
MASTER THESIS

Tomáš Novella

Web Data Extraction

Department of Software Engineering

Supervisor of the master thesis: doc. RNDr. Irena Holubová, Ph.D.
Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2016

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

Title: Web Data Extraction

Author: Tomáš Novella

Department: Department of Software Engineering

Supervisor: doc. RNDr. Irena Holubová, Ph.D., department

Abstract: Creation of web wrappers (i.e programs that extract data from the web)
is a subject of study in the field of web data extraction. Designing a domain-
specific language for a web wrapper is a challenging task, because it introduces
trade-offs between expressiveness of a wrapper’s language and safety. In addition,
little attention has been paid to execution of a wrapper in restricted environment.
In this thesis, we present a new wrapping language – Serrano – that has three
goals in mind. (1) Ability to run in restricted environment, such as a browser
extension, (2) extensibility, to balance the tradeoffs between expressiveness of a
command set and safety, and (3) processing capabilities, to eliminate the need for
additional programs to clean the extracted data. Serrano has been successfully
deployed in a number of projects and provided encouraging results.

Keywords: web data extraction system, web wrapper, safe execution, restricted
environment, web browser extension

ii

First and foremost, I would like to express my deepest gratitude to Irena Hol-
ubová, Ph.D – a supervisor par excellence – for scrunitizing my thesis and teaching
me to become a better writer.

Next, I’d like to extend my appreciation to RNDr. Roman Kašpar, a true
Salsitista, who helped me with the programming part by giving me priceless
feedback and teaching me discipline to become a better programmer.

Special thanks goes to Miroslav Kratochv́ıl for always having time to discuss
my ideas and giving me constructive critique and providing me with invaluable
advice and to Veronika Machalová for meticulously proofreading this work and
showing me that articles and commas are important.

iii

Contents

1 Introduction 3
1.1 Outline of the Thesis . 4

2 Preliminaries 5
2.1 Web Documents . 5

2.1.1 HTML . 5
2.1.2 CSS . 6
2.1.3 Javascript . 6

2.2 Web Application . 6
2.2.1 Challenges for Information Extraction 7
2.2.2 Deep Web . 7

2.3 Web Browser . 7
2.3.1 Browser Extension . 7

3 Data Extraction 8
3.1 Web Wrapper and its Responsibilities 8
3.2 Lifecycle of a Wrapper . 9

3.2.1 Wrapper Building . 9
3.2.2 Wrapper Execution . 9
3.2.3 Wrapper Maintenance . 9

3.3 Web Data Extraction Toolkit . 10
3.4 Laender’s Taxonomy . 10

3.4.1 Languages for Wrapper Development 11
3.4.2 HTML-aware Tools . 11
3.4.3 NLP-based Tools . 11
3.4.4 Wrapper Induction Tools 11
3.4.5 Modeling-based Tools . 11
3.4.6 Ontology-based Tools . 11

3.5 Techniques of Element Identification 12
3.5.1 Regular Expression-based Approach 12
3.5.2 Tree-based Approach . 12
3.5.3 Declarative Approach . 13
3.5.4 Spatial Reasoning . 15
3.5.5 Machine Learning-based Approach 16

3.6 Applications of Data Extraction 17
3.6.1 Selenium . 17
3.6.2 iMacros . 18

3.7 Our Contribution . 19

4 In-browser Web Wrapping 20
4.1 Specifics of In-browser Extraction 20
4.2 Approaches to In-browser Data Extraction 21

4.2.1 Javascript . 21
4.2.2 Domain-specific Language 22

1

5 Proposed Language 23
5.1 Serrano Language Design Overview 23

5.1.1 Gottlob’s Requirements 23
5.1.2 Other Domain-specific Languages’ Issues 24

5.2 Structure Breakdown . 25
5.2.1 Type System . 25
5.2.2 Scraping Directive . 25
5.2.3 Scraping Query and Scraping Result 29
5.2.4 Scraping Unit . 30
5.2.5 Page Rules . 32
5.2.6 Document Item and Global Document 32

5.3 Command Set . 33
5.3.1 Conditions and Logical Predicates 34
5.3.2 Storage . 35
5.3.3 Arithmetics . 35
5.3.4 Array Manipulation . 36
5.3.5 Value manipulation . 36
5.3.6 Prop, Call and Apply . 37
5.3.7 Text Manipulation . 37
5.3.8 DOM Manipulation . 38

5.4 Classification of Our Wrapper . 39
5.4.1 Laender’s Taxonomy . 39
5.4.2 Technique Usage . 39
5.4.3 Applications . 39

6 Implementation 40
6.1 Source Code . 40
6.2 Deployment and Playground . 40
6.3 Serrano API . 40

7 Serrano User Stories 41
7.1 Magneto Calendar . 41
7.2 MyPoints . 42
7.3 Video Downloader (undisclosed) 43

8 Conclusion 45
8.1 Future work . 45

Bibliography 47

Appendix A - CD Contents 51

2

1. Introduction
Since the dawn of the Internet, the amount of information available has been
steadily growing every year. Email, social networks, knowledge bases, discussion
forums – they all contribute to rapid growth of data. These data are targeted for
human consumption, therefore, the structure tends to be loose. Although humans
can easily make sense of unstructured and semi-structured data, machines fall
short and have a much harder time doing so. Finding relevant information on the
web and subsequent transformation into structured data is a challenge that web
data extraction tackles. Structured data can then be processed by a computer to
distill and interlink information, generate statistics, etc.

Automation of data extraction therefore gives companies a competitive edge:
instead of time-consuming and tedious human-driven extraction and processing,
they become orders of magnitude more productive, which leads to higher profits
and more efficient resource usage.

Common business applications of web data extraction include, among other
things, opinion mining, web application testing, web harvesting and competitive
intelligence cultivation [1]. Apart from those, semantic web creation (transforma-
tion into linked data) greatly benefits scientists; social network mapping is useful
for confirming hypotheses on population and web accessibility aids visually im-
paired users to take advantage of Internet.

Web data extraction has been dealt with from the very beginning of the ex-
istence of the WWW. Back then, web wrappers (i.e., programs that extract the
desired data) were written in general-purpose languages like Java or Python.
Soon afterwards, domain-specific languages have been created. Authors of these
languages tried to identify the essence of an extraction task and create a conve-
nient syntax. Although this has made the languages slightly less expressive, it
has also made them more concise and the wrappers became easier to maintain.
With the advent of new web technologies, such as AJAX [2], and the rise of the
Web 2.0 [3], simple raw manipulation of HTML [4] proved no longer sufficient.
As a result, extraction tools have started being bundled with an HTML layout
rendering engine, or were built on top of a web browser to be able to keep up
with modern standards. Extraction tools have evolved to be more user-friendly;
many came with a wizard – an interactive user interface – that allowed users to
generate wrappers more easily. All this evolves in the direction to increase wrap-
per maintainability, which helps to take on incrementally larger tasks. Major
challenges the tools available in the market currently face are as follows.

• Data manipulation. Tools, even the recent ones, provide only a restricted
way of data manipulation, such as data trimming and cleaning. These
tasks are often delegated to separate tools and modules, which may be
detrimental to wrapper maintenance, considering it leads to unnecessary
granularization of a single responsibility, since there have to be additional
programs that process the data that are pertinent to the given wrapper.

• Extensibility. With the rapid evolution of web technologies, many tools
soon become obsolete. One of the main culprits is the inability to easily
extend the tool to support current technologies.

3

• Execution in restricted (browser) environment. Finally, new execution en-
vironments have emerged, which gives rise to novel applications of data
extraction. Examples include web browser extensions (in-browser applica-
tion), which help to augment the user browsing experience. These environ-
ments are restricted in terms of programming languages they execute and
system resources. Besides, script execution safety is another concern.

On these grounds we propose a novel data extraction language – Serrano,
which deals with the problems discussed above.

1.1 Outline of the Thesis
The remainder of this thesis is organized as follows. Chapter 2 contains a brief
introduction of the Web. It outlines the relating main concepts and technologies
and briefly defines terms that will be used throughout this thesis.

Chapter 3 discusses the taxonomy related to data extraction. It defines web
wrappers and web data extraction and identifies its main responsibilities. It is
followed by three classifications that allow us to effectively categorize every wrap-
per language and toolkit. Every category contains several examples of languages
and their short description.

Chapter 4 introduces the motivation for a new language, discusses alternative
solutions and outlines how we address their shortcomings.

Chapter 5 describes Serrano and its usage. It is not, however, a complete
language specification; rather a concise highlight of the cornerstones.

Chapter 6 discusses the implementation aspect of Serrano.
Chapter 7 reviews the uses cases. Serrano has been successfully used in a

number of commercial projects and this chapter showcases some of them.
Chapter 8 is the conclusion of this thesis and the potential further work is

outlined.

4

2. Preliminaries
This chapter provides an overview of the World Wide Web, discusses key technolo-
gies and analyzes their relevance to data extraction. Is serves as an introduction
to terms we will be using in the following chapters.

2.1 Web Documents
The World Wide Web (WWW, or simply the Web) is described as “an infor-
mation space where documents and other web resources are identified by URLs,
interlinked by hypertext links, and can be accessed via the Internet.”1.

Lately, the purpose of the web documents (sometimes also called web pages)
has shifted from presenting data to creating robust web applications and the
so-called deep web.

Web documents can be in various MIME [5] types (document types). They
can be free and unstructured (e.g. plain text), binary, or structured (RSS [6],
XML [7]). However, the majority are semi-structured and implemented by three
core technologies for web content production, namely HTML, CSS and Javascript.

In the remainder of this section, we provide a quick description of web docu-
ments and outline core technologies that prove helpful for the web data extraction.
We then dedicate a section to Web applications and describe the challenges that
complex applications pose to extraction.

2.1.1 HTML
The prevalent language used for composing web documents is HTML [4], which
stands for the Hypertext Markup Language. This language enables us to in-
troduce almost arbitrary structure into the document by marking parts of the
document with special HTML tags. HTML can be easily transformed to XML
which allows us to exploit the complete stack of technologies developed for XML
manipulation. Some of these technologies are:

DOM The Document Object Model (DOM [8]) is a convention for representing
HTML and XML documents as labeled ordered rooted trees where labels
represent HTML tags. That way, we can exploit relationships between
HTML nodes.

XPath is a language with the primary goal of locating elements in an XML
document. The first version, XPath 1.0 [9], is described as “a language
for addressing parts of an XML document, designed to be used by both
XSLT [10] and XPointer [11]” and although it supports more, for example,
arithmetics and string and boolean expressions, these features are kept to
the minimum. It leverages2 DOM and provides the ability to navigate
through the tree and select nodes by a variety of criteria. XPath 1.0 lacks
the expressive power of the first order logic and thus, several extensions

1https://www.w3.org/Help/#webinternet
2https://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

5

https://www.w3.org/Help/##webinternet
https://www.w3.org/TR/DOM-Level-3-XPath/xpath.html

have been developed and studied [12]. By version 2.0 [13], the specification
has widely expanded and has introduced a new type model as well as added
variables and loops to enhance its expressive power to enable us to express
more complex relationships between nodes.

2.1.2 CSS
HTML leverages the Cascading Style Sheets [14] (CSS) to position the HTML
elements and create a visually pleasing layout for the document. CSS makes it
possible to prescribe style rules, such as font and background color to affect certain
elements identified by CSS selectors [15]. Selectors provide us, alternatively to
XPath, a way to select and target elements. The concept of CSS selectors has later
been borrowed and reused in other technologies. A popular Javascript library,
jQuery [16], extends them with pseudoselectors and thus creates central means
to access elements within a web page [17].

2.1.3 Javascript
Javascript [18] is a dynamic programming language embedded in most modern
web browsers and designed to interoperate with the DOM and CSS. It can listen
to both user and DOM events, communicate with other web resources in the
background via AJAX [2] and manipulate the DOM. Due to the differences of
Javascript DOM implementation across the web browsers, many developers prefer
jQuery selectors to native API.

Javascript has become an essential part of the majority of web pages and is a
cornerstone of rich internet applications3.

2.2 Web Application
Web application4 is a server-client application that uses a browser as a client.

Even though a web application runs in the browser and strictly speaking, is a
web document powered by the same technologies as a web document, there is a
fundamental difference in paradigms between a web document and an application.

First hallmark of a web application is the notion of the state, i.e. accessing
the same URL might render different documents. State is usually kept via cookie
files and with Javascript.

Furthermore, navigation inside an application does not necessarily correspond
with the change of the URL. A growing number of Web applications is placed on
a single URL, the so-called Single Page Applications5. The DOM of these pages
is generated on-the-fly by Javascript, depending on content retrieved by AJAX
and the user actions.

Moreover, the user actions are not only triggered by clicking anchors (repre-
sented by <a> tags in the HTML structure), but by a great variety of events6

done with arbitrary document part.
3http://www.w3.org/TR/wai-aria/
4http://webtrends.about.com/od/webapplications/a/web_application.htm
5http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php
6https://developer.mozilla.org/en-US/docs/Web/Events

6

http://www.w3.org/TR/wai-aria/
http://webtrends.about.com/od/webapplications/a/web_application.htm
http://itsnat.sourceforge.net/php/spim/spi_manifesto_en.php
https://developer.mozilla.org/en-US/docs/Web/Events

2.2.1 Challenges for Information Extraction
Web Applications are by definition very complex and for correct functionality they
require rendering engines that support the newest standards. Consequently, web
data extractors need to support them as well to successfully conduct extraction
from web applications.

2.2.2 Deep Web
The Deep Web are parts of the WWW whose contents are not indexed by a
search engine. Examples are documents that require authentification (login),
such as email services, social networks, private forums, et cetera.

These documents often are suited only for individuals and there is often de-
liberate effort by the service providers to make this content harder to access by
programs.

2.3 Web Browser
Web Browsers are specialized programs that enhance web browsing experience,
such as navigation between documents and visual document representation, by
implementing up-to-date standards for web technologies. They are a place where
web applications run.

Common internet browsers, including Chrome7 and Firefox8, support addi-
tional features unspecified by standards, such as browser extensions.

2.3.1 Browser Extension
A browser extension9 is a small program – generally written in HTML, Javascript
and CSS – that can extend functionality of a browser as well as improve the
browsing experience. This is achieved by injection of mostly scripts into several
contexts of a web browser. Below we describe the main contexts that are available
for Chrome extensions.

1. Web page context is created whenever a new document is loaded. Javascript
scripts that are injected into this context are referred to as content scripts
and can read and modify the DOM of the current document.

2. Background context. Scripts executed there are loaded on browser start,
can use advanced API functions and have no access to DOM.

3. Popup context is created on user request. Browsers that support extensions
contain a browser action bar – generally located on the right of the address
bar – which contains an extension-specific action. When user clicks on the
action, a new context(in a new popup page) is created and forms a web
document.

Scripts from different context can communicate via message passing10.
7https://www.google.com/chrome/
8https://www.mozilla.org/firefox/
9https://developer.chrome.com/extensions

10https://developer.chrome.com/extensions/messaging

7

https://www.google.com/chrome/
https://www.mozilla.org/firefox/
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions/messaging

3. Data Extraction
This chapter studies data extraction. First, due to the lack of a unified terminol-
ogy, we make our own definitions of a web wrapper and discuss its responsibilities.
We also investigate the lifecycle of a wrapper, i.e. stages, that every wrapper has.
After that, we dive into web data extraction toolkits, which are complete system
suites for wrapper management. We finish the chapter by reviewing categoriza-
tions of web wrappers by three different aspects:

• Laender’s and Riveriro-Neto’s taxonomy [19], which organizes the wrappers
and toolkits based on the main method used for wrapper generation.

• Our own taxonomy, based on techniques of element identification in [1].

• Real-world applications of extraction tools, also rooted in [1].

Remark. Terms extraction tool, wrapping tool or scraping tool are blanket terms
for a program that may be a wrapper or a wrapping toolkit.

3.1 Web Wrapper and its Responsibilities
A wrapper is a specialized program that identifies data of interest and maps them
to a suitable format. The name comes from the database community, where a
wrapper is a software component that queries data and converts them from one
model to another. The exact definition of a wrapper varies across literature and
is often interchanged with the definition of the extraction toolkit. To facilitate a
more profound analysis of wrappers, we use our own definition, inspired by [19].
Definition. A web wrapper is a procedure for seeking and finding data, extract-
ing them from Web sources, and transforming them into structured data.

This definition is especially useful, because it provides us with a guideline
for addressing different phases of wrapper design. Wrappers and toolkits usually
use this terminology when discussing their functionality. Responsibilities are as
follows.

1. Data retrieval. In the early nineties, a typical web wrapper managed to
follow links by sending GET and POST requests and it sufficed to access
majority of the web. In the presence of Web Applications, the Deep Web
and Single Page Applications it however proves insufficient, and it is im-
perative that a web wrapper be able to simulate user interaction with high
fidelity. The majority of interactions with a Web Application constitutes
mouse clicks and filling forms.

2. Extraction from Web sources. In this phase, the wrapper locates information
within the document. Depending on the structure of the text, it may use al-
gorithms for natural language processing [20] (prevalently for unstructured
text) or may exploit the DOM, for structured and semi-structured data.

8

3. Transformation and mapping into structured data. Most languages only
support simple transformations, such as data trimming and the heavy lifting
is left to the toolkit. Occasionally, the language supports data cleaning,
deduplication and data merging. A flagship format for structured data is
XML, as most wrappers and tools use, but there are other possibilities, such
as JSON or CSV1.

3.2 Lifecycle of a Wrapper
A lifecycle of a wrapper constitutes 3 phases which outline the key design decisions
that had to be tackled by an inventor of a wrapper.

3.2.1 Wrapper Building
A wrapper can either be produced manually, induced or generated using machine
learning. When produced manually, the programmer may use their expertise in
the domain to tailor the wrapper. However, writing wrappers manually may be a
tedious and time-consuming task, all the more when a website changes frequently.
Wrapper induction deals with this issue by allowing users to specify the wrapper
via toolkit. Best depiction is macro recording: user crawls the website and exe-
cutes actions the wrapper should do. This approach makes wrapper generation
more feasible, especially when a large number of domains are to be used for data
extraction. Third option is to generate the wrapper automatically, making use
of supervised learning. The system is fed with training samples and results from
which it attempts to deduce the extraction rules. Unfortunately, this technique
requires a huge amount of supervised training samples and the learned rules are
not transferable to different domains. For more complex websites, this system
often fails to find accurate rules completely. Many present wrappers are built by
a combination of these techniques and are referred to as hybrid wrappers.

3.2.2 Wrapper Execution
In this step, a wrapper is being executed. The execution environment varies and
depends on the sophistication of the system. Simple approaches implement their
own parser that identifies the data, e.g. Deixto [21] toolkit uses a Perl script
and custom libraries. More robust approaches rely on a DOM library without
having a specific browser attached to it, or use a web view API available in their
environment to access advanced browser capabilities, such as cookie storage, CSS
box model2, etc.

3.2.3 Wrapper Maintenance
For a long time, the importance of this phase has been undervalued. Badly main-
tanable wrapper results in higher human engagement, thus higher maintenance
costs over time. To address this issue, Kushmerick [22] defined a concept of

1https://tools.ietf.org/html/rfc4180
2https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/

Introduction_to_the_CSS_box_model

9

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Box_Model/Introduction_to_the_CSS_box_model

wrapper verification. The idea is that during the wrapper execution, the system
assesses if data have been extracted correctly, or if some data are missing. More-
over, attempts for automatic wrapper adaptation [23] have been made. These
works rely on the idea, that despite structural alterations of the page, the prop-
erties of data, like string lengths or patterns remain unchanged.

3.3 Web Data Extraction Toolkit
Definition. Web Data Extraction Toolkits, or Web Data Extraction Systems
refer to a comprehensive suite of programs and services that constitute tools for
web wrapper lifecycle management, usually presented as single piece of software.
Remark. In the literature, the definition and the terminology are non-uniform.
For example, according to [24] a Web Data Extraction Toolkit is “a software
extracting, automatically and repeatedly, data from Web pages with changing
contents, and that delivers extracted data to a database or some other applica-
tion”. Interestingly, this definition introduces three aspects that largely overlap
with our definition. These aspects are as follows.

1. Automation.

2. Data transformation

3. Use of extracted Data

Toolkits are often equipped with GUI that features an internal WebView that
represents a tab in a browser to facilitate wrapper generation. Typically, a user
manipulates with the web inside the WebView in order to obtain the desired
data. User actions are recorded as DOM events, such as form filling, clicking
on elements, authentication, output data identification, and a web wrapper is
generated.

This wrapper can run either in the toolkit environment, or separately pack-
aged with a wrapper execution environment. After the execution additional op-
erations may be implemented, such as data cleaning [25], especially when infor-
mation is collected from multiple sources.

Ultimately, extracted data are saved in a structured form in a universal format,
such as XML, JSON, or into a database.

3.4 Laender’s Taxonomy
To our best knowledge, one of the first endeavors to classify Web Data Extraction
toolkit comes from Laender et al. [19], who proposed a taxonomy for grouping
tools based on the main technique used by each tool to generate a wrapper. Tools
were divided into six categories: Languages for Wrapper Development, HTML-
aware tools, NLP-based tools, Wrapper Induction tools, Modeling-based Tools
and Ontology-based tools.

Similarly to other categorizations, it is not rigid and definite, therefore toolkits
usually fall into multiple classes. In the remainder of this section we briefly discuss
these categories.

10

3.4.1 Languages for Wrapper Development
In addition to general-purpose programming languages such as Perl or Java, spe-
cially designed programming languages have been developed to assist wrapper
writers to create wrappers more efficiently. Some of the examples include Min-
erva, TSIMMIS, Jedi, as well as a number of languages explored in Section 3.5.

3.4.2 HTML-aware Tools
Languages that rely on the inherent structure of HTML are grouped here. These
tools turn the document into a parsing tree, following the creation of extraction
rules automatically, or semi-automatically. Some representative examples include
W4F [26], XWRAP [27] and RoadRunner [28] and Lixto [29].

3.4.3 NLP-based Tools
Natural language processing (NLP) comprises techniques used for processing free
documents (i.e. in natural language). NLP-based toolkits apply techniques such
as filtering, part-of-speech tagging, lexical and semantic tagging to establish re-
lationships between phrases and sentence elements. Henceforth, extraction rules
can be derived studying these relationships. Representative tools based on such
an approach are RAPIER [30], WHISK [31] and SRV [32].

3.4.4 Wrapper Induction Tools
Typically, extraction rules are generated by feeding the toolkit with training
examples. The main distinction between these tools and the NLP-based tools is
that they do not rely on linguistic constraints, but rather on formatting features
found in the document. This makes these tools more suitable for documents with
inherent structure such as HTML documents. Examples of this group of toolkits
include WIEN [33], SoftMealy [34] and STALKER [35].

3.4.5 Modeling-based Tools
This category consists of tools that for a pre-defined domain model (structure of
objects of interest) try to locate conforming data on the web pages and extract
them. Tools that adopt this approach are NODoSE [36] and DEByE [37].

3.4.6 Ontology-based Tools
Tools in this category use a given application ontology (description of key terms
and their relations) to locate data constants in the web page. These constants
then help with object construction and that help with the automatic wrapper
generation. The advantage of this approach is, that the wrapper is less sensitive
to minor structural changes of the web page. The pioneer effort comes from
Data Extraction Group [38] and the most recent effort, to our best knowledge, is
DIADEM [39].

11

3.5 Techniques of Element Identification
This section discusses the underlying techniques wrappers can use for locating
data in the documents. Most wrappers combine two or three of them to compen-
sate for their deficiencies. In some cases, the techniques overlap and there is no
clear distinction.

3.5.1 Regular Expression-based Approach
Regular expressions (regexps) is a concise domain-specific language for finding
patterns in text. When using this technique, we view the document, or segment
of a document as plain text, i.e. we do not assign any special importance to
HTML tags. One of the advantages is the ability to search for patterns even in
unstructured text, like emails and articles, which makes it a viable tool applica-
ble in wide contexts. Furthermore, regexps are relatively fast and expressively
equivalent to L4 grammars, which makes them a feasible solution for most cases.
Alternatively, they are usually not the best option for data extraction of semi-
structured and structured data, because they ignore the additional information
provided by the markup. Due to the rigidity of regexp wrappers they tend to
break even at minuscule changes in the DOM, which introduces maintenance
costs.

W4F [26] is an example of a regular expression-based toolkit. In its archi-
tecture, it identifies and separates the web wrapper responsibilities (retrieval,
extraction and mapping) and keeps these layers independent and minimalistic.
Consequently, it lacks data transformation capabilities and leaves that part to
a separate program. Wrapper generation is aided by a wizard procedure, that
allows users to annotate the document directly in the web page, and generates
regular expression-based rules. Finally, expert users can make manual wrapper
optimizations on the resulting rules. Extraction rules include match a split com-
mands which are specified by a regular expression and also include simple DOM
manipulation commands.

3.5.2 Tree-based Approach
This approach makes use of the tree-based character of structured and semi-
structured document, like HTML or XML, by building the DOM. Afterwards, it
enables navigation by exploring node relationships inside the document. Since
the node addressing via DOM is more likely to be conserved than regular expres-
sions, building wrappers this way lowers maintenance costs. Here, we adopt the
techniques mentioned in Section 2.1, namely XPath and CSS selectors. On the
other hand, building the DOM is computationally relatively expensive and does
not completely eliminate the possibility of a wrapper breakdown after a structural
change in the document.

An example of a wrapping language that uses this approach is OXPath [40],
which is based on XPath 1.0 and enriches it with navigation and extraction
capabilities. It introduces a concept of declarative navigation which turns scraping
into a two-step process:

1. choose relevant nodes and

12

2. apply a particular action to them

The language adds four extensions to XPath, namely:

• CSS properties. For lightweight visual navigation, computed style of ren-
dered HTML is exposed. For this, a new axis for accessing CSS DOM
properties is introduced. Selection based on visibility is also possible. For
example, //span.price[style::color=’red’] selects spans of class price
that are rendered red.

• User actions, such as click and form filling. For example, //field(2)/click
clicks on the third input field on the page.

• Bounded and unbounded navigation sequences, and the Kleene star. This
helps to deal with navigation over paginated data (such as the ”Next but-
ton”). For example, (//a#next/{click /})*//h1 selects all first level
headings on on first page as well as the pages that can be reached by clicking
on the a element with ID=next.

• (Hierarchical) data extraction. OXPath contains a special directive for ex-
tracting nested data, that can be stored as XML or in a relational database.
Example, //div.result/span[1]:<price=string(.)> selects all prices
from the second span and stores them in variable price.

To indicate how OXPath actually works, we provide an actual example for
which this wrapper is asked to extract bibliographical data from http://scholar.
google.com for the search results for query world wide web. Figure 3.1 shows
how it is done along with the OXPath code.

OXPAth has been employed in a number of cases, such as the tool DIA-
DEM [39], which transforms unstructured web information into structured data
without human supervision.

Despite its usage, the language exhibits a number of weaknesses, such as inca-
pability to make even trivial transformations on the extracted data(for example,
splitting the address, etc), therefore it requires further post-processing.

OXPath uses the HtmlUnit3 Java browser engine. However, its rendering
differs from current browsers and fails for certain heavily scripted cases. At the
time of writing this thesis, OXPAth is being ported to Selenium WebDriver which
enables it to access the actual rendering of a page in current browsers.

3.5.3 Declarative Approach
In general, a wrapper is considered declarative, if there is “a clear separation of
extraction rules from the computational behavior of the wrapping engine” [42].

Two representative approaches that fall into this category are the rule-based
prolog-like approach, exploited in Elog and the database-like approach repre-
sented by WebOQl.

Elog [43] is a logic-based language that is derived from Monadic Datalog [44],
which is in turn derived from Datalog, a syntactic subset of Prolog. Elog views
the document as a labeled and ordered (finite) tree and uses relations, such as

3http://htmlunit.sourceforge.net/

13

http://scholar.google.com
http://scholar.google.com
http://htmlunit.sourceforge.net/

Figure 3.1: OXPath extracts bibliographical data from http://scholar.
google.com [41]

nextSibling and firstChild for navigation. Expressive strength equals to monadic
second-order logic4, hence more expressive than XPath. In contrast to MSO
however, it is easy to build a GUI on the top Elog.

Standardly, the rules have a following format:

New(S,X)← Par(, S), Ex(S,X), φ(S,X)

where S is the parent instance variable (in terms of which the filter is defined
in the visual specification process), X is the pattern instance variable, Ex(S,X) is
an extraction definition atom, and φ(S,X) is a (possibly empty) set of condition
atoms. New and Par are pattern predicates. A standalone example to illustrate
a real-world task is provided in Figure 3.2. This language made its way to the
commercial world through the Lixto [45] toolkit, which provides a GUI and is
powered by Elog.

Other examples of declarative languages are the ones developed in the database
community such as Florid [46] and WebOQL [47]. Both thus share similarities
with SQL.

WebOQL is an example of a language that views the Web as a database
that can be queried using declarative language. The main data structure are
hypertrees which are ordered arc-labeled trees that have two types of arcs, internal
and external. Internal arcs are used to represent structured objects and external

4MSO is a restriction of a second-order logic in which only quantification over unary relations
is allowed.

14

http://scholar.google.com
http://scholar.google.com

Figure 3.2: Elog Extraction Program for Information on eBay

represent references (i.e., hyperlinks) among objects. The main construct is the
familiar select-from-where so the query usually reads well and conveys the request
in an intuitive form. Like many similar languages it suffers from a common
limitation: lack of support for exploiting more complex document structure.

3.5.4 Spatial Reasoning
The idea here is that web pages are human-oriented and the visual arrangement of
content in the web pages provides humans with additional cues, such as proximity
of related elements. These visual cues tend to change less frequently than the
layout.

Moreover, most real-world documents, often use sophisticated positioning and
deep nesting of elements to create an appealing layout. Thus, even if the structure
is visually simple, the underlying HTML may not be. This creates a conceptual
gap between document and layout structure. Typical problems are incurred by
the separation of document structure and the ensued spatial layout, whereby the
layout often indicates the semantics of data items. E.g., the meaning of a table cell
entry is most easily defined by the leftmost cell of the same row and the topmost
cell of the same column. In real-world Web pages, such spatial arrangements
are frequently hidden in complex nestings of layout elements — corresponding to
intricate tree structures that are conceptually difficult to query.

One representative example is SXPath [48], which is an abbreviation for Spa-
tial XPath. The language is a superset of XPath 1.0, it builds on Rectangular
algebra, where each visible element is represented by a minimum bounding rect-
angle (MBR) which is the minimum rectangle that surrounds the contents of the
given visible element.

With that, it introduces SDOM (spatial DOM) that enriches DOM with spa-
tial relationships between MBRs, such as the contains and contained and equals
relations.

Design-wise, it extends XPath with two navigation primitives.

• Spatial Axes are based on topological and rectangular cardinal relations
that allow selecting document nodes that have a specific spatial relation
with regard to the context node.

• Spatial Position Functions make use of spatial orderings among document
nodes, and allow for selecting nodes that are in a given spatial position with
regard to the context node.

The advantages of this approach include increased maintainability of wrappers
and more intuitive usage, because the queries reflect what the user sees on the

15

web page, not what the underlying structure is. On the other hand, the premise
may be false and usage of spatial reasoning should be delegated to the domain
expert.

3.5.5 Machine Learning-based Approach
Machine learning-based approaches rely on the training session where the sys-
tem acquires the domain expertise. It requires a training step, where the system
obtains the tagged training data. Subsequently, it deduces the wrapping rules.
Machine learning-based approaches usually employ techniques from natural lan-
guage processing.

RAPIER [30] (Robust Automated Production of Information Extraction Ru-
les) uses pairs of sample documents and filled templates to induce pattern-match
rules that directly extract fillers for the slots in the template. Each rule consists
of a pre-filler, filler, and post-filler pattern that match the preceding of the text,
the text itself and the following part. Each pattern can impose constraints upon
the text, such as the exact word match, the POS (part-of-speech) tag and the
semantic class (that is, available synonyms).

On the one hand, Rapier rules are flexible, because they are not restricted to
contain a fixed number of words but, on the other hand, it is hard to recognize
what rules are actually useful to perform data extraction. To this purpose, a
learning algorithm has been developed to find effective rules and this algorithm
is based on Inductive Logic Programming.

The main strength of this system is that the resulting rules do not require
prior parsing or subsequent processing.

WHISK [31] is a tool designed for versatility. It handles a wide variety of
document types, both unstructured (free) texts, structured XML data and mixed
content. Generation of extraction rules is similar to regular expressions with
slight differences, e.g. asterisk is not greedy but is limited to the nearest match.
In structured texts, the rules specify a fixed order of relevant information and the
labels or HTML tags that delimit strings to be extracted. For free text, initial
syntactic analysis and semantic tagging are employed to recognize the domain
objects and to annotate the text. Annotation is done by inserting markup, similar
to XML to identify parts of speech a special constructs. After a successful match,
the rule is reapplied to the remaining text.

Example of a WHISK rule is

Pattern:: * (Digit) ‘ BR’ * ‘$’ (Number)
Output:: Rental {Bedrooms $1} {Price $2}

and when applied on text

Capitol Hill { 1 br twnhme. fplc D/W W/D.
Undrgrnd pkg incl $675.
 3 BR, upper flr
of turn of ctry HOME. incl gar, grt N. Hill
loc $995. (206) 999-9999

it returns:

Rental Bedrooms 1 Price $675
Rental Bedrooms 3 Price $995

16

This approach performs well, when the text is straightforward, vocabulary
is uniform and conversely, has trouble when the surrounding context is highly
variable and hence identification of patterns is problematic.

3.6 Applications of Data Extraction
In [1], the authors identify and provide a detailed analysis of 14 enterprise appli-
cations of data extraction, namely: Context-Aware Advertisting, Customer Care,
Database Building, Software Engineering, Competitive Intelligence, Web Process
Integration, Web Application Testing, Comparison Shopping, Mashups, Opinion
Mining, Citation Databases, Web Accessibility, Main Content Extraction and
Web Experience Archiving.

Most of these applications take form of a standalone program. However, tools
that belong to Web Application Testing category can run within the browser as
a browser extension. In the remainder of this section, we inspect two represen-
tative tools from the category, iMacros and Selenium, along with the underlying
extraction language they use.

3.6.1 Selenium
Selenium5 was created with the aim of browser automation. Selenium offers
two main services, Selenium IDE6, which is a browser extension to Firefox and
Selenium WebDriver7, which is a collection of bindings to programming languages,
so that the user is able to work with the data after processing.

Users can either write custom macros that consist of a sequence of commands
to be executed, or simply press the “Start recording” button and manually per-
form the actions in the browser. The extension will record the action and generate
a wrapper. Wrapper consists of a sequence of commands to be executed. Apart
from basic commands for navigation, such as form filling, clicking on the but-
tons and following the links, it is also equipped with testing related functionality,
like asserts for a concrete value in a given selector. This tool provides front-end
web testers with unparalleled services to the point that it has become a de facto
standard in the web testing stack. Although the tool provides good example of
handling browser navigation and automaton, it does not provide support in other
areas, such as data extraction.

Selenium Web Driver offers bindings to various programming languages and
enable us to use the commands from selenium to write our of wrapper in the lan-
guages. Naturally, these wrappers, since written in a general-purpose language,
can extract data.

Example

We examined this tool by a real-world example, where we logged into Facebook
and selected the second most recent conversation. The source of the macro for
Selenium IDE is found in Figure 3.3.

5urlhttp://www.seleniumhq.org/
6https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
7http://www.seleniumhq.org/projects/webdriver/

17

https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/
http://www.seleniumhq.org/projects/webdriver/

Figure 3.3: A series of commands that leads to logging into https://www.
facebook.com and choosing the second most recent conversation

3.6.2 iMacros
iMacros8, formerly known as iOpus, strongly resembles Selenium and is in fact
targeting a very similar audience. It even provides a website that lists the dis-
tinctions between iMacros and Selenium 9. The use cases differ from Selenium
and are as follows:

1. Browser Automation

2. Web Testing

3. Data Extraction

Browser Automation and Web Testing

In addition to functionality provided by Selenium, it offers a possibility to ex-
tract data into variables and to navigate through more complex dynamic pages,
supporting sliders (http://maps.google.com) and drag-and-drop functionality.
Identification of the elements on the page is either by XPath, CSS selectors, or by
the element’s type, positions and attributes. On top of this, is offers functional-
ity to detect and intercept built-in browser dialogs, such as the download dialog
and native Javascript dialogs. A useful advanced feature is the image recogni-
tion functionality. It relies on rendering of the image and using advanced neural
networks it can identify the element, even if it has moved, or has changed color.

Data Extraction

This is the main differentiator; in this domain, we can select a variable to which
the data will be extracted. Plain-text and CSV output formats are supported.
One of the most significant drawbacks is the lack of any structure in the extracted
data, it is a simple flat list of data.

8http://imacros.net/
9http://wiki.imacros.net/Selenium

18

https://www.facebook.com
https://www.facebook.com
http://maps.google.com
http://imacros.net/
http://wiki.imacros.net/Selenium

Figure 3.4: A series of commands that leads to logging into https://www.
facebook.com and choosing a conversation with Jan Janco.

Example

Again, we tried to log into Facebook and select the second conversation. Auto-
matic recording broke down, but after some manual effort we made a macro in
Figure 3.4.

3.7 Our Contribution
In this thesis, we propose what we believe is an advancement in in-browser data
extraction: a wrapper that can be executed in a browser extension environment.
In complement to the testing tools above, we set a goal to augment the user
experience.

In addition, we make an adjustment to the classification of applications: we
introduce an additional category, Web Browsing Experience Augmentation.

19

https://www.facebook.com
https://www.facebook.com

4. In-browser Web Wrapping
In the previous chapter, we concluded that in-browser data extraction is an unex-
plored facet of the web data extraction. Browsers and browser extensions provide
an opportunity to personalize and integrate existing services and result in aug-
mentation of the web browsing experience.

Browser extensions are popular. Most downloaded extensions these days have
reached tens of millions of users, for example Adblock has about 40 million users1

and according to Chrome extension usage statistics2, approximately 33% of users
have at least one extension installed.

Numerous extensions actively extract data from the web pages to improve the
user experience. Extension usage statistics are generally a private information
and few browser vendors disclose them. Therefore, most popular extensions (in
regards to number of downloads) are hard to determine. Below, we list several
extensions with millions of active users that extract data from the web pages and
use them.

• Adblock Plus3, an extension for blocking unsolicited advertisements. That
is accomplished either by blocking the request that loads the ad content, or
by hiding elements on the webpage.

• Grammarly4 is an extension that looks for grammar and spelling errors
made by user while typing text to textarea fields.

• Antivirus extensions, by antivirus vendors, e.g. Avast5, generally scan for
links and potentially malicious content.

• LastPass6 is a password management service, i.e. it collects, saves and aut-
ofills passwords into certain web pages and frees the users from remembering
difficult passwords.

To sum up, browser extensions are a relevant and important sector for web
data extraction. In the following sections, we analyze the specifics of in-browser
data extraction and discuss alternative approaches that lead us to creation of a
new wrapping tool – Serrano.

4.1 Specifics of In-browser Extraction
Majority of tools we reviewed were not adapted for in-browser extraction. This
restricted environment has the following specifics.

1According to the data on Google Play
2http://blog.chromium.org/2010/12/year-of-extensions.html
3https://adblockplus.org/
4https://www.grammarly.com/
5https://chrome.google.com/webstore/search/avast?hl=en
6https://lastpass.com/

20

http://blog.chromium.org/2010/12/year-of-extensions.html
https://adblockplus.org/
https://www.grammarly.com/
https://chrome.google.com/webstore/search/avast?hl=en
https://lastpass.com/

Support of Web Standards Since the extraction takes place in the browser,
the language can benefit from an up-to-date rendering engine and CSS box model
as well as Javascript engine, which enable it to render even the most complex web
pages reliably.

Accessibility to Private Data In-browser scraping tools usually have an ac-
cess to all cookies and sessions saved in a browser instance. For example, when
sending an AJAX request from extension environment, the browser appends au-
tomatically all the relevant cookies. Therefore, the wrappers can access the same
things as a user and the user has full control of what the script can access.

Scalability and Distributed Networks With a large user-base, in-browser
scrapers can jointly scrape substantial amount of data, including the Deep web,
and either distribute them or synchronize with the central authority. In this case,
it is essential to consider the privacy aspects of the matter. Potential solutions
have been investigated in fields, such as Differential privacy [49], which investi-
gates techniques for querying collected information while minimizing the chances
for record identification.

4.2 Approaches to In-browser Data Extraction
This section discusses alternative approaches that are being used for data extrac-
tion in extension and in browser.

4.2.1 Javascript
Most extensions implement the data extraction-related functionality in plain
Javascript. This approach, although in small scale manageable, quickly becomes
clunky and cumbersome as the project scales (that is, large amount of page-
specific wrappers are required), for the following reasons.

Violation of the Single Responsibility Principle [50]. First of the SOLID7

principles, it is one of the key principles of software design. It states that “one ob-
ject should have only one reason for a change”. Some of the practical applications
include the separation of the web page semantic structure (HTML) from visual
appearance (CSS), or separation of the data representation (model), visual lay-
out (view) and the controller in the MVC [51] architecture. Here, by designing a
separate language for data-extraction tasks, we can decouple responsibilities and
design a language that avoids the boilerplate code that is inevitable in Javascript.

Safety. Having a separate language with reduced expressive power makes the
language safer to use. For example, it makes it possible to delegate wrapper
creation to third-party developers and eliminate the risk of execution of malicious
code.

7http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

21

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

4.2.2 Domain-specific Language
Another approach is to use one of the domain-specific languages. In Section 3.6,
we discussed the in-browser tools that use a specialized language. These languages
more or less mitigate the downsides of using Javascript, although they introduce
other challenges discussed in the remainder of this section.

Integration and Embeddability The wrappers are often not first-class ob-
jects; that is, they cannot be dynamically loaded and unloaded. On top of that,
tools often do not integrate with Javascript easily, which prevents their use in a
browser extension and in formation of an extraction layer that can communicate
with the extension environment.

Extensibility and Adaptability With the constantly changing face of the
web and continuous adoption of new technologies, it is crucial that the data ex-
traction be easily extendable with new functionality. Otherwise, the technology
becomes soon dysfunctional and obsolete. Moreover, with a wide range of extrac-
tion tasks, different functionality is appreciated in various contexts. Since the
choice of an appropriate tool in browser extension context is limited, the wrapper
writers are often reluctant to resort to Javascript.

Learning Curve Designers of extraction languages usually have to invent their
own commands and structures from scratch, which require further documentation.
However, the increasing level of complexity makes it hard to familiarize new team
members with the language. For this reason, many tools feature a GUI, which
makes wrapper generation easier.

Developer tools We believe that novel languages usually contain bugs and
glitches, which make them an unsuitable candidate for pioneering application in
projects. One way to mitigate this is to equip the language with developer tools
so that the users can debug the problem and create an alternative, workable
solution.

Maturity Wrapping technologies in browser extensions have been around only
recently and are generally less mature than their outside-the-browser counter-
parts. By reinventing the wheel and not building on sound foundations, novel
approaches are often condemned to failure.

Licensing Several tools are licensed under proprietary licenses, which hinder
further development of the language. Moreover, commercial projects often cannot
use languages under licenses, such as GPL. When it comes to the the future
prospect of the tool, licensing is significant differentiator.

22

5. Proposed Language
In this chapter, we propose a new data extraction language – Serrano. We explain
the design choices and contrast the language with its competitors. We finish the
chapter with a description of the language grammar and structural breakdown,
features with examples. For a complete in-depth specification, the reader is ad-
vised to study the official language specification1.

5.1 Serrano Language Design Overview
This section examines and explains why Serrano was designed the way it was. It
mentions Gottlob’s [44] four requirements for a good and durable data extraction
language and also addresses the issues of other domain-specific languages from
Section 4.2.2.

5.1.1 Gottlob’s Requirements
Gottlob presented four desiderata that would make an ideal extraction language.
These attributes are following.

Solid and well-understood theoretical foundation. Serrano uses jQuery
selectors – which are a superset of CSS selectors – for locating elements on the web
page. These technologies have been studied in depth along with their limitations
and computational complexity. CSS selectors are well-known for web developers
and simple, thus require minimum learning time for newcomers. Regarding their
expressive power, they are weaker than XPath 2.0 (which has the expressive
power of at least first-order logic) or Elog (equivalent to monadic second-order
logic). Empirically, CSS selectors can handle most of the extraction tasks at
hand, although eventual addition of other technologies is considered.

Serrano wrapper is a valid JSON and every command directly corresponds to
a Javascript command.

A good trade-off between complexity and the number of practical wrap-
pers that can be expressed. One of our language’s cornerstones is extensi-
bility. Currently, the language can only locate elements by CSS selectors, and
simulate mouse events. Nevertheless, the command set can be easily extended
so that a larger scale of wrappers can be expressed. The command set of most
languages is immutable, although some, such as Selenium offer a way to add new
commands2. Extensions in Serrano are especially easy to make, because enrich-
ing a command set corresponds to merging a new command object with the old
command set object.

1https://github.com/salsita/Serrano/wiki/Language-Spec
2http://www.seleniumhq.org/docs/08_user_extensions.jsp

23

https://github.com/salsita/Serrano/wiki/Language-Spec
http://www.seleniumhq.org/docs/08_user_extensions.jsp

Easiness to use as a wrapper programming language. Many Serrano
commands have the same name and arguments as their Javascript counterparts,
therefore wrapper programmers can get up to speed in no time.

Suitability for incorporation into visual tools. Selector identification is
a task already handled by browsers in the Developer Tools extension. There is
no obvious obstacle that would prevent us from incorporating selected Serrano
commands into a visual tool.

5.1.2 Other Domain-specific Languages’ Issues
This section addresses issues outlined in Section 4.2.2 and explains how Serrano
deals with them.

Integration and Embeddability In order to make a language easy to inte-
grate with Javascript, we leveraged JSON [52]. In contrast of other data transmis-
sion formats, such as XML, JSON has been strongly integrated into Javascript,
which eliminated the need of additional helper libraries for processing. In Ser-
rano, both the wrapper and the result are valid JSON objects. This makes them
very convenient to transform and manipulate: they can be passed around via
AJAX, or altered via Javascript directly, since they are represented by a built-in
object type. Moreover, Javascript libraries such as Lodash3 further extend object
manipulation capabilities.

Extensibility and Adaptability To deal with the issue, Serrano has sepa-
rated the command set and allows to create own commands. Example of such
extension are commands for document editing, which makes Serrano, to our best
knowledge, the first data extraction as well as data editing language used in the
browser. With simple extension of commands, we can allow Serrano to manipu-
late the native Javascript window object, manage user credentials4 or change the
page location. This offers expressive power and control beyond the range of most
extraction tools.

Wrapper maintainability is another design goal of the language. Powerful
commands, such as conditions and type checks, make writing verification inside
the wrapper possible and straightforward.

Learning Curve A steep learning curve of a new language may discourage its
adoption. Due to this fact, we decided to make a transition to Serrano as smooth
and effortless as possible, by adopting features directly from Javascript, with
familiar naming schemes and rationales. The wrapper writers can thus use their
knowledge of Javascript to become productive immediately. Serrano uses jQuery
framework under the hood and exposes numerous native Javascript functions.
For better readability, Serrano is inspired by Dataflow programming [53] and the
Lisp [54] programming language and makes control flow explicit, which makes the
program structure more intuitive [55]. We support UNIX pipes “|”, which helps

3https://lodash.com/
4http://w3c.github.io/webappsec-credential-management/

24

https://lodash.com/
http://w3c.github.io/webappsec-credential-management/

us to link the output of one command with the input of another. In Serrano, we
denote a pipe with a “>” sign.

Developer Tools Since Serrano itself is a library written in Javascript, it can
use Developer Console of the browser for debugging. Additionally, it offers play-
ground for further experimentation. Complex wrappers can be disassembled into
individual instructions and debugged incrementally. Supplementary extensions
have been written to make the wrapper creation easier.

Maturity Although the language itself is new, the technologies in the back-
ground are several years old and field-tested.

Licensing Serrano is licensed under the MIT license5, which makes it an ideal
candidate for eventual third-party development. This license allows incorporation
and usage of the language in both commercial and non-commercial purposes as
well as further modifications of the code base.

5.2 Structure Breakdown
This section outlines the structure of a Serrano script. We describe it bottom-
up, starting with the most basic primitives and work our way up to the global
document. Since the Serrano wrapper is written in valid JSON, most control
structures take form of a Javascript array and object.

5.2.1 Type System
Serrano type system inherits from the Javascript type system. It supports all the
types that are transferable via JSON natively; that is number, string, boolean,
undefined, null and object as well as some additional Javascript types, such
as Date and Regexp.

5.2.2 Scraping Directive
The basic building block is called a scraping directive. It represents a piece of
code that evaluates to a single value. There are 3 types of scraping directives, a
command, a selector and an instruction.

Command

Commands are the core control structure of Serrano. As such, they appear similar
to functions in common programming languages; in a sense that they have a name
and arguments. However, their use is much broader. Serrano has commands
such as !if for conditions, logical commands such as !and, !or, commands for
manipulation with numbers and arrays of numbers, such as !+, !-, !*, !/,
etc. Elevating the strength of commands and making them the central control
structure is the cornerstone of flexibility and extensibility: all control structures

5https://github.com/salsita/Serrano/blob/master/LICENSE.txt

25

https://github.com/salsita/Serrano/blob/master/LICENSE.txt

are of the same kind and adding/removing these structures is a part of an API.
Although some languages, such as Selenium IDE, make it possible to write plugins
and extensions of default command sets6, we did not find any wrapping language
that allows to arbitrarily add and remove any command control structure.

Syntactically, a command is a JSON array, where the first element has a string
type denoting the command name which is followed by arguments (the rest of
the array).

Below, we present an example of the !replace command with three string
arguments.
["! replace ", "hello world", "hello", " goodbye "]

In our example, !replace is a command name, which has three arguments,
namely hello world, hello and goodbye. This command returns a new string
based on an old string (supplied as a first argument) with all matches of a pattern,
be it a string or a regular expression (second argument) replaced by a replacement
(third argument). Finally, the command returns the string goodbye world.

Raw arguments. Command arguments, unless stated explicitly otherwise,
have implicit evaluation. That means, when an argument of a command is another
scraping directive, it is first evaluated and only then the return value supplied.
However, this behavior is not always desired. Because of this, the command spec-
ification determines which arguments should be raw (not processed). Example of
such a command is the !constant command, that takes one raw argument and
returns it. Had the argument not be specified as raw, the constant command
would return a string hello mars. More detailed explanation of the !constant
command is done in Section 5.3.5
["! constant ",

["! replace ", "hello world", "world", "mars]]
⇒ ["! replace ", "hello world", "world", "mars]

Implicit foreach. By default, commands have what we call implicit foreach.
That means, when the first argument of the command is an array, the interpreter
engine automatically loops through the array, and applies the command on each
element, returning a list of results. It is also known as the map behavior. Con-
versely, when a command does not have implicit foreach, the first argument is
passed as-is, even despite being an array.

An example illustrates two commands. The first command, !upper has the
implicit foreach enabled. Thus, it loops through the array of strings and returns
a new array containing the strings in upper case. The second command, !at has
the implicit foreach functionality disabled; therefore is selects the third element
in the array. Had it been enabled for !at, the command would return the third
letter of each string, namely the following array ["e", "o", "r", "u"].
// implicit foreach enabled for !upper
["! upper", ["! constant ", [" hello", "world "]]]
⇒ [" HELLO", "WORLD "]

6http://www.seleniumhq.org/docs/08_user_extensions.jsp#chapter08-reference

26

http://www.seleniumhq.org/docs/08_user_extensions.jsp##chapter08-reference

// implicit foreach disabled for !at
["! at", ["! constant ",

[" one", "two", "three", "four "]], 2]
⇒ "three"

Selector

A selector is used for extracting specific elements from the web page. It is denoted
as a single-item array, containing only one element (of type string) that is prefixed
with one of the characters $, =, ∼ and followed by a string indicating the selector
name. This selector name is treated as a CSS selector (more precisely, a jQuery
selector7).

From the low-level perspective, a selector is syntactic sugar for the !jQuery
command (which takes one or two arguments and evaluates them as a jQuery
selector command8) and the different kinds of selectors are syntactically “desug-
arized” as follows.

Dollar sign This is the basic type of selectors. ["$selector"] is treated as
["!jQuery", "selector"] which internally invokes the $("selector")
jQuery method.

Equal sign Selectors that start with this sign, i.e., ["=selector"] are treated
as an instruction [["$selector"], [">!call", "text"]]. The impor-
tant thing is, that after selecting specific elements, the text value of the
selector is returned, which internally corresponds with invoking a jQuery
text() method on the result.

Tilde sign This sign infers that type conversion of a selector result to a native
Javascript array is imposed. By definition, ["∼selector"] is treated as
[["$selector"], [">!arr"]].

Most wrapping languages (including Selenium IDE language and iMacros)
enable to target elements by CSS selectors. Those languages also support other
forms of element addressing such as XPath queries. SXPath language enables
addressing elements by their visual position. Serrano does not support those
additional methods and in the first version we decided to implement the support
for CSS selectors, since they are more familiar to web stack developers than other
methods. Nevertheless, we consider adding further methods of element addressing
a valuable future prospect.

Instruction

An instruction is a sequence of commands (and selectors), that are stacked in an
array one after another. Similarly to the UNIX pipe(|), the output of the previous
command can be supplied as a first argument of the following. This functionality
is enforced by the addition of an optional greater than sign at the beginning of a
command name or a selector. In that case, the supplied argument is called the

7https://api.jquery.com/category/selectors/
8http://api.jquery.com/jquery/

27

https://api.jquery.com/category/selectors/
http://api.jquery.com/jquery/

implicit argument. Otherwise, the result of the previous command is discarded.
The example below illustrates three examples of upper casing the hello string.
First scraping directive is an instruction that constructs a hello string and passes
it into the !upper command. Second scraping directive is a direct command and
third example first constructs the goodbye string, but because the !upper method
is not prefixed with the greater than sign, it is discarded and the command runs
only with its explicitly stated hello argument. Last example throws an error,
since the !upper command is expecting one argument and zero arguments are
supplied.
[["! constant ", "hello "], [">! upper "]]
["! upper", "hello "]
[["! constant ", " goodbye "], ["! upper", "hello "]]
⇒ "HELLO"

[["! constant ", " goodbye "], ["! upper "]]
⇒ Error

(Scraping) action is a scraping directive, that manipulates the DOM. It may
trigger some event (e.g. simulate a mouse click on an element), or insert/remove
a part of the DOM.

Formal scraping directive definition

Below we provide a formal definition of a scraping directive.
scrap - directive = <selector > |

<command > |
<instruction >

instruction = ’[’ (<selector > | <command >)
[’,’ <chained >] ’]’

selector = ’[’ <selector -name > ’]’

selector -name = (’’ | ’>’) +
(’$’ | ’∼’ | ’=’) + <string >

command = ’[’ <command -name > [’,’ <args >] ’]’

command -name = (’’ | ’>’) + ’!’ + <string >

args = <arg1 > [’,’ <args >]

arg1 = (
<string > |
<number > |
<object > |
<array > |

28

<selector > |
<command > |
<instruction >

)

chained = (<selector > | <instruction >)
[’,’ <chained >]

5.2.3 Scraping Query and Scraping Result
Scraping directives are assembled into a higher logical unit that defines the overall
structure of data we want to extract. In other words, a scraping query is a finite-
depth key-value dictionary where for each key, the value is the scraping directive
or another dictionary. Example below showcases a scraping query.
{

title: [["$h2"], [">!at", 2], [">! lower "]],
time: {

start: [["$. infobar [itemprop =’datePublished ’]"] ,
[">! attr", " content "], [">! parseTimeStart "]]

end: // another scraping directive
}

}

Once the Serrano interpreter starts interpretation of a scraping query, it recur-
sively loops through all the keys in an object and replaces the scraping directive
with respective evaluated values. E.g, if the interpreter runs in context of a
fictional movie database page, scraping query above will evaluate to a scraping
result that looks like this.
{

title: "The Hobbit",
time: {

start: "8:00 pm"
end: "10:41 pm"

}
}

The structure provides several advantages over wrappers in other languages.

1. Data centrism. The central part of the Serrano wrapper are the data, and
a first glance at a scraping query reveals what data are being extracted
and what are the instructions that acquire them. Wrapping languages such
as internal Selenium IDE language or iMacros are instruction-centric, that
is, the wrapper is described as a sequence of commands, where some com-
mands happen to extract data. Languages, such as Elog also do not reveal
immediately the structure of the extracted data.

2. Fault Tolerance. A scraping query consists of scraping directives. If one
directive throws an error, it can be reported, and the processing continues
with the following directive in the scraping query. In tools, such as Selenium

29

IDE, the data-to-be-extracted are not decoupled, so a failure at one point
of running the wrappers halts the procedure.

5.2.4 Scraping Unit
A scraping unit roughly corresponds to the notion of a web wrapper. It is a
higher logical unit that specifies when the scraping is to begin as well as what
actions need to be executed prior to data extraction. The reason is that more
often that not, scraping cannot start immediately, after the page loads. When
scraping from dynamic web pages, we might be waiting for certain AJAX content
to load, some elements to be clicked, etc. These wait are referred to as explicit
waits.

Some languages, such as [56] to not expect that some content is not ready
immediately after the page has loaded. Other languages, such as iMacros, also
consider the page ready right after the load9 but also provide a command to wait
for a given period of time10.

We have separated the waiting prescription into the scraping unit instead of
mixing it with the wrapper itself to make the wrapper more clear and separate
the tasks. Certain disadvantage of our approach might be the fact, that for more
complex wait instructions (e.g scraping intertwined with waiting) we also have to
mix them, which creates badly readable wrapper.

Because the execution can be delayed or ceased (if the element we are wait-
ing for will not appear), interpretation of the scraping unit returns a Javascript
Promise. A Promise is an object that acts as a proxy for a result that is initially
unknown, usually because the computation of its value is yet incomplete.

Specifically, a scraping unit contains three optional and one required property.
The properties are the following.

Result is the mandatory property. It is either a scraping query or a scraping
directive.

WaitActionsLoop is an array of waits (elements to be waited for until they
appear) and actions to be executed. The loop is blocking, i.e. the execution
stops until the element is accessible. If the element is still missing after the
defined period, the execution of the scraping unit is terminated. It is mutually
exclusive with the wait and actions properties.

Wait is an object that constists of a string jQuery selector and optional waiting
time (the default is 2 seconds).

Actions is the array of scraping actions that are executed in specified order.
9http://wiki.imacros.net/FAQ#Q:_Does_the_macro_script_wait_for_the_page_to_

fully_finish_loading.3F
10http://wiki.imacros.net/WAIT

30

http://wiki.imacros.net/FAQ##Q:_Does_the_macro_script_wait_for_the_page_to_fully_finish_loading.3F
http://wiki.imacros.net/FAQ##Q:_Does_the_macro_script_wait_for_the_page_to_fully_finish_loading.3F
http://wiki.imacros.net/WAIT

Temp is an optional dictionary of temporary variables. The <key> of this
dictionary is a string and a <value> is a scraping directive. Each key-value pair
is internally translated into the following scraping directive.
["! setVal", <value >, <key >]

An example of a scraping unit follows. This unit first waits for the element
of class competition results to appear, then it clicks on the element of ID
more results and finally it scrapes the competition results and returns them in
a Promise.
{

wait: {
name: ". competition_results "

},

actions : [
[["$# more_results "], [">! call", "click "]]

],

result: ["$. competition_results "]
}

In the following, we provide a formal grammar description of a scraping unit.
scrap -unit = {

waitActionsLoop : [(<wait > | <actions >), ...],
wait: {

// required
name: <string: jQuery selector >,

// optional , default: 2000, 0 means forever
millis: <int: milliseconds to wait >

},

actions : [
<instr >,
<instr >,
...

],

temp: {
<name:string >: <scrap -directive >
<name:string >: <scrap -directive >,
...

},

result: <result -type >
}

result -type = <scrap -directive > || {

31

<name:string >: <result -type >,
<name:string >: <result -type >,
...

}

5.2.5 Page Rules
Sometimes we want to execute different wrappers and run actions on a single
web page. Page rules is an object, that associates scraping units and scraping
actions with a web page. To our best knowledge, no wrapping languages have this
functionality and users have to manage the wrappers and actions manually. Thus
Serrano also has a role of a “web data extraction manager”, where it manages
which wrapper should be executed on a given page.

The page rules object has two properties, scraping and actions that serve
for specification of scraping units and actions, respectively. A valid rules ob-
ject must have at least of these properties non-empty. The scraping property
contains either a single scraping unit, or a key-value pair of scraping units and
their names. Serrano then enables user to execute the scraping unit by the name.
Similarly, an action can either be a scraping action (which is a special type of
a scraping directive) or a key-value pair of named actions. A formal definition of
the grammar follows.
page -rules = {

scraping : <unit -or -object >,
actions : <action -or -object >,

};

unit -or -object = <scrap -unit > || {
<scrap_name :string >: <scrap -unit >,
<scrap_name :string >: <scrap -unit >,
...

}

action -or -object = <scrap -directive > || {
<act_name :string >: <scrap -directive >,
<act_name :string >: <scrap -directive >,
...

}

5.2.6 Document Item and Global Document
Each page rules object needs to be associated with the respective URL or set of
URLs so that at the visit of a web page in the browser, Serrano is able to find
the most suitable rules object. The associating object is called a document item
and has the following four properties, the domain, then either a regexp (a regular
expression) that matches the URI, or a path, which is the URN and finally the
rules object. Multiple document items may match the given URL. In that case,
we select the match with the highest priority.

32

Priority is given to every document. Most important criterion is the “length”
of a domain. This is determined by the number of dots in the URL. E.g,
scholar.google.com signifies higher level of specification than google.com and
thus has higher priority. The next criterion for priority is determined by other
fields. The regexp field has higher priority than the path field. Both fields are
optional and they cannot be used in a single document item simultaneously.

The lowest priority has a document item with the domain attribute set to *.
This domain item is also called the default domain item and matches all URLs.

The formal definition of the grammar follows.
document -item = {

domain: <string >,
regexp: <string >,
path: <string >,
rules: <page -rules >

}

Finally, an array of document items forms a global document and it is the
top-level structure that encapsulates all the data in Serrano. With the Serrano
API, we usually supply this global document and the engine always chooses the
matching page rules.

The formal definition follows.
global - document = [

<document -item >,
<document -item >,
...

]

5.3 Command Set
One of the leading ideas behind Serrano is to create an extensible language that
extracts and processes the extracted data. The aim is to completely eliminate the
need for middleware processing that is dependent on a given wrapper. Therefore,
we consider extraction and subsequent data processing one responsibility and find
it valuable to couple these tasks together. As a consequence, Serrano wrapper
creators are capable of extracting and cleaning the data, all in one script.

To accomplish this, the resulting command set must be rich – extracted data
often undergo complex transformations in order to be unified. These commands
constitute the core library of Serrano.

The rest of this section provides an overview of most important commands
and illustrates useful use cases. It is not supposed to be an exhaustive description
of the command set and for the full details we would like to turn the reader’s
attention to the Language Specification11.

11http://github.com/salsita/Serrano/wiki/Language-Spec

33

http://github.com/salsita/Serrano/wiki/Language-Spec

5.3.1 Conditions and Logical Predicates
Ability to change the control flow is one of the distinguishing features of Serrano.
Using conditions, Serrano can decide, which information to scrape and how to
transform it during runtime. Commands that contribute to this category are
divided into:

• Branching commands. The main representative is the !if command with
optional else branch. The first argument is a predicate, which is a scrap-
ing directive that returns a boolean result. The following example returns
”Yes”, because 5 is greater that 3.
["!if", ["! gt", 5, 3], ["! constant ", "Yes"],

["! constant ", "No "]]
⇒ "Yes"

• Existence tests. Commands, such as !exists, !empty and their logical
negations !nexists, !nempty enable us to test if a given structure ex-
ists (is not undefined or null) and whether the array contains any ele-
ments, respectively. Command !exists returns true iff the equivalent Java-
script code (arg !== undefined && arg !== null) evaluates to true and
!empty returns true iff the ("object" === typeof(arg)) && (("length"
in arg)?(0 === arg.length) : (0 === Object.keys(arg).length))
test returns true. Below, the example command checks, if there is some
element with the myClass class.
["! nempty", ["$. myClass "]]
// ... the same , using the implicit argument
[["$. myClass "], [">! nempty"]]

• Comparison tests serve for comparing two integers. Commands in this cat-
egory are: !lt, !gt, !le, !ge, !eq, !neq and are directly translated
to <, >, <=, >=, ==, !==, respectively.

• Compound conditions include !and and !or commands and their !all and
!any aliases. These commands help us group several single predicates into
compound predicates. The example below returns true because the condi-
tion ((0 < 1) && (3 > 2)) evaluates to true.
["! and", ["!lt", 0, 1], ["!gt", 3, 2]]

• Result filtering is a means for reducing array of results to only items that
pass a filtering criterion. For this purpose we define the !filter command
that takes an argument in form of an array and on each item of the array
it evaluates the partial condition that comes as the second argument to
!filter command. By partial condition we mean the that the condition
that is argument of the !filter command should use argument chaining,
i.e. should be evaluated on each tested item of the filtered array. In the fol-
lowing example, every item of the selector is chained with the !ge condition
and the command returns only items where it age is set to 18 or more.
[["˜li .age"], [">! filter", [">!ge", 18]]]

34

While the above example would work, more frequent use-case of filtering is
that you need to filter some items of array-like object (chosen with jQuery
selector), based on some properties of the items in the array. For this, we
can leverage the fact that the items passed to !filter are jQuery object, i.e.
we can access the property we need using selector chaining. In the following
example, each time a person is iteratively chained with the partial condition
that further selects the age and compares it with 18. Thus, only persons
that have an age greater or equal to 18 will pass.
["! filter", ["$.person"],

[">=. age", ">!ge", 18]]

5.3.2 Storage
Sometimes, the extracted value needs to be reused in multiple succeeding com-
mands. To do so, we can use temporary storage.

There are two commands for working with temporary variables !setVal and
!getVal. For these commands the implicit forEach looping rule is not applied.
The !setVal command takes two arguments, the key under which the object
should be stored and the object itself. The !getVal command accepts one argu-
ment that denotes the key under which the value is stored in the storage.

After running the scraping query below, two items are saved to storage,
category and mainHeader. Inside the scraping directive a !setVal command
saves the intermediate result and returns it for further scraping.
{

category : [["∼h1"], [">! first "],
[">! setVal", " mainHeader "],
[">! split", ":"] , [">! first "]]

}

5.3.3 Arithmetics
Arithmetics is especially useful when we need to add offsets to dates, or do other
minor calculations. There are four commands !+, !-, !*, !/ that cover the
basic operations with numbers. The commands have two operands and work on
both numbers and arrays of numbers. If both arguments are numbers (Javascript,
and consequently Serrano do not differentiate between integers and floats, they
only have a type number), the result is a number, or a NaN is special cases, such
as division by zero. The example below demonstrates operations on two numbers.
["!*" , 256, 2] ⇒ 512
["!/" , 94.84 , 2] ⇒ 47.42

If one of the operands is a number and second one is an array of numbers,
the command iterates through the items of the array invokes the operation in a
(element of array, other operand) pair. The following example saves two
testing arrays in the data and data2 variables into the temporary storage. Then,
it adds a number 5 to an array and also does it in flipped argument order.

35

["! setVal", "data", [1 ,2 ,3 ,4 ,5]]
["! setVal", "data2", [10 ,20 ,30 ,40 ,50]]

["!+" , 5, ["! getVal", "data "]] ⇒ [6 ,7 ,8 ,9 ,10]
["!+" , ["! getVal", "data "], 5] ⇒ [6 ,7 ,8 ,9 ,10]

If both operands are arrays of the same length, operation is executed on them
“per partes”. Otherwise, NaN is returned. The following examples (assuming the
data and data2 contain the same values as in the previous example) subtract
two arrays. In the first example, both arrays have the same length, therefore the
operation is successfull. In the second example however, the lengths differ and
NaN is returned.
["!-", ["! getVal", "data2 "], ["! getVal", "data "]]
⇒ [9, 18, 27, 36, 45]
["!-", ["! getVal", "data2 "], ["! constant ", [1, 2, 3]]]
⇒ NaN

5.3.4 Array Manipulation
Selectors are often transformed into arrays. Array manipulation basics are cov-
ered by four commands, !first, !last, !at and !len. Intuitively, these com-
mands enable us to access first, last and n-th command, respectively. The !len
command returns the length of an array. The following example demonstrates
this.
[["! constant ", [0, 1, 2, 3, 4]], [">! first "]]
⇒ 0

[["! last", ["! constant ", [0, 1, 2, 3, 4]]]
⇒ 4

[["! constant ", [-1, 0, 1, 2, 3, 4]], [">!at", 4]]
⇒ 3

[["! constant ", [0, 1, 2, 3, 4]], [">! len "]]
⇒ 5

5.3.5 Value manipulation
Command !constant takes one argument and the result of the command is the
value of the passed argument uninterpreted. Since we are using type-checks for
deciding how to interpret arguments, this command is useful especially for passing
arrays as values, without the engine interpreting them.
[["! constant ", [0, 1, 2]], [">! len "]]
⇒ 3

Sometimes, we need to group the results of several scraping directives into
an array. For this we have introduced the !interpretArray command, that

36

interprets each of its argument. It is particularly useful in combination with the
!apply command, that is explained in Section 5.3.6.

5.3.6 Prop, Call and Apply
Remark. These commands are relatively unsafe. However, in some cases they
might be useful, so we advise to carefully consider the tradeoffs of adding them
to the command set.

They serve for invoking arbitrary methods and accessing properties of objects.
Each command takes one optional argument that determines if it is executed on an
object itself, or if it loops through sub-objects and executes it on every individual
element. In other words, if the last argument has the value "inner", forEach
looping is enabled, otherwise is it disabled.

The example below demonstrates the use of the !prop command. First in-
struction invokes the length property of the string "Hello", which is equivalent
to calling of "Hello".length in Javascript. The second instruction uses the loops
through the array of elements of class name and returns the array of the respective
lengths of names. Other commands work analogically. The third instruction is
without the optional argument, therefore is returns the number of items the array
holds.
[["! constant ", "Hello "], [">! prop", "length "]]
⇒ 5

[["∼.name"], [">! prop", "length", "inner "]]

[["∼.name"], [">! prop", "length "]]

The !call command works very similarly, except instead of invoking a prop-
erty, it invokes the method, and !apply works similarly to !call except the
second argument provides provides an array of arguments for the method. In
the following example, !apply function invokes the Javascipt !replace function
with two arguments, that are regular expressions.
[["! constant ", "aba"], [">! apply", " replace ",

["! interpretArray ", [["! regexp", "a","g"],
["! constant ", "b"]]]

]]
⇒ "bbb"

5.3.7 Text Manipulation
Among the myriad of commands, we list the most important !lower, !upper,
!split, !trim, !replace, !join, !concat, !splice and !substr, the be-
havior of which is identical to their Javascript counterparts and details are pro-
vided by the official specification.
[["! constant ", "Hello "], [">! lower "]]
⇒ "hello"

37

["! upper", "Hello "]
⇒ "HELLO"

["! split", "24.7.2016" , "."] ,
⇒ ["24" ,"7" ,"2016"]

["! trim", " Good job "]
⇒ "Good job"

["! replace ", "Good job", "Good", " Outstanding "]]
⇒ " Outstanding job"

["! join", ["A","P","W","B", " Dumbledore "], ". "]
⇒ "A. P. W. B. Dumbledore "

["! concat", [1, 2, 3], [2, 3, 4], [5]]
⇒ [1, 2, 3, 2, 3, 4, 5]

["! splice", [10 ,20 ,30 ,40 ,50] , 1, 3]
⇒ [10, 50]

["! substr", " serrano ", 4]
⇒ "ano"

5.3.8 DOM Manipulation
Serrano has been recently enriched with DOM manipulation capabilities on top
of data extraction. To manipulate the DOM we can use !insert, !remove and
!replaceWith commands, which are identical to their jQuery counterparts.

The !insert command takes three arguments the first one has to be the
selector, followed by the string "before" or "after", to denote where is insertion
is to be done, and final argument is the text to be inserted.
["! insert", ["$p:first"], "before",

"<h2 >Hello John !</h2 >"]

Third variable may also be a template string enclosed by {{ and }}. Names
of interpreted variables are either plain names, or refer to nested properties using
standard Javascript dot notation. The the object with template values is supplied
when scraping is initiated.
["! insert", ["$p:first"], "before",

"<h2 >Hello {{ person.name }}! </h2 >"]

The !remove command takes one argument – the selector that is to be re-
moved frmo the DOM. The following scraping directive (also a scraping action,
in this case) removes the first paragraph from the web page.
[’!remove ’, [’$p:first ’]]

38

Finally, the !replaceWith is used for replacing selected elements with new
content. It takes two arguments, the selector and the HTML definition of a new
content.
[’!replaceWith ’, [’$h1:first ’],

’<h1 >My new heading </h1 >’]

[’!replaceWith ’, [’$p:last ’],
’<p>Bye , {{ name }}. See you soon .</p>’]

5.4 Classification of Our Wrapper
In this section, we pidgeonhole Serrano based on the classifications in the pre-
vious chapter. We presented 3 categorizations, Laender’s Taxonomy, Technique
taxonomy and Applications.

5.4.1 Laender’s Taxonomy
According to this categorization, Serrano can be considered a Language for Wrap-
per Development. We acknowledge that in-browser extraction has a need for a
lightweight solution, which can be separated into the library. However, in con-
junction with built-in Developer Tools in a browser, Serrano can be also regarded
as a very simple HTML-aware toolkit.

5.4.2 Technique Usage
Serrano command set includes commands !replace and !match for content ele-
ment parsing, which makes it supportive of the regular expression-based approach.
Selectors are directly translated into jQuery selectors, which are a superset of CSS
selectors, which makes it support tree-based approach as well as spatial reasoning,
to a certain extent.

5.4.3 Applications
The language can be used effectively as a Web Application Testing tool. In
addition, we have recognized a novel application not mentioned in the original
work – Web browsing experience augmentation. This is, to a large extent, dealt
with in form of browser extensions.

39

6. Implementation

6.1 Source Code
Serrano as well as the source codes of the playground projects can be found on
Github1 and are written in ES52 Javascript.

All parts of code have been extensively tested and the unit test files are named
xxx.spec.js, where xxx represents the name of the module.

We used three third-party libraries. JQuery was useful for providing aug-
mented cross-platform CSS selectors implementation, Lodash served as a useful
general-purpose library and Q was used because at the time of writing Promises [57]
were not a part of the contemporary Javascript specification. Nevertheless, Q
Promises are compatible with the modern Promise specification.

The production version of Serrano benefits from a logging service integration3,
where all the runtime warnings and errors are uploaded.

6.2 Deployment and Playground
For testing, we created two examples in form of browser extensions.

Developer’s extension is in the simple-extension4 directory and enables user
to write scraping units that are being executed on the current web page.

Client-server extension is located in demo-extension-client5 directory and
is paired with a server side6. Testing server was written in node.js by Roman
Kašpar. Here, the client extension periodically polls the server for a new global
document and extracts data from the current page accordingly.

6.3 Serrano API
Users of Serrano may only want to use limited scope of functionality. For this
reason we present several ways to take advantage of this library. In all cases we
suppose that Serrano has been included into the source code; that is, somewhere in
the file we expect the following code var serrano = require("../path/to/serrano.js");
. Serrano may find various uses; the API allows to scrape only the scraping direc-
tive, setting the context for templates and storage (via serrano.utils.interpret),
run the scraping unit or (un)load the whole global document. The detailed API
can be found in the main javascript file7.

1https://github.com/salsita/Serrano/tree/master/serrano-library
2https://people.mozilla.org/˜jorendorff/es5.html
3https://www.loggly.com
4https://github.com/salsita/Serrano/tree/master/simple-extension
5https://github.com/salsita/Serrano/tree/master/demo-extension-client
6https://github.com/salsita/Serrano/tree/master/serrano-server
7https://github.com/salsita/Serrano/blob/master/serrano-library/code/js/

main.js

40

https://github.com/salsita/Serrano/tree/master/serrano-library
https://people.mozilla.org/~jorendorff/es5.html
https://www.loggly.com
https://github.com/salsita/Serrano/tree/master/simple-extension
https://github.com/salsita/Serrano/tree/master/demo-extension-client
https://github.com/salsita/Serrano/tree/master/serrano-server
https://github.com/salsita/Serrano/blob/master/serrano-library/code/js/main.js
https://github.com/salsita/Serrano/blob/master/serrano-library/code/js/main.js

7. Serrano User Stories
Serrano has proven its stability and applicability in a number of projects. Below,
we provide a short description of the three most important projects along with
the benefits Serrano has provided.

7.1 Magneto Calendar
Magneto1 is a cloud-based calendar system that enables creation of meetings and
to-dos from any web page and adding them to Google or Microsoft Exchange
calendar. It also extracts key information for the corresponding events and stores
it with the items. Additional features2 include shared schedules, dynamic travel
times to the event (estimate based on a prediction of traffic for a given time and
day) and security (by encryption).

If the user visits a website that contains information suitable for a calendar
event and clicks on the Magneto button (see Figure 7.1), a browser action window
appears with extracted information of the event.

To achieve this goal, Magneto uses custom-page wrappers, along with the
default wrapper. Originally developed in Javascript, they attempt to extract
information about the event. More precisely, one or multiple of the following
fields: what, where, when, who and notes.

There were two main reasons for rewriting the rules in Serrano.

1. Maintainability. As the project expanded, the number of web sites and their
respective wrappers became harder to maintain. Had the wrappers been
outsourced to a third-party developer, number of issues would be solved.
Due to the separation of responsibilities, the wrapper developer would not
need knowledge of the rest of the extension architecture, which reduces the
time of getting acquainted with the project and avoids the disclosure of the
source codes.

2. Maintenance. Updating the whole extension every time a single wrapper is
updated is stultifying to the user and bandwidth-consuming. Having the
extension update the database of wrappers via AJAX would overcome this
issue.

Separation and outsourcing the rules into Javascript would run into several
problems, most important of which is safety. Javascript is a general-purpose
language and allowing to execute arbitrary Javascript code in the extension would
create a potential security hole. Furthermore, downloading and executing remote
Javascript violates the conditions of the most Application stores, for the same
reason. Hence, the application could not be placed there.

Use of another wrapping language would also be problematic. Wrappers that
were already written in Javascript involved processing of the scraped information,
such as cleaning of the selected data from HTML tags, date processing, etc.

1https://magneto.me/welcome/about-us.html
2https://magneto.me/welcome/features.html

41

https://magneto.me/welcome/about-us.html
https://magneto.me/welcome/features.html

Figure 7.1: Magneto interface, when user clicked on the Magneto browser action
button on a page of a Vine bar.

When rewriting wrappers into Serrano, we identified common functionality
across the wrappers and created new commands, including !convert12hTo24h
which was used to convert the time of an event into a 24-hour clock, since some
web sites use a 12-hour format. Further helper commands are, for example,
!textLB (LB stands for line break) that appends a new line symbol after specific
tags, such as <div>, <p>,
, <hr>. Another command was !cleanupSel
for removing the tags and the superflous white spaces from the selected text.

Next, we identified parts of the wrappers that required higher expressive power
than Serrano had. We created commands that encapsulate this functionality and
they work as black boxes. That is, the functionality that requires higher expres-
sive power is encapsulated within the commands without granting the language
higher expressive power. These constructs include while loops, exceptions, etc.

Another challenge for Serrano was understanding of the date of an event on
Facebook. Facebook3, for user convenience, describes date in various formats
depending on when it is going to occur. Valid descriptions of a date include:
May 24, next Thursday, tomorrow, etc. Our workaround involved creating a
!parseFacebookDate command, which was a raw copy and paste of the complex
function featuring in the former Javascript wrapper. After some time, Facebook
coupled additional microdata [58] with the event, so this command was removed.

After the replacement4 of Javascript wrappers with Serrano scraping units,
both maintainability and maintenance were increased.

7.2 MyPoints
MyPoints5 is a shopping rewards program that runs affiliate programs with 1900+
stores. It motivates people to make a purchase at associated stores to earn points,

3http://www.facebook.com
4https://github.com/salsita/Serrano/tree/master/magneto/scraping-units
5http://mypoints.com/

42

http://www.facebook.com
https://github.com/salsita/Serrano/tree/master/magneto/scraping-units
http://mypoints.com/

Figure 7.2: Excerpt of the search results for “Effective Java” augmented by My-
Points extension.

which can be then transformed into discount coupons and subsequently redeemed.
Serrano was used in beta version of the extension, but eventually, the extension

was rewritten from scratch by a different vendor and Serrano rules were replaced.
One of the possible reasons for discontinuing the use of Serrano have been the
fact that at the time of deployment, Serrano was proprietary. Below, we describe
the extraction-related competencies of the extension.

On websites with search results of a search engine, MyPoints extension injects
text informing the potential shopper about the amount of points they can earn,
as shown in Figure 7.2. Moreover, when the user proceeds to a checkout in the
store, it automatically fills in the input field with an available coupon. To serve
this purpose, commands for DOM manipulation6 were added. These commands
include: !insert, !remove and !replaceWith.

7.3 Video Downloader (undisclosed)
In this case, an extension was built into a modified version of Opera browser.
That is, the extension cannot be manipulated or separated from the browser.
The browser vendor wishes to remain undisclosed, so we present a description
without providing a public reference.

The purpose of Video Downloader (VD) is to facilitate download of a currently
played video and enable to eventually watch it offline. To accomplish this, VD
identifies videos on the websites – either by recognizing the domain, or the player,
if the video is embedded – and attaches a small button that is displayed when
user hovers over the video.

VD applies Serrano rules for both player element and player content identifica-
tion. Specifically, an instruction for player identification returns a player element,
which is then supplied to the second Serrano instruction for download address
identification. During the implementation of the extraction rules we encountered
two challenges.

The first was that the video player element only needed to be extracted when
it had a class attribute with off-screen value. This was achieved by extending

6https://github.com/salsita/Serrano/wiki/Language-Spec#dom-manipulation

43

https://github.com/salsita/Serrano/wiki/Language-Spec##dom-manipulation

the command set with the !if. Many wrappers, such as iMacros, would not be
able to alter the control flow based on a condition7. Typical extraction directive
looks as follows.
{

playerElement : ["!if", [["$#player "],
[">! apply", " hasClass ", ["off -screen"]]],

["! constant ", { selector : "# player -api "}]
]

}

Second challenge was caused by the fact that some players use different forms
of video embeddings. For example, Youtube8 uses both <object> and <embed>
tags for embedding a video in an external source. However, Serrano was able to
deal with this by conflating these elements in one selector, as follows.
{

playerUrl : [
["$object , embed "],
[">! attr", "href "],
[">! match", ["! regexp", "[?&]v =([ˆ&]+)[&]?"]],
[">!at", 1]

]
}

7http://wiki.imacros.net/FAQ#Q:_Are_there_conditional_statements_like_if...
_then...else_in_the_iMacros_macro_language.3F

8http://www.youtube.com

44

http://wiki.imacros.net/FAQ##Q:_Are_there_conditional_statements_like_if..._then...else_in_the_iMacros_macro_language.3F
http://wiki.imacros.net/FAQ##Q:_Are_there_conditional_statements_like_if..._then...else_in_the_iMacros_macro_language.3F
http://www.youtube.com

8. Conclusion
The goal of this thesis was to create a web data extraction tool that could work in
a restricted environment (browser extension). We implemented a novel language
– Serrano. Serrano championed extensibility of the command set and separation
of concerns. That helped to eliminate the need for any accompanying software
further transformation and processing of the extracted data. Extensibility also
works the other way – the command set can be reasonably restricted so that the
wrappers will be able to only extract and process data to the extent they are
allowed to.

Deployment in real-world projects has proven the durability of the language
as well as significance of the goals. Each project we faced contributed to broad-
ening of the command set – which demonstrates that the language is extensible.
Serrano has demonstrated good value by separating responsibilities and encour-
aging modular design. On top of that, Serrano introduces minimum performance
overhead, due to the direct translation to Javascript.

Serrano wrappers are in JSON [52] format, which makes them easy to transfer
and manipulate, for example via AJAX. The wrapper interpreter is written in
Javascript, so that the interpreter can run in a browser.

Limitations. As such, Serrano performs well when the emphasis is placed on in-
formation processing. However, when more complex relationships between nodes
are to be extracted, it falls short because the expressive power is limited by the
expressive power of CSS selectors. A feasible solution is the addition of !xpath
command with support of XPath. Highly dynamic web pages with run-time gen-
erated element IDs and classes also present a challenge, because they cannot be
seized by a fixed selector. This is where numerous alternative approaches fail as
well. Extending the language with recognition of spatial relationships could be a
possible solution.

8.1 Future work
We hope that this language will become a standard tool for browser extension
developers and will replace pure Javascript for data extraction. Or at least, by
demonstrating the importance of extensibility and data processing within the
wrapper, it will serve as a valuable learning lesson for new tools to come. In the
rest, we describe some steps that can be taken to further improve the language.

Wrapping a library into a Toolkit Serrano is in the state of active devel-
opment and the costs of visual tool creation outweigh the benefits due to current
volatility of the command set. However, when the language becomes more stable,
the creation of a Toolkit, preferably with GUI, might prove feasible and beneficial.

Wrapper databases One of the future directions can be building vast databa-
ses of continuously maintained wrappers. Outsourcing wrapper creation and then
dynamically downloading and updating them can prevent the need for frequent
software upgrades.

45

Command set databases Another direction would be to build a database of
command sets - so that the users of Serrano could find appropriate commands to
personalize the language functionality.

46

Bibliography
[1] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgart-

ner. Web data extraction, applications and techniques: A survey. Knowledge-
based systems, 70:301–323, 2014.

[2] Asynchronous JavaScript. XML (AJAX). Mozilla Developer Center:
https://developer. mozilla. org/en/ajax. Access date, 14(10), 2011.

[3] Graham Cormode and Balachander Krishnamurthy. Key differences between
web 1.0 and web 2.0. First Monday, 13(6), 2008.

[4] Steve Faulkner Travis Leithead Erika Doyle Navara Edward O’Connor
Silvia Pfeiffer Ian Hickson, Robin Berjon. A vocabulary and associ-
ated APIs for HTML and XHTML. W3c recommendation, W3C, 2016.
https://www.w3.org/TR/html5/.

[5] Y Shafranovich. Rfc 4180: Common format and mime type for comma-
separated values (csv) files, 2005. Cited on, page 67.

[6] RSS Advisory Board. RSS 2.0 Specification (2009). URL http://www. rss-
board. org/rss-specification. Accessed, pages 02–21, 2014.

[7] J Bosak, T Bray, D Connolly, E Maler, G Nicol, CM Sperberg-McQueen,
L Wood, and J Clark. W3C XML specification DTD, 1998.

[8] Gavin Nicol, Lauren Wood, Mike Champion, and Steve Byrne. Document
object model (DOM) level 3 core specification. W3C Working Draft, 13:1–
146, 2001.

[9] XML Path Language (XPath) 3.1. Technical report, W3C, 2016.
https://www.w3.org/TR/xpath-31/.

[10] Michael Kay et al. Xsl transformations (xslt) version 2.0. W3c recommen-
dation, 23:52–71, 2007.

[11] Steve DeRose, Eve Maler, and Ron Daniel. XML pointer language
(XPointer). 2000.

[12] Maarten Marx. Conditional XPath, the first order complete XPath dialect.
In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 13–22. ACM, 2004.

[13] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Nor-
man Walsh. XQuery 1.0 and XPath 2.0 data model. W3C working draft, 15,
2002.

[14] Selectors Level 3. Technical report, W3C, 2016.
https://www.w3.org/TR/CSS/.

[15] Selectors Level 3. Technical report, W3C, 2016.
https://www.w3.org/TR/selectors/.

47

[16] JQuery, 2016. http://jquery.com/.

[17] 2016. https://api.jquery.com/category/selectors/.

[18] ECMAScript 2015 Language Specification. ECMA-262 6th edition. Technical
report, ECMA. http://www.ecma-international.org/ecma-262/6.0/ECMA-
262.pdf.

[19] Alberto HF Laender, Berthier A Ribeiro-Neto, Altigran S da Silva, and
Juliana S Teixeira. A brief survey of web data extraction tools. ACM Sigmod
Record, 31(2):84–93, 2002.

[20] James F Allen. Natural language processing. 2003.

[21] Fotios Kokkoras, Konstantinos Ntonas, and Nick Bassiliades. DEiXTo: a
web data extraction suite. In Proceedings of the 6th Balkan Conference in
Informatics, pages 9–12. ACM, 2013.

[22] Nicholas Kushmerick. Finite-state approaches to web information extraction.
In Information Extraction in the Web Era, pages 77–91. Springer, 2003.

[23] Emilio Ferrara and Robert Baumgartner. Intelligent self-repairable web
wrappers. In AI* IA 2011: Artificial Intelligence Around Man and Beyond,
pages 274–285. Springer, 2011.

[24] Robert Baumgartner, Wolfgang Gatterbauer, and Georg Gottlob. Web data
extraction system. In Encyclopedia of Database Systems, pages 3465–3471.
Springer, 2009.

[25] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[26] Arnaud Sahuguet and Fabien Azavant. Building intelligent web applications
using lightweight wrappers. Data & Knowledge Engineering, 36(3):283–316,
2001.

[27] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper
construction system for web information sources. In Data Engineering, 2000.
Proceedings. 16th International Conference on, pages 611–621. IEEE, 2000.

[28] Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, et al. Roadrunner:
Towards automatic data extraction from large web sites. In VLDB, volume 1,
pages 109–118, 2001.

[29] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web infor-
mation extraction with Lixto. In VLDB, volume 1, pages 119–128, 2001.

[30] Mary Elaine Califf and Raymond J Mooney. Bottom-up relational learning of
pattern matching rules for information extraction. The Journal of Machine
Learning Research, 4:177–210, 2003.

[31] Stephen Soderland. Learning information extraction rules for semi-
structured and free text. Machine learning, 34(1-3):233–272, 1999.

48

[32] Dayne Freitag. Machine learning for information extraction in informal do-
mains. Machine learning, 39(2-3):169–202, 2000.

[33] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence, 118(1):15–68, 2000.

[34] Chun-Nan Hsu and Ming-Tzung Dung. Generating finite-state transduc-
ers for semi-structured data extraction from the web. Information systems,
23(8):521–538, 1998.

[35] Ion Muslea, Steven Minton, and Craig A Knoblock. Hierarchical wrapper
induction for semistructured information sources. Autonomous Agents and
Multi-Agent Systems, 4(1-2):93–114, 2001.

[36] Brad Adelberg. NoDoSE—a tool for semi-automatically extracting struc-
tured and semistructured data from text documents. In ACM Sigmod Record,
volume 27, pages 283–294. ACM, 1998.

[37] Alberto HF Laender, Berthier Ribeiro-Neto, and Altigran S da Silva.
DEByE–data extraction by example. Data & Knowledge Engineering,
40(2):121–154, 2002.

[38] David W Embley, Douglas M Campbell, Yuan S Jiang, Stephen W Liddle,
Deryle W Lonsdale, Y-K Ng, and Randy D Smith. Conceptual-model-based
data extraction from multiple-record Web pages. Data & Knowledge Engi-
neering, 31(3):227–251, 1999.

[39] Tim Furche, Georg Gottlob, Giovanni Grasso, Omer Gunes, Xiaoanan Guo,
Andrey Kravchenko, Giorgio Orsi, Christian Schallhart, Andrew Sellers, and
Cheng Wang. DIADEM: domain-centric, intelligent, automated data ex-
traction methodology. In Proceedings of the 21st international conference
companion on World Wide Web, pages 267–270. ACM, 2012.

[40] Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart, and An-
drew Sellers. OXPath: A language for scalable data extraction, automation,
and crawling on the deep web. The VLDB Journal, 22(1):47–72, 2013.

[41] Giovanni Grasso, Tim Furche, and Christian Schallhart. Effective web scrap-
ing with OXPath. In Proceedings of the 22nd international conference on
World Wide Web companion, pages 23–26. International World Wide Web
Conferences Steering Committee, 2013.

[42] John W Lloyd. Practical Advtanages of Declarative Programming. In GULP-
PRODE (1), pages 18–30, 1994.

[43] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. The elog web ex-
traction language. In Logic for programming, artificial intelligence, and rea-
soning, pages 548–560. Springer, 2001.

[44] Georg Gottlob and Christoph Koch. Monadic datalog and the expressive
power of languages for web information extraction. Journal of the ACM
(JACM), 51(1):74–113, 2004.

49

[45] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and
Sergio Flesca. The Lixto data extraction project: back and forth between
theory and practice. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 1–12.
ACM, 2004.

[46] Bertram Ludäscher, Rainer Himmeröder, Georg Lausen, Wolfgang May, and
Christian Schlepphorst. Managing semistructured data with florid: a deduc-
tive object-oriented perspective. Information systems, 23(8):589–613, 1998.

[47] Gustavo O Arocena and Alberto O Mendelzon. WebOQL: Restructuring
documents, databases and Webs. In Data Engineering, 1998. Proceedings.,
14th International Conference on, pages 24–33. IEEE, 1998.

[48] Ermelinda Oro, Massimo Ruffolo, and Steffen Staab. SXPath: extending
XPath towards spatial querying on web documents. Proceedings of the VLDB
Endowment, 4(2):129–140, 2010.

[49] Cynthia Dwork. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation, pages
1–19. Springer, 2008.

[50] Robert C Martin. The single responsibility principle. The Principles, Pat-
terns, and Practices of Agile Software Development, pages 149–154, 2002.

[51] Steve Burbeck. Applications programming in smalltalk-80 (tm): How to use
model-view-controller (MVC). Smalltalk-80 v2, 5, 1992.

[52] Douglas Crockford. The application/json media type for javascript object
notation (JSON). 2006.

[53] Tiago Boldt Sousa. Dataflow programming concept, languages and appli-
cations. In Doctoral Symposium on Informatics Engineering, volume 130,
2012.

[54] John McCarthy, Steve Russell, Timothy P Hart, Mike Levin, AutoLISP Arc,
and Common Lisp Clojure. LISP Programming Language, 1985.

[55] Edsger W Dijkstra. Letters to the editor: go to statement considered harm-
ful. Communications of the ACM, 11(3):147–148, 1968.

[56] Joachim Hammer, Jason McHugh, and Hector Garcia-Molina. Semistruc-
tured Data: The TSIMMIS Experience. 1997.

[57] Jake Archibald. Javascript promises. Artikkeli. Luettavissa, 2013.

[58] Ian Hickson. Html microdata. W3C, 24, 2011.

50

Appendix A - CD Contents
We provide the source code of all projects as well as the compiled program.
To compile the project from the source code one has to run npm install in
command like in its directory, followed by running grunt. The project appears
in the /build directory.

The contents of the CD are following. The compiled directory contains the
serrano library along with the developer’s extension (serrano-simple-extension)
and the demo client-server project (demo-extension-client and demo-server).
The sources directory contains the source codes of all the projects from the
compiled directory and additionally a magneto directory which contains the orig-
inal Javascript wrapper of the Magneto project as well as the rewritten wrappers
in Serrano. All source codes can be found on Github1.

1http://github.com/salsita/Serrano

51

http://github.com/salsita/Serrano

	Introduction
	Outline of the Thesis

	Preliminaries
	Web Documents
	HTML
	CSS
	Javascript

	Web Application
	Challenges for Information Extraction
	Deep Web

	Web Browser
	Browser Extension

	Data Extraction
	Web Wrapper and its Responsibilities
	Lifecycle of a Wrapper
	Wrapper Building
	Wrapper Execution
	Wrapper Maintenance

	Web Data Extraction Toolkit
	Laender's Taxonomy
	Languages for Wrapper Development
	HTML-aware Tools
	NLP-based Tools
	Wrapper Induction Tools
	Modeling-based Tools
	Ontology-based Tools

	Techniques of Element Identification
	Regular Expression-based Approach
	Tree-based Approach
	Declarative Approach
	Spatial Reasoning
	Machine Learning-based Approach

	Applications of Data Extraction
	Selenium
	iMacros

	Our Contribution

	In-browser Web Wrapping
	Specifics of In-browser Extraction
	Approaches to In-browser Data Extraction
	Javascript
	Domain-specific Language

	Proposed Language
	Serrano Language Design Overview
	Gottlob's Requirements
	Other Domain-specific Languages' Issues

	Structure Breakdown
	Type System
	Scraping Directive
	Scraping Query and Scraping Result
	Scraping Unit
	Page Rules
	Document Item and Global Document

	Command Set
	Conditions and Logical Predicates
	Storage
	Arithmetics
	Array Manipulation
	Value manipulation
	Prop, Call and Apply
	Text Manipulation
	DOM Manipulation

	Classification of Our Wrapper
	Laender's Taxonomy
	Technique Usage
	Applications

	Implementation
	Source Code
	Deployment and Playground
	Serrano API

	Serrano User Stories
	Magneto Calendar
	MyPoints
	Video Downloader (undisclosed)

	Conclusion
	Future work

	Bibliography
	Appendix A - CD Contents

