many parameters (set by XSLT elements “xsl:variable”) which
is not typical. Thus, we decided to use them in tests. The template with
default values suffices for our test.

Although Google Search Appliance is a solution intended mainly for in-
tranets, 13 templates (0.22%) were detected in the downloaded files.

In Table C.3 there are criteria used for selecting templates belonging to
the category, with their input values and weights. The threshold values are
5 and 10 for the category.

8.2.4 Category: GraphML

GraphML [52] is an XML format for saving a graph structure including
additional information.

There are interesting XSLT templates on the web page [53] so we decided
to analyze them. The following templates will be used in tests:

1. Template that generates random graphs.

2. Template that adds information for drawing using the algorithm Spring
[54].

46

3. Template that transforms a graph from the format GraphML to the
format SVG [55].

In Table C.4 there are listed criteria used for selecting templates belonging
to the category, with their input values and weights. The threshold values
are 5 and 10 for the category.

From the downloaded files, only 4 templates (0.07%) were found. These
are templates downloadable from [53]. Although a very few templates exist,
they are very interesting. These templates will be used in our tests too. We
manually checked all templates that were identified as potential candidates
for the category and found out that none of these templates belongs to it, so
we can state that the criteria were created correctly too.

8.2.5 Category: XGMML, LOGML

XGMML [56] is an XML application based on GML [57] which is used for
graph description. GraphML (see Chapter 8.2.4) refers to this format, as
the related format. Thus, we decided to analyze them too. Also, we decided
to analyze the format LOGML [58]. It is the XML format to describe log
reports of web servers. It uses XGMML for saving a structure of a web.

In Tables C.5 and C.6 there are listed criteria used for selecting templates
belonging to categories “XGMML” and “LOGML”, with their input values
and weights. The threshold values are 6 and 10 for the category “XGMML”
and 6 and 12 for the category “LOGML”.

Of all downloaded files, 124 templates (2.14%) were identified to belong
to the category “XGMML”. However, it was found out that only 8 templates
(0.14%) belong to it, during the handmade control. These are templates that
can be downloaded from project‘s website [59]. All these templates are very
similar, so we will use only one of them in our tests. We manually checked all
templates that were identified as potential candidates for the category and
found out that none of these templates belong to it, so we can state that the
criteria were created correctly.

In the downloaded files, no templates were detected for the category
“LOGML”, even though we used different settings of criteria. Thus, no
test will be created for this category.

Given the small number of detected templates, we can assume that these
formats are not intensively used. Alternatively it may be caused by the fact
that the authors usually choose not to publish such templates on the Internet.

47

8.2.6 Category: DocBook

DocBook [60] is an XML format for structured writing of documents. Because
of XML format, it can be transformed by XSLT templates into different
formats of documents (e.g. HTML, PDF, HTML Help).

DocBook is very widespread format and lots of XSLT templates for trans-
formation of XML files to DocBook format and vice versa can be found on
the Internet, so we decided to analyze those templates as well. We found two
types of DocBook-related XSLT templates. Templates for transformation of
XML to DocBook format belong to the first type. We will call this cate-
gory “DocBook reader”. The second type of templates generates DocBook
format from other XML-based formats. This second category will be called
“DocBook generator”.

In Tables C.7 and C.8 there are listed the criteria used for selecting tem-
plates belonging to categories “DocBook reader” and “DocBook generator”,
with their input values and weights. The threshold values are 6 and 10 for
the category “DocBook reader” and 8 and 12 for the category “DocBook gen-
erator”.

Of all downloaded files, 719 templates (12.42%) were found to belong
to the category “DocBook reader”. When we manually checked these tem-
plates, we found out, that the major part of them belongs to the category.
Moreover, we found out, that these templates are mainly prearranged tem-
plates downloadable from [61]. Thus, these templates will be use for our
tests. The transformation consists of a large number of templates and XSLT
element “include” is used very often. Thus, we will create a special test
for testing this element. We manually checked all templates that were iden-
tified as potential candidates for the category and found out that none of
these templates belongs to it, so we can state that the criteria were created
correctly.

Of all downloaded files, 4 templates (0.07%) were found to belong to the
category “DocBook generator”. When we manually checked these templates,
we found out, that only 1 template (0.017%) belongs to the category. We
manually checked all templates that were identified as potential candidates
for the category and found out that none of these templates belongs to it, so
we can state that the criteria were created correctly. Thus, generating XML
in DocBook format is not as frequent as reading XML in DocBook format.
Thus, no test will be created for the category “DocBook generator”.

48

8.2.7 Category: RDF, RDFS, RGML

RDF [62] is a family of specifications, used for modeling information. Its
basic idea is a triplet subject-predicate-object, where the subject denotes the
resource, and the predicate denotes traits or aspects of the resource and
expresses a relationship between the subject and the object. RDF is very
widespread format. RDFS (RDF Schema) [63] purpose is to extend RDF
with descriptions of classes and their attributes. Next, we found an XML
format RGML [64] during analyzing XGMML (see Chapter 8.2.5). It is
a vocabulary for description of graphs by RDF. For all 3 categories, we
detected separately templates for reading (“RDF reader”, “RDFS reader”
and “RGML reader”) and templates for reading any XML and generating the
given format (“RDF generator”, “RDFS generator” and “RGML generator”).

In Tables C.9, C.10, C.11, C.12, C.13 and C.14 there are listed the criteria
used for selecting templates belonging to all the mentioned categories, with
their input values and weights. The threshold values are:

1. 7 and 10 for the category “RDF reader”

2. 10 and 13 for the category “RDF generator”

3. 10 and 13 for the category “RDFS reader”

4. 10 and 13 for the category “RDSF generator”

5. 6 and 10 for the category “RGML reader”

6. 4 and 13 for the category “RGML generator”

Few templates were detected as belonging to categories “RGML reader”
and “RGML generator”. However, no templates truly belong to these cate-
gories. Thus, we will not create any test for these categories.

We focused on description of classes in categories “RDFS reader” and
“RDFS generator”. Some RDFS elements and attributes are only meant to
extend RDF (e.g. “rdfs:seeAlso” or “rdfs:range”). Thus, we focused
mainly on elements “rdfs:class” and “rdfs:subClassOf”, that describe
information by classes and sub-classes like object oriented programming lan-
guages.

Of all downloaded files, 88 templates (1.52%) were found to belong to
the category “RDFS reader”. However, only 6 templates (0.1%) truly belong
to it. We manually checked all templates that were identified as potential

49

candidates for the category and found out that none of these templates belong
to it, so we can state that the criteria were created correctly. Thus, no test
will be created for this category.

Of all downloaded files, 14 templates (0.24%) were found to belong to
the category “RDFS generator”. However, only 1 template (0.02%) belongs
to it. We manually checked all templates that were identified as potential
candidates for the category and found out that none of these templates belong
to it, so we can state that the criteria were created correctly. Thus, no test
will be created for this category.

Analyzing category “RDF generator” was more successful. In the down-
loaded files, 141 templates (2.44%) were detected as candidates for the cat-
egory and all these templates belong to it. Of all downloaded files, 56 tem-
plates (0.97%) were found to belong to the category “RDF reader”. However,
only 18 templates (0.31%) belong to it.

During manual check, we found out that the templates have only one
speciality for categories “RDF generator” and “RDF reader”. Using many
different namespaces. Thus, we will create special tests for namespaces.
Creating tests based on RDF is not necessary.

8.3 Summary

During the analysis of features of downloaded files, we found out that a
typical XSLT document is very simple (see Chapter 8.1.10). Thus, we will
create tests based on typical values of scanned features. Also, we will create
tests for typical 16 elements used in XSLT documents.

During the analysis of categories of downloaded files, we found out that
some categories only have a few representatives or are based on one particular
pattern. Next, some categories are not presented in downloaded files. Finally,
some categories are presented largely in the downloaded files. Thus, we will
not create any test for some categories, we will create base test for some
categories and we will use pattern for creating test for some category.

It would be possible to analyze many other categories (e.g. SVG [55]).
Interestingly, the procedure could be an analysis of the namespaces used in
the downloaded files. Also, it would be possible to analyze other features or
their combinations. Some of them were discused in chapters about analysing
features (see Chapter 8.1). For example, analysis of XPath expressions used
in XSLT files. It would be very interesting and complex analysis.

50

Chapter 9

Test Environment

It was required to create test environment, which enables running of param-
eterized tests, their running in different XSLT processors and reporting of
results. Next, it was required that test environment allows easy adding of
non-parameterzied tests, adding more XSLT processors, running on different
operating systems and monitoring of time and memory usage.

We implemented all requirements in our program called XSLT Bench-
marking [65]. We will discuss individual parts of the program in next chap-
ters. In addition, we will discuss possible extensions and improvements. Most
of the functionaly was implemented by using drivers, so it is easy to add new
features by just adding a new driver with distinct interface.

We choose PHP as a language for the implementation. The main ad-
vantage is easy portability between OSs and its ability to run from console.
Moreover, it would be easy to add an extension for running from web browser.
That would be very comfortable to run tests.

The user manual is in file README.markdown1 [67]. Of course, we gener-
ated the API documentation [68] too. Note, the program, API documenta-
tion and reports of tests are saved on the attached CD (see Appendices A.3,
A.4 and A.5).

1Manual is written in Markdown [66] format, that is a format for easy-to-read, easy-
to-write plain text format and converting plaint text to HTML.

51

9.1 Parameterization

The parameterization was one of the natural basic requirements. Therefore,
it is possible set many parameters in command line that influence running of
tests (selecting tests to run, select tested processors and many others). On
the other hand, simplicity was one of the basic requirements too. Therefore,
most parameters have default values. Few basis options are sufficient for basic
running of program. Setting parameters by the means of an configuration
file could be possible extension.

Using should be easy for programmer too. Thus, we created PHP library
PhpOptions [69] for working with command line parameters. Due to this,
working with parameters of our program XSLT Benchmarking was easier,
clearer and extensible.

The program can run on Windows and Linux OS. The script “run.bat”
is for running on Windows and the script “run.sh” is for running on Linux.
There is the list of some examples of running the program with descriptions.
All examples are demostrated with Windows variant “run.bat”. However,
it would be same for Linux variant run.sh. The full summary of parameters
of the program is in Appendix D.

1. run.bat -h

Print the help of the program.

2. run.bat -g

Generate tests from all tests templates (use the default directory for
templates, tests and temporary files).

3. run.bat -g --templates-dirs "elements-choose,rss-reader"

Generate tests from test temapltes “elements-choose” and “rss-reader”
in the default directory.

4. run.bat -r

Run all tests (use the default directory for tests, reports and temporary
files).

5. run.bat -r --tests-dirs "elements-choose-long,

rss-reader-html"

Run tests “elements-choose-long” and “rss-reader-html” in the default
directory.

52

6. run.bat -grvc --repeating 10

Generate tests from all templates and run all generated tests. Verbose
mode is on. Finaly convert the generated XML report into the HTML
format. Additionally, all transformations will be 10 times repeated for
the better measure of time and memroy usages.

9.2 Generating Tests

Possible ways of creating tests increase flexibility of the program. We can
create individual tests manually or create templates of tests, from which tests
are generated finally.

Each test (created manually or generated form test template) is in one
directory. It includes XSLT template and couples of input and expected
output files. The directory also contains XML configuration file that defines
test name, individual couples of files (input and expected output) and the
name of respective XSLT template. There is an example of definition of a
simple test consisting of 2 couples, in Example 9.1. The full description of
all possibilities of the XML file is in Appendix E.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <test name="Modify element - Rename"

template="test.xslt">

3 <couple input="oneElement.xml"

output="oneNewElement.xml"/>

4 <couple input="twoElements.xml"

output="twoNewElements.xml"/>

5 </test>

Example 9.1: params.xml: Sample test definition. It contains the name of the

test “Modify element - Rename”, name of XSLT template “test.xslt” and two pairs of

input and expected output files.

It is possible to generate tests based on tests templates. The tests tem-
plate is a directory that includes a template for generated XSLT templates
and templates for generated XML files used in the generated tests. Tests to
be generated are defined in an XML configuration file. The configuration file
is also in directory of tests template. There is an example of definition of a
template for two tests in Example 9.2. The full description of all possibilities
of the XML file is in Appendix E.

53

1 <?xml version="1.0" encoding="UTF -8"?>

2 <tests name="Modify element" template="test.tpl.xslt"

templatingType="smarty">

3 <files >

4 <file id="zero">zeroElement.xml</file>

5 <file id="one">oneElement.xml</file>

6 <file id="oneNew">oneNewElement.xml</file>

7 <generated id="many" generator="easy"

output="manyElements.xml">

8 <setting name="testName">20</setting >

9 <setting name="testName2">3</setting >

10 </generated >

11 <generated id="manyNew" generator="easy"

output="manyNewElements.xml">

12 <setting name="newTestName">20</setting >

13 <setting name="testName2">3</setting >

14 </generated >

15 </files >

16 <test name="Rename">

17 <file input="one" output="oneNew" />

18 <file input="many" output="manyNew" />

19 <setting name="action">rename </setting >

20 <setting name="newName">newTestName </setting >

21 </test>

22 <test name="Remove">

23 <file input="one" output="zero" />

24 <file input="many" output="zero" />

25 <setting name="action">remove </setting >

26 </test>

27 </tests >

Example 9.2: params.xml: The file that defines tests template named “Modify

element”. There are defined two tests to be generated called “Rename” and

“Remove”. Both generated tests use two input files (“oneElement.xml” and

“manyElements.xml”), where the first one is prearranged and the Easy XML generator

(attribute “/tests/files/generated/@generator”) generates the second one. Attributes

“/tests/test/file/@output” define the expected outputs of transformations for XSLT

template and relevant inputs. The template of the generated XSLT templates

is defined in attribute “/tests/@template” and it is common for all generated

tests. The Smarty XSLT generator is used for generating XSLT template (attribute

54

“/tests/@templatingType”). Elements “settings” set settings of generated XML or

XSLT files by generators.

Different templating types could be used for generating. They are imple-
mented by drivers. Thus, it is very easy to add new templating systems. Let
us mention two used important templating system.

The first system is Smarty [70]. It is projected for templating of HTML
pages. Due to affinity of HTML, XML and XSLT languages, it is very easy
to use it. Smarty includes constructs like cycles, conditions and many others.
Thus, it is a very strong tool.

The second system is ToXgene [71]. It is projected for generating random
XML files. It can be used to generate XSLT templates. However, the main
purpose of its using was to generate random input and expected output
XML files. It is not the only existing XML generator. New drivers could
be added too (e.g. for XML generators VeXGene [72], MemBeR [73] or
NiagDataGen [74]). We drew information mainly from report [1], which
does not discuss only XML generators. ToXgene was rated as very powerful
tool. On the other hand, it needs complex templates even for generating
simple XML files. We tried to avoid similar complexity in our program
XSLT Benchmarking.

We thought about templating system based on XSLT transformation.
However, dependence on XSLT processor used for XSLT templating system
could affects results. We wanted to avoid this dependence. Thus, we did not
implement templating system based on XSLT. However, it is not problem to
add it by a new driver as well.

In addition, we can compare both the mentioned drivers. The generated
results are straightforward by Smarty, which is an advantage. On the other
hand, almost all generated outputs have to be written by hand, which is a
disadvantage. We can easily get different outputs from ToXgene by simple
change of a random seed, which is an advantage. Disadvantage is the men-
tioned complexity of needed template for generating any outputs. From our
experience, we recommend the Smarty driver for generating XSLT templates
and ToXgene for generating XML files.

9.3 Running Tests

We can run the prepared tests in the next part of our program. Each test is
run in each tested processor. A report of tests is saved in an XML file. One

55

test includes one XSLT template and serial couples of files as mentioned in
Chapter 9.2. Quaternion processor -XSLT template - input - expected output
determines one record in the report. As we can see, one quaternion deter-
mines one transformation in one XSLT processor. The generated errors are
written into reports too. The output of generated transformation is com-
pared with expected output. The result of the comparison is written into
reports too.

Normalization of generated output and expected output have to be done
before comparing them, if they are XML or HTML files. In particular, ex-
cessive white spaces are eliminated, attributes are alphabetically ordered,
empty elements are transferred on short form etc. As mentioned before,
normalization in benchmark XSLTMark inspired us, see Chapter 5.1. Of
course, normalization is not applied for text output. Also note that, HTML
normalization has own specifications. It is more complicated than XML nor-
malization, especially for white spaces. HTML normalization is not fully
implemented yet. Nevertheless, it was sufficient for our usage. It would be
extended for greater use of tests with HTML output.

Time and memory usages are measured for each transformation. It means
how much time and memory each transformation takes. The measured values
are saved in the report with each quaternion. It is possible to set the number
of repeating of each transformation for more precise measurement of values
by command line property of our program. Time and memory usages are
measured for each transformation separately. Average values are reported.
It is for reduction of deviation of machine on which the program is run.

Measurement of time usages was not too big problem. Measurement of
memory usages was little more complicated. We had to distinguish between
running of our program on Linux and Windows. We used command line pro-
gram time [75] on Linux. It runs a certain command and returns information
about process including the time usage. We found Windows alternative of
program time [76].

We can select processors that will be tested in our program by command
line parameter. There are different processors on Linux and Windows (e.g.
MSXML, see Chapter 4.5, cannot be tested on Linux). It is possible to
list available processors on actual machine. There is an example of possible
output for command “run.bat -a” on Windows system in Example 9.3. In
addition, it is possible to write drivers for new processors. After that, we can
run tests for these processors separately. Note that it is usually necessary to
implement different behavior of the processor for each OS.

56

1 Available processors:

2 ---------------------

3 SHORT NAME | KERNEL | FULL NAME:

4 --

5 libxslt1123php | libxslt | libxslt 1.1.23 - PHP

6 msxml30 | MSXML | MSXML 3.0

7 msxml60 | MSXML | MSXML 6.0

8 sablotron103cmd | Sablotron | Sablotron 1.0.3

9 saxon655 | Saxon | Saxon 6.5.5

10 saxonhe9402 | Saxon | Saxon HE 9.4.0.2

11 xt20051206 | XT | XT 20051206

12 xalan271 | Xalan | Xalana 2.7.1

13 xsltproc1123 | libxslt | xsltproc 1.1.23

14 xsltproc1126 | libxslt | xsltproc 1.1.26

Example 9.3: Getting a list of available processors: This is example of getting

of a list of available processors for testing. This output is returned for command

“run.bat -a” on Windows system.

9.4 Reports

Reports about run tests are finally saved into an XML file. There is an ex-
ample of XML report in Example 9.4. The full description of all possibilities
of the XML file is in Appendix E. It is possible to convert the XML file into
HTML format for better analyzing. There is an example of HTML report in
Figure 9.1. Moreover, it is possible to create drivers for converting reports
into other formats (e.g. CSV2, TeX3 table etc.). There are links to all rele-
vant files (XSLT templates, input files, expected output files and generated
output files) in HTML reports. This simplifies the analysis. Reports of our
tests are presented on [65].

2A comma-separated values (CSV) file stores tabular data (numbers and text) in plain-
text form.

3TeX is a typesetting system.

57

1
<
?
x
m
l

v
e
r
s
i
o
n
=
"
1
.
0
"

e
n
c
o
d
i
n
g
=
"
U
T
F
-
8
"
?
>

2
<
r
e
p
o
r
t
s
>

3
<
g
l
o
b
a
l
>

4
<
p
r
o
c
e
s
s
o
r
s
>

5
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
s
a
x
o
n
h
e
9
4
0
2
"

f
u
l
l
N
a
m
e
=
"
S
a
x
o
n

H
E

9
.
4
.
0
.
2
"

k
e
r
n
e
l
=
"
S
a
x
o
n
"
/
>

6
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
x
s
l
t
p
r
o
c
1
1
2
6
"

f
u
l
l
N
a
m
e
=
"
x
s
l
t
p
r
o
c

1
.
1
.
2
6
"

k
e
r
n
e
l
=
"
l
i
b
x
s
l
t
"
/
>

7
<
/
p
r
o
c
e
s
s
o
r
s
>

8
<
/
g
l
o
b
a
l
>

9
<
t
e
s
t
s
>

10
<
t
e
s
t

n
a
m
e
=
"
N
a
m
e
s
p
a
c
e

-
A
l
i
a
s
e
s
"

t
e
m
p
l
a
t
e
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
n
a
m
e
s
p
a
c
e
-
a
l
i
a
s
e
s
/
r
e
m
a
p
.
x
s
l
t
"
>

11
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
s
a
x
o
n
h
e
9
4
0
2
"
>

12
<
i
n
p
u
t

i
n
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
n
a
m
e
s
p
a
c
e
-
a
l
i
a
s
e
s
/
r
e
m
a
p
.
x
m
l
"

e
x
p
e
c
t
e
d
O
u
t
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
n
a
m
e
s
p
a
c
e
-
a
l
i
a
s
e
s
/
r
e
m
a
p
X
s
l
t
.
x
m
l
"

o
u
t
p
u
t
=
"
/
X
B
/
T
m
p
/
r
e
m
a
p
X
s
l
t
-
1
3
3
5
0
8
1
8
7
1
-
3
9
3
5
5
2
.
x
m
l
"

s
u
c
c
e
s
s
=
"
1
"

c
o
r
r
e
c
t
n
e
s
s
=
"
1
"

s
u
m
T
i
m
e
=
"
5
.
1
2
5
2
2
7
"

a
v
g
T
i
m
e
=
"
0
.
5
1
2
5
2
2
"

s
u
m
M
e
m
o
r
y
=
"
3
1
5
5
9
6
0
0
0
"

a
v
g
M
e
m
o
r
y
=
"
3
1
5
5
9
6
0
0
"

r
e
p
e
a
t
i
n
g
=
"
1
0
"
/
>

13
<
/
p
r
o
c
e
s
s
o
r
>

14
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
x
s
l
t
p
r
o
c
1
1
2
6
"
>

15
<
i
n
p
u
t

i
n
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
n
a
m
e
s
p
a
c
e
-
a
l
i
a
s
e
s
/
r
e
m
a
p
.
x
m
l
"

e
x
p
e
c
t
e
d
O
u
t
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
n
a
m
e
s
p
a
c
e
-
a
l
i
a
s
e
s
/
r
e
m
a
p
X
s
l
t
.
x
m
l
"

o
u
t
p
u
t
=
"
/
X
B
/
T
m
p
/
r
e
m
a
p
X
s
l
t
-
1
3
3
5
0
8
1
8
8
2
-
5
2
5
0
2
0
.
x
m
l
"

s
u
c
c
e
s
s
=
"
1
"

c
o
r
r
e
c
t
n
e
s
s
=
"
0
"

s
u
m
T
i
m
e
=
"
0
.
3
0
0
0
2
8
"

a
v
g
T
i
m
e
=
"
0
.
0
3
0
0
0
2
"

s
u
m
M
e
m
o
r
y
=
"
4
0
6
2
4
0
0
0
"

a
v
g
M
e
m
o
r
y
=
"
4
0
6
2
4
0
0
"

r
e
p
e
a
t
i
n
g
=
"
1
0
"
/
>

16
<
/
p
r
o
c
e
s
s
o
r
>

17
<
/
t
e
s
t
>

58

18
<
t
e
s
t

n
a
m
e
=
"
V
e
r
s
i
o
n

-
2
.
0

-
E
m
p
t
y
"

t
e
m
p
l
a
t
e
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
v
e
r
s
i
o
n
.
x
s
l
t
"
>

19
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
s
a
x
o
n
h
e
9
4
0
2
"
>

20
<
i
n
p
u
t

i
n
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
e
m
p
t
y
.
x
m
l
"

e
x
p
e
c
t
e
d
O
u
t
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
e
m
p
t
y
G
e
n
e
r
a
t
e
d
.
x
m
l
"

o
u
t
p
u
t
=
"
/
X
B
/
T
m
p
/
e
m
p
t
y
G
e
n
e
r
a
t
e
d
-
1
3
3
5
0
8
2
0
1
5
-
9
3
5
3
5
2
.
x
m
l
"

s
u
c
c
e
s
s
=
"
1
"

c
o
r
r
e
c
t
n
e
s
s
=
"
1
"

s
u
m
T
i
m
e
=
"
4
.
7
7
3
5
8
0
"

a
v
g
T
i
m
e
=
"
0
.
4
7
7
3
5
8
"

s
u
m
M
e
m
o
r
y
=
"
3
1
1
3
2
8
0
0
0
"

a
v
g
M
e
m
o
r
y
=
"
3
1
1
3
2
8
0
0
"

r
e
p
e
a
t
i
n
g
=
"
1
0
"
/
>

21
<
/
p
r
o
c
e
s
s
o
r
>

22
<
p
r
o
c
e
s
s
o
r

n
a
m
e
=
"
x
s
l
t
p
r
o
c
1
1
2
6
"
>

23
<
i
n
p
u
t

i
n
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
e
m
p
t
y
.
x
m
l
"

e
x
p
e
c
t
e
d
O
u
t
p
u
t
=
"
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
e
m
p
t
y
G
e
n
e
r
a
t
e
d
.
x
m
l
"

o
u
t
p
u
t
=
"
/
X
B
/
T
m
p
/
e
m
p
t
y
G
e
n
e
r
a
t
e
d
-
1
3
3
5
0
8
2
0
2
6
-
3
0
1
8
8
7
.
x
m
l
"

s
u
c
c
e
s
s
=
"
c
o
m
p
i
l
a
t
i
o
n

e
r
r
o
r
:

f
i
l
e

f
i
l
e
:
/
/
/
X
B
/
D
a
t
a
/
T
e
s
t
s
/
v
e
r
s
i
o
n
-
2
-
0
-
e
m
p
t
y
/
v
e
r
s
i
o
n
.
x
s
l
t

l
i
n
e

2
e
l
e
m
e
n
t

s
t
y
l
e
s
h
e
e
t
&
#
1
3
;
&
#
1
0
;
x
s
l
:
v
e
r
s
i
o
n
:

o
n
l
y

1
.
0

f
e
a
t
u
r
e
s

a
r
e

s
u
p
p
o
r
t
e
d
&
#
1
3
;
&
#
1
0
;
&
#
1
3
;
&
#
1
0
;
"

c
o
r
r
e
c
t
n
e
s
s
=
"
0
"

s
u
m
T
i
m
e
=
"
"

a
v
g
T
i
m
e
=
"
"

s
u
m
M
e
m
o
r
y
=
"
"

a
v
g
M
e
m
o
r
y
=
"
"

r
e
p
e
a
t
i
n
g
=
"
1
0
"
/
>

24
<
/
p
r
o
c
e
s
s
o
r
>

25
<
/
t
e
s
t
>

26
<
/
t
e
s
t
s
>

27
<
/
r
e
p
o
r
t
s
>

E
x
am

p
le
9.
4:

re
p
o
rt
.x
m
l:
T
h
er
e
ar
e
X
M
L
re
p
or
t
of

te
st
in
g
of

tw
o
X
S
LT

pr
o
ce
ss
or
s
S
ax
on

H
E
9.
4.
0.
2
an
d
xs
lt
pr
o
c
1.
1.
26

in
tw
o
te
st
s
“N

am
es
p
ac
e
-
A
lia
se
s”

an
d
“V

er
si
on

-
2.
0
-
E
m
p
ty
”.

59

F
ig
u
re

9.
1:

re
p
o
rt
.h
tm

l:
T
h
er
e
ar
e
H
T
M
L
re
p
or
t
of

te
st
in
g
of

tw
o
X
S
LT

pr
o
ce
ss
or
s
S
ax
on

H
E
9.
4.
0.
2
an
d
xs
lt
pr
o
c
1.
1.
26

in
tw
o
te
st
s
“N

am
es
p
ac
e
-
A
lia
se
s”

an
d
“V

er
si
on

-
2.
0
-
E
m
p
ty
”.

60

It is possible to merge more reports files together. Thus, we can add
a driver for another XSLT processor, run tests only for this processor and
merge generated reports with already generated reports. Similarly, we can
add a new test, run it for all processors and merge generated reports with
already generated reports.

At this moment, the reports do not include information about machine
(OS, RAM4 etc.) on which it is run. Creating of a separate reports for
each machine was sufficient for our analysis. It could be an extension to add
information about the machine into reports. After that, it will be possible
to merge any reports. The design of HTML reports poses a very interesting
problem. For example, potential merging of all our reports from all machines
would be very long with very much information. It would be necessary to
arrange sufficient clarity.

9.5 Extension Proposals

We already mentioned some possible extensions of our program XSLT Bench-
marking. So far we mentioned these extensions: running the program using a
web browser, setting of input parameters in configuration file, adding drivers
for new templating systems for XSLT or XML files, upgrade normalization
of HTML files, adding drivers for other XSLT processors, adding information
about machine into reports and add drivers for converting reports to another
formats.

Next possible extension would be new drivers for reading configuration
files in other formats than XML (e.g. INI5, JSON6, YAML7 etc.) for tests
and templates of tests.

We also detected different levels of reports of warnings and errors by XSLT
processors during creating of tests. Expected errors in tests would be a very
interesting extension. For example, the analysis of the returned error would
contain some words. Analysis of returned errors and warnings by XSLT
processors would be very beneficial (their information value, precision etc.).

4Random Access Memory (RAM)
5INI files are simple text files with a basic structure composed of “sections” and “prop-

erties”.
6JavaScript Object Notation (JSON) is a lightweight text-based open standard designed

for human-readable data interchange.
7YAML is a human-readable data serialization format that takes concepts from pro-

gramming languages such as C, Perl, and Python, and ideas from XML.

61

Allowing to set more expected outputs would be next interesting extension.
More expected outputs or a combination of expected outputs and potential
errors is possible because of variability of XSLT W3C specification [2]. Both
extensions are beyond the scope of this thesis. However, there are proposals
of definition both extensions together for XML configuration file of template
of tests, in Example 9.5.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <tests name="Extended" template="test.tpl.xslt"

templatingType="simple">

3 <files >

4 <file id="input1">input1.xml</file>

5 <file id="input2">input2.xml</file>

6 <file id="input3">input3.xml</file>

7 <file id="input4">input4.xml</file>

8 <file id="input5">input5.xml</file>

9 <file id="input6">input6.xml</file>

10 <file id="first">firstOutput.xml</file>

11 <file id="second">secondOutput.xml</file>

12 </files >

13 <test name="Comlex example">

14 <file input="input1" output="first" />

15 <file input="input2" error="error substring" />

16 <file input="input3" output="first" error="error

substring" />

17 <file input="input4">

18 <error>error substring </error>

19 <error>another error substring </error>

20 </file>

21 <file input="input5">

22 <output >first</output >

23 <output >second </output >

24 </file>

25 <file input="input6">

26 <error>error substring </error>

27 <error>another error substring </error>

28 <output >first</output >

29 <output >second </output >

30 </file>

31 </test>

62

32 </tests >

Example 9.5: params.xml: The file, that defines the template of tests named

“Extended”. There is a draft definition of possibility of more expected outputs or

expected errors. There is an example of one test with 6 input files. The definition of

the first file has standard one expected output. The second definition has an expected

error that contains string “error substring”. The third one has an expected error or

correct transformation with one expected output. The fourth one has an expected error

that contains both set strings. The fifth one has an expected correct transformation

the same as one of the set outputs. Finally, the sixth one has an expected error that

contains both set strings or correct transformation the same as one of set outputs.

Testing of streaming of input XML file and generated output file would
be very interesting. It is an up-to-date topic. However, most processors do
not support it. In addition, it is a very complex topic and it is beyond the
scope of this thesis. We recommended report [77] for more information about
this issue.

9.6 Summary

We implemented all requirements in our program XSLT Benchmarking. We
created parameterization test environment, which could be affected by many
parameters. It allows for creating both simple and complex tests. Informa-
tion about time and memory usages are saved in reports. It could be run on
different OS. It is extensible by means of drivers (drivers for tested proces-
sors, templating systems etc.). We found many aspects of the program that
could be extended. Thus, the program is shared on [65].

Interesting usage of our program would be to test applications based on
XSLT transformations. Thus, it would be similar to PHPUnit [78], which is
designed for testing of PHP applications. It would be useful to make a driver
for conversion of reports, which would generate text summary. Finally, it
would be useful to create the script, which would run required tests, generate
summary of reports and print them on a console.

63

64

Chapter 10

Tests

We had to create XSLT templates, input XML files and expected output
XML, HTML or text files during creating of tests. Most of tests were gener-
ated from templates of tests. Due to parameterization, it is possible to create
new tests with other settings according to specific needs. We created tests
mainly based on XSLT specification [2].

The main purpose of the test is to detect the corectness of outputs of
transformations by all processors. Nevertheless, some tests have also other
purposes. For example, some tests have big input data, big XSLT template
or big expected output. These tests are sutable to track time and memory
usages. Purposes of tests will be discussed in this chapter and in Chapter 11
that discusses results of the tests.

Some XSLT templates are designed as synthetic and some XSLT tem-
plates could be implemented more efficiently. Consistent testing of some
XSLT elements was the main purpose for it. Of course, we created some
tests based on real use or created tests that tested real XSLT templates used
in practice. These tests are mainly tests of categories discussed in Chap-
ter 8.2. The list of all tests are in Appendix F.

Note, that we tried to find tests used in XSLTMark (see Chapter 5.1)
and use them in our testing. Unfortunately, only results were available on
the Internet.

65

10.1 Features

Tests based on analyses of features (see Chapter 8.1) are mainly synthetic,
because they test specific features. We did not create special tests for extreme
values of researched features. We created tests focused on most frequently
occurring elements (see Chapter 8.1.6).

We did not create test on XSLT elements “value-of”, “copy-of” and
“variable”, because they are strongly linked with XPath [8], which we did
not test in our thesis (see Chapter 8.1). Basic usages of these elements
are covered in other tests. We created tests for other frequent XSLT ele-
ments. Note, that some tests covered more elements together. For example,
tests with prefix “Elements element” covered XSLT elements “element” and
“attribute” and tests with prefixes “Elements template” covered XSLT el-
ements “template”, “apply-templates”, “with-param”, “call-template”
and “param”.

We also created two tests that test XSLT 2.0. The first test is al-
most empty transformation with XSLT template, which only declares us-
ing of XSLT 2.0. It is test “Version - 2.0 - Empty”. The second test
tests real support of XSLT 2.0 elements by processors. We used the most
frequent XSLT 2.0 elements “output-character” and “character-map”.
The test also tests XSLT 2.0 attribute “use-character-maps” from element
“output”. It is test “Version - 2.0 - Character-map”. Both tests have empty
input XML data. Expected outputs are different. The first test expectes
empty XML data and the second test expects XML including listed data in
XSLT template filtered by the “character-map”.

We assume that users of our program XSLT Bechmarking will create
specialized tests for their XSLT applications.

We also decided to create a typical XSLT template (see Chapter 8.1.10),
which contains the most frequent elements and has others features based
on our analyses. We implemented these requirements in test “Typical -
Budget”. The XSLT template expects an XML document with information
about orders of companies. It generates an XML document including budgets
of companies on an output. The input XML document is very big and it is
generated by ToXgene. The XSLT template is very small.

66

10.2 Categories

Tests of analyzed categories are not synthetic. Either they are real XSLT
templates, which were found in downloaded files (see Chapter 7) or they
were created based on the most frequent elements and principles of XSLT
templates belonging to categories. Each category has its own specifics, thus
their tests are very different. It is very suitable for our testing.

We created two types of tests (“RSS reader” a “RSS generator”) for cat-
egory “RSS” (see Chapter 8.2.2). They are XSLT templates with procedural
and also non-procedural approaches in analyzed files for “RSS generator”.
We created two tests, which have same input and expected output. Thus,
we could compare both approaches (for more information see Chapter 11).
We created two tests for “RSS reader”. The first test contains very frequent
template “newsfeeds.xslt”. The second test was created based on typi-
cal elements and it generates HTML output. All input XML files for all
these tests were generated by ToXgene and they are big. Input and expected
output files were creted based on RSS specification [49] and expected XML
elements and listed XML or HTML elements in analyses XSLT templates
belonging to category “RSS”.

The default template [51] was used for testing the category “Google
Search Appliance” (see Chapter 8.2.3). The test XML document [79] was
used as input XML document in the test. Expected output is HTML web
page similar to results of searching on Google Search [40].

Templates from pages of the project “GraphML” [53] were used for tests
of its category (see Chapter 8.2.4). The templates could be concatenated;
that was advantage. It means, the first template generates random graph,
the second template adds information for better visualisation in plane into
it and the third template transforms the graph into the SVG format [55].
Input and expected output files are small.

We used one of the templates and test input file available on pages of
the project “XGMML” [59] for testing its category (see Chapter 8.2.5). The
input file is big and the expected output is small HTML file.

A prearranged set of templates available on pages of project “DocBook”
[61] was used for testing its category (see Chapter 8.2.6). The set contains
also test input XML file. The file contains different types of DocBook ele-
ments including references, footnotes etc. Thus, the test “Docbook - HTML”
is not generated from any template, but it is prearranged manually.

67

10.3 Others

We created two tests based on analysis of templates that belong to the cat-
egory “RDF”. They test more namespaces in one XSLT template or in one
XML file. The first test “Namespace - Aliases” tests aliases of namespaces by
XSLT element “namespace-alias”. The second test “Namespace - Rename”
tests using of different prefixes of namespaces in XSLT template and input
XML file for the same namespace. These tests have small synthetic input
and expected output XML files and small synthetic XSLT templates. They
focus mainly on correct implementation of functionality around namespaces
in tested processors.

Next, we created test “Element include” based on analysis of the category
“DocBook”. It tests including of other templates into the main template by
XSLT element “include”. The test has small synthetic input and expected
output XML files and small synthetic XSLT templates. It focuses mainly on
correct behavior of element “include”.

We detected problems with an encoding (set by XSLT attribute “en-
coding” of element “output”) during creating tests. Thus, we also created
tests with prefix “Encoding”, for testing of functionality related to the en-
coding. We tested default usage, without using of attribute “encoding”, and
explicit setting different encoding. All tests have same set of input XML files.
They are files with the same content saved in different encodings. The used
encodings are adequately set in XML declarations.

10.4 Summary

We created synthetic tests, tests based on real XSLT templates and tests
with real XSLT templates. Most tests were generated from templates. Few
tests were created manually. The tests included small and also big input
files/expected output files/XSLT templates. Diversity of tests presents great
flexibility of our test environment.

Additional tests could be created based on further analysis of down-
loaded files (see Chapter 7) or our analysis (see Chapter 8). For example, it
would be interesting to create tests testing more elements from XSLT 2.0 or
even from XSLT 3.0 or recursion of named templates (it means XSLT ele-
ment “template” with attribute “name”). However, we assume that users of
XSLT Bechmarking will create specialized tests for their XSLT applications.

68

Chapter 11

Results

We will discuss results of our tests from different points of view in this chap-
ter. We will compare different versions of processors, different types of pro-
cessors (e.g. library and program, see Chapter 4), running of tests on different
OSs etc. Complete reports of tests are available on [65]. HTML reports were
used for major part of our analysis. They enabled us to filter lists of proces-
sors or tests on the output. In addition, they enable us to easily show input
and output files of tests. These reports can serve as groundwork for the next
analysis. For example, if we create other tests or test other processors.

Additionaly, we had to make some special tables for better analysis of
some view of the results. This tables are available on [80] as Google Docs
Spreadsheet. We mention source of results in next chapters. There are main
HTML reports (HTML reports) or name of the sheet in the Google Docs
Spreadsheet (e.g. GDS - Small vs. Large Files).

All unnecessary programs were turned off on machines on which the
tests run. In addition, machines were disconnected from the Internet, so
that the machine was used only by our tests. Tests were run with setting
“--repeating 10” for more accurate results (see Chapter 9).

11.1 Different OS, RAM or CPU

The created test were run on different machines with different OS, RAM or
CPU. Reports of these tests enabled comparative analysis. Basis properties
of used machines are in Table 11.1. This results were created based on GDS
- avgMemory - win1 vs. win2, GDS - avgMemory - lin1 vs. lin2, GDS -

69

avgTime - win1 vs. lin1, GDS - avgMemory - win1 vs. lin2, GDS - Averages
of processors - win1 and GDS - Averages of processors - lin1.

Shc. System Addr. CPU RAM

win1
Windows 7

64bit
Intel(R) Core(TM) i5 CPU

8GB
Profesional, SP1 M560, 2.67GHz

win2
Windows 7 Home

32bit
AMD Athlon(tm) II

4GB
Premium, SP1 X4 635 Processor, 2.90GHz

lin1 Ubuntu 11.10 64bit
Intel(R) Core(TM) i5 CPU

7GB
M560, 2.67GHz

lin2 Debian 6.0.4 64bit
AMD Opteron(TM)

132GB
Processor 6234, 2.70GHz

Table 11.1: Machines properties: There are basis properties of machines, on which

tests run. The first column contains shortcuts of machines used in next text.

Checking of reports showed that errors are reported equally on all ma-
chines. Thus, there was no test, which did transformation on one machine
correctly and on another machine with an error. Thus, processors available
on both OS (Windows and Linux) have the same functionality.

The next finding is about available RAM. Comparison of win1 and win2
or lin1 and lin2 showed that on systems with more available RAM more
memory was actually used. Due to this, the transformation was faster.

The most interesting was the comparison of time and memory usages
on different OSs. Transformations on lin1 have worse time and memory
usages than on win1. About 49% of transformations on lin1 were slower by
at least 0.1 seconds. Next, about 92% of transformations on lin1 used at
least 1MB RAM more than transformations on win1. We found out that
mostly worse time and memory usages were for Java processors (e.g. Saxon
or XT) on lin1. On the other hand, command line processors (e.g. xsltproc
or Sablotron) were faster on lin1 in global. We can assume that worse time
usages were caused by JVM on lin1. Tests of JVM are not included in our
thesis. However, it is possible make drivers for processors, which use other
JVM, in our test environment (see Chapter 9). This would allow to compare
tests for one Java processor run under different JVM.

70

11.2 Different Processors Versions

Next, we compared different versions of XSLT processors. This results were
created based on HTML reports.

The first examined processor was xsltproc (see Chapter 4.4). We exam-
ined versions 1.1.23 and 1.1.26. These two versions were the same in time
and memory usages. The only difference was in test “Docbook - HTML”.
The older version 1.1.23 did not do the transformation completely correctly.
The newer version 1.1.26 did the transformation perfectly. There were no
differences in other tests.

The next examined processor was MSXML (see Chapter 4.5). We ex-
amined versions 3.0 and 6.0. These two versions did all transformations
identically and had about same memory usages. Time usages were different.
Transformations had same time usages for small input data. However, the
newer version 6.0 was about 1.5 times faster than version 3.0 for large input
data (e.g. tests “Elements choose - Long” or “Elements foreach - Long with
not presented”).

The last researched processor was Saxon (see Chapter 4.1). We researched
versions 6.5.5 and HE 9.4.0.2. These versions have some main differences.
The first, older version 6.5.5 is about 2.5 times faster and uses about 1.5
times less RAM than the new version HE 9.4.0.2. Maybe, commercal ver-
sions PE 9.4 or EE 9.4 would be better in testing of time or memory usages.
Unfortunately, we could not test them for financial reasons. Moreover, it is
better to compare versions available for the same price, thus free for this case.
The second, newer version HE 9.4.0.2 cannot use Java functions in XSLT tem-
plates opposite older version 6.5.5. This fact is described in documentation
and we checked it in tests “GraphML - GNM - Random” a “GraphML -
Spring - Random and Example”. Versions PE and HE should support it.

The next difference was a support of XSLT 2.0. Version HE 9.4.0.2 sup-
ported it, but version 6.5.5 supported only XSLT 1.0. Support of XSL 2.0
will be discussed in detail in the following text. The last difference was
reporting of warnings by processors. Version HE 9.4.0.2 informed about a
multiple inclusion of one XSLT file during transformation in the test “Doc-
book - HTML”. This information could be helpful in many cases. Version
6.5.5 ignored this fact as all others tested processors.

71

11.3 Different Languages

We also compared different language versions of processor libxslt 1.1.23 (see
Chapter 4.4). This results were created based on HTML reports. We com-
pared PHP library and command line program xsltproc. The console variant
had smaller time and memory usages in all tests. Probable reason was using
of CPU and RAM by PHP.

Bigger difference was in reporting of warnings and errors. The PHP
variant did not report errors that were reported by the console variant in
general. Moreover, the PHP variant generated an empty XML file without
report of error in some tests. Thus, console variant has better error reporting.

11.4 Encoding

In tests with prefix “Encoding”, we tested if processors can generate output
in different encodings and if they can process input XML files in different
encodings. All processors, except for XT (see Chapter 4.3), had no problem
with different encodings. Processors read input XML in different encodings
and they respected set output encoding. If output encoding had not been set,
then they used UTF-8, UTF-16 or none encoding in declaration of output
XML. None encoding in XML declaration means UTF-8 or UTF-16 encoding,
as per W3C XML specification [3].

Only XT processor failed in these tests. The processor could read input
XML only with UTF-8 or UTF-16 encoding. It reported errors for another
encodings1, which is all right (see W3C XSLT specification [2]). However, it
used UTF-8 encoding for generating output also when UTF-16 encoding was
set, which is wrong.

Note, that this results were created based on HTML reports.

11.5 Categories

The tests of categories examined real transformations. Due to this, we found
out several interesting information. This results were created based on HTML
reports.

1The example of a reported error for the encoding Windows-1252 for processor XT:
“org.xml.sax.SAXParseException: unsupported encoding”

72

One of the mentioned problems was dependence of transformation on
Java functions for category “GraphML”. The transformation runs correctly
only for Saxon 6.5.5. Using of Java functions was not supported in other pro-
cessors. Java functions are supported in new Saxon versions for commercial
variants (not for tested free version HE). As we can see, our test environment
could be used for finding XSLT processor useful for required XSLT template.

The template for category “Google Search Appliance” was without prob-
lem for most processors. Only processor XT did not generate any output.
We found out that the template included an unsupported construct. It used
“disable-output-escaping” for generating an attribute, which is not sup-
ported by XSLT specification [2]. All processors (except for XT) had a correct
behavior. They ignored using of “disable-output-escaping” for generated
attribute. Only processor Sablotron reported a warning about it. It could
be considered as an advantage.

Processors libxslt 1.1.23 (PHP library also xsltproc), MSXML (3.0 also
6.0) and Sablotron 1.0.3 failed in test of category “DocBook”. Other proces-
sors generated the expected output. We detected positive behavior of proces-
sor Saxon HE in this test. It reported multiple inclusions of one of included
XSLT templates. It may not be wrong behavior of set of XSLT templates.
Nevertheless, it could warn on potential drawback in performance.

Templates for categories “RSS” and “XGMML” were without problem
for all processors.

11.6 Small vs. Large Files

This chapter reports about time and memory usages based on the size of
input XML files or XSLT templates. This results were created based on
GDS - Small vs. Large Files.

Tests with prefixes “Elements choose”, “Elements foreach” and “Ele-
ments if” were created for comparison of transformations with different sizes
of XSLT templates or input XML files. These tests confirmed the natural
assumption, that for a bigger XSLT template time and memory usages are
bigger. Differences were very significant. Increases were between 35% and
50% for time usages and between 5% and 25% for memory usages. In this
chapter, increases are understood as increases of time or memory usage for
bigger data (XML files of XSLT templates) against smaller data.

73

These tests also confirmed the assumption, that for bigger input XML
data time and memory usages are bigger. Increases were about 8.7% for
memory usages. Differences were more significant for time usages. In ad-
dition, it is necessary to distinguish time usages for small and big XSLT
templates. Increases were about 17% for small XSLT templates for time
usages. However, they were about 200% for big XSLT templates. Processor
Sablotron had the biggest increases. Increases were about 1058% for big
XSLT templates and 57% for small XSLT templates for time usages. More-
over, its increases were the biggest for memory usages compared to other
processors. Processor Saxon HE had the smallest increases for time also
memory usages. Its increases were 17% for big XSLT templates and 7%
for small XSLT templates for time usages. Moreover, its increases were the
smallest for memory usages compared to other processors.

Tests “Elements element - Indent template” and “Elements element -
Not indent template” were created for detection of influence of indentation
in XSLT templates (thus needless whitespaces). We assumed that time us-
ages have minimal differences between both approaches or not indent XSLT
temlates has better time usages. The assumption was correct for memory
usages. Differences were insignificant for major part of processors. The as-
sumption was almost correct for time usages. Time usages were better up to
11% for non-indent XSLT templates. However, processors MSXML 6.0 and
XT had better time usages up to 8% for indented XSLT template.

11.7 Procedural vs. Non-Procedural

Approach

This chapter reports about tests focused on differences between procedural
and non-procedural access. Thus, using of elements “template” mainly with
attributes “name” (procedural access) or “match” (non-procedural access).
This results were created based on GDS - (Non)procedural. The first couple
of tests were tests “Elements template - Nonprocedural” and “Elements tem-
plate - Procedural”. The second couple of tests were tests “RSS generator
- apply-templates” and “RSS generator - for-each”. All transformations run
correctly for all processors. Detection of time and memory usages was the
main aim of these tests. Both tests in each couple transformed the same XML

74

input files and expected the same XML output files. Only tranformations
were written by procedural or non-procedural approach.

Differences were less than 2.5% between procedural and non-procedural
access for memory usages for almost all processors. Thus, memory usages
were not much affected with these different accesses. An exception was pro-
cessor Saxon 6.5.5 for tests with prefixes “Elements template”. It had lower
memory usage for non-procedural access almost upon 10%.

The results were more complicated for time usages. Differences higher
than 5% were considered as significant. Non-procedural access was more
effective in terms of time usages for processors MSXML 3.0, Sablotron,
Saxon 6.5.5., Saxon HE and Xalan. Thus, we recommend non-procedural
access for these processors. Almost all differences were smaller than 5% for
time usages for processors with kernel libxslt (PHP also xsltproc, all ver-
sions). Thus, both accesses have the same efficiency for these processors.
Finally, the results were different for processors MSXML 6.0 and XT. Pro-
cedural access was efficient for these processors in tests with prefix “RSS
generator”. On the other hand, non-procedural access was efficient for these
processors in tests with prefix “Elements template”, but not too much. Thus,
we recommend procedural access for these processors.

11.8 XSLT Version

All processors refer to used XSLT version. Only Saxon HE supports XSLT
2.0. Other processors support only XSLT 1.0. This was confirmed by test
“Version - 2.0 - Character-map” that tested elements from XSLT 2.0. Only
processors libxslt, Sablotron and xsltproc warned about using of unknown
element. Other processors ignored elements from XSLT 2.0 and done trans-
formation without its application. Ignoring unsupported elements (e.g. from
XSLT 2.0) could be considered as a flaw, because the user is not informed
that the transformation failed.

Moreover, only processor xsltproc warned about unsupported XSLT 2.0 in
test “Version - 2.0 - Empty”. There is an empty XSLT template with XSLT
version 2.0 in XSLT declaration, in the test. This fact could be considered
as positive behavior of xsltproc and negative behavior of other processors.

Note, that this results were created based on HTML reports.

75

11.9 XSLT Namespace

Test “Namespace - Rename” was the first test for using of namespaces. It
tested working with more namespaces and their different naming in XSLT
template and input XML files. All processor passed this test.

The second test “Namespace - Aliases” tested using of XSLT element
“namespace-alias”. Expected generated file was XSLT template. All pro-
cessors generated valid XSLT templates, which would generate required out-
put. However, only processors MSXML 3.0, MSXML 6.0 and Saxon HE
generated expected output. Other processors used namespace prefix used in
XSLT template (before output elements) instead of required namespace set
by element “namespace-alias”. In addition, processor Saxon 6.5.5 gener-
ated declaration (in root element “stylesheet”) of both namespaces. Thus,
only processors MSXML 3.0, MSXML 6.0 and Saxon HE passed the test.

Note, that this results were created based on HTML reports.

11.10 Average Time and Memory Usages

We discuss average time and memory usages of all tested processors in this
chapter. The compared values for time usages are demostrated in Graph 11.1
and the compared values for memory usages are demonstrated in Graph 11.2.
The exact measured values are in Table G.1. This results were created based
on GDS - Averages of processors - win1 and GDS - Averages of processors -
lin1.

As we can see, Java processors (Saxon, XT and Xalan) have the highest
time also memory usages. Command line processors (xsltproc and Sablotron)
have the smallest memory usages. Finally, processors with kernel libxslt
(libxslt - PHP and xsltproc) have the smallest time usages.

Processor xsltproc 1.1.23 has the smallest time and also memory usages
and processor Saxon HE 9.4.0.2 has the biggest time and also memory usages.

Note, that processors MSXML 3.0 and MSXML 6.0 have average time
and also memory usage.

11.11 Summary of Processors

We summarize results from previous chapters for each processor in this chap-
ter. We focus on interesting and important features of tested processors. The

76

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

lib
xs

lt
1.

1.
23

 -
 P

H
P

lib
xs

lt
1.

1.
26

 -
 P

H
P

M
S

X
M

L
3.

0

M
S

X
M

L
6.

0

S
ab

lo
tr

on
 1

.0
.3

S
ax

on
 6

.5
.5

S
ax

on
 H

E
 9

.4
.0

.2

X
T

 2
00

51
20

6

X
al

an
a

2.
7.

1

xs
ltp

ro
c

1.
1.

23

xs
ltp

ro
c

1.
1.

26

T
im

e
us

ag
e

(m
ill

is
ec

on
d)

Processor name

Windows (win1)
Linux (lin1)

Graph 11.1: Average time usages for processors: There are average time usages

for all tested processors in the graph. Averages are showed separately for Windows

and Linux. Not rendered boxes mean that the given processors were not tested for the

given OS.

summary of all discussed features for all tested processors are in Tables 11.2
and 11.3. There is the list of features with their little explanations:

1. Version – The maximum supported XSLT version.

2. Encoding – The list of supported encodings. The flag “all” means all
tested encodings.

3. Speed – The speed of a processor in verbal expression.

4. Memory – The memory usage of a processor in verbal expression.

5. Bigger Inputs has Worse Speed – A verbal expression for increase
of the speed of a processor after increase of an input XML file.

6. Indented XSLT is Better – The flag, if an indented XSLT template
is better than a non-indent XSLT template.

77

 0

 50

 100

 150

 200

 250

 300

lib
xs

lt
1.

1.
23

 -
 P

H
P

lib
xs

lt
1.

1.
26

 -
 P

H
P

M
S

X
M

L
3.

0

M
S

X
M

L
6.

0

S
ab

lo
tr

on
 1

.0
.3

S
ax

on
 6

.5
.5

S
ax

on
 H

E
 9

.4
.0

.2

X
T

 2
00

51
20

6

X
al

an
a

2.
7.

1

xs
ltp

ro
c

1.
1.

23

xs
ltp

ro
c

1.
1.

26

M
em

or
y

us
ag

e
(M

B
)

Processor name

Windows (win1)
Linux (lin1)

Graph 11.2: Average memory usages for processors: There are average memory

usages for all tested processors in the graph. Averages are showed separately for

Windows and Linux. Not rendered boxes mean that the given processors were not

tested for the given OS.

7. (Non-)Procedural for Better Speed – The flag, if it is better pro-
cedural or non-procedural approach for speed of a processor.

8. # Errors (from 43) – The number of failed tests from all 43 tests.

9. Java func. – The flag of supporting of Java functions in templates.

10. DocBook – The flag of passing the test of the category DocBook.

11. Namespace Aliases – The flag of passing the tests on namespace
aliasing.

78

P
ro

ce
ss
o
r

V
e
rs
io
n

E
n
co

d
in
g

S
p
e
e
d

M
e
m
o
ry

B
ig
g
e
r
In

p
u
ts

In
d
e
n
te
d
X
S
L
T

h
a
s
W

o
rs
e
S
p
e
e
d

is
B
e
tt
e
r

li
b
x
sl
t
1
.1
.2
3
-
P
H
P

1.
0

al
l

fa
st

m
id
d
le

ve
ry

n
o

li
b
x
sl
t
1
.1
.2
6
-
P
H
P

1.
0

al
l

fa
st

m
id
d
le

ve
ry

n
o

M
S
X
M

L
3
.0

1.
0

al
l

m
id
d
le

m
id
d
le

m
id
d
le

n
o

M
S
X
M

L
6
.0

1.
0

al
l

m
id
d
le

m
id
d
le

li
tt
le

ye
s

S
a
b
lo
tr
o
n
1
.0
.3

1.
0

al
l

m
id
d
le

sm
al
l

ex
tr
em

al
y

n
o

S
a
x
o
n
6
.5
.5

1.
0

al
l

sl
ow

b
ig

li
tt
le

n
o

S
a
x
o
n
H
E

9
.4
.0
.2

2.
0

al
l

sl
ow

b
ig

li
tt
le

n
o

X
T

2
0
0
5
1
2
0
6

1.
0

U
T
F
-8

sl
ow

b
ig

m
id
d
le

ye
s

X
a
la
n
a
2
.7
.1

1.
0

al
l

sl
ow

b
ig

m
id
d
le

n
o

x
sl
tp

ro
c
1
.1
.2
3

1.
0

al
l

fa
st

sm
al
l

ve
ry

n
o

x
sl
tp

ro
c
1
.1
.2
6

1.
0

al
l

fa
st

sm
al
l

ve
ry

n
o

T
ab

le
11
.2
:
S
u
m
m
ar
iz
e
o
f
fe
a
tu
re
s
fo
r
p
ro
ce
ss
o
rs

-
p
ar
t
1
:
T
h
e
lis
t
of

te
st
ed

pr
o
ce
ss
or
s
w
it
h
th
ei
r
d
is
cu
ss
ed

fe
at
u
re
s.

79

P
ro

ce
ss
o
r

(N
o
n
-)
P
ro

ce
d
u
ra

l
#

E
rr
o
rs

J
a
v
a

D
o
cB

o
o
k

N
a
m
e
sp

a
ce

fo
r
B
e
tt
e
r
S
p
e
e
d

(f
ro

m
4
3
)

F
u
n
c.

A
li
a
se
s

li
b
x
sl
t
1
.1
.2
3
-
P
H
P

sa
m
e

5
n
o

n
o

n
o

li
b
x
sl
t
1
.1
.2
6
-
P
H
P

sa
m
e

4
n
o

ye
s

n
o

M
S
X
M

L
3
.0

n
on

-p
ro
c

4
n
o

n
o

ye
s

M
S
X
M

L
6
.0

p
ro
c

4
n
o

n
o

ye
s

S
a
b
lo
tr
o
n
1
.0
.3

n
on

-p
ro
c

5
n
o

n
o

n
o

S
a
x
o
n
6
.5
.5

n
on

-p
ro
c

2
ye
s

ye
s

n
o

S
a
x
o
n
H
E

9
.4
.0
.2

n
on

-p
ro
c

2
n
o

ye
s

ye
s

X
T

2
0
0
5
1
2
0
6

p
ro
c

11
n
o

ye
s

n
o

X
a
la
n
a
2
.7
.1

n
on

-p
ro
c

4
n
o

ye
s

n
o

x
sl
tp

ro
c
1
.1
.2
3

sa
m
e

5
n
o

n
o

n
o

x
sl
tp

ro
c
1
.1
.2
6

sa
m
e

4
n
o

ye
s

n
o

T
ab

le
11
.3
:
S
u
m
m
ar
iz
e
o
f
fe
a
tu
re
s
fo
r
p
ro
ce
ss
o
rs

-
p
ar
t
2
:
T
h
e
lis
t
of

te
st
ed

pr
o
ce
ss
or
s
w
it
h
th
ei
r
d
is
cu
ss
ed

fe
at
u
re
s.

80

In general, Java processors have the biggest time and memory usages.
Conversely, command line processors are the fastest ones. Moreover, non-
procedural access and non-indented XSLT templates have better time and
memory usages than procedural access and indented XSLT templates. Next,
all processors support only XSLT 1.0. Of course, exceptions exist and they
will be mentioned for individual processors.

Processors with kernel libxslt have a problem with namespaces aliases.
The advantage are good warnings about using of unsupported elements in
XSLT template. Moreover, command line variants of xsltproc have better
warnings than PHP variants. Version 1.1.26 is slower than 1.1.23 regardless
the variant (command line or PHP library). On the other hand, version 1.1.26
is more reliable, version 1.1.23 failed in the test of the category “DocBook”.

Processors MSXML 3.0 and MSXML 6.0 failed on the test of the category
“DocBook”. Processor MSXML 6.0 had better time usages for procedural
access for some cases, which is interesting. Moreover, both processors have
better time usages for indented XSLT templates, which is interesting too.
Version 6.0 is faster than version 3.0 for big input files.

Processor Sablotron 1.0.3 failed on the test of category “DocBook”. On
the other hand, it has good reports of warnings and errors (report of unsup-
ported used element, unsupported XSLT 2.0 by declaration etc.). A disad-
vantage is wrong support of namespace aliases and big slowdown with bigger
input XML files.

Processors with kernel Saxon have the most passed tests. They failed only
in 2 tests. Version 6.5.5 has better time also memory usages than version
HE 9.4.0.2. Moreover, version 6.5.5 allows for using of Java functions in
XSLT templates as only one processor from all tested. On the other hand,
version HE 9.4.0.2 supports XSLT 2.0 as only one processor from all tested.
In addition, version HE 9.4.0.2 is the least affected by bigger input XML files
(from all tested processors) and has better warnings than version 6.5.5.

Processor XT 20051206 has the most failed tests (total 11). It supports
only encoding UTF-8, does not support namespace aliases and using of Java
functions in XSLT templates. In addition, it failed in the test of the category
“Google Search Appliance”. It has better time usage for procedural access
in some cases, which is interesting.

Processor Xalan 2.7.1 does not support using of Java functions in XSLT
templates and namespaces aliases. It is an average XSLT processor.

81

82

Chapter 12

Conclusions

The main purpose of this thesis was to create an XSLT benchmark, so we
would be able to compare existing XSLT processors. The aim was to create
flexible testing environment.

At first, we had to research existing XSLT benchmarks for possible in-
spiration. Unfortunately, there are not many XSLT benchmarks available on
the Internet. Only XSLTMark is sufficient. However, this benchmark is from
2001 and it is not supported now. Only reports are available on the Internet.
Thus, we could not use tests of XSLTMark in our benchmark and compare
their results with XSLTMark results.

Next, we had to determine monitored criteria of XSLT processors. We de-
termined price, correctness, speed, memory usage, support (timeliness, liveli-
ness, availability, documentation), OS and UX (simplicity of installation, user
friendliness, running in scripts). We also discussed types of XSLT processors
before describing existing XSLT processors. Next, we described processors,
which were being tested, in detail. We determined types not only for tested
XSLT processors. In addition, we determined their criteria price, support,
OS and UX.

We created a detailed analysis for criteria correctness, speed and memory
usage and we created a test environment to make tests and to discuss their
results. At first, we had to collect enough real XSLT templates for creating
usable tests. We analyzed the collected files. The analysis had two main
parts. The first part analyzes common features of XSLT templates. The
second part analyzes categories of XSLT templates, thus focuses their usages.

One of the main benefits of our thesis was creating of the test environ-
ment. We created program XSLT Benchmarking. The program allows for

83

generating of tests from templates of tests, running tests, generating XML
reports, transforming reports into HTML format and testing different types
of XSLT processors. In addition, it allows for many extensions. We can
add other tests, templates of tests, tested processors and transformations of
reports into other formats. Running of the program could be affected by
many parameters. Nevertheless, only few parameters are sufficient for basic
running. Thus, its using is very simple. Possibility of running it on differ-
ent operating systems is a big advantage too. In addition, it is a command
line program, thus it is possible to run it as a component of others scripts.
We discussed possible extensions too. Thus, the program is freely available
on [65] for possible upgrade.

We created tests based on analysis of collected XSLT templates in our
program. Most tests were generated from our templates of tests. Smarty
and ToXgene were used for generating some XSLT templates and XML files
in the program. Of course, it is possible to add other generators. We created
tests with synthetic XSLT templates, tests with XSLT templates based on
collected files and tests with XSLT templates directly from collected files.

Much information and numbers in many tables were generated as results
of tests. We discussed them from different points of view and discussed differ-
ent features of XSLT processors. We discussed differences between operating
systems, versions of some XSLT processors, average time and memory usages
and many others. We cannot determine the best or the worst XSLT proces-
sor. Individual requirements of users of processors are very important and
they could be very different. For example, only Saxon HE 9.4.0.2 supports
XSLT 2.0, but it is very slow and uses very much memory. Next example,
xsltproc, is the fastest and uses the least memory, but it works incorrectly
with namespace aliases. The last example, MSXML, works with namespace
aliases correctly, but it is supported only on Windows.

In brief, we created an XSLT benchmark, which is unique after long
time. As a proof of the concept, we created the program XSLT Benchmark
including tests for testing of XSLT processors. It is possible to add tests
and tested processors into the program. We created summary of features of
XSLT processors based on results of tests and discussed them.

84

Chapter 13

Future Works

The first possible extension of our system is an analysis of XPath expressions
used in the collected XSLT files. It would by suitable to take into account
elements, in which XPath is used, complexity of expressions, which functions
are used and many others. New tests could be created based on this analysis.

The second possible extension is an analysis of other categories of col-
lected XSLT files. Categories could be detected based on used namespaces
in declarations of XSLT templates. Moreover, percentage usage of names-
paces in templates could be also included in analysis.

In addition, other tested processors or additional tests and following ex-
tension of our results are interesting extensions too. It is possible to test
Java processors running in different JVMs. It would be possible to detect
the most appropriate JVMs for individual processors.

Additional tests could test recursive calling of named templates, more
elements from XSLT 1.0, XSLT 2.0 or even XSLT 3.0. Other tests could be
created based on further analysis of collected XSLT files. It would be pos-
sible to research the depth of nesting of XSLT elements “if” and “choose”
together. Next, it would be possible to detect not using of elements from
XSLT 2.0 in XSLT file that declare of using of XSLT 2.0. Or even, it would
be possible to detect using of elements from XSLT 2.0 in XSLT file that do
not declare of using of XSLT 2.0.

A nontrivial problem is taking into the account including of other tem-
plates into main template by XSLT elements “include” or “import”.

Our program XSLT Benchmarking could be also extended. Most possible
extensions are described in Chapter 9.5. Let us enumerate the most inter-
esting: It is possible to add XSLT and XML generator. Input parameters of

85

the program could be set by configuration file instead of console parameters.
A large extension would be to enable to use more expected outputs of trans-
formations. Alternatively, the extension could be to enable termination of
transformations by errors and checking of content of errors.

86

Bibliography

[1] I.Mlýnková: XML Benchmarking: Limitations and Opportunities
(Technical Report), Charles University 2008.
http://www.ksi.mff.cuni.cz/∼mlynkova/doc/tr2008-1.pdf.

[2] J. Clark: XSL Transformations (XSLT) Version 1.0. W3C, November
1999. http://www.w3.org/TR/xslt.

[3] T.Bray, J. Paoli et al.: Extensible Markup Language (XML) 1.0 (Fifth
Edition). W3C, November 2008. http://www.w3.org/TR/xml/.

[4] I.Mlýnková, M.Nečaský, J. Pokorný, K.Richta, K.Toman, V.Toman:
XML Technologie, Principy a aplikace v praxi. Grada Publishing,
Prague, Czech republic, September 2008. ISBN 978-80-247-2725-7.

[5] D.Raggett, A. LeHors and I. Jacobs: HTML 4.01 Specification. W3C,
December 1999. http://www.w3.org/TR/html401/.

[6] M.H.Kay: Saxon. Saxonica Limited, December 2011.
http://saxon.sourceforge.net/.

[7] J. Fleck: xsltproc - command line XSLT processor. 2002.
http://xmlsoft.org/XSLT/xsltproc.html.

[8] J. Clark and S.DeRose: XML Path Language (XPath) Version 1.0.
W3C, November 1999. http://www.w3.org/TR/xpath/.

[9] M.Kay: XSL Transformations (XSLT) Version 2.0.
W3C, January 2007. http://www.w3.org/TR/xslt20/.

[10] A.Berglund, S. Boag et al.: XML Path Language (XPath) 2.0.
W3C, January 2007. http://www.w3.org/TR/xpath20/.

87

[11] H. Zongaro: XSLT and XQuery Serialization 3.0. W3C, December 2011.
http://www.w3.org/TR/xslt-xquery-serialization-30/.

[12] Xalan. The Apache Software Foundation. http://xalan.apache.org.

[13] J. Clark: XT, Version 20051206. December 2005.
http://www.blnz.com/xt/xt-20051206/.

[14] D.Veillard: libxslt - The XSLT C library for GNOME. 2009.
http://xmlsoft.org/XSLT/.

[15] MSXML. Microsoft Corporation.
http://msdn.microsoft.com/en-en/data/bb190600.aspx.

[16] P.Hlavnicka, P.Cimprich, P.Gühring: Sablotron. February 2010.
http://www.gingerall.com/charlie/ga/xml/p sab.xml.

[17] J.Kloth, M.Brown, M.Olson, U.Ogbuji: 4Suite. December 2006.
http://foursuite.sourceforge.net/.

[18] TransforMiiX - XSLT Processing Engine.
Mozilla Developer Network, 2005.
https://developer.mozilla.org/en/Using the Mozilla

JavaScript interface to XSL Transformations.

[19] J. Burkard: xslt.js version 3.2. August 2008.
http://johannburkard.de/software/xsltjs/.

[20] S.Meschkat, D. Fabulich, H.-B.Chai: ajaxslt, version 0.8.1.
January 2008. http://code.google.com/p/ajaxslt/.

[21] Unicorn XSLT Processor. Unicorn Enterprises SA, 2001.
http://www.unicorn-enterprises.com/products uxt.html.

[22] AltovaXML - XSLT 1.0/2.0 Engine, XQuery Engine, XML Validator.
Altova, 2012. http://www.altova.com/altovaxml.html.

[23] XmlPrime. Clinical Biomedical Computing Ltd., 2012.
http://www.xmlprime.com/xmlprime/download.htm.

[24] J. Clark: XP - an XML Parser in Java, Version 0.5. 1998.
http://www.jclark.com/xml/xp/.

88

[25] D.Megginson: SAX, Simple API for XML, Version 1.0.
http://www.saxproject.org/sax1-roadmap.html.

[26] D.Veillard: libxml2 - The XML C parser and toolkit of Gnome.
November 2010. http://xmlsoft.org/.

[27] U.Drepper: iconv, Version 1.9.2. 2010.
http://www.gnu.org/software/libiconv/.

[28] J.-L.Gailly and M.Adler: zlib, Version 1.2.5. March 2010.
http://www.zlib.net/.

[29] Microsoft Windows. Microsoft Corporation, July 2009.
http://windows.microsoft.com.

[30] Windows Internet Explorer. Microsoft Corporation, 2001.
http://windows.microsoft.com/en-US/internet-explorer/

products/ie/home.

[31] cscript. Microsoft Corporation.
http://technet.microsoft.com/en-us/library/bb490887.aspx.

[32] J. Clark: Expat - The Expat XML Parser. June 2007.
http://expat.sourceforge.net/.

[33] E.Kuznetsov, C.Dolph: XSLTMark, XSLT Processor Benchmarks.
http://www.xml.com/pub/a/2001/03/28/xsltmark/index.html.
March 2001.

[34] Caucho Technology, Inc.: Caucho, XSLT Benchmark. 2001.
http://www.caucho.com/resin-3.0/features/xslt-benchmark.xtp.

[35] D. Parshley: David Parshley, XSLT Benchmarks. 2005.
http://www.davidpashley.com/articles/xslt-benchmarks.html.

[36] J. Chamas: Hello World. April 2003.
http://www.chamas.com/bench/.

[37] The Apache Software Foundation: Apache - HTTP server project. 2011.
http://httpd.apache.org/.

89

[38] D. Fancellu: XSLT is Way Faster Using Java 5.
http://www.softwarereality.com/programming/

java5xslt speedup.jsp. February 2005.

[39] H.Niksic, M.Cowan: Wget - The non-interactive network downloader.
GNU Wget version 1.11.4. http://www.gnu.org/software/wget/.

[40] Google Inc.: Google. http://www.google.com.

[41] N.Blachman: Google Guide.
http://www.googleguide.com/advanced operators.html.

[42] A. ITO: w3m - a text based Web browser and pager. Version w3m/0.5.2.
http://w3m.sourceforge.net/.

[43] Google Inc.: Google Code. http://code.google.com.

[44] J. Fleck, Z. Sherwin, H.Rupp: xmllint - command line XML tool. Using
libxml version 20705. http://xmlsoft.org/xmllint.html.

[45] P. Eggert, M.Haertel, D.Hayes, R. Stallman and L.Tower: diff - com-
pare files line by line. GNU diffutils version 2.8.1.
http://www.gnu.org/software/diffutils/.

[46] The PHP Group: PHP: Hypertext Preprocessor - Command
Line Interface. Version 5.2.10-2ubuntu6.9 with Suhosin-Patch.7 (cli).
http://www.php.net/.

[47] D.Megginson: SAX - Simple API for XML.
http://www.saxproject.org/.

[48] T.Granlund, D.MacKenzie, P. Eggert and J.Meyering: du - estimate
file space usage. Version 7.4.

[49] RSS Advisory Board: RSS 2.0 Specification. March 30, 2009.
http://www.rssboard.org/rss-specification.

[50] Google Inc.: Google Search Appliance. Version 6.12, August 2011.
http://www.google.com/enterprise/search/gsa.html.

90

[51] Google Inc.: XSL to format the search output for Google Search
Appliance. May 2008.
http://code.google.com/p/gsa-xhtml-stylesheet/source/browse/

trunk/gsa-xhtml.en.xslt.

[52] GraphML Team: The GraphML File Format. April 2007.
http://graphml.graphdrawing.org/.

[53] GraphML Team: The GraphML File Format - Download. April 2007.
http://graphml.graphdrawing.org/download.html.

[54] W.Li, P. Eades, N.Nikolov: Using Spring Algorithms to Remove Node
Overlapping. National ICT Australia Ltd, University of Sydney NSW,
2006, Australia

[55] O.Andersson, P.Armstrong, H.Axelsson et al.: Scalable Vector Graph-
ics (SVG) 1.1 Specification. W3C, April 2009.
http://www.w3.org/TR/2003/REC-SVG11-20030114/.

[56] J. Punin, M.Krishnamoorthy: XGMML (eXtensible Graph Markup and
Modeling Language) - XGMML 1.0 Draft Specification. August 2001.
http://www.cs.rpi.edu/research/groups/pb/punin/public html/

XGMML/draft-xgmml.html.

[57] M.Himsolt: GML: A portable Graph File Format. Universität Passau,
94030 Passau, Germany.
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/

brandenburg/projekte/gml/gml-technical-report.pdf.

[58] J. Punin, M.Krishnamoorthy, G.Uffelman: LOGML (Log Markup Lan-
guage) - LOGML 1.0 Draft Specification. August 2001.
http://www.cs.rpi.edu/research/groups/pb/punin/public html/

LOGML/draft-logml.html.

[59] J. Punin, M.Krishnamoorthy: XGMML (eXtensible Graph Markup and
Modeling Language) - XGMML 1.0 Draft Specification. August 2001.
http://www.cs.rpi.edu/research/groups/pb/punin/public html/

XGMML/XSL/XSL BL/.

[60] N.Walsh: The DocBook Schema Version 5.0. OASIS, March 2008.
http://www.docbook.org/specs/docbook-5.0-spec-cd-03.html.

91

[61] N.Walsh, J.Kosek, S. Ball: Prearranged templates for DocBook, version
1.76.1. The DocBook Project, November 2010.
http://docbook.sourceforge.net/release/xsl/1.76.1/.

[62] F.Manola, E.Miller: RDF Primer. W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[63] D.Brickley, R.V.Guha, B.McBride: RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C, February 2004.
http://www.w3.org/TR/rdf-schema/.

[64] J. Punin, M.Krishnamoorthy: RDF Graph Modeling Language (RGML)
- RGML 1.0 Draft Specification. August 2001.
http://www.cs.rpi.edu/research/groups/pb/punin/public html/

RGML/draft-rgml.html.

[65] V.Maš́ıček: XSLT Benchmarking, version 1.0.0. April 2012.
http://xsltbenchmarking.masicek.net/.

[66] J.Gruber: Markdown. December 2004.
http://daringfireball.net/projects/markdown/.

[67] V.Maš́ıček: XSLT Benchmarking, version 1.0.0 - README.markdown.
April 2012.
https://github.com/masicek/XSLT-Benchmarking/blob/master/

README.markdown.

[68] V.Maš́ıček: XSLT Benchmarking, veriosn 1.0.0 - API documentation.
April 2012. http://xsltbenchmarking.masicek.net/api/.

[69] V.Maš́ıček: PhpOptions, version 1.3.0. February 2012.
http://phpoptions.masicek.net/.

[70] M.Ohrt, U.Tews, R.Rehm: Smarty - template engine, version 3.1.4.
New Digital Group, Inc., October 2011. http://www.smarty.net/.

[71] D.Barbosa, A.Mendelzon, J.Keenleyside: ToXgene - the ToX XML
Data Generator - version 2.3. University of Toronto, February 2005.
http://www.cs.toronto.edu/tox/toxgene/.

[72] H. J. Jeong, S.H. Lee.: A Versatile XML Data Generator. International
Journal of Software Effectiveness and Efciency, 1(1):21–24, 2006.

92

[73] L.Afanasiev, I.Manolescu, P.Michiels: MemBeR XML Generator.
http://ilps.science.uva.nl/Resources/MemBeR/

member-generator.html.

[74] A.Aboulnaga, J. F.Naughton, C. Zhang:
Generating Synthetic Complex-Structured XML Data.
In WebDB’01: Proc. of the 4th Int. Workshop on the Web and
Databases, pages 79–84, Washington, DC, USA, 2001

[75] D.MacKenzie: time - time a simple command or give resource usage.
December 1999. http://www.gnu.org/software/time/.

[76] A. Fingerhut: clojure-benchmarks. July, 2009.
https://github.com/jafingerhut/clojure-benchmarks/blob/

master/bin/timemem.exe.

[77] J.Dvořáková, F. Zavoral: Using Input Buffers for Streaming XSLT Pro-
cessing. 2009.
http://www.computer.org/portal/web/csdl/doi/10.1109/

DBKDA.2009.25.

[78] S. Bergmann: PHPUnit. April 2012.
https://github.com/sebastianbergmann/phpunit/.

[79] T.Burkholder: gsa-parser, 1.xml. February 2011.
http://code.google.com/p/gsa-parser/source/browse/GSA/

xslt/1.xml?r=2.

[80] V.Maš́ıček: Google Docs - XSLT Benchmarking - Additional Reports.
April 2012.
http://code.google.com/p/gsa-parser/source/browse/GSA/

xslt/1.xml?r=2.

93

94

Appendix A

Content of CD

The description of content of attached CD.

1. /CollectingData/ – scripts for download and analysis of XSLT docu-
ments
/CollectingData/download/ – scripts for download of XSLT docu-
ments from the Internet
/CollectingData/download/addresses search – the list of addresses
of XSLT files found on Google Search
/CollectingData/download/addresses googlecode – the list of ad-
dresses found on Google Code used as seeds
/CollectingData/download/addresses hand – the list of addresses
created manually and used as seeds
/CollectingData/download/addresses nonrecursive – the list of
not downloaded addresses found in the log file generated during down-
loading
/CollectingData/clean/ – scripts for merging and cleaning XSLT
documents downloaded from the Internet

2. /AnalysisData/ – scripts for analysing of downloaded XSLT docu-
ments
/AnalysisData/scan/ – scripts for scan of content of downloaded
XSLT documents
/AnalysisData/scan/scan.php – main script that scans all input files
/AnalysisData/category/ – scripts for detection of categories of down-
loaded XSLT documents

95

/AnalysisData/category/individual/common – parameterization
scripts for detection of properties of caterories of downloaded XSLT
documents
/AnalysisData/reports/ – scripts generating graps and tables (in the
CVS format and in the TeX format) from reported data that show re-
sults of analysing of downloaded XSLT documents

3. /XSLT-Benchmarking/ – our project for generating, runnig and report-
ing XSLT Benchmarking
/XSLT-Benchmarking/Data/Tests/ – prepared tests
/XSLT-Benchmarking/Data/TestsTemplates/ – prepared templates of
tests for generating

4. /API/ – the API documentation of the program XSLT Benchmarking

5. /Reports/ – results of our tests on different machines

6. /XSLT-Benchmarking.pdf – this thesis

7. /README.markdown – the Markdown description of the CD
/README.html – the HTML description of the CD generated form
README.markdown

96

Appendix B

Scan Data - Features

This appendix includes tables with exactly measured values of scanned fea-
tures of collected XSLT fiels. Graphs and tables in Chapter 8.1 are created
based on these tables. There are list of tables:

1. Table B.1: Maximum depth of files

2. Table B.2: Depth of nesting of selected elements

3. Table B.3: Maximum fan-out

4. Table B.4: Number of elements rate

5. Table B.5: Size of files

6. Table B.6: Number of recursions

7. Table B.7: Lengths of the longest recursion

97

Maximal depth # files
0 140
1 215
2 240
3 382
4 397
5 1 163
6 560
7 540
8 422
9 478
10 404
11 213
12 173
13 118
14 72
15 64
16 32
17 20
18 14
19 39
20 22
21 18
22 8
23 7
24 5
25 4
26 2
27 7
28 3
29 1
30 1
32 1
33 3
60 1

Table B.1: Maximum depth of files: In the table there are measured maximum

depths of scanned files and numbers of files with the relevant maximum depths.

98

Depth of nesting Foreach Choose If
0 3 639 3 147 2 795
1 1 594 1 608 1 984
2 381 713 756
3 86 220 185
4 46 50 39
5 7 26 8
6 3 3 0
7 4 1 2
8 2 0 0
9 1 1 0
10 2 0 0
11 1 0 0
12 0 0 0
13 2 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 1 0 0

Table B.2: Depth of nesting of selected elements: In the table there are measured

depth of nesting of scanned files and numbers of files with the relevant depths of nesting

separately for selected elements “for-each”, “choose” and “if”.

99

Fan-out # files
0 111
1 67
2 283
3 657
4 619
5 435
6 371
7 261
8 252
9 228
10 252
11 125
12 149
13 148
14 111
15 102
16 114
17 90
18 74
19 62
20 64
21 61
22 43
23 55
24 67
25 40
26 58
27 80
28 51
29 37
30 13

31 21
32 23
33 16
34 18
35 12
36 15
37 14
38 19
39 27
40 15
41 9
42 10
43 20
44 9
45 10
46 2
47 4
48 6
49 8
50 19
51 12
52 11
53 14
54 12
55 4
56 4
57 7
58 3
59 9
60 5
61 4
62 12

63 8
64 7
65 4
66 2
67 6
68 4
69 1
70 2
71 8
72 13
73 10
74 2
75 1
76 12
77 2
78 3
79 2
80 5
83 1
84 4
85 1
86 2
87 1
89 1
90 4
91 2
93 2
96 4
97 2
98 2
99 3
101 1

103 4
104 1
105 1
107 1
108 1
110 6
112 6
113 2
114 2
115 2
117 3
119 1
120 7
121 2
122 1
123 1
124 3
125 1
129 3
132 2
133 2
134 8
135 1
136 1
137 2
138 5
139 4
140 5
141 4
143 1
144 2
146 3

150 2
153 1
154 5
155 2
157 1
159 1
160 1
161 1
165 1
166 4
169 3
172 1
173 1
174 1
175 2
176 2
178 1
179 1
180 2
181 1
182 1
183 1
184 4
185 3
186 8
187 2
190 2
193 1
196 2
200 1
202 1
204 1

205 2
219 1
223 1
233 2
252 1
256 1
260 1
261 1
275 2
276 3
281 1
290 1
303 2
308 2
309 1
312 2
325 1
326 1
343 1
391 1
397 2
407 2
451 1
515 2
550 2
583 1
615 1
779 1
813 1

1 821 2
6 652 1

Table B.3: Maximum fan-out: In the table there are numbers of scanned files with

their relevant measured maximum fan-out.

100

Element name XSLT # rate
value-of 1.0 100 500

text 1.0 74 029
apply-templates 1.0 61 755

when 1.0 60 017
template 1.0 59 280

with-param 1.0 48 814
if 1.0 43 182

call-template 1.0 42 809
attribute 1.0 39 846
variable 1.0 35 906
choose 1.0 26 843

for-each 1.0 26 361
param 1.0 25 205

otherwise 1.0 23 962
copy-of 1.0 8 364
element 1.0 7 784

output-character 2.0 6 678
stylesheet 1.0 5 447

output 1.0 3 565
message 1.0 2 170

attribute-set 1.0 2 106
include 1.0 1 979
number 1.0 1 838

sort 1.0 1 825
copy 1.0 1 476

import 1.0 1 087
comment 1.0 895

key 1.0 555

strip-space 1.0 357
function 2.0 342

apply-imports 1.0 215
transform 1.0 188

eval 183
processing-instruction 1.0 172

result-document 2.0 150
sequence 2.0 131

preserve-space 1.0 98
character-map 2.0 89
decimal-format 1.0 80
for-each-group 2.0 79

namespace 2.0 52
namespace-alias 1.0 49

matching-substring 2.0 40
analyze-string 2.0 40

document 2.0 38
next-match 2.0 37

script 13
node-name 13

non-matching-substring 2.0 12
entity-ref 10
fallback 1.0 6

loop 3
import-schema 2.0 3
perform-sort 2.0 1

elsif 1
else 1

Table B.4: Number of elements rate: In the table there are all found elements in

scanned files from namespace “xsl” with their rates and XSLT versions.

101

Size (kB) # files
0-10 4 308
10-20 723
20-30 256
30-40 138
40-50 107
50-60 57
60-70 28
70-80 36
80-90 31
90-100 17
100-110 8
110-120 16
120-130 8
130-140 6
140-150 8
150-160 5
160-170 2
170-180 10
180-190 2
190-200 1
200-210 1
210-220 2
220-230 1
230-240 2
240-250 2
250-260 3
260-270 2
270-280 1
450-460 1
510-520 1
540-550 1
760-770 1

2 200-2 210 1
7 830-7 840 1

Table B.5: Size of files: In the table are numbers of scanned files with their relevant

measured sizes. Sizes of files are grouped for better visualization.

102

recursions # files
0 5 058
1 414
2 121
3 72
4 26
5 32
6 11
7 16
8 5
9 1
10 1
11 3
13 3
14 2
15 2
22 1

8 799 1

Table B.6: Number of recursions: In the table there are numbers of scanned files

with their relevant measured numbers of recursions.

Max way of recursions # files
0 5 058
1 677
2 25
3 3
4 3
6 1
9 1
18 1

Table B.7: Lengths of the longest recursion: In the table there are numbers of

scanned files with their relevant measured lengths of longest recursion cycle.

103

104

Appendix C

Scan Data - Criteria for
Categories

This appendix includes tables with lists of criteria for each detected category
in collected XSLT files. Categories are disccussed in Chapter 8.2. There are
list of tables:

1. Table C.1: Criteria for category “RSS reader”

2. Table C.2: Criteria for category “RSS generator”

3. Table C.3: Criteria for category “Google Search Appliance”

4. Table C.4: Criteria for category “GraphML”

5. Table C.5: Criteria for category “XGMML”

6. Table C.6: Criteria for category “LOGML”

7. Table C.7: Criteria for category “DocBook reader”

8. Table C.8: Criteria for category “DocBook generator”

9. Table C.9: Criteria for category “RDF reader”

10. Table C.10: Criteria for category “RDF generator”

11. Table C.11: Criteria for category “RDFS reader”

12. Table C.12: Criteria for category “RDFS generator”

105

13. Table C.13: Criteria for category “RGML reader”

14. Table C.14: Criteria for category “RGML generator”

Criterion Value Weight
Template match substring rss 10
Template match substring rdf 10
Template match substring channel 3
Template match substring item 1
File name substring rss 8
File name navlist.xslt 13
File name newsfeeds.xslt 13

Table C.1: Criteria for category “RSS reader”: The list of criteria with their input

values and weights for category “RSS reader”

Criterion Value Weight
File name substring rss 1
Element name rss 10
File substring ¡rss 10
Element name rdf 10
File substring <rdf:rdf 10
Element name channel 3
File substring <channel 3
Element name item 1
File substring <item 1

Table C.2: Criteria for category “RSS generator”: The list of criteria with their

input values and weights for category “RSS generator”

106

Criterion Value Weight
Name of variable 10 different names 1
File substring XSL to format the search output

for Google Search Appliance 10
File substring Google Search Appliance 5

Table C.3: Criteria for category “Google Search Appliance”: The list of criteria

with their input values and weights for category “Google Search Appliance”

Criterion Value Weight
File name substring graphml 8
File substring graphml 3
Template name substring generatenodes 2
Template name substring generateedges 2
Template match substring graphml 8
Template match substring graph 1
Template match substring edge 1

Table C.4: Criteria for category “GraphML”: The list of criteria with their input

values and weights for category “GraphML”

Criterion Value Weight
File name substring xgmml 8
File substring xgmml 5
Template match substring graph 5
Template match substring node 3
Template match substring edge 3
Template match substring graphic 1
Template match substring att 1

Table C.5: Criteria for category “XGMML”: The list of criteria with their input

values and weights for category “XGMML”

107

Criterion Value Weight
File name substring logml 12
File substring logml 4
Template match substring logml 8
Template name substring logml 4
Template match substring hosts 1
Template match substring domains 1
Template match substring directories 1
Template match substring userAgents 1
Template match substring referers 1
Template match substring keywords 1

Table C.6: Criteria for category “LOGML”: The list of criteria with their input

values and weights for category “LOGML”

Criterion Value Weight
File name substring docbook 5
File name substring docbook.sourceforge.net 6
File substring docbook.dtd 9
File substring This file is part of the XSL

DocBook Stylesheet distribution 11
Template match substring chapter 1
Template match substring abstract 1
Template match substring section 1
Template match substring bibliography 1
Template match substring footnote 1

Table C.7: Criteria for category “DocBook reader”: The list of criteria with their

input values and weights for category “DocBook reader”

108

Criterion Value Weight
Element name chapter 1
File substring <chapter 1
Element name abstract 1
File substring <abstract 1
Element name section 1
File substring <section 1
Element name bibliography 1
File substring <bibliography 1
Element name footnote 1
File substring <footnote 1
Element name literallayout 1
File substring <literallayout 1
Element name editor 1
File substring <editor 1
Element name bibliosource 1
File substring <bibliosource 1
Element name acronym 1
File substring <acronym 1
Element name footnoteref 1
File substring <footnoteref 1
Element name sect1 1
File substring <sect1 1
Element name sect2 1
File substring <sect2 1
Element name sect3 1
File substring <sect3 1
Element name sect4 1
File substring <sect4 1
Element name sect5 1
File substring <sect5 1
Element name glossary 1
File substring <glossary 1
Element name glosslist 1
File substring <glosslist 1

Table C.8: Criteria for category “DocBook generator”: The list of criteria with

their input values and weights for category “DocBook generator”

109

Criterion Value Weight
File name substring rdf 1
Template match substring rdf 5
Template match substring description 5
Template match substring bag 2
Template match substring seq 2
Template match substring alt 2

Table C.9: Criteria for category “RDF reader”: The list of criteria with their input

values and weights for category “RDF reader”

Criterion Value Weight
Element name rdf 10
File substring <rdf:rdf 10
Element name Description 4
File substring <rdf:Description 4

Table C.10: Criteria for category “RDF generator”: The list of criteria with their

input values and weights for category “RDF generator”

Criterion Value Weight
File name substring rdfs 1
Template match substring rdf 1
Template match substring rdfs 2
Template match substring description 5
Template match substring Class 3
Template match substring subClassOf 3
Template match substring bag 2
Template match substring seq 2
Template match substring alt 2

Table C.11: Criteria for category “RDFS reader”: The list of criteria with their

input values and weights for category “RDFS reader”

110

Criterion Value Weight
Element name rdf 10
File substring <rdf:rdf 10
Element name Class 4
File substring <rdfs:Class 4
Element name subClassOf 2
File substring <rdfs:subClassOf 2
File substring http://www.w3.org/2000/01/rdf-schema#Class 2

Table C.12: Criteria for category “RDFS generator”: The list of criteria with

their input values and weights for category “RDFS generator”

Criterion Value Weight
File name substring rgml 8
File substring rgml 1
Template match substring rdf: 1
Template match substring rdf:seq 2
Template match substring rdf:bag 2

Table C.13: Criteria for category “RGML reader”: The list of criteria with their

input values and weights for category “RGML reader”

Criterion Value Weight
File name substring rgml 1
File substring rgml 1
Element name bag 2
File substring <rdf:bag 2
Element name seq 2
File substring <rdf:seq 2

Table C.14: Criteria for category “RGML generator”: The list of criteria with

their input values and weights for category “RGML generator”

111

112

Appendix D

Test Environment - Description
of Parameters

There is the list of available parameter of the program XSLT Benchmarking.

1. -g or --generate
Generates all tests from tests templates placed in the directory set by
the option --templates and save them into the directory set by the
option --tests.

2. -r or --run
Run all prepared tests in the directory set by the option --tests and
generate XML reports into the directory set by the option --reports.

3. --templates
Set the directory containing tests templates for generating tests. The
default value is “../Data/TestsTemplates”.

4. --templates-dirs
Set the subdirectories of directory set by the option --templates con-
taining tests templates for generating, separated by the character “,”.
If this option is not set (or is set without value), then all tests templates
are selected (all subdirectories that are considered as tests templates).

5. --tests
Set the directory containing tests. Generated tests are generated into
this directory. Running tests are get from this directory. The default
value is “../Data/Tests”

113

6. --tests-dirs
Set the subdirectories of directory set by the option --tests containing
tests for runnig, separated by character ”,”. If this option is not set (or
is set without value), then all tests are selected (all subdirectories that
are considered as tests).

7. --tmp
Set the temporary derectory. This directory is used for generating
temporary files and for saving files generate by XSLT tranformations.
The default value is “../Tmp”.

8. --reports
Set the directory for generating reports of tests. The default value is
“../Data/Reports”.

9. --repeating
Set the number of repeating of each XSLT transformation. It means,
how much times each XSLT transformation is repeated. The default
value is “1”.

10. -p or --processors
Set the list of tested XSLT processors. If this option is not set (or is
set without value), then all available processors are tested.

11. -e or --processors-exclude
Set the list of tested XSLT processors, that we want exclude form the
list of tested processors. If this option is not set (or is set without
value), then any processors are excluded.

12. -a or --processors-available
Print the list of short names of available XSLT processors (possible used
in options --processors, --processors-exclude) and their kernels
and full names.

13. -m or --merge-reports
Merge the set list of XML reports in the directory set by the option
--reports. The generated XML report has the suffix “-merge”. If this
option is set without value, then all available XML reports (without
suffix “-merge”) are mergered. XML reports are mergered in set order
by the option --order-reports.

114

14. -o ot --order-reports
Set the type of ordering for merging XML reports. Possible values
are “asc” (for ascending ordering by names), “desc” (for descending
ordering by names) and “set” (for ordering by set order of reports in
the option --merge-reports). The default value is “set”.

15. -c or --convert-reports
Convert the set XML report of tests into the selected output set by
the option --convert-type. If the file is not set, latest report in the
direcotry set by the option --reports is converted. In case of empty
directory, the report file have to be set. The generated converted report
are saved into the directory set by --reports.

16. --convert-type
Set the required type of report after converting of the XML report
set by the option --convert-reports. Now, only the value “html” is
available. Thus, it is also the default value.

17. -h or --help
Show the help of the program.

18. -v or --verbose
Print additional informations during running the program.

115

116

Appendix E

Test Environment - Deffinitions
of XML Files

There are the list of XPath expressions defining parts of an XML file that
defines one tests template.

1. /tests – the root element defines all tests to generating

2. /tests/@name – the prefix of names of generated tests

3. /tests/@template – the file name of a template of a XSLT templates
that will be used in each generated test

4. /tests/@templatingType – the name of a templating driver for gen-
erating XSLT templates used in tests

5. /tests/files – the list of files (XML, HTML etc.) used in generated
tests as an input or an expected output files

6. /tests/files/file – the deffinition of one prearranged file used in
generated tests as an input or an expected output file

7. /tests/files/file/@id – the identifier of the prearranged file

8. /tests/files/generated – the deffinition of a file that will be gen-
erated and used in generated tests as an input or an expected output
file

9. /tests/files/generated/@id – the identifier of the generated file

117

10. /tests/files/generated/@generator – the name of a driver used for
generating the file

11. /tests/files/generated/setting – one setting used by the selected
driver for generating the file

12. /tests/files/generated/setting/@name – the identifier of the set-
ting

13. /tests/test – the deffinition of one test

14. /tests/test/@name – the suffix of the test name

15. /tests/test/file – one couple of files used as an input and an ex-
pected output files

16. /tests/test/file/@input – the identifier of the file (prearranged or
generated) used in the generated test as an input file

17. /tests/test/file/@output – the identifier of the file (prearranged or
generated) used in the generated test as an expected output for the
relevant input

18. /tests/test/setting – one setting used by the selected templating
driver for generating the XSLT template used in the test

19. /tests/test/setting/@name – the identifier of the setting

There are the list of XPath expressions defining parts of an XML file that
define one test.

1. /test – the root element defines one test

2. /test/@name – the name of the test

3. /test/@template – the file name of the XSLT template used for trans-
formations

4. /test/couple – one couple of files names of an input and expected
output files

5. /test/couple/@input – the file name of an input file

118

6. /test/couple/@output – the file name of an expected output file

There are the list of XPath expressions defining parts of one report XML file.

1. /reports – the root element defines a collection of reports

2. /reports/global/processors – the list of XSLT processors that were
tested

3. /reports/global/processors/processor – one tested XSLT proces-
sor

4. /reports/global/processors/processor/@name – the identifier of
one tested XSLT processor

5. /reports/global/processors/processor/@fullName – the full name
of one tested XSLT processor

6. /reports/global/processors/processor/@kernel – the kernel of one
tested XSLT processor

7. /reports/tests – the list of reports of all tests

8. /reports/tests/test – the report of one test

9. /reports/tests/test/@name – the name on the test

10. /reports/tests/test/@template – the XSLT template used in the
test

11. /reports/tests/test/processor – the report of testing of one pro-
cessor

12. /reports/tests/test/processor/@name – the identifier of tested pro-
cessor

13. /reports/tests/test/processor/input – the report of one transfor-
mation

14. /reports/tests/test/processor/input/@input – the path of the in-
put file of the transformation

119

15. /reports/tests/test/processor/input/@expectedOutput –
the path of the expected output file of the tranformation

16. /reports/tests/test/processor/input/@output – the path of the
generated file of the transformation

17. /reports/tests/test/processor/input/@success – the flag of cor-
rectness, it contains ’1’ or a returned error

18. /reports/tests/test/processor/input/@correctness – the flag if
the output and the expected output files are same (after normalization)

19. /reports/tests/test/processor/input/@repeating – the number
of repeating of the transformation (for better measure of a time and a
memory usages)

20. /reports/tests/test/processor/input/@sumTime – the sum of time
usages of all transformations (transformation is repeated because of
“//@repeating”)

21. /reports/tests/test/processor/input/@avgTime – the average of
time usages of all transformations (transformation is repeated because
of “//@repeating”)

22. /reports/tests/test/processor/input/@sumMemory – the sum of
memory usages of all transformations (transformation is repeated be-
cause of “//@repeating”)

23. /reports/tests/test/processor/input/@avgMemory – the average
of memory usages of all transformations (transformation is repeated
because of “//@repeating”)

120

Appendix F

The List of Tests

The list of tests based on analysis of features of downloaded files.

1. Elements choose - Long

2. Elements choose - Long with not presented

3. Elements choose - Long with not presented and otherwise

4. Elements choose - Short

5. Elements choose - Short with not presented

6. Elements choose - Short with not presented and otherwise

7. Elements element - Indent template

8. Elements element - Not indent template

9. Elements foreach - Long

10. Elements foreach - Long with not presented

11. Elements foreach - Short

12. Elements foreach - Short with not presented

13. Elements if - Long

14. Elements if - Long with not presented

121

15. Elements if - Short

16. Elements if - Short with not presented

17. Elements template - Default

18. Elements template - Empty

19. Elements template - Nonprocedural

20. Elements template - Procedural

21. Elements text - text - output

22. Elements text - xml - output

23. Typical - Budget

24. Version - 2.0 - Character-map

25. Version - 2.0 - Empty

The list of tests based on analysis of categories of downloaded files.

1. Docbook - HTML

2. Google Search Appliance - Main

3. GraphML - GNM - Random

4. GraphML - Spring - Random and Example

5. GraphML - SVG - Random and Example

6. RSS generator - apply-templates

7. RSS generator - for-each

8. RSS reader - HTML

9. RSS reader - newsfeeds

10. XGMML - HTML

122

The list of other tests.

1. Element include

2. Encoding - Default

3. Encoding - ISO-8859-2

4. Encoding - UTF-16

5. Encoding - UTF-8

6. Encoding - Windows-1252

7. Namespace - Aliases

8. Namespace - Rename

123

124

Appendix G

Reports

This appendix includes table with exact measured time and memory usages
of all tested processors. Graphs in Chapter 11.10 are created based on this
table.

Processor
Windows (win1) Linux (lin1)
Time Memory Time Memory
sec # MB # sec # MB #

libxslt 1.1.23 - PHP 0.074 3. 10.4 5.
libxslt 1.1.26 - PHP 0.049 2. 45.6 3.
MSXML 3.0 0.104 5. 10.8 6.
MSXML 6.0 0.088 4. 10.4 4.
Sablotron 1.0.3 0.123 6. 6.1 2. 0.099 3. 24.0 2.
Saxon 6.5.5 0.471 8. 22.6 8. 1.121 6. 211.1 6.
Saxon HE 9.4.0.2 0.653 10. 34.6 10. 1.717 7. 268.2 7.
XT 20051206 0.267 7. 21.8 7. 0.599 4. 141.1 4.
Xalana 2.7.1 0.501 9. 26.1 9. 1.095 5. 190.4 5.
xsltproc 1.1.23 0.056 1. 5.9 1.
xsltproc 1.1.26 0.062 2. 6.2 3. 0.041 1. 20.2 1.

Table G.1: Average time and memory usages for processors: There are average

time and memory usages for all tested processors in the table. Averages are counted

separately for Windows and Linux. Each column marked with ‘#’ contains the order

of values in column to the left. Blank boxes mean that the given processors were not

tested for the given OS.

125

