
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Marek Polák

XML Query Adaptation

Department of Software Engineering

Supervisor of the master thesis: RNDr. Irena Mlýnková, Ph.D.

Study programme: Informatics

Specialization: Software systems

Prague 2011

I would like to thank to my supervisor RNDr. Irena Mlýnková, Ph.D. for her
helpful suggestions, thorough notes, provided related research material and text
corrections.
I would also like to thank to Mgr. Martin Ne£aský, Ph.D. for his suggestions and
comments.

2

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particular the fact that the Charles University in
Prague has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In Prague on July 1, 2011 Marek Polák

3

Název práce: Adaptace XML Dotaz·
Autor: Marek Polák
Katedra (ústav): Karedra softwarového inºenýrství
Vedoucí diplomové práce: RNDr. Irena Mlýnková, PhD.
e-mail vedoucího: irena.mlynkova@ksi.m�.cuni.cz

Abstrakt: V p°edloºené práci studujeme evoluci XML schémat, jejích typ· a vlivu
na dotazy, které jsou na p°íslu²ných schématech závislé. Práce obsahuje p°ehled
existujících p°ístup· tohoto problému. P°ístup p°edstavený v této práci ukazuje
moºné °e²ení jak upravovat dotazy závislé na schématech b¥hem jejich evoluce.
Práce dále obsahuje popis algoritmu, který upraví dotaz v závislosti na evoluci
p°íslu²ného schématu. V neposlední °ad¥ práce obsahuje sadu experiment·, které
ov¥°ují návrh algoritm· a ukazují jejich výhody a nevýhody.

Klí£ová slova: XML, XML Schema, XML Path, Evoluce

Title: XML Query Adaptation
Author: Marek Polák
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková, PhD.
Supervisor's e-mail address: irena.mlynkova@ksi.m�.cuni.cz

Abstract: In the presented work we study XML schema evolution, its types and
impact on queries which are related on the particular schema. The thesis contains
a review of existing approaches of this problem. The approach presented in this
work shows a possible solution how to adapt related queries while schema evolves.
The thesis contains a description of an algorithm which modi�es queries related
to the evolved schema. Finally the work contains a number of experiments that
verify proposal of the algorithms and show their advantages and disadvantages.

Keywords: XML, XML Schema, XPath, Evolution

4

Contents

1 Introduction 8

1.1 Motivation . 8
1.2 Aim of the Thesis . 9
1.3 Structure of the Thesis . 10

2 XML Evolution Architecture 11

2.1 XML Schema . 12
2.2 XML Path Language (XPath) . 13

2.2.1 XPath Data Model . 13
2.2.2 XPath Axes . 14

2.2.2.1 Abbreviations . 15
2.2.3 Location Steps . 15
2.2.4 Other Model Parts . 16

3 Related Work 17

3.1 Preserving XML Queries during Schema Evolution 17
3.1.1 Taxonomy of XML Schema Changes 17
3.1.2 Impact on Queries . 19
3.1.3 Compatibility of Queries across Schema Versions 20
3.1.4 Discussion . 21

3.2 Identifying Query Incompatibilities with Evolving XML Schemes . 21
3.2.1 Internal Representation . 22
3.2.2 Logical Formulas . 22
3.2.3 Query Representation . 22
3.2.4 Analysis Predicates . 23
3.2.5 Framework Evaluation Process 23
3.2.6 Framework Real-World Use-case Tests 23
3.2.7 Discussion . 24

3.3 CoDEX . 24
3.3.1 Conceptual Model . 25
3.3.2 Schema Evolution . 25
3.3.3 Discussion . 25

3.4 Comparison of the Related Works 26

5

4 XSEM PSM 27

4.1 XSEM . 27
4.2 XSEM PSM . 27

5 Mapping XPath to XML Schema 32

5.1 XPath Syntax . 32
5.1.1 Predicates . 32
5.1.2 Abbreviations . 33

5.2 XPath Model Visualization . 33
5.2.1 Query of the Model . 35

5.3 Location Path Mapping . 36
5.3.1 Mapping with Simple Result 37
5.3.2 Mapping with Multiple Results 37

5.4 Operations . 38
5.5 Atomic Operations . 38

5.5.1 XSEM PSM Model Operations 38
5.5.2 XPath Model Operations 39

5.6 Recognizing of Changes and Propagation 39
5.6.1 Recognizing of Changes 40

6 Evolution Algorithms 43

6.1 Correctness of the Propagation 43
6.2 Analysis of the Changes . 44

6.2.1 Re�nement . 46
6.2.2 Removal . 53
6.2.3 Renaming . 61
6.2.4 Reordering . 62
6.2.5 Reconnection . 69

7 Implementation and Experiments 82

7.1 DaemonX . 82
7.2 Implementation . 82
7.3 Experiments . 83

7.3.1 XPathMark XPath-TF . 83
7.3.2 Sophisticated Queries . 84

8 Conclusion 85

8.1 Open Problems . 86
8.1.1 Suggestion When Propagation Is Impossible 86
8.1.2 Query Optimization . 86

8.2 Future Work . 87
8.2.1 Richer XPath Syntax . 87
8.2.2 Semantic Relations . 87

A CD Contents 88

6

B Used XSD Schemes and XPath Queries 89

B.1 Purchase Schema . 89
B.2 XPathMark . 89
B.3 Order Schema . 89

Bibliography 89

7

Chapter 1

Introduction

1.1 Motivation

Since the eXtensible Markup Language (XML) [1] has become a de-facto standard
for data representation and manipulation, there exists a huge amount of applica-
tions having their data represented in XML. However, since most of applications
are dynamic, sooner or later the structure of the data needs to be changed and
so have to be changed also all related issues. We speak about so-called evolution
and adaptability of XML applications. One of the aspects of this problem is to
adapt the respective operations over the evolving XML data, in particular XML
queries, expressed, e.g., in XPath [2] or XQuery [3].
The fact that evolution of XML schemes is still an open problem these days causes
that XML databases are not used in cases where they will be more suitable than
for example relational databases. But the ability of schema evolution in relation
databases is the key reason why we still use them [4].

Possible changes of the document schema can be caused by many reasons:

• Changes which are caused by system development.
If the schema and queries are used as internal, it can be deemed as a de-
velopment change, which is not a relevant situation. It is a very common
situation while system is being developed and designers have to adjust im-
plementation to customer's requirements.

• Adapting the schema to an existing interface.
If the schema is published for processing by others (for example as a Web
Service [5] which provides information about health insurance and which is
used by tens of consumers), one change on producer side can cause tens of
changes on consumers side. Since this scenario is common in practice, it
is solved generally by versioning of the schemes and with a support period
during which the consumers must update their queries to the new version
compatible with new schema. But it does not solve the problem - the changes

8

must still be done to ensure the functionality.

The change of the schema can cause that the queries using this schema may return
various results when it is applied on the new schema:

• The result is the same as over the original schema.

• It returns an error, for example caused by a non existing element or bad
type casting.

• It returns more results than over the original schema.

• It returns less results than over the original schema.

All these presented possibilities are not desired and should be recognized and cor-
rected. Suppose that there exists query //purchase/item returning all elements
item which are children of elements purchase in the document. Now, if the name
of element item is changed (for example to name items), all queries where this
name is used or which can have impact on the result of the query must be checked
by designer and updated alternatively.

1.2 Aim of the Thesis

The aim of this work is a research on possibilities and limitations of XML query
adaptation. The thesis analyzes existing solutions and discusses their advantages
and disadvantages. The core of the work is a proposal and implementation of
own approach dealing with selected disadvantages and open issues. The proposal
involves classi�cation of the modi�cation of XML schema and respective queries
and adaptation steps as well as discussion of possible/necessary user involvement.
The purpose of the thesis is to design a technique and algorithm how to:

• detect changes in XML schema

• analyze these changes and their possible impact on related queries

• if the query needs to be updated, apply correspond update operation on the
query to satisfy valid results

• if the correct update is not possible, notify the designer about this situation
which have to be solved manually

9

1.3 Structure of the Thesis

The structure of the thesis is follows. Chapter 2 presents 5-level XML evolution
architecture [6] which is used to be able to connect XML schema with queries
at platform-speci�c level. Next are brie�y described used background technolo-
gies - XML Schema as an XML document schema and XPath language as used
query language. In Chapter 3 are presented and discussed related works which
are dealing with preserving and identifying changes between XML schemes and
queries.

Chapter 4 describes XSEM [7], a conceptual models for modeling XML, espe-
cially its platform-speci�c model XSEM-H which is used in this thesis as a model
of XML schema. In Chapter 5 is presented used subset of XPath syntax and its
platform-speci�c visualization model. In the end of the chapter is described a
mapping between XSEM-H and XPath models and algorithm how to recognize
possible changes in the results of the query if the schema model is changed.

Chapter 6 contains analysis of possible changes in schema model and suggests
algorithms how the changes should be propagated to target XPath model to pre-
serve compatibility. Chapter 7 brie�y presents experimental implementation of
the presented solution and describes experiments with the real-word examples.
Finally, Chapter 8 concludes and provides future research directions of this ap-
proach.

10

Chapter 2

XML Evolution Architecture

In this chapter we describe proposal of architecture XML applications [6]. Ba-
sically it can be partitioned into �ve horizontal layers that are interconnected
with layer above and bellow. This suggestion of interconnections enables straight
propagation of changes between related components of the model. All layers are
described bellow and shown in Figure 2.0.1.

Figure 2.0.1: Five level evolution architecture

Platform-independent Level describes the domain independently of the con-
sidered XML formats. The model at this level is called Platform-Independent
Model (PIM). An example is UML class model. There are many possibilities how
can be such model interpreted in the concrete domain, that is presented in next
paragraph.

Platform-speci�c Level describes concrete XML format. The model at this
level contains special components and features relevant to its purpose. Platform-
Speci�c Model (PSM) is used at this level.

11

Logical level contains XML schemes which describe XML documents modeled
in platform-speci�c level by PSM. An example of XML schema is XML Schema
[8].

Operation level contains queries for appropriate XML formats. The most
know examples of query or transformation languages used with XML are XPath
(XML Path Language) [9], XQuery [3] and XSLT (eXtensible Style-sheet Lan-
guage) [10].

Extensional level contains concrete documents respecting the appropriate XML
format from schema level.

Besides horizontal division of the architecture, it can be partitioned and inter-
connected vertically too. That is shown in Figure 2.0.1 with the red line. In this
thesis we will focus on models on the platform speci�c level and evolution process
between them. Especially we will use XSEM PSM model (Section 4.2) for XML
Schema and XPath model (Section 5.2) for representing XPath queries.

2.1 XML Schema

XML schemes are important when we decide to publish our XML data for others.
A schema gives a contract between a producer and a consumer how the data will
look like. It provides the structure of an XML document and used data types.
The best known and the most used languages these days are DTD [11] and XML
Schema [8]. If we have a schema of a particular XML document, we can use it for
various reasons:

• If we have an XML document and an XML schema, we can use a parser (or
a validator) to check if the document is valid against the schema.

• We can create queries to get data and information from the given document
on the basis of its schema in the similar way like in a relation database. The
most commonly used query languages today are XPath (Section 2.2) and
XQuery languages which are using XML Schema syntax and types to create
queries.

• With XSLT standard we can create transformation scripts on the basis of
XML schema which for given input document(s) create new documents with
absolutely di�erent structure following the transformation script.

• Built-in types which XML Schema de�nition contains can be used by other
standards mentioned above (XPath or XSLT) which makes combination of
these technologies easier and complex.

12

2.2 XML Path Language (XPath)

XML Path Language is a language for addressing parts of an XML document de-
�ned by W3C (World Wide Web Consortium) [12], now in version 2.0. It uses the
tree structure of the XML document to select particular nodes and to compute
values (e.g. boolean, string or numbers) from the content of given XML document
as a result.
XPath 2.0 is a super-set of previous version of XPath 1.0. There were made
changes in data models and type system. The result of an XPath 2.0 query can
be a sequence of nodes from the input document or a sequence of atomic values
with cardinality < 1, n >.
The XPath 2.0 language is used in XSLT 2.0 and in XQuery 1.0 standards as their
subset.

2.2.1 XPath Data Model

De�nition 2.1. (Node). Base construct of XPath data model.

De�nition 2.2. (XML Document). An XML document is a tree-structured (hi-
erarchical) collection of nodes.

The XPath language de�nes seven types of nodes in its data model (tree).
These node types are used in path expressions to select nodes or nodes-sets in
XML document. All nodes must satisfy general constraints described closely in
[9]. Types of nodes are:

1. Root Node
It is the topmost node of the tree and encapsulates an XML document.

2. Element Node
Element nodes encapsulate XML elements.

3. Attribute Node
It represents an XML attribute.

4. Text Node
Text Nodes encapsulate XML character content.

5. Comment Node
Comment Nodes encapsulate XML comments.

6. Processing Instruction Node
Processing Instruction Nodes encapsulate XML processing instructions.

7. Namespace Node
A namespace node represents the binding of a namespace URI to a names-
pace pre�x or to the default namespace.

13

2.2.2 XPath Axes

XPath operates on an XML document as a tree and uses axes which express how
the data are related to the current node. Every path consists of steps and every
step consists of axes, selection of nodes and predicates (see Section 2.2.3). There
are de�ned thirteen axes in the XPath language. Their graphical representation
is shown in Figure 2.2.1.

ancestor-or-self

ancestor

following

following-sibling

preceding

preceding-sibling

parent

self

child

descendant

descendant-or-self

Figure 2.2.1: XPath axes

1. Ancestor
Selects all ancestors of the current node (parent, grandparent, etc.) to the
root.

2. Ancestor or self
Selects all ancestors of the current node and the current node itself.

3. Attribute
Selects all attributes of the current node.

4. Child
Selects all child nodes of the current node.

5. Descendant
Selects all descendants of the current node (children, grandchildren, etc.).

14

6. Descendant or self
Selects all descendants of the current node and the current node itself.

7. Following
Selects all nodes in the document after the closing tag of the current node.

8. Following sibling
Selects all siblings after the current node.

9. Parent
Selects the parent of the current node.

10. Preceding
Selects all nodes in the document that are before the start tag of the current
node.

11. Preceding sibling
Selects all siblings before the current node.

12. Self
Selects the current node.

13. Namespace
Selects all namespace nodes of the current node.

2.2.2.1 Abbreviations

To make the XPath language user-friendly and useable, there are de�ned some
abbreviations for axes, eg. a parent node (..), current node (.) or an attribute
node (@attribute_name), The full set of them is described in [9].

2.2.3 Location Steps

Location steps are used to navigate to speci�c node collection. Each location step
in the XPath consists of three parts:

1. The axis

It navigates to the speci�c nodes. The axis identi�er and the node are
separated by double colon ′::′. It identi�es a group of nodes that have
speci�ed relationship to the current node.

2. The node test

A test, which speci�es the node type.

3. The set of predicates

Predicates �lter the result set returned by an axis and a node test. There
can be zero or more predicates in the location step. They are contained
within square brackets ′[′ , ′]′.

15

The syntax for a location step is axis :: node_test[predicate]. A location step
de�nes how to identify a set of nodes relative to a current node.
Location path is the most important construct in XPath. It consists of location
steps delimited with forward slash ′/′ and forms the query.

De�nition 2.3. (Absolute Location Path). An absolute location path consists of
′/′ optionally followed by a relative location path. A ′/′ itself selects the root node
of the document containing the context node. If it is followed by a relative location
path, then the location path selects the set of nodes that would be selected by
the relative location path relative to the root node of the document containing
the context node.1

De�nition 2.4. (Relative Location Path). A relative location path consists of a
sequence of one or more location steps separated by ′/′. The steps in a relative
location path are composed together from left to right. Each step in turn selects
a set of nodes relative to a context node. An initial sequence of steps is composed
together with a following step as follows. The initial sequence of steps selects a
set of nodes relative to a context node. Each node in that set is used as a context
node for the following step. The sets of nodes identi�ed by that step are unioned
together. The set of nodes identi�ed by the composition of the steps is this union.1

2.2.4 Other Model Parts

Except described part of XPath syntax it contains another constructs which must
be always implemented in any XPath API. An example are core functions which
o�er basic set of operations above the model.

1W3C de�nition [9]

16

Chapter 3

Related Work

In this chapter existing papers related to XML schema and query evolution are
discussed. There exist several approaches dealing with evolution of the XML
schemes like CoDEX [13] or with query compatibility. Next, there are approaches
analyzing possible changes of the document schema and including recommenda-
tions how the schemes should be written to reduce potential changes of the related
queries. But we have found no paper discussing how the evolution of the queries
should be done automatically or semi-automatically with minimal contribution of
the designer.
The chapter contains analysis of three works. The �rst one deals with preserving
valid queries during the schema evolution. The second paper presents a frame-
work for analyzing compatibilities between di�erent versions of the schemes. The
last one presents a framework for processing evolution of the XML schemes.

3.1 Preserving XML Queries during Schema Evo-

lution

Paper [4] discusses XML schemes and their evolution and transformation in time
and the problems which it brings to administrators. The main aims of the paper
are:

• To present taxonomy of possible changes in XML schemes.

• To overview their impact on schema structure.

• To introduce guidelines for managing schema by controlling its changes and
writing queries across schema versions.

3.1.1 Taxonomy of XML Schema Changes

The authors examined and divided the changes into two basic groups which are
shown in Table 3.1.2 and described below.

17

Basic Changes Complex Changes

Re�nement Element composition
Removal Element decomposition
Extension Renaming

Reinterpretation Optionality
Rede�nition Renumbering

Retyping
Namespaces
Default values
Reordering

Table 3.1.2: De�ned changes

1. Basic changes

(a) Re�nement
Adds a new element into the schema.

(b) Removal
Deletes an element from the schema.

(c) Extension
Adds a new construct into the schema (for example a new complex
type de�nition). This new added construct has no impact on schema
of the document - it should not be ever used in the schema de�nition.

(d) Reinterpretation
Changes the semantics of an element and does not change the structure
of the document. This change has no impact on the document, only
for comprehension of the reinterpreted part.

(e) Rede�nition
Updates the schema with no impact on the document instances format.

2. Complex changes

(a) Element composition
Groups elements under a new element.

(b) Element decomposition
Divides a group of elements into individual elements (opposite of ele-
ment composition).

(c) Renaming
Changes the name of an element or an attribute.

(d) Optionality
Changes the optionality type of an attribute.

18

(e) Renumbering
Changes the cardinality of an element.

(f) Retyping
Changes the type of an element or an attribute.

(g) Namespaces
Changes the namespace.

(h) Default values
Changes the default value of an element or an attribute.

(i) Reordering
Changes order of sibling elements.

3.1.2 Impact on Queries

Changes of document schema have variable in�uence on the queries. In this paper
possible impacts on queries are divided into the three groups of schema changes.

De�nition 3.1. (Original schema). An original version of the schema S.

De�nition 3.2. (New schema). A changed version of the original schema S.

1. General queries
Are all queries which do not use any element a�ected by the evolution pro-
cess. The queries work in both schema versions - original and new one in
the same way.

2. Basic changes
From the basic changes de�ned in Section 3.1.1, only Removal and Re�ne-
ment have impact on queries which can cause incompatibility.

3. Complex changes
From complex changes all possibilities can cause incompatibility of evalua-
tion queries on new and original schemes.

(a) Element composition
There are two major problems. First, that the name of the newly
created element can be di�erent from the original element. Second, the
query may refer to speci�c path in the document tree. So, although
there are the data in the document, the query cannot evaluate them.

(b) Element decomposition
It is opposite to element composition.

(c) Renaming
The change of an element name causes that the result of the query is
di�erent or returns nothing.

19

(d) Optionality
A change from required to optional is not a problem, but a change in
the opposite direction cause that the original query can return nothing
in new schema version.

(e) Renumbering
Changing cardinality can cause problems in both directions. A change
from singleton to multiple elements evokes that there can be more
results. Changes from multiple elements to a singleton only reduces
the result.

(f) Retyping
This case is described as one of the hardest changes. It needs checking
of the value type and, if needed, the value must be cast to the needed
type.

(g) Default value
This change may cause problems if there are any constraints. Di�erent
values can be returned in the new schema.

(h) Namespaces
This change can be a problem if the query uses a speci�c namespace.
A di�erent namespace can give di�erent results.

(i) Reordering
Usage of positions in queries can cause that wrong data will be returned
if the position of elements has been changed.

3.1.3 Compatibility of Queries across Schema Versions

The last section of the paper gives advices or patterns how to write queries to
prevent the changes in queries while schema evolves and ensure that queries will
return correct results.

1. Required elements (or attributes) should not be set into the middle of the
sequence of elements. For example all required elements in the sequence
should be set at the beginning, then optional. If necessary, queries should
have ancestor//descendant axis.

2. Do not delete required elements from the middle of the sequence of elements.
For example to delete the middle element of three sibling elements. A query
can contains exists() function, which can cause problem in new schema if
position predicate is used in the query.

3. If queries depend on the order of elements, do not change it if not necessary.

4. If queries are strongly typed, do not change the atomic type of the used
values.

20

5. Do not change the name of elements used in queries. If it is necessary, use
dictionary of synonyms to map them.

6. If queries are sensitive to namespaces which are changed, query returns
nothing on new document which has di�erent schema. If the behavior is to
return the same results, the query should be written with ′∗′ for namespace.

7. Functions like exist should be used carefully. If the required element is
removed, the query will always return false in the new XML schema.

3.1.4 Discussion

The paper presents a set of possible changes which can be done through evolution
of XML schemes. It classi�es them into categories according to their complexity
and shows an impact on related queries.
As a conclusion authors give advices how the queries should be written to ensure
minimal additional changes in queries while XML schema is being changed.
But, it does not give an optimal solution how to provide XML schema evolution
without inspection of related queries in all cases.

3.2 Identifying Query Incompatibilities with Evolv-

ing XML Schemes

Paper [14] discusses a system for monitoring the e�ect of schema evolution on the
set of admissible documents and on the results of queries. An implementation
of a framework for automatic veri�cation of properties related to XML schema
and query evolution is presented. As a query language the framework considers
XPath.

The system is based on a set of predicates which allow for an analysis of a
wide range of forward and backward compatibility issues. On the other hand, the
system can produce counter examples to prove incompatibility of schemes and
queries.
The framework was tested with realistic use cases on the real-world data.

De�nition 3.3. (Forward Compatibility). Let S be an original schema and S ′ a
new version of S. S ′ is called forward-compatible when all documents valid against
S are also valid against S ′.

De�nition 3.4. (Backward Compatibility). Let S be an original schema and S ′

a new version of S. S is called backward-compatible when all documents valid
against S ′ are also valid against S.

21

3.2.1 Internal Representation

As an internal representation regular tree type expressions [14] are used. This
representation can capture and convert a schema expressed, e.g., in DTD, XML
Schema and Relax NG [15]. The de�ned tree type expressions are shown in Table
3.2.2.

τ ::= tree type expression
/O empty set
() empty sequence

τ | τ disjunction
τ , τ conjunction
l(a)[τ] element de�nition
x variable

let x = τ in τ binder

Table 3.2.2: Tree type expressions

3.2.2 Logical Formulas

The core of the framework are logical formulas. They operate on binary trees with
attributes. The framework translates all unranked trees [14], which represent XML
documents, into binary trees.

The semantics of formulas corresponds to µ − calculus [16] interpreted over
�nite trees. All XPath expressions de�ned by the authors can be translated into
these logical formulas. A translated XPath expression operates with a binary tree
and uses only forward axes. Conversion to µ − calculus is done, because only
with this modi�cation the program can solve both XPath emptiness and other
decisions problems such as containment.
For this purpose the framework implements a compiler which takes any XPath
expression and makes its logical translation.

De�nition 3.5. (Containment Problem). The containment problem takes as an
input XPath expressions E and E ′, asking whether the output of E is contained
in the output of E ′ on any source document at any node.

3.2.3 Query Representation

The framework is focused on the XPath language which is used in many cases and
other standards like XQuery or XSLT. The used semantics of the XPath language
is described in [2].

22

3.2.4 Analysis Predicates

Special predicates and a compiler for them are de�ned to solve decisions problems
at a higher level of abstraction. Users can use the predicates to do basic veri�cation
like backward or forward compatibility. Within prede�ned predicates it is possible
to create own custom predicates on the basis of defaults by combining them.

An example of predicate is backward_incompatible(τ, τ ′) which takes two type
expressions as parameters and assumes τ ′ is an altered version of τ . This predicate
is unsatis�able if all instances of τ ′ are also valid against τ .

3.2.5 Framework Evaluation Process

The process of evaluation which is done by the presented framework is as follows:

1. A predicate is given to the framework. It contains all information for eval-
uating and returning a result.

2. The given predicate is parsed. The input schema is converted to regular tree
expressions and the input XPath query is converted into a logical formula.

3. A satis�ability test which returns either of two possible results is carried out.
If both schema versions are compatible, information about this fact is re-
turned. Otherwise a message with a counter example of the incompatibility
is returned.

3.2.6 Framework Real-World Use-case Tests

The paper also gives examples of real usage of the presented framework based on
checking backward compatibility between XHTML 1.0 and XHTML 1.1 schema
versions. An internal backward_incompatible predicate is used in the test. It
takes DTDs of XHTML 1.0 and XHTML 1.1 as parameters. As a result it returns
a counter example of an HTML document, which is permitted in XHTML 1.1
schema de�nition, but prohibited in 1.0. The sample result of the framework
evaluation is depicted in Figure 3.2.1.

23

predicatebackward_incompatible("xhtml-basic10.dtd",

"xhtml-basic11.dtd","html")

returns

<html>

<body>

<head>

<title/>

<styletype="other"/>

</head>

<body/>

</html>

Figure 3.2.1: An example of a framework result

3.2.7 Discussion

The paper describes an implementation of a framework for verifying forward and
backward compatibility between XML schemes and queries. The presented solu-
tion can be used by XML designers to recognize if the query needs to be updated
due to schema evolution.
The tool expects a predicate which should be veri�ed and both versions of the
schemes. It returns a result of the predicate, or it can return a counter example,
which can help designers with facilitating the queries.
The solution covers most of the frequently used schema languages such as DTD,
XML Schema and Relax NG, whose de�nitions are converted into a common
representation of regular-expression tree. The XPath language is translated into
logical formulas which allow for validation for the given expression tree.

3.3 CoDEX

CoDEX (Conceptual Design and Evolution of XML schemes) [13] is an approach
to schema evolution based on conceptual model. The paper presents the idea and
describes its implementation - CoDEX-tool application.

The application provides a GUI for modeling XML schemes and their addi-
tional changes. There is a possibility to import an existing XML schema and gen-
erate a model from it. After the evolution process a new model can be exported to
its XML schema representation. Documents which depend on the evolved schema
are updated to preserve validity.
All changes which are done by an user with the model are stored - they are
recorded and processed in the same time. The evolution process is done after
user's con�rmation.

24

3.3.1 Conceptual Model

The conceptual model of CoDEX is a mixed graph [17] which can contain four
types of basic components. The basic components are element, type, group and
module. Every component can have properties de�ned as a key-value pair.

XML Schema Import CoDEX allows a user to import an existing XML
schema which is then translated into the internal model representation of the
system.

XML Schema Export As was mentioned in the introduction, the model can
be exported into XSD, which always follows the Venetian blind design style [18].

3.3.2 Schema Evolution

For each basic component operations add, delete, change and move are de�ned.
For an element and a module component there is operation rename. All user's
design changes are logged and all needed information for evolution process can be
generated from the history.

Minimizing and Normalizing Changes After the evolution process is con-
�rmed, the changes are minimized and normalized, because there can be done
redundant operations while changing the schema. For example creating and then
deleting the same element is omitted. Or, creating an element and changing its
name is converted to only one step - creating an element with the new set name.
An example of summarizing is as follows:

create_element(id, name, content)+rename_element(id, name, new_name)→
create_element(id, new_name, content)

At the end all changes of the model are translated into XML schema evolution
steps.

XML Document Update After the changes are done in the XML schema it
is needed to revalidate XML documents associated to the schema. All invalid
documents must be updated to restore the validity.

3.3.3 Discussion

CoDEX provides a tool for evolution of XML schemes and associated XML docu-
ments. There can be done complex changes in a single evolution process. The tool
o�ers changing of existing XML schemes which are translated to their conceptual
model too.

25

As was mentioned in the paper, there are some limits and open problems which
are not solved. An example with moving element address from element owner
to element producer which can be easily done is presented. Updated document
will be valid, but not semantically correct, because the address of the producer
is not the same as the address of the owner. A solution which is given by authors
is user interaction.

3.4 Comparison of the Related Works

All presented works study a problem of the schema evolution from di�erent points
of view and propose solutions how to ensure the compatibility in the system of
the schemes and the related documents or queries.

The �rst paper [4] analyzes possible operations which can be used for an
update of the schema, classi�es them according to complexity and gives advices
to designers how to provide changes to prevent and minimize changes in the related
queries.

The second paper [14] presents a complex framework for identifying incompat-
ibilities of the queries and the evolved schemes. They use own internal structures
for schemes and predicates for queries. Thanks this solution they can cover the
most frequently used query languages such as DTD, XML Schema and Relax NG.
But no suggestion is given how to update related queries automatically.

The last analyzed paper [13] presents a tool for providing evolution of the
schemes and for updating related XML documents by using these schemes. It
o�ers a complex framework which was tested on the real-word data as well as the
second paper.

All mentioned works present various solutions how to preserve compatibility
during the schema evolution. In this thesis we will focus on the following problems
which were not solved in these papers:

• On the analysis of changes done in a schema.

• On the relation between a schema and a query.

• On the propagation of changes to preserve compatibility of a schema and a
query.

26

Chapter 4

XSEM PSM

In this chapter we describe an approach for conceptual modeling of XML data,
whose second layer - XSEM-H model will be used in this thesis as a model for
representing XML Schema and which will be described more in detail.

4.1 XSEM

XSEM [7] is an approach for conceptual modeling of XML data. It divides the
modeling process into two interconnected layers which use di�erent model types.

First model called XSEM-ER is a PIM layer. It is an extension of classical ER
model and describes a structure of modeled data.

Second, PSM layer is called XSEM-H and it is a conceptual model for modeling
hierarchical structure of data modeled by XSEM-ER. XSEM-H schema describes
a hierarchical structure of a part (or whole) of the XSEM-ER and this description
can be done in di�erent ways for the same XSEM-ER model. Thanks to this
layer it is possible to separate and solve di�erent parts of the system by individual
components. For example, from one XSEM-ER data payment model we can model
schema for producer and another for consumer which look absolutely di�erent, but
they are based on the same PIM schema.

Thanks interconnection between models it is possible to propagate changes
done in PIM diagram to corresponding components in PSM schema or in opposite
direction [19].

An example of XSEM-ER (PIM) and corresponding XSEM-H (PSM) diagram
is shown in Figure 4.1.1 and Figure 4.1.2 respectively.

4.2 XSEM PSM

XSEM-H model is an extension of UML Class Diagram [20]. It takes basic compo-
nents of the language like UML class, UML attribute, UML association and adds
extension of own components and pro�le named XSEM [7]. Thanks to the fact

27

Figure 4.1.1: XSEM-ER (PIM) example

that XSEM PSM is a visual notation of XML document structure, it is equiva-
lent to XML Schema. It is possible to generate XML Schema from existing PSM
diagram or create PSM diagram from given XML Schema document too. Both
these features were implemented in the XCase tool [19].

A visualization of XSEM-H model was implemented in the DaemonX frame-
work [21] as a modeling plug-in of PSM XML schema. The implementation en-
ables possibility of creating and updating diagrams of this model thanks various
operations de�ned in [22]. The model contains following constructs:

PSM Class is the most important construct of the model. It represents a
class from platform independent model and expresses how it is modeled in XML
schema. Each PSM class can represent only one class from PIM model. Every
class has a name, a label and PSM attributes. Class can be connected with other
classes by PSM associations.

PSM Attribute is a construct which can exist only as a part of a PSM class.
Each attribute represents zero or one PIM attribute.

PSM Association is a connection between two PSM classes in relation parent�
child. Unlike PSM class and PSM attribute it can represent a whole set of PIM
associations. There can be only one PSM association leading to class and zero or
more associations leading from one class. Child classes are called content of the
class.

Content Choice is a construct which represents choice element of XSD. From
the set of child PSM classes only one can be used in an XML document de�ned

28

Figure 4.1.2: XSEM-H (PSM) example

by this schema.

Content Sequence is construct represents sequence element of XSD. All child
PSM classes of this construct must be used in the respective XML document in
de�ned order.

Content Set is a construct which represents all element of XSD. All child PSM
classes of this construct must be used in XML document in arbitrary order.

An example of a PSM diagram with all constructs which represents a simple
purchase schema is shown in Figure 4.2.1.

De�nition 4.1. (PSM Schema). A PSM schema is a 16-tuple S = (Sc, Sa, Sr,
Se, Sm, CS, name, type, class, xform, participant, card, cmtype, attributes,
content, repr), where the items are:

• SC

The set of all PSM classes.

29

Figure 4.2.1: An example of a PSM diagram

• Sa

The set of all PSM attributes.

• Sm

The set of all content models.

• Sr

The set of directed binary associations in schema (PSM association).

• Se

The set of association ends in schema. A directed binary association is a pair
R = (E1, E2), where E1, E1 ∈ Se and E1 6= E2. For any two associations
R1, R2 ∈ Sr it must hold that R1 ∩R2 6= ∅ ⇒ R1 = R2.

• Cs

Is a schema class of the schema.

• name
Assigns a name to each class, attribute and association.

• type
Assigns a data type to each attribute.

• class
Assigns a class to each attribute. For A ∈ Sa we will say that A is an
attribute of class C.

30

• participant
Assigns a class or content model to each association end.

• xform
Assigns an XML form to each attribute. Is speci�es the XML representation
of an attribute using an XML element declaration with a simple content or
an XML attribute declaration.

• card
Assigns a cardinality to each attribute and association end.

• cmtype
Assigns a content model type to each content model. We distinguish 3 types:
sequence, choice and set, respectively.

• attributes
Assigns an ordered sequence of distinct attributes to each class C.

• content
Assigns an ordered sequence of distinct associations to each class or content
model X.

• repr
Assigns a class C to another class C. C is called structural representative
of C.

31

Chapter 5

Mapping XPath to XML Schema

For possibility of evolution of XPath queries related to XML schemes there must
exist a mapping between XML schema and XPath query. This mapping helps
to conduct the evolution process to evolve the query in relation to the evolved
schema.

We will present used XPath syntax, its visualization model and mapping be-
tween XSEM PSM and XPath models.

5.1 XPath Syntax

Full XPath syntax is too extensive to be used in this paper, so only a subset was
used. There were de�ned various subsets of XPath syntax, such as Core XPath
[23] or Positive Core XPath [24]. Some de�nitions from these approaches were
adopted and updated in this chapter. In particular, we used our subset which is
based on Positive Core XPath with some changes. There are no predicates and
operator except is added to the de�nition. The abstract syntax is follows:

X ≡ X|X ‖ /X ‖ X/X ‖ X except X ‖ A :: L
A ≡ self ‖ child ‖ descendant ‖ descendant− or − self ‖ parent
‖ ancestor ‖ ancestor − or − self ‖ preceding
‖ preceding − sibling ‖ following ‖ following − sibling

As we can see, the only one node test is possible - name test, denoted L. X
denotes location path and A represents an axis.

5.1.1 Predicates

Original Positive Core XPath de�nition contains predicates [24] where can be used
only tests for node presence on the path in the schema. But a query using these
predicates can be rewritten to the query without them [25] in multiple possible
ways returning the same result node set. This solution has only one problem - the

32

query is transformed to a complex form not transparent for the designer at �rst
sight.

5.1.2 Abbreviations

In the de�ned syntax it is possible to used all de�ned abbreviations for axes:

• ′∗′ selects all element children of the context node

• ′para/title′ is equal to ′para/child :: title′

• ′.′ selects the context node

• ′..′ selects the parent of the context node

• ′//′ corresponds to ′/descendant− or − self :: node()/′

5.2 XPath Model Visualization

To be able to map XSEM PSM diagram to XPath query, an XPath model must
be de�ned. We proposed a model that follows ordered tree structure of the XPath
query, results from the presented syntax and that visualizes its textual represen-
tation. Basically components of the model can be divided to two parts:

• Elements which represent nodes in the location path

• Lines that represent axes

A line and an element together comprise a location step of the XPath query.
Visualization of elements and axes is shown in Figure 5.2.1 and in Figure 5.2.2
respectively. The de�ned model contains the following components:

Figure 5.2.1: XPath model visualization elements

Element An element E represents a node test in the location step. A name test
is de�ned by the name of the element. Every element can have only one input
and one output line which represent axes.

33

Figure 5.2.2: XPath model visualization axes

Expression Element A special type of element (denoted Eex) that represents
disjunction and except operators. Every expression element can have only one
input line and two or three output lines. An input line connected to this element
expresses only connection, it has no special sense. The �rst output line represents
�rst part of the query expression, the second output line represents the second
part of the expression. The third line represents following expression part of the
query in the sense of (first_expression operator second_expression)/
third_expression. An example of a visualization of the query /purchase/
(./descendant :: element() except ./child :: address) is presented in Figure 5.2.3.

Child Axis Line A line with meaning of child axis will be denoted Lch.

Descendant Axis Line A line with meaning of descendant axis will be denoted
Ld.

Descendant-or-self Axis Line A line with meaning of descendant-or-self axis
will be denoted Ldos.

Parent Axis Line A line with meaning of parent axis will be denoted Lpa.

Ancestor Axis Line A line with meaning of ancestor axis. will be denoted La.

34

Ancestor-or-self Axis Line A line with meaning of ancestor-or-self axis will
be denoted Laos.

Following Axis Line A line with meaning of following axis will be denoted Lf .

Following-sibling Axis Line A line with meaning of following-sibling axis will
be denoted Lfs.

Preceding Axis Line A line with meaning of preceding axis will be denoted
Lpr.

Preceding-sibling Axis Line A line with meaning of preceding-sibling axis
will be denoted Lprs.

Self Axis Line A line with meaning of self axis will be denoted Ls.

Figure 5.2.3: XPath query visualization example

5.2.1 Query of the Model

We have said how to represent an XPath query in a visualization model. But
there must be also a way how to get the query of the model. The XPath model
is an ordered directed tree. The root of the model (denoted root) represents start
of the query. The tree model is ordered from left to right and the query can be
generated by using a depth-�rst search algorithm run from the root element. An
example is depicted in Figure 5.2.3.

35

5.3 Location Path Mapping

Since the XSEM PSM schema has a tree structure (especially it is equivalent to
XSEM [7]) and the XPath query follows a tree structure, it is straight forward to
map XSEM PSM to location path. An example of mapping is shown in Figure
5.3.1. But, if there are any complex axes in the query, it is not possible to map
the query in a simple way because an axis can intervene not only one node in the
schema tree, but a part of tree. For example descendant axis hits whole sub-tree
of children of the current node. And all these nodes should be mapped directly
to the node in location step, see Figure 5.3.2.

Figure 5.3.1: Simple result mapping

To create a mapping between XSEM PSM and a location path it is needed
to de�ne a representation of location step. As was mentioned in Section 2.2.3, a
location step consists of three basic parts which can be represented as a graph.
These parts correspond with de�ned XPath visualization model. An axis is rep-
resented by one XPath model line L, a node test is represented by XPath element
E. A predicate is not considered in de�ned syntax.

De�nition 5.1. (Mapping). A mapping M between XSEM PSM model and
XPath model is a pair of XSEM PSM class C and XPath element E. Formally
M = (C,E).

36

Figure 5.3.2: Multiple result mapping

5.3.1 Mapping with Simple Result

The simplest type of mapping is to map one PSM class C to one XPath element
E, formally: ∃!C, ∃!E,∃!M : M = (C, E). This is done in case when location
step returns only a single result. For example in case of parent axis.
Suppose that for XSEM PSM model we created query
/Purchases/Purchase/Person/Address which is an abbreviation for
/child :: Purchases/child :: Purchase/child :: Person/child :: Address. Map-
pings created for the query (displayed as red lines) are shown in Figure 5.3.1.

5.3.2 Mapping with Multiple Results

Mapping with multiple results means that one XPath element E is mapped to
more XSEM classes Ci, formally: E, C1, ..., Cn, ∃n, n > 1, ∀i ∈ {1, ..., n} :
Mi = (Ci, E). This can be done for example by the descendant axis, which
returns all descendants of an XSEM class.

Now suppose query /Purchases/Purchase/Items/descendant :: ∗. In full
notation /child :: Purchases/child :: Purchase/child :: Items/descendant :: ∗.
In this case there are multiple mappings from XPath element named element() to
class Item and Product thanks descendant axis (denoted as double line arrow),
which means all descendants of class Items. An example of the mapping is shown
in Figure 5.3.2.

37

5.4 Operations

All presented initial operations which change the source XSEM PSM schema are
atomic. This forms a subset of operations de�ned in [22].

De�nition 5.2. (Operation). An operation is a function. As input it takes a
system of source XSEM PSM, XPath diagrams and additional information about
its purpose. Output of the function is a modi�ed system. It is possible that the
changed system can be left in inconsistent state and has to be updated manually
by designer (e.g. if an XSEM class returned by the XPath model as a result was
removed).

De�nition 5.3. (Atomic operation). An atomic operation is a minimal operation
which cannot be divided into smaller operations. It can be used for creating
composite operations.

5.5 Atomic Operations

In this section we describe atomic operations of XSEM PSM and XPath models
which are used for evolution process.

5.5.1 XSEM PSM Model Operations

All described operations can in�uence the result of the XPath query model.

Adding PSM Root Class α(C) � Adds a new PSM class C as the root into
the XSEM PSM diagram.

Adding PSM Class α(C, Cp) � Adds a new PSM class C into XSEM PSM
diagram as a child of parent class Cp. This operation creates an association A
between these classes.

Removing PSM Association ρ(A) � Removes PSM association from XSEM
PSM diagram.

Removing PSM Class ρ(C) � Removes PSM class from XSEM PSM diagram.
This operation leads to inconsistent state of the system. When a PSM class C is
deleted, all associations connected to the removed class have to be deleted too.
Formally: ∀A,A ∈ Assocs(C) : ρ(A).

Rename PSM Class δ(C, name) � Sets new name to PSM class C.

Change Position of PSM Class ψ(C, direction) � Moves PSM class C to
the left or to the right in the sequence of its sibling.

38

Reconnect PSM Class µ(C,Cp) � Reconnects PSM class C as child of parent
PSM class Cp.

De�nition 5.4. (Assocs(XSEM class C)). A function which returns all XSEM
associations A conntected to the XSEM class C.

5.5.2 XPath Model Operations

Adding XPath Root Element α(Eroot) � Adds a new root element Eroot into
XPath diagram.

Adding XPath Element α(E, Ep) � Adds a new element E into XPath
diagram as a child of element Ep.

Adding XPath Line α(L, Ep, Ech) � Adds a new axis line L between two
elements, child element Ep and parent element Ech.

Removing XPath Line δ(L) � Removes axis line L from the diagram.

Removing XPath Element δ(E) � Removes element E and all related axis
lines, formally: ∀L,L ∈ Lines(E) :: ρ(L).

Rename XPath Element δ(E, name) � Sets new name to element E.

De�nition 5.5. (Lines(XPath element E)). A function which returns all XPath
axis lines L connected to the element E.

5.6 Recognizing of Changes and Propagation

When XSEM PSM diagram and XPath query are mapped correctly, it is possible
to propagate operations (changes) done in XSEM PSM diagram to related XPath
diagram. We have de�ned operations which can be done in XSEM PSM and
update operations which have to be done in XPath diagram if changes in results
were detected to ensure that after propagation will hold R ≡ R′ if it is possible.
These operations are described in Chapter 6.

De�nition 5.6. (Original query). An XPath query applied to original XSEM
PSM schema. It will be denoted Q. The result of the query is denoted R.

De�nition 5.7. (New query). An updated XPath query applied to changed
XSEM PSM schema. It will be denoted Q′. The result of the query is denoted
R′.

39

5.6.1 Recognizing of Changes

Propagation of changes in XSEM PSM is not necessary in all cases. It has to
be done only if the mapping between models is changed � the mapping can be
added or removed (it has the same meaning as di�erent results of Q and Q′). The
algorithm which checks if the mappings have changed goes from the beginning of
the query gradually by the location steps and checks original and new results. If
a change is recognized, appropriate operations are applied on XPath model by
method Update. This is done by Algorithm 5.1.

The Algorithm 5.2 compares both original and new result sets returned by the
query (location step). If there are some new or missing XSEM classes in the map-
ping, they are set to appropriate collections of missing and added classes and false
is returned. If the results are the same, true is returned. If there are any miss-
ing or added XSEM classes returned by Algorithm 5.2, mappings between these
classes and XPath element must be created or removed respectively by methods
CreateMappings andDeleteMappingsOfXSEMClassesAndXPathElement.

Algorithm 5.1 RecognizeChanges
Input: original XSEM PSM model OM, new XSEM PSM model NM, XPath

query model QM, XSEM PSM operation O
1: sub_step← ””
2: for each location_step ∈ QM do

3: sub_step← sub_step+ location_step
4: result′ ← Evaluate(NM, sub_step)
5: result← Evaluate(OM, sub_step)
6: if not CompareResults(result, result′, added,missing) {see Algorithm

5.2} then
7: DeleteMappingsOfXSEMClassesAndXPathElement(missing,

location_step.targetElement) {see Algorithm 5.5}
8: CreateMappings(added, location_step.targetElement) {see Algorithm

5.4}
9: Update(location_step,O, added,missing) {Update query to preserve the

same results}
10: end if

11: end for

40

Algorithm 5.2 CompareResults
Input: collection of results from the original schema OC, collection of results

from the new schema NC, collection for the added classes in the new schema
var added, collection for missing classes in the new schema var missing

Output: true if results are same, otherwise false
1: for each o ∈ OC do
2: found← false
3: for each n ∈ NC do
4: if o = n then
5: found← true
6: break
7: end if

8: end for

9: if found = false then
10: missing.Add(o)
11: end if

12: end for

13: for each n ∈ NC do
14: found← false
15: for each o ∈ OC do
16: if n = o then
17: found← true
18: break
19: end if

20: end for

21: if found = false then
22: added.Add(n)
23: end if

24: end for

25: if added.Count > 0 or missing.Count > 0 then
26: return false
27: else

28: return true
29: end if

Algorithm 5.3 Evaluate
Input: XSEM PSM modelM, XPath query Q
Output: set of classes hit by the query Q inM
1: return SaxonXPathParser.Parse(M.ToXSD(),Q) {A method which returns

result of the query applied on the schema generated from XSEM PSM model.}

41

Algorithm 5.4 CreateMappings

Input: collection of XSEM PSM classes classes, XPath element e
1: for each c ∈ classes do
2: CreateMapping(C, e) {A method which creates mapping between given

XSEM PSM class and XPath element.}
3: end for

Algorithm 5.5 DeleteMappingsOfXSEMClassesAndXPathElement

Input: collection of XSEM PSM clasess classes, XPath element e
1: for each c ∈ classes do
2: DeleteMappingBetweenXSEMClassAndXPathElement(c, e) {A

method which removes mapping between given XSEM class and XPath
element.}

3: end for

De�nition 5.8. (hit). An XSEM PSM class is hit by the XPath element, if it is
returned in the result of the location step where the XPath element is used.

A method Update in Algorithm 5.1 determines the corresponding method from
Chapter 6 by the set location step and applied XSEM PSM operation.

42

Chapter 6

Evolution Algorithms

This chapter contains an analysis of possible operations (changes) in XSEM PSM
schema, their impact on the query and a revalidation of the XPath model if it is
possible to preserve that both original and new queries return the same results.
Every operation done and analyzed in XSEM PSM is atomic and described in
Section 5.5.1. The algorithm of the propagation to XPath model does not have to
contain only a single atomic operations, but there can be a set of atomic operations
to ensure compatibility.

6.1 Correctness of the Propagation

This section discusses the correctness of the propagation of changes to the target
XPath model.

Every change in the source XSEM PSM can cause that there must be changes
in multiple parts of the XPath model (in multiple location steps). Furthermore
there can be done multiple changes in XSEM PSM model step by step.

Let AOXSEM be an atomic operation done in an XSEM PSM schema which
should be propagated. Next, let OSXPath be a sequence of atomic operations in
an XPath model which was generated from AOXSEM to preserve the same results
of the queries with the original and the new XSEM PSM schema. Formally if
Q be the original query of the original schema S, Q′ be the query used with the
new schema S ′ (at the beginning Q = Q′), R = Q(S) be the result of the original
query and R′ = Q′(S ′) be the result of the query applied on the new schema, then
holds R = R′ = Q(S) = Q′(S ′) = OSXPath(Q)(AOXSEM(S)) if there exists an
appropriate propagation algorithm which generates OSXPath.

If the results are the same, the next update of the XSEM PSM schema can
be done in the same way: If there exists valid operation sequence OS ′XPath for
atomic operation AO′XSEM which satisfy R′ = R′′ then holds
R′′ = OS ′XPath(OSXPath(Q))(AO

′
XSEM(AOXSEM(S))).

43

6.2 Analysis of the Changes

In this section we analyze changes done in XSEM PSM schema and their impact
on the related XPath model.

Let x be the newly added element, S the original schema and S ′ new changed
schema. If not speci�ed otherwise, all elements are in collection element, choice
and all are special cases. In all cases we consider only one location step of the
query Q. All described algorithms are used by method Update in Algorithm 5.1,
line 10.

In all presented situations we suppose that there exist no two sibling elements
of the same name in the schema. If this conditions is violated, an update is not
possible and user must be asked to repair the query manually.

Every considered operation has preconditions and postconditions of the orig-
inal schema S and the new schema S ′. Described revalidation of the query and
algorithms to update an XPath model satisfy that for original result R and new
result R′ it holds R = R′ or it returns that it is not possible.

In preconditions and postconditions of the schema before and after the change, we
will use functions that for given element return an element or a set of elements:

• A function parent(element) returns a parent element of the given element of
the schema in the same way as the XPath parent axis.

• A function descendant(element) returns descendant elements of the given
element of the schema in the same way as the XPath descendant axis.

• A function following(element) returns following elements of appropriate el-
ement in the same way as the XPath following axis.

• A function following-sibling(element) returns a collection of elements of an
appropriate element in the same way as the XPath following-sibling axis.

• A function preceding(element) returns a collection of elements of an appro-
priate element in the same way as the XPath preceding axis.

• A function preceding-sibling(element) returns a collection of following ele-
ments of an appropriate element in the same way as the XPath preceding-
sibling axis.

• A function pos(element) returns a position of the element in the collection
of the sibling elements of the given element.

• A function absolute_path_to_element(element) returns an absolute path
from the root to the given element containing only location steps with child
axes and a node test for name of the added element in the schema tree. An
example of the result of the function applied on the element color in the
schema in Figure 6.2.1 is a path containing elements vehicle, car and color.

44

• A function absolute_path_to_added_element(element) returns an absolute
path from the root to given added element in the save way as the function
absolute_path_to_element.

• A function absolute_path_to_next_sibling(element) returns an absolute path
from the root to the next sibling element of the given element in the schema.
An example is shown in Figure 6.2.1 on the left. In the blue rectangle there
is the source element, in the red rectangle there is the element returned by
this function.

Figure 6.2.1: Next element right

• A function absolute_path_to_next_element_right(element) returns an ab-
solute path from the root to the next right element of the given element
in the schema. An example is shown in Figure 6.2.1 on the right. In the
blue rectangle there is the source element, in the red rectangle there is the
element returned by this function.

Figure 6.2.2: Previous element left

• A function absolute_path_to_previous_sibling(element) returns an abso-
lute path from the root to the previous sibling element of the given element
in the schema. An example is shown in Figure 6.2.2 on the left. In the
blue rectangle there is the source element, in the red rectangle there is the
element returned by this function.

45

• A function absolute_path_to_previous_element_left(element) returns an
absolute path from the root to the previous element of the given element
in the schema. An example is shown in Figure 6.2.2 on the right. In the
blue rectangle there is the source element, in the red rectangle there is the
element returned by this function.

• A function absolute_path_to_reconnected_element(element) returns an
absolute path from the root to reconnected element in the same way as
the function absolute_path_to_element.

6.2.1 Re�nement

First, suppose that all described insertions add a new element as a child of a
sequence element. If the type of element is choice or the minOccurs attribute of
the added element is set to 0, no change should be done in the query [4].

Ancestor Axis Suppose we want to get ancestor axis of element p and new
element x is added as a child somewhere to the schema tree.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: x ∈ S ′

Query revalidation

• The newly added element x cannot be on the path from element p to the
root element of the schema tree. It is not possible to set the added element
x as a parent. In case when there exists a location step, which will use the
element in the way x/parent :: ∗, an occurrence of the x will be discovered
by another axis.

Ancestor-or-self Axis This is the same case as the ancestor axis. It is not
possible to add new element x to the path from p to the root because x can be
set only as a child.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: x ∈ S ′

Query revalidation

• Adding a new element does not change the result of the location step, R = R′

and no update is needed.

46

Child Axis Adding a new element x as a child of element p can a�ect the query
result and R! = R′. To ensure that the results will be the same with both schemes
the query must be updated.

Preconditions: x 6∈ S ∧ p ∈ S

Postconditions: x ∈ S ′ ∧ p = parent(x)

Query revalidation

Suppose the query is p/child :: ∗ which returns all child elements of element p.

• New query will be p/child :: ∗ except absolute_path_to_added_element(x).

• If the added element is set to choice as a child, no change has to be done
in the query because we have no information about the documents valid
against the schema.

If the query uses a name test of the child element � p/child :: name, no revali-
dation is needed, because it is not possible to add a child element with the same
name as its siblings.

Example 6.1. Let the original schema S be the one in Figure 6.2.3 on the left and
original XPath model representing query /vehicle/child :: ∗/registration_number
in Figure 6.2.4 on the left. If new element motorcycle is added as a child
of element vehicle (see Figure 6.2.3 on the right), sub-query /vehicle/child ::
∗ will return all elements including motorcycle which is di�erent from the re-
sult R. Hence, location step must be updated from child :: ∗ to (child ::
∗ except /vehicle/motorcycle) and the query Q′ will be
/vehicle/(child :: ∗ except /vehicle/motorcycle)/registration_number. The
model of the new query is shown in Figure 6.2.4 on the right.

Figure 6.2.3: Schema example

The update algorithm of child axis is provided by the Algorithm 6.2. The
method creates a new expression element Eex, reconnects original location step as

47

Figure 6.2.4: Query example

the �rst child and adds new created location step (see Algorithm 6.4) as the sec-
ond child. If the attached location step is not the last in the query, the following
location step is reconnected as the third child of Eex.

A location step ls used in algorithms is a structure which consists of the XPath
axis line L and the XPath element E (or expression element Eex). It has refer-
ences to parent element accessible by property parentElement and property to
get element of the location step targetElement. The element E has properties of
its connected axes parentAxis and childAxis and a property name. An expres-
sion element Eex has furthermore properties of all possible child axes: firstAxis,
secondAxis and resultAxis.

Algorithm 6.1 GetPathFromRootToClass
Input: XSEM PSM class Cx

Output: collection of XSEM classes from root class to class Cx

1: path ← new collection of XSEM PSM classes {A collection of classes from
class Cx to the root class}

2: while Cx! = null do
3: path.AddFront(Cx) {Add class in the front of the collection}
4: Cx ← Cx.parent {Set parent XSEM class of Cx to Cx}
5: end while

6: return path

The method in Algorithm 6.1 returns a collection of XSEM classes from the
root class to the class given as a parameter.

48

Algorithm 6.2 UpdateWhenClassAddedIntoChildAxis

Input: location step ls, XSEM PSM class C
1: path← GetPathFromRootToElement(C) {Algorithm 6.1}
2: exp_element← new XPathExpressionElement(”except”) {Create new ex-

pression element}
3: ReconnectElements(ls, exp_element) {see Algorithm 6.3}
4: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

5: exp_element.resultAxis← ls.targetElement.childAxis

Algorithm 6.3 ReconnectElements

Input: location step ls, expression element exp_element
1: parent← ls.parentElement {parentElement is an XPath element when the
ls starts}

2: ls.parentElement← exp_element {Change parentElemetn of the ls}
3: exp_element.firstAxis← ls {Set the �rst axis of the expression element}
4: new XPathAxis(parent, exp_element) {Create axis between set elements}

The algorithm 6.3 provides reconnection of the location step as a child of the
newly created XPath expression element. The location step is reconnected as the
�rst child of the expression element from the left and the created expression ele-
ment Eex is set on the previous position of the location step in the query tree in
the same way like in Figure 6.2.4.

Algorithm 6.4 CreateXPathModelPathFromXSEMPath

Input: collection of XSEM PSM classes path, var path_end
Output: path of XPath model elements
1: path_end← new XPathElement(path[0].name)
2: element← path_end
3: CreateMapping(path[0], path_end) {Create new mapping between XSEM

class and XPath element}
4: for i = 1→ path.Count do
5: next_element← new XPathElement(path[i].name)
6: axis← new ChildAxis(path_end, next_element)
7: CreateMapping(path[i], next_element) {Create new mapping between

XSEM class and XPath element}
8: path_end← next_element
9: end for

10: return element

The method described in Algorithm 6.4 creates a path of XPath elements
E1, ..., En connected by XPath child axes L1, ..., Ln−1 from given XSEM PSM

49

classes C1, ..., Cn where axis Lch
i connects elements Ei and Ei+1. It returns the

�rst element E1 of the path and last element En as a reference parameter (line 3).
Then every PSM class Ci and XPath element Ei are interconnected by mapping
Mi (lines 4�9).

Example 6.2. For an example of creating an absolute path in an XPath model
and a mapping with classes from an XSEM model we use Example 6.1. The
method from Algorithm 6.1 returns classes vehicle and motorcycle for given class
motorcycle . Algorithm 6.4 creates from these classes a path of the XPath elements
vehicle andmotorcycle connected by child axes Lch and creates a mapping between
correspondent classes and elements: M(Cvehicle, Evehicle) and
M(Cmotorcycle, Emotorcycle).

Descendant Axis In this case the query result R is changed only if the new
element x is added into the sub-tree of p. Other cases must be inspected by dif-
ferent axes. Let elements q and r are in the sub-tree of p.

Preconditions: p ∈ S ∧ q = parent(q) ∧ q = parent(r) ∧ x 6∈ S

Postconditions: x ∈ S ′ ∧ x ∈ descendant(p)

Query revalidation

• Suppose a query p/descendant :: ∗ which returns all nodes in the sub-tree of
element p. We add new element into the sub-tree of element p (for example
as a child of element q). In this case the query will be updated to the form
p/descendant/ :: ∗ except absolute_path_to_added_element(x). If there
exists a child of the element q which has the same name as x, it is not possible
to ensure, that the new result will be the same due to minOccurs parameter
which preludes to use position constructs in the updated query, because it
is not possible if no information about data are considered. Duplicate name
of sibling elements cause that it is not possible to select precisely the added
element.

If the query uses a name test of the child element � p/descendant :: name , reval-
idation is needed only if the node test and the name of the added elements are
the same.

The update method for XPath model is the same as for child axis in Algorithm
6.2.

Descendant-or-self Axis This is the same case as a descendant axis. Let el-
ement x be added into the sub-tree of element p and let elements q and r be in
the sub-tree of element p. Case R! = R′ come up only if the element x is added
into the sub-tree of element p.

50

Preconditions: p ∈ S ∧ p = parent(q) ∧ q = parent(r) ∧ x 6∈ S

Postconditions: x ∈ S ′ ∧ x ∈ descendant(p)

Query revalidation

• Suppose a query p/descendant − or − self :: ∗ which returns all nodes in
the sub-tree of element p. Let element x is added as a child of element q.
The query Q′ must be updated to p/descendant − or − self/ :: ∗ except
absolute_path_to_added_element(x).

As in previous case, if node test contains a name, revalidation is needed only if
the node test and the name of the newly added elements are the same.

The method used for update of descendant-or-self axis is the same as in Algo-
rithm 6.2.

Following Axis When a following axis is used, the query result can change
only if the element x is added into the part of the schema which is a�ected by the
following axis. Let element x is added somewhere into this part.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: x ∈ S ′ ∧ x ∈ following(p)

Query revalidation

Adding of the element x can cause the same incompatibility like case of descen-
dant axis. A query p/following :: ∗ must be updated to p/following :: ∗ except
absolute_path_to_added_element(x) to satisfy R = R′. Update method for this
axis is the same as Algorithm 6.2.

Following-sibling Axis This axis has the same revalidation as the following
axis. The query result can change only if new element x is added into the schema
part hit by following-sibling axis applied on element p.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions:x ∈ S ′ ∧ x ∈ following − sibling(p)

Query revalidation

A query p/following−sibling :: ∗ has to be updated to p/following−sibling/ :: ∗
except absolute_path_to_added_element(x). In case when the name of the

51

added element is not unique between its siblings, it is not possible to ensure that
the update query returns the same result and it must be updated manually by
user.
Method which is used for updating has the same algorithm as Algorithm 6.2.

Preceding Axis Preceding axis is a symmetric case to descendant axis. The
query must be updated only if the added element x is set into the part of schema
returned by the preceding axis which was applied on element p.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: p ∈ S ∧ x ∈ S ′ ∧ x ∈ preceding(p)

Query revalidation

A query p/preceding :: ∗ have to be updated to p/preceding/ :: ∗ except
absolute_path_to_added_element(x).
The update method is identical to Algorithm 6.2.

Preceding-sibling Axis As in the case of preceding axis, a change must be
propagated only if the added element x is set to the part of the schema which is
returned by preceding-sibling axis applied on element p.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: x ∈ S ′ ∧ x ∈ preceding − sibling(p)

Query revalidation

The query Q′ = p/preceding − sibling :: ∗ must be updated to p/preceding −
sibling :: ∗ except absolute_path_to_added_element(x).
The method for updating preceding-sibling axis is the same as in Algorithm 6.2.

Parent Axis If new element x is added into the schema as a child element, the
change does not a�ect the result returned by parent axis applied on element p.
The reason is the same as in the case of ancestor axis.

Preconditions: p ∈ S ∧ x 6∈ S

Postconditions: x ∈ S ′

Query revalidation

No revalidation of the query is needed.

52

Self Axis New added element x cannot cause change in a result of the self axis.
If the adding operation cause change in the result and R! = R′, it will be detected
by another axis.

Preconditions: x 6∈ S

Postconditions: x ∈ S ′

Query revalidation

It is not possible.

6.2.2 Removal

This operation removes an element from the schema. As mentioned before, the
removed element must be a leaf of the schema tree. If we want to remove whole
sub-tree, it can be done by iterating this operation. In all cases we suppose that
we remove the element x.

Ancestor Axis Let p be a parent element of removed element x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

If the element x is removed and the original query was x/ancestor :: ∗, the query
must be updated to absolute_path_to_element(p)/ancestor − or − self :: ∗ |
x/ancestor :: ∗ which satisfy R = R′. If the removed element is not x, query will
be inspected by another axis.

The method shown in Algorithm 6.5 creates new expression element Eex (line
2) and reconnects attached location step as the �rst child of the element (line 3).
Then must be created a path from the root to element Ep (line 4) representing
parent class Cp of the removed class Cx and added as the second child of the Eex.
Because the class Cx was removed, all mappings of this class have to be removed
too (line 7).

Ancestor-or-self Axis Suppose that element p is a parent of element x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

If the element x is removed and the query is x/ancestor−or−self :: ∗, there is no

53

Algorithm 6.5 UpdateWhenClassRemovedAncestorAxis

Input: location step ls, removed XSEM PSM class Cx

1: path← GetPathFromRootToElement(Cx.parent)
2: exp_element← new XPathExpressionElement(”disjunction”)
3: ReconnectElements(ls, exp_element)
4: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

5: exp_element.resultAxis← ls.targetElement.childAxis
6: new XPathAncestorOrSelfAxis(path_end,
new XPathElement(ls.targetElement.name)) {Create Laos between end of
the created path and new created XPath element for node test of the ancestor
axis}

7: DeleteMappingsOfXSEMClass(Cx)

possibility how to preserve compatibility of the query result, because the element
x was removed from the schema and R′ ⊂ R and x cannot be in the result of the
query. Otherwise no update has to be done.

Child Axis Let p be a parent of element x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

As was mentioned before, we can remove only a leaf element. If the removed
element is x, it has no children and the original query will return an empty set.
If the removed element is x and the query is p/child :: ∗ where p = parent(x), it
is not possible to update the query Q′ because the removed element x cannot be
hit.

Descendant Axis A descendant axis selects a sub-tree of the element and the
removed element x has no descendants, so no update is needed. Next, when the
removed element is x and x ∈ descendant(p) , it is not possible to return removed
element x in the result and R′ ⊂ R will holds.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Descendant-or-self Axis It is the same case as the descendant axis.

54

Following Axis With the following axis there are di�erent situations depending
on the position of the removed element. Suppose that if there are more occur-
rences of element x (elements with the same names) in the schema and x is in the
result of the query, the removed element is the �rst one from the left to the right
in the tree.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

Let the element x be only once in the schema.

• Suppose that x is not the only child of p and not the last one. Then the
query x/following :: ∗ will be updated to x/following :: ∗ |
absolute_path_to_next_sibling(x)/(descendant− or − self :: ∗ |
following :: ∗).

• Suppose that x is the only child of p or the last in the sequence, the query
x/following :: ∗ will be updated to x/following :: ∗|
absolute_path_to_next_element_right(x)/(descendant− or − self :: ∗|
following :: ∗).

Algorithm 6.6 has to create expression element E1
ex for disjunction (line 1) of the

original location step and the added location path. A path from the root to the
next right XSEM class of the removed class Cx is added as the second child of
element E1

ex (line 4). The next expression element E2
ex representing an expression

in brackets (location steps with axes Ldos and Lf) is connected at the end of the
path (line 12).

If the element x occurs multiple times in the schema, there are two di�erent
situation.

• If the removed element is the �rst one from the left, there must be done the
same update as in previous case.

• If the removed element x is not the �rst (from left to right) in the schema
tree, this element will be not present in the result of the query R′ and it is
not possible to satisfy that the result R′ will be the same as for the original
query.

If the removed element is not the element x, but is hit by the following axis, it is
not possible to preserve the result of the original query as in previous case.

Example 6.3. Suppose the schema depicted in Figure 6.2.5 and the query
//address/following :: ∗ which selects all following elements of the element

55

Algorithm 6.6 UpdateWhenClassRemovedFromFollowingAxis

Input: location step ls, removed XSEM PSM class Cx

1: path ← GetPathFromRootToNextRightClass(Cx) {Method which returns
path from root to next sibling or next right XSEM class in the schema}

2: exp_element← new XPathExpressionElement(”disjunction”)
3: ReconnectElements(ls, exp_element)
4: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

5: exp_element.resultAxis← ls.targetElement.childAxis
6: exp_element← new XPathExpressionElement(”disjunction”)
7: new_element← new XPathElement(ls.targetElement.name)
8: CreateMappings(GetDescendantOrSelfClasses(Cx), new_element) {Cre-

ate mappings between collection of XSEM classes and XPath element. Method
GetDescendantOrSelfClasses returns collection of descendant-or-self classes
of the given class in XSEM model}

9: exp_element.firstAxis← new DescendantOrSelfAxis(exp_element,
new_element)

10: new_element← new XPathElement(ls.targetElement.name)
11: CreateMappings(GetFollowingClasses(Cx), new_element)
12: exp_element.secondAxis← new FollowingAxis(exp_element,

new_element)
13: new XPathAxis(path_end, new exp_element) {Create axis to connect end

of the path with the expression element}
14: DeleteMappingsOfXSEMClass(Cx) {Remove mappings of removed class

Cx}

address: delivery, item, items, address, notes. If the element
/purchase/person/address is removed (Figure 6.2.5 on the right), query must be
updated by Algorithm 6.6 to ensure R = R′. The original and the new XPath
models of the queries Q and Q′ are depicted in Figure 6.2.6 on the left and on the
right respectively.

Following-sibling Axis Let the removed element be x and p is a parent ele-
ment of x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

• First, suppose that x is not the only child of element p. If the element x is
removed, the original query x/following − sibling :: ∗ must be updated to

56

Figure 6.2.5: Removal of the following axis - XSEM PSM

Figure 6.2.6: Removal of the following axis - XPath model

absolute_path_to_next_sibling(x)/(self :: ∗ | following − sibling :: ∗) |
x/following − sibling :: ∗ to preserve R = R′.

• Suppose that element x is the only child of p, then the original query returns
an empty set and it holds R = R′.

If the removed element is not x, but is hit by the following-sibling axis, it is not
possible to preserve R = R′.

Algorithm 6.7 has to create an expression element E1
ex for disjunction of the origi-

nal location step and the newly added location path. A path from the root to next
sibling XSEM class of the removed class Cx is connected as the second child of
element E1

ex. At the end of the created path is connected next expression element
E2

ex representing expression in brackets - location steps with axes Ls and Lfs.

Preceding Axis In case of the preceding axis there must be distinguished dif-
ferent situations depending on position and number of occurrences of the removed

57

Algorithm 6.7 UpdateWhenClassRemovedFromFollowingSiblingAxis

Input: location step ls, removed XSEM PSM class Cx

1: path← GetPathFromRootToNextSibling(Cx)
2: exp_element← new XPathExpressionElement(”disjunction”)
3: {reconnection of the elements}
4: ReconnectElements(ls, exp_element)
5: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

6: exp_element.resultAxis← ls.targetElement.childAxis
7: exp_element← new XPathExpressionElement(”disjunction”)
8: new_element← new XPathElement(ls.targetElement.name)
9: CreateMapping(Cx, new_element)

10: exp_element.firstAxis← new SelfAxis(exp_element,
new_element)

11: new_element← new XPathElement(ls.targetElement.name)
12: CreateMappings(GetFollowingSiblingClasses(Cx), new_element)

{Method GetFollowingSiblingClasses returns collection of following-sibling
classes of given class in XSEM model}

13: exp_element.secondAxis← new FollowingSiblingAxis(exp_element,
new_element)

14: new XPathAxis(path_end, new exp_element)
15: DeleteMappingsOfXSEMClass(Cx)

element. Suppose that if there are multiple occurrences of the element x in the
schema and x ∈ R, the removed element is the last one from left to right in the
tree.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

Let element x is only once in the schema.

• Suppose that x is not the only child of element p and not the �rst one. Then
the query x/preceding :: ∗ will be updated to
absolute_path_to_previous_sibling(x)/(descendant− or − self :: ∗ |
preceding :: ∗) | x/preceding :: ∗.

If the element x occurs multiple times in the schema, there are two di�erent
situations.

• If the removed element is the last one from the left, there must be done the
same updates like in previous case.

58

• If the removed element x is not the last one (from left to right) in the schema
tree, this element will be not present in the result R′ of the query. It is not
possible to satisfy that R = R′.

Algorithm 6.8 UpdateWhenClassRemovedFromPrecedingAxis

Input: location step ls, removed XSEM PSM class Cx

1: path← GetPathFromRootToPreviousLeftClass(Cx)
2: exp_element← new XPathExpressionElement(”disjunction”)
3: {reconnection of the elements}
4: ReconnectElements(ls, exp_element)
5: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

6: exp_element.resultAxis← ls.targetElement.childAxis
7: exp_element← new XPathExpressionElement(”disjunction”)
8: new_element← new XPathElement(ls.targetElement.name)
9: CreateMappings(GetDescendantOrSelfClasses(Cx), new_element)

10: exp_element.firstAxis← new DescendantOrSelfAxis(exp_element,
new_element)

11: new_element← new XPathElement(ls.targetElement.name)
12: CreateMappings(GetPrecedingClasses(Cx), new_element) {Method

GetPrecedingClasses returns collection of the preceding classes of given
class in XSEM model}

13: exp_element.secondAxis← new PrecedingAxis(exp_element,
new_element)

14: new XPathAxis(path_element, new exp_element)
15: DeleteMappingsOfXSEMClass(Cx)

The expression element E1
ex for disjunction of original location step and the added

location path must be created as in Algorithm 6.8 (line 1). A path from root to
previous XSEM class of the removed class Cx is added as the second child of
element E1

ex(line 5). At the end of this path is connected next expression element
E2

ex representing an expression in brackets - location steps with axes Ldos and Lp

(line 14).
If the removed element is not x, but is hit by the preceding axis, it is not possible
to preserve the result of the original query.

Preceding-sibling Axis Preceding-sibling axis is the opposite of the following-
sibling axis. Let the removed element be x and p be the parent element of x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

59

Query revalidation

• Suppose that x is not the only child of element p. If the element x is removed,
original query x/preceding − sibling :: ∗ must be updated to
absolute_path_to_previous_sibling(x)/(self :: ∗ | preceding − sibling ::
∗) | x/preceding − sibling :: ∗.

• Suppose that x is the only child of p, then the original query returns an
empty set and no update is needed.

Algorithm 6.9 UpdateWhenClassRemovedFromPrecedingSiblingAxis

Input: location step ls, removed XSEM PSM class Cx

1: path← GetPathFromRootToPreviousSiblingClass(Cx)
2: exp_element← new XPathExpressionElement(”disjunction”)
3: {reconnection of the elements}
4: ReconnectElements(ls, exp_element)
5: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

6: exp_element.resultAxis← ls.targetElement.childAxis
7: exp_element← new XPathExpressionElement(”disjunction”)
8: new_element← new XPathElement(ls.targetElement.name)
9: CreateMapping(Cx, new_element)

10: exp_element.firstAxis← new SelfAxis(exp_element,
new_element)

11: new_element← new XPathElement(ls.targetElement.name)
12: CreateMapping(GetPrecedingSiblingClasses(Cx), new_element) {Method

GetPrecedingSiblingClasses returns collection of the preceding-sibling
classes of given class in XSEM model}

13: exp_element.secondAxis← new PrecedingSiblingAxis(exp_element,
new_element)

14: new XPathAxis(path_end, exp_element)
15: DeleteMappingsOfXSEMClass(Cx)

If the removed element is not element x, but is hit by the preceding-sibling axis,
there is no way how to preserve R = R′.

In Algorithm 6.9 the expression element E1
ex for disjunction is created and the

original location step is reconnected as the �rst child of this element. The path
from the root to the previous sibling XSEM class of the removed class Cx is added
as the second child of element E1

ex. The expression element E2
ex representing ex-

pression in brackets (location steps with axes Ls and Lps) is connected at the end
of this path.

60

Parent Axis Suppose that p is a parent element of x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: x 6∈ S ′

Query revalidation

In this case the query x/parent :: ∗ have to be updated to form
absolute_path_to_element(p)/self :: ∗ | x/parent :: ∗ to satisfy that p ∈ R′.

The update method presented in Algorithm 6.10 adds only one expression ele-
ment Eex of disjunction, reconnects original location step as the �rst child and
creates new path from root to parent class Cp of Cx. At the end of this path is
connected location step with self axis Ls.

Algorithm 6.10 UpdateWhenClassRemovedFromParentAxis

Input: location step ls, XSEM PSM class Cx

1: path← GetPathFromRootToElement(Cx.parent)
2: exp_element← new XPathExpressionElement(”disjunction”)
3: ReconnectElements(ls, exp_element)
4: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

5: exp_element.resultAxis← ls.targetElement.childAxis
6: new_element← new XPathElement(ls.targetElement.name)
7: CreateMapping(Cx, new_element)
8: new XPathSelfAxis(path_end, new_element)
9: DeleteMappingsOfXSEMClass(Cx)

Self Axis If the element x is removed, a query x/self :: ∗ cannot be updated
to preserve R = R′. There can be no result for a non-existing element.

6.2.3 Renaming

A renaming operation changes a name of the selected element. Change of the
name can cause a change of the result set returned by the query. Let x be an
element whose name is changed. Possible situations when the query can return
more or less elements in the result R′ are similar for all axes.
Update of the query must be done only if the element is hit by the name test. If
the location step uses name test with ∗ or element(), no change is needed.

Query revalidation

There are two possibilities how the change of the name can a�ect the result of the

61

query � it can return more or less elements. Let x be an element whose name is
changed to y.

• If more elements are returned (R ⊂ R′), a location step must be updated
with except absolute_path_to_renamed_element(y), to ensure R = R′.

• In case when there are less elements in the result set (R′ ⊂ R), a location
step must add | absolute_path_to_renamed_element(y).

In the algorithm 6.11 has to be distinguished if there were found more or less
results. By this fact the expression element Eex is created for disjunction or except
operator (line 2 � 6). Path from the root to the renamed class Cy is connected to
the element Eex (line 9 � 10). If the renamed class in the mapping with XPath
element whose name corresponds with original name of Cx, a mapping must be
removed (line 11).

Algorithm 6.11 UpdateWhenClassNameChanged

Input: location step ls, renamed XSEM PSM class Cy, the added XSEM classes
added, missing XSEM classes missing

1: exp_element
2: if added.Count > 0 then
3: exp_element← new XPathExpressionElement(”except”)
4: else if missing.Count > 0 then
5: exp_element← new XPathExpressionElement(”disjunction”)
6: end if

7: path← GetPathFromRootToClass(Cy)
8: ReconnectElements(ls, exp_element)
9: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

10: exp_element.resultAxis← ls.targetElement.childAxis
11: DeleteMappingBetweenXSEMClassAndXPathElement(Cy,

ls.targetElement) {References between renamed class and XPath element
must be removed}

Example 6.4. Suppose a schema depicted in Figure 6.2.7 on the left. In the red
rectangles are classes which are returned by the query Q = //address whose
XPath model is shown in Figure 6.2.8 on the left. If the name of the class
/purchase/delivery/address is renamed to delivery_address, then queryQ′ must
be updated to the form //address | /purchase/delivery/delivery_address de-
picted in Figure 6.2.8 on the right.

6.2.4 Reordering

In all the following cases we suppose, that an element x is in a sequence where
the order of elements is signi�cant and that element x has at least one sibling. An

62

Figure 6.2.7: Renaming example - XSEM PSM

Figure 6.2.8: Renaming example - XPath model

example of reorder is depicted in Figure 6.2.9. An element can be moved only one
position left or right in one step. Let pos(element) be a position of an element in
the original schema S and pos′(element) a position in the new schema S ′.

Ancestor Axis Reordering of the element x which is a child of element p has
no impact on a query with ancestor axis.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: pos(x)! = pos′(x)

Query revalidation

If the position of the element x is changed, the result of the query remains the
same. A location step starting from the element x does not change the result
returned by ancestor axis and it holds R = R′.

Ancestor-or-self Axis As the ancestor axis, if the position of element x is
changed, it has no impact on the result R′.

63

Figure 6.2.9: Reordered PSM schema

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: pos(x)! = pos′(x)

Query revalidation

If the position of element x is changed, for results it holds R = R′.

Child Axis If the position of the element x is changed, child elements of the
element x are still in the same position within x.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: pos(x)! = pos′(x)

Query revalidation

For results it holds R = R′ and no change is needed.

Descendant Axis Change of the position of element x has no impact on the
result.

Preconditions: x ∈ S ∧ p ∈ S ∧ p = parent(x)

Postconditions: pos(x)! = pos′(x)

64

Query revalidation

There is no change needed.

Descendant-or-self Axis This is the same case as a descendant axis.

Following Axis Suppose that the element x is a child of p at position #pos,
the element y is a child of p at position #pos + 1 and z is a child of the element
p at position #pos− 1.
An example of reordering when the following axis is used is shown in Figure 6.2.10.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ pos(x) = pos(y)− 1 ∧ pos(x) = pos(z) + 1
. ∧ p = parent(x) ∧ p = parent(z) ∧ p = parent(y)

Postconditions: pos(x)! = pos′(x)

Query revalidation

• If the position of x is changed to #pos′, where #pos+1 = #pos′, the original
query x/following :: ∗ must be updated to x/following :: ∗ |
absolute_path_to_element(y)/descendant− or − self :: ∗.

• If the position of element x is changed to #pos′, where #pos− 1 = #pos′,
then the query x/following :: ∗ must be updated to x/following :: ∗ except
absolute_path_to_element(z)/descendant− or − self :: ∗.

The algorithm 6.12 determines direction of the moved class Cx and creates the
appropriate expression element Eex (line 3 � 9) and a path to the class Cz or to
the class Cy that are connected as the second child of Eex. The location step with
axis Ldos is added at the end of this path (line 15).

Example 6.5. In Figure 6.2.10 on the left is the original schema before reordering.
In the blue rectangle is the initial element and in the green rectangle is the result
returned by the following axis. On the right image is the model after reordering
of the element item to the left. The element address in the red rectangle is
additional to the original result and must be eliminated from the query.

Following-sibling Axis Suppose that the element x is a child of p at position
#pos, y is a child of p at position #pos+1 and z is a child of element p at position
#pos− 1.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ pos(x) = pos(y)− 1 ∧ pos(x) = pos(z) + 1
. ∧ p = parent(x) ∧ p = parent(z) ∧ p = parent(y)

65

Algorithm 6.12 UpdateWhenFollowingAxisReorder

Input: location step ls, XSEM PSM class Cx, direction of the move dir, collection
of missing XSEM PSM classes not hit by original query in changed model
missing

1: path
2: exp_element
3: if dir = ”right” then
4: path← GetPathFromRootToNextRightClass(Cx)
5: exp_element← new XPathExpressionElement(”disjunction”)
6: else

7: path← GetPathFromRootToPreviousLeftClass(Cx)
8: exp_element← new XPathExpressionElement(”except”)
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.childAxis
13: new_element← new XPathElement(ls.targetElement.name)
14: CreateMappings(GetDescendantOrSelfClasses(path.last), new_element)
15: new XPathDescendantOrSelfAxis(exp_element, new_element)
16: DeleteMappingsOfXSEMClassesAndXPathElement(missing,

ls.targetElement)

Postconditions: pos(x)! = pos′(x)

Query revalidation

• If the position of the element x is changed to #pos′, where #pos + 1 =
#pos′, the query Q′ = x/following − sibling :: ∗ must be updated to the
form x/following − sibling :: ∗ | absolute_path_to_element(y)/self :: ∗.

• If the position of x is changed to #pos′, where #pos− 1 = #pos′, the query
Q′ = x/following−sibling :: ∗ must be updated to x/following−sibling ::
∗ except absolute_path_to_element(z)/self :: ∗.

The algorithm 6.13 di�ers from Algorithm 6.12 only in the axis of the location
step connected to the created path � in this case Ls must be added.

Preceding Axis Let the element x is a child of element p at position #pos, y
is a child of p at position#pos+1 and z is a child of element p at position#pos−1.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ pos(x) = pos(y)− 1 ∧ pos(x) = pos(z) + 1
. ∧ p = parent(x) ∧ p = parent(z) ∧ p = parent(y)

66

Figure 6.2.10: Reorder with following axis

Postconditions: pos(x)! = pos′(x)

Query revalidation

• If the position of x is changed to #pos′, where #pos− 1 = #pos′, the query
x/preceding :: ∗ must be updated to x/preceding :: ∗ |
absolute_path_to_element(z)/descendant−or−self :: ∗ to satisfyR = R′.

• If the position of x is changed to #pos′, where #pos+ 1 = #pos′, then the
query x/preceding :: ∗ must be updated to x/preceding :: ∗ except
absolute_path_to_element(y)/descendant− or − self :: ∗.

A method shown in Algorithm 6.14 is opposite of method for following axis (Al-
gorithm 6.12). It is di�erent only in the condition for direction (line 3).

Preceding-sibling Axis Suppose that element x is a child of p at position
#pos.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ pos(x) = pos(y)− 1 ∧ pos(x) = pos(z) + 1
. ∧ p = parent(x) ∧ p = parent(z) ∧ p = parent(y)

Postconditions: pos(x)! = pos′(x)

Query revalidation

• If the position of x is changed to #pos′, where #pos−1 = #pos′, then query
Q= x/preceding−sibling :: ∗ must be updated to x/preceding−sibling :: ∗
| absolute_path_to_element(z)/self :: ∗.

67

Algorithm 6.13 UpdateWhenFollowingSiblingAxisReorder

Input: location step ls, XSEM PSM class Cx, direction of the move dir, collection
of missing XSEM PSM classes not hit by original query in changed model
missing

1: path
2: exp_element
3: if dir = ”right” then
4: path← GetPathFromRootToNextRightClass(Cx)
5: exp_element← new XPathExpressionElement(”disjunction”)
6: else

7: path← GetPathFromRootToPrevisousLeftClass(Cx)
8: exp_element← new XPathExpressionElement(”except”)
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.childAxis
13: new_element← new XPathElement(ls.targetElement.name)
14: CreateMapping(path.last, new_element)
15: new XPathSelfAxis(exp_element, new_element)
16: DeleteMappingsOfXSEMClassesAndXPathElement(missing,

ls.targetElement) {see Algorithm 5.5}

• If the position of x is changed to #pos′, where #pos+1 = #pos′, then Q =
x/preceding − sibling :: ∗ must be updated to x/preceding − sibling :: ∗
except absolute_path_to_element(y)/self :: ∗.

The algorithm 6.15 determines direction of the moved class Cx and creates appro-
priate expression element Eex and the path to class Cz or to class Cy by direction
of the move (line 3 � 9). Location step with axis Ls is added at the end of path
to class Cz or Cy (line 15). Invalid mappings are removed at the end (line 16).

Parent Axis Parent axis is a special case of ancestor axis.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ pos(x) = pos(y)− 1 ∧ pos(x) = pos(z) + 1
. p = parent(x) ∧ p = parent(z) ∧ p = parent(y)
Postconditions: pos(x)! = pos′(x)

Query revalidation

A movement of an element into di�erent position has no impact of the result of
parent axis and it holds R = R′.

Self Axis Change of position of an element on which is the self axis has no
impact on the query.

68

Algorithm 6.14 UpdateWhenPrecedingAxisReorder

Input: location step ls, XSEM PSM class Cx, direction of the move dir, collection
of missing XSEM PSM classes not hit by original query in changed model
missing

1: path
2: exp_element
3: if dir = ”right” then
4: path← GetPathFromRootToNextRightClass(Cx)
5: exp_element← new XPathExpressionElement(”except”)
6: else

7: path← GetPathFromRootToPrevisousLeftClass(Cx)
8: exp_element← new XPathExpressionElement(”disjunction”)
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.childAxis
13: new_element← new XPathElement(ls.targetElement.name)
14: CreateMappings(GetDescendantOrSelfClasses(path.last), new_element)
15: new XPathDescendantOrSelfAxis(exp_element, new_element)
16: DeleteMappingsOfXSEMClassesAndXPathElement(missing,

ls.targetElement)

6.2.5 Reconnection

Suppose that the element x is moved to another position in the schema tree.
It means that we change a parent element p of x to element p′. For simplicity
the element x can be reconnected only as a son of one of its siblings or as a
sibling of its parent. Multiple iterations of the operation enables movement of the
element to any element in the schema. Let l(x) denoted the level of element x
and l(root) = 0. Then x can move to l(x) + 1 or l(x)− 1. Next, it is not possible
to move an element as a child of an element where its child has the same name.
It is the same case as renaming a sibling element to the same name as one of its
sibling.

In special cases when an element is moved outside the part of the query hit by
an axis, the query must be updated in a speci�c way. This special situation will
be described for respective axes.

An update of the query after a reconnection in the schema can be done cor-
rectly with all axes only if the location step is the last one in the query. If not, it
is not possible to ensure the same results of the original and the updated queries
in a simple way.

A reconnection of an element changes its position in the schema tree. This
implies that axes applied on this element can return di�erent result than if they

69

Algorithm 6.15 UpdateWhenPrecedingSiblingAxisReorder

Input: location step ls, XSEM PSM class Cx, direction of the move dir, collection
of missing XSEM PSM classes not hit by original query in changed model
missing

1: path
2: exp_element
3: if dir = ”right” then
4: path← GetPathFromRootToNextRightClass(Cx)
5: exp_element← new XPathExpressionElement(”except”)
6: else

7: path← GetPathFromRootToPrevisousLeftClass(Cx)
8: exp_element← new XPathExpressionElement(”disjunction”)
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.childAxis
13: new_element← new XPathElement(ls.targetElement.name)
14: CreateMapping(path.last, new_element)
15: new XPathSelfAxis(exp_element, new_element)
16: DeleteMappingsOfXSEMClassesAndXPathElement(missing,

ls.targetElement)

were applied on the element in the original position (see Figure 6.2.11). Let R is
a result of an axis applied on element in original schema S and R' is a result of
the the axis in new schema S ′. Then the location step represented by this axis
has to be updated with disjunction of R \R′ and exclusion of R′ \R.

Ancestor Axis Let p be a parent element of x, q be a parent of element p and
r a sibling of element x.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

Suppose that we reconnect element x whose parent is element p. To preserve
R = R′, query Q′ must be updated.

• First, element x is moved up, reconnected to the element q as a child. The
query x/ancestor :: ∗ must be update to x/ancestor :: ∗ |
absolute_path_to_element(p) to ensure that R = R′.

70

Figure 6.2.11: Example of reconnection problem

• Second, element x is moved down, reconnected to the element r as a child.
The query x/ancestor :: ∗ must be update to x/ancestor :: ∗ except
absolute_path_to_element(r).

Algorithm 6.16 UpdateWhenReconnectAncestorAxis

Input: location step ls, reconnected XSEM PSM class Cx, sibling XSEM PSM
class Cr where was class Cx reconnected, bool value if XSEM classes in new
result are added or missing added

1: path
2: exp_element
3: if added = true then
4: path← GetPathFromRootToClass(Cr)
5: exp_element← new XPathExpressionElement(”except”)
6: else

7: path← GetPathFromRootToClass(Cx.parent)
8: exp_element← new XPathExpressionElement(”disjunction”)
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.childAxis

A method for updating ancestor axis (Algorithm 6.16) di�ers by the results R and
R′. If the result set increased (R ⊂ R′), the expression element Eex for operator
except has to be created (line 5), otherwise operator disjunction is set to preserve
R = R′ (line 8). Then the attached location step is reconnected. The path to the
parent class Cp is connected as the second child of the element Eex if the result
increased or class Cr if elements are missing.

Ancestor-or-self Axis Let element p be a parent of element x, element q a
parent of element p and r a sibling of element x.

71

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

Suppose that we reconnect element x whose parent is the element p. As in case
of ancestor axis, there are two possible situations.

• First, the element x is moved up, reconnected to the element q as a child.
The query x/ancestor− or− self :: ∗ must be update to x/ancestor− or−
self :: ∗ | absolute_path_to_element(p).

• Second, the element x is moved down, reconnected to the element r as a
child. The query x/ancestor−or−self :: ∗ must be update to x/ancestor−
or − self :: ∗ except absolute_path_to_element(r).

The update method for ancestor-or-self axis has the same algorithm as Algorithm
6.16.

Child Axis Let element p be a parent of element x which is being reconnected.
And let element q be a parent of element p and r a sibling of x. In this case there
are various possibilities how the result R′ can be changed.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

• First, the element x is moved up as a child of the element q. The query
p/child :: ∗ must be updated to p/child :: ∗ |
absolute_path_to_moved_element(x).

• Secondly, the element x is moved down as a child of element r. The query
p/child :: ∗ must be updated to p/child :: ∗ |
absolute_path_to_moved_element(x).

• If the element x is moved down as a child of element r. The query r/child :: ∗
must be updated to r/child :: ∗ except
absolute_path_to_moved_element(x).

• If the element x is moved up as a child of element q. The query q/child :: ∗
must be updated to q/child :: ∗ |
absolute_path_to_moved_element(x).

72

Algorithm 6.17 UpdateWhenReconnectChildAxis

Input: location step ls, reconnected XSEM PSM class Cx, bool value if XSEM
classes in new result are added or missing added

1: path← GetPathFromRootToClass(Cx)
2: exp_element
3: if added = true then
4: exp_element← new XPathExpressionElement(”except”)
5: else

6: exp_element← new XPathExpressionElement(”disjunction”)
7: end if

8: ReconnectElements(ls, exp_element)
9: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

10: exp_element.resultAxis← ls.targetElement.childAxis

The algorithm 6.17 is the same in all cases of reconnection of the class Cx. A type
of the created expression element Eex depends of the parameter added (line 3�7).
After the reconnection of the original location step to the element Eex (line 8), a
path to reconnected class Cx must be created and connected (line 9�10).

Descendant Axis In comparison with a child axis there are di�erent situations
with validation of the queries. Suppose that element p is the parent of element x
that is reconnected. Element q is the parent of element p and r is a sibling of x.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

• First, the element x is moved up as a child of element q. The query
p/descendant :: ∗ must be updated to p/descendant :: ∗ |
absolute_path_to_reconnected_element(x)/ descandant − or − self :: ∗
to satisfy R = R′.

• The element x is moved down as a child of element r. The original query
p/descendant :: ∗ does not need any update. The moved element x is still
in the sub-tree of p.

• Now the element x is moved as a child of element r. In this case the query
r/descendant :: ∗ must not return the reconnected element and the query
must be updated to the form r/descendant :: ∗ except
absolute_path_to_reconnected_element(x)/descendant− or − self :: ∗.

73

Algorithm 6.18 UpdateWhenReconnectDescendantAxis

Input: location step ls, reconnected XSEM PSM class Cx, bool value if XSEM
classes in new result are added or missing added

1: path
2: change← false
3: exp_element
4: if added = false then
5: path← GetPathFromRootToClass(Cx)
6: exp_element← new XPathExpressionElement(”disjunction”)
7: change← true
8: else

9: path← GetPathFromRootToClass(Cx)
10: exp_element← new XPathExpressionElement(”except”)
11: change← true
12: end if

13: if change = true then

14: ReconnectElements(ls, exp_element)
15: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
16: exp_element.resultAxis← ls.targetElement.childAxis
17: new_element← new XPathElement(ls.targetElement.name)
18: CreateMappings(GetDescendantOrSelfClasses(Cx), new_element)
19: new XPathDescendantOrSelfAxis(path_end,

new_element)
20: end if

The algorithm 6.18 depends on the direction of the reconnection (up or down)
and on the class where the location step starts � these conditions in�uence result
R′ of the query with the schema S ′. If it holds R′ ⊂ R, element Eex with operator
disjunction must be added (line 6). Else if there were found new possible map-
pings (R ⊂ R′ and parameter added is true), Eex with operator except is created
(line 10). Otherwise, no change of location step is needed.

Descendant-or-self Axis This is the same case as in descendant axis. Recon-
nection of the whole sub-tree does not change this tree and R = R′. A reconnec-
tion of elements which adds or removes elements from the sub-tree has the same
problems as descendant axis when holds R! = R′ and query Q′ must be updated.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

74

Query revalidation

• First, the element x is moved up as a child of the element q. The query
p/descendant− or− self :: ∗ must be updated to the form p/descendant−
or − self :: ∗ |
absolute_path_to_reconnected_element(x)/descandant− or − self :: ∗.

• If the element x is moved down as a child of element r. The original query
p/descendant−or−self :: ∗ does not need any update. The moved element
is still in the sub-tree of p.

• Now the element x is moved as a child of element r. In this case the query
r/descendant− or− self :: ∗ must not return reconnected element and the
query Q′ must be updated to r/descendant− or − self :: ∗ except
absolute_path_to_reconnected_element(x)/descendant− or − self :: ∗.

A method for updating is the same as in Algorithm 6.18.

Following Axis In case of the following axis a reconnection of an element
causes, that the result given by this axis can return less or more elements which
depends on the place in schema where the element was moved to. Let following
axis is applied on element x (x/following :: ∗) and the element y is another ele-
ment in the schema.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

• If the reconnected element is not the element x and the reconnection is done
in the part of the tree hit by the following axis, no update is needed.

• If the reconnection of the element y cause, that the element is added into
a part of tree hit by the axis (R ⊂ R′), query x/following :: ∗ must be
updated to x/following :: ∗ except
absolute_path_to_reconnected_element(y)/descendant− or − self :: ∗.

• On the other hand, if the element y is moved out from the hit part of the
tree (R′ ⊂ R), the query x/following :: ∗ must be updated to the form
x/following :: ∗ |
absolute_path_to_reconnected_element(y)/descendant− or − self :: ∗.

75

• If the reconnected element is x, a revalidation depends on the �nal position
of the element x in the tree and between its siblings (see Figure 6.2.12) when
holds R! = R′. There must be added location paths to the missing elements
and locations paths to exclude redundant elements. In Figure 6.2.12 in the
blue rectangle is an element on which is applied a following axis. In the
top-left schema are the results shown in the red rectangle. In the top-right
image is shown schema after the removing of the element Address. Ad-
ditional elements which must not be returned are in the green rectangles.
On the other hand the missing elements are in the green rectangles in the
bottom-right schema.

Figure 6.2.12: Reconnecting of the element with the following axis

The method for updating following axis case presented in Algorithm 6.19 de-
pends on the reconnection of the class Cy. If it is moved out from the hit part
of the tree, this class must be added to the query: a new expression element Eex

with disjunction operator is added and new a path to the moved class Cy is added
(line 5). Otherwise this class must be eliminated and Eex with operator except
is added to the query (line 9). Then the reconnection of the element Eex is done
(line 12) and appropriate axis is created (line 16).

Following-sibling Axis In this case suppose that the axis is applied on ele-
ment x. Let element p be the parent of x, r be one of the siblings element of x
and y is the reconnected element.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x)
. ∧ (y = sibling(x) ∨ y = sibling(p) ∨ y = child(r))

76

Algorithm 6.19 UpdateWhenReconnectFollowingAxis

Input: location step ls, reconnected XSEM PSM class Cy, bool value if XSEM
classes in new result are added or missing added

1: path
2: exp_element
3: if added = true then
4: path← GetPathFromRootToClass(Cy)
5: exp_element← new XPathExpressionElement(”except”)
6: change← true
7: else

8: path← GetPathFromRootToClass(Cy)
9: exp_element← new XPathExpressionElement(”disjunction”)

10: change← true
11: end if

12: ReconnectElements(ls, exp_element)
13: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
14: new_element← new XPathElement(”element()”)
15: CreateMappings(GetDescendantOrSelfClasses(Cy), new_element)

{Method GetDescendantOrSelfClasses returns collection of descendant
classes of set class in XSEM model}

16: new XPathDescendantOrSelfAxis(path_end, new_element)
17: exp_element.resultAxis← ls.targetElement.childAxis

Postconditions: y = sibling(p) ∨ r = parent(y)
. ∨ (y = sibling(x) ∧ pos(x) < pos(y))

Query revalidation

• First, let y be a sibling of the element x where pos(x) < pos(y).

If the element y is moved up as a sibling of p or y is moved down as a child
of one of its siblings, query x/following − sibling :: ∗ must be updated to
form
x/following − sibling :: ∗ | absolute_path_to_reconnected_element(y).

• Second, let y be a sibling of p or a child of one of siblings of element x and
be reconnected as sibling of x where holds pos(x) < pos(y). Then the query
x/following − sibling :: ∗ must be updated to x/following − sibling ::
∗ except absolute_path_to_reconnected_element(y).

• When we reconnected element x, the same situation as in the case of a
following axis came out.

A method for updating query in the �rst and the second case is shown in Algorithm
6.20.

77

Algorithm 6.20 UpdateWhenReconnectFollowingSiblingAxis

Input: location step ls, reconnected XSEM PSM class Cy, bool value if XSEM
classes in new result are added or missing added

1: path← GetPathFromRootToClass(Cy)
2: exp_element
3: if added = true then
4: exp_element← new XPathExpressionElement(”except”)
5: change← true
6: else

7: exp_element← new XPathExpressionElement(”disjunction”)
8: change← true
9: end if

10: ReconnectElements(ls, exp_element)
11: exp_element.secondAxis← new XPathAxis(exp_element,

CreateXPathModelPathFromXSEMPath(path, path_end))
12: exp_element.resultAxis← ls.targetElement.Childaxis

Preceding Axis Preceding axis has the same problem with updating as the fol-
lowing axis which depends on the position of the reconnected element. Let x be
an element on what is the axis applied. Let R be the set of elements returned by
query x/preceding :: ∗ on the original schema and R′ the set of elements returned
by the query on the changed schema.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

Query revalidation

• If the reconnected element is not the element x and the reconnection is done
in the part of the tree returned by the following axis, no update is needed.

• If the reconnection of the element y cause, that the element is added into the
part of the tree hit by axis when holds R ⊂ R′, the query x/preceding :: ∗
must be update to x/preceding :: ∗ except
absolute_path_to_reconnected_element(y)/descendant− or − self :: ∗.

• If the element is moved out from the hit part of the tree (R′ ⊂ R), the query
x/following :: ∗ must be updated to x/preceding :: ∗ |
absolute_path_to_reconnected_element(y)/descendant−or−self :: ∗ to
preserve R = R′.

• If the reconnected element is x, a revalidation depends on the �nal position
of the element x in the tree and among its siblings. Location paths to add

78

missing elements and locations paths to exclude redundant elements must
be added.

The algorithm for update case of preceding axis is the same as Algorithm 6.19.

Preceding-sibling Axis In this case suppose that the axis is applied on ele-
ment x. Element p be a parent of x and y the reconnected element.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x)
. ∧ (y = sibling(x) ∨ y = sibling(p) ∨ y = child(r))

Postconditions: y = sibling(p) ∨ r = parent(y)
. ∨ (y = sibling(x) ∧ pos(x) < pos(y))

Query revalidation

• First, let y be a sibling of x where pos(y) < pos(x).

If the element y is moved up as a sibling of p or y is moved down as a child
of one of its siblings, the query x/preceding − sibling :: ∗ must be updated
to x/preceding − sibling :: ∗
| absolute_path_to_reconnected_element(y).

• Second, let y be a sibling of p or a child of one of siblings of element x and
is reconnected as a sibling of element x where holds pos(y) < pos(x). The
query x/preceding−sibling :: ∗ must be updated to x/preceding−sibling ::
∗ except absolute_path_to_reconnected_element(y).

A reconnection of element x has the same problem as in case of the preceding
axis.

The method for updating preceding-sibling axis is the same as in Algorithm
6.20.

Parent Axis Let p be a parent element of x , q be a parent of element p and r
a sibling of element x.

Preconditions: x ∈ S ∧ x ∈ S ′ ∧ p = parent(x) ∧ q = parent(p)
. ∧ p = parent(r)

Postconditions: q = parent(x) ∨ r = parent(x)

79

Query revalidation

Reconnection of the element x in both cases (up or down) causes that the query
Q′ = x/parent :: ∗ will be updated to the form absolute_path_to_element(p)/
self :: ∗ except absolute_path_to_reconnected_element(x)/parent :: ∗
| x/parent :: ∗ which satis�es R = R′.

An update of the XPath model of the query x/parent :: ∗ is shown in Figure
6.2.13. On the left is shown a model of the original query Q, on the right is the
updated model of the new query Q′.
The method for updating a location step with parent axis (Algorithm 6.21) is

Algorithm 6.21 UpdateWhenReconnectParentAxis

Input: location step ls, parent XSEM PSM class Cp, reconnected XSEM PSM
class Cx

1: path {Varible initialization}
2: exp_element {Varible initialization}
3: path← GetPathFromRootToClass(Cx)
4: exp_element← new XPathExpressionelement(”except”)
5: parent← ls.parentElement
6: new XPathAxis(parent, exp_element)
7: exp_element_next← new XPathExpressionElement(”disjunction”)
8: exp_element.firstAxis← newXPathAxis(exp_element,
exp_element_next)

9: exp_element.secondAxis← new XPathAxis(exp_element,
CreateXPathModelPathFromXSEMPath(path, path_end))

10: exp_element.resultAxis← ls.targetElement.childAxis
11: new_element← new XPathElement(ls.targetElement.name)
12: CreateMapping(Cx.parent, new_element)
13: new XPathParentAxis(path_end,

new_element)
14: exp_element_next.firstAxis← ls
15: path← GetPathFromRootToClass(Cp)
16: exp_element.secondAxis← new XPathAxis(exp_element_next,

CreateXPathModelPathFromXSEMPath(path, path_end))
17: new_element← newXPathElement(ls.targetElement.name) {Create new

axis between elements}
18: CreateMappings(Cp, new_element)
19: new XPathSelfAxis(path_element, new_element)

the same in both cases of possible move directions. First, element E1
ex of except

operator is created (line 4). Then an element E2
ex (with operator disjunction) is

created and connected as the �rst child of E1
ex (line 7�8). The original location

step is set as the �rst child of element E2
ex (line 14). The second child of E2

ex is
a path to the class Cp (line 17). Finally, the second child of E1

ex is a path to the

80

parent of the reconnected class Cx.

Figure 6.2.13: Reconnection of the parent axis

Self Axis A change of the position in the tree does not change the result of the
query of the self axis. The original result R and the new result R′ are still the same.

81

Chapter 7

Implementation and Experiments

In this chapter we will describe a prototype implementation of the algorithms
described in Chapter 6. It was implemented as an extension of DaemonX, a
framework for modeling and processing evolution [21].

7.1 DaemonX

DaemonX is a framework developed as a software project on the Faculty of Math-
ematics and Physics, of the Charles University in Prague [21]. It is a pluginable
tool developed for data and/or process modeling. The main aim of the framework
is to provide functionality for processing evolution between models de�ned by a
developer. The functionality is provided via various plug-ins, which use services
provided by the framework. All what have to be done by developer of additional
plug-ins is to de�ne models and set rules how the atomic operations created in a
source model have to be propagated to operations in a target model. A detailed
description of the framework can be found on project web pages [21].

7.2 Implementation

A prototype implementation uses existing XSEM PSM modeling plug-in devel-
oped as a part of the �rst release of the project and adds two new plug-ins.
The �rst modeling plug-in for XPath query and the second plug-in for evolution
processing from XSEM PSM model to XPath model. The experimental imple-
mentation has the following features:

• Modeling plug-in for visualization of XPath query

� It implements all components necessary to create and visualize XPath
query - nodes and axes. It is described in Section 5.2.2 and user docu-
mentation of the plug-in is available on the attached CD.

82

� it provides generating query from the model.

� It provides generating model from the query.

• Evolution plug-in from XSEM PSM to XPath modeling plug-ins

� It enables creation of mapping between XSEM PSM and XPath models.

� It provides ability of propagation of operations from the source to the
target model.

� It implements parsing of XPath query (thanks to the Saxon XQuery
Processor, HE [26]), generating XPath model from the query and cre-
ating mapping with XSEM PSM model.

� It implements algorithms described in Chapter 6.

The prototype implementation generates a model from given XPath query and
creates mapping between given XSEM PSM model and the generated model.
Then, changes done in XSEM PSM model by a user are propagated to the XPath
model and new query is generated from the original one.

7.3 Experiments

Because there are no existing real-world project that provides similar abilities,
it is not possible to compare our solution and results with others. Therefore
queries from XPathMark XPath-TF [27] were used to provide the proof of the
concept. Because these test sets are quite simple and do not use more locations
steps together, we created own more complicated queries using various axes to
test abilities of the solution.

7.3.1 XPathMark XPath-TF

From the presented test set we took tests corresponding with our XPath syntax:

1. A1 - A11

2. P1 - P11 which were rewritten to queries without predicate

3. O1, O3, O4

All these queries were applied on test document schema and then were applied all
possible changes described in Chapter 6. All updates were executed correctly in
all cases.

83

Examples of the Queries

• //l/ancestor :: ∗ (A5)

• //l/following :: ∗ (A9)

• //l/descendant :: ∗ (P5)

• //l/preceding − sibling :: ∗ (P7)

• //q/following :: ∗/parent :: ∗ except //g/ancestor :: ∗ (O1)

7.3.2 Sophisticated Queries

To test the approach on more complicated queries from the real word, we took
XML schema of an order from Amazon AWS [28] used for communication with
customers by Web Services. XSEM PSM model was created from this schema
and a set of XPath queries utilizing all available axes in various combinations
were de�ned. These queries were automatically mapped to the schema by the
DaemonX framework.
Next, we made various changes in the schema to simulate a designer who has to
change the schema for di�erent reason like to add new information, remove unused
parts, rename parts to make better sense or change the structure of the schema
tree. After propagation the results of both original and new queries were checked
if they are the same if there were found no limitations in the evolution process.
All queries and applied changes of the schema can be found on the attached CD.

Examples of the Queries

• //RegionDefinition/parent :: ExcludedRegions/parent :: ∗

• /Order/ParameterizedUrls/ ∗ /∗

• //AmazonUpsellPreferences/child :: ∗

• //ShippingRate/following − sibling :: ∗/descendant :: ∗

• //MerchantUpsellItem/Images/preceding − sibling :: ∗

• //ShippingMethods/following :: ∗

• //RegionDefinition/ancestor :: ∗

• //Taxamount/following :: Shipping/child :: ∗

• //Images/parent :: ∗/ItemCustomDate/ancestor :: Cart

84

Chapter 8

Conclusion

In this thesis we presented an approach to XML schema evolution and query
adaptation. According to changes performed in the schema it should determine
the impact on the queries and update them in order to return the same results
like the original queries with the original schema.
We began with introducing of problem with updating schemes and possible incom-
patibility of these schemes with related queries (see Chapter 1). In Chapter 2 we
introduced an XML evolution architecture. We focused on the platform-speci�c
level which is utilized in this thesis.
Chapter 3 contains analysis of various existing approaches which are concerned
to queries incompatibility while evolving XML schema changes.
In Chapter 4 is presented XSEM, a conceptual model for XML, especially its
platform-speci�c model XSEM-H utilized in this thesis.
Chapter 5 describes used XPath syntax based on Positive Core XPath and its
visualization model - a platform speci�c model which represents the query. Next
operations which can be applied on the model are described. Then mapping be-
tween components of XSEM PSM and XPath models used in evolution process is
described. The chapter ends with description of the algorithm for recognizing of
changes that were done in original XSEM PSM model and a decision if it should
be propagated to related XPath model.
In Chapter 6 the main contribution of this thesis is described � the analysis of the
possible changes which can be done in XSEM PSM model and their impact on the
XPath model mapped to this model. We proposed algorithms performing needed
changes which have to be done with the queries to preserve compatibility. The
analysis is divided into the sections by the possible changes. Then every section is
divided by axis type where can be di�erent algorithms how the query (especially
XPath model of the query) should be updated if it is possible.
The evolution process between the models can be summarized into these steps:

1. Analyze the change done in the XSEM PSM model.

2. Evaluate results of the queries with the original and the new XSEM PSM
model.

85

3. If there are any di�erences (di�erent mapping), perform evolution operation
on the XPath model if possible.

An experimental implementation of the algorithms was implemented as an exten-
sion of DaemonX framework and is available on the attached CD. The implemen-
tation and experiments are described in Chapter 7.

Main Contributions

The main contribution of our approach is the ability to recognize and to analyze
changes done in XML schema and the ability to update related queries to pre-
serve the compatibility. It enables to design XML schemes without an inspection
of all related queries and looking for incompatibility of the queries after every
change manually. If the revalidation of the query is not possible, this situation is
reported to the designer to update the query manually or to restore the changes
in the schema. Changes in the schema are propagated immediately thanks to the
interconnection between the schema and the queries.

8.1 Open Problems

Even though the approach is complex and robust, there exists some problems and
issues that were found during the survey and are not covered by this thesis.

8.1.1 Suggestion When Propagation Is Impossible

There are some cases when the propagation of the change could not be proceeded.
For example in Section 6.2.5 if the changed location step is not the last in the
query. In this situation the designer must be informed about this situation and
the query and mapping have to be updated manually. A similar problem can
arise with elements with the same name - the results depend on the semantics. In
this case an analyzer could provide some clue to the designer to make the query
update more simple or help with choosing the appropriate one.

8.1.2 Query Optimization

After changes are done in the XSEM PSM model the related XPath model can
be in an unoptimized form. For example repeating of inverse operations like
adding and removing the same XSEM PSM class can cause redundant location
steps in the XPath model. This problem can be solved by using an additional
query optimization that can be performed after the propagation process. This
optimization will create new optimized query (and XPath model) which will be
mapped to the XSEM PSM model.

86

8.2 Future Work

8.2.1 Richer XPath Syntax

The XPath syntax based on presented Positive Core XPath is quite simple. It
does not cover predicates, attributes or built-in XPath functions. It seems that
enlargement of the syntax only expands the analysis of the changes done in the
XSEM PSM model and theirs propagation to the XPath model and makes the
propagation more complicated.

8.2.2 Semantic Relations

As mentioned in Chapter 6, we do not consider semantics of the XSEM PSM
model and the XPath model. This brings some limitation in an evaluation pro-
cess and a propagation of the changes. For example two sibling XSEM PSM
classes of the same name are not permitted in the presented suggestion and the
evaluation process could not be proceed in this situation.
For example if there are two classes Address representing home address and deliv-
ery address. There is no possibility how to distinguish between these two XSEM
PSM classes with the used XPath syntax. A possible solution of this problem
would be a special annotation of the XSEM PSM classes and the XPath model
when the mapping between these classes and elements from the XPath model is
being created.

87

Appendix A

CD Contents

The attached CD contains:

• PDF version of the thesis - thesis.pdf.

• Installer of DaemonX framework with appropriate plug-ins in the folder
implementation.

• Examples of XSEM PSM and XPath models for evolution process in the
folder examples.

88

Appendix B

Used XSD Schemes and XPath

Queries

B.1 Purchase Schema

File with this schema whose XSEM PSM model is shown in Figure 4.1.2 is saved
on the attached CD in the �le examples/purchase/purchase.xsd and a project with
this schema in the �le examples/purchase/purchase.dx.

B.2 XPathMark

A test schema of the XPathMark is stored in the �le examples/xpathmark/
schema.xsd and a project used for testing in the �le examples/xpathmark/
xpathmark.dx. All used queries are in the �le examples/xpathmark/queries.pdf.

B.3 Order Schema

The schema of Amazon order is in the folder examples/order/order.xsd on the
attached CD. Next, queries applied on this schema are strored in the �le
examples/order/queries.pdf. In the folder examples/order is the �le order.dx with
the saved project for the DaemonX too. This project contains an XSEM PSM
model of the schema.

89

Bibliography

[1] W3C. Extensible markup language (xml). http://www.w3.org/XML/, 09
2010.

[2] W3C. Xml path language (xpath) version 1.00. http://www.w3.org/TR/

1999/REC-xpath-19991116/, 11 1999.

[3] W3C. Xquery 1.0: An xml query language (second edition). http://www.

w3.org/TR/xquery/, 12 2010.

[4] Mirella M. Moro, Susan Malaika, and Lipyeow Lim. Preserving xml queries
during schema evolution. In Proceedings of the 16th international conference
on World Wide Web, WWW '07, pages 1341�1342, New York, NY, USA,
2007. ACM.

[5] W3C. Semantic annotations for wsdl and xml schema. http://www.w3.org/
TR/sawsdl/, 08 2007.

[6] Martin Necasky and Irena Mlynkova. Five-level multi-application schema
evolution. DATESO, 1:90�104, 2009.

[7] Martin Necasky. Xsem: a conceptual model for xml. In Proceedings of
the fourth Asia-Paci�c conference on Comceptual modelling - Volume 67,
APCCM '07, pages 37�48, Darlinghurst, Australia, Australia, 2007. Aus-
tralian Computer Society, Inc.

[8] W3C. Xml schema part 1: Structures second edition. http://www.w3.org/
TR/xmlschema-1/, 10 2010.

[9] W3C. Xml path language (xpath) 2.0 (second edition). http://www.w3.

org/TR/xpath20/, 12 2010.

[10] W3C. Xsl transformations (xslt) version 1.0. http://www.w3.org/TR/xslt,
11 1999.

[11] W3C. Xhtl 1.0 the extensible hypertext markup language (second edition).
http://www.w3.org/TR/xhtml1/dtds.html, 08 2001.

[12] World Wide Web Consortium. http://www.w3.org/.

90

http://www.w3.org/XML/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xhtml1/dtds.html
http://www.w3.org/

[13] Meike Klettke. Conceptual xml schema evolution - the codex approach for
design and redesign. In BTW Workshops, pages 53�63, 2007.

[14] Pierre Genevès, Nabil Layaïda, and Vincent Quint. Identifying query incom-
patibilities with evolving xml schemas. SIGPLAN Not., 44:221�230, August
2009.

[15] W3C. Relax ng. http://relaxng.org/, 01 2011.

[16] Pierre Genevès, Nabil Layaïda, and Alan Schmitt. E�cient static analysis of
xml paths and types. SIGPLAN Not., 42:342�351, June 2007.

[17] Egon Wanke and Rolf Kotter. Oriented paths in mixed graphs. In Rudolf
Fleischer and Gerhard Trippen, editors, Algorithms and Computation, vol-
ume 3341 of Lecture Notes in Computer Science, pages 1467�1490. Springer
Berlin / Heidelberg, 2005. 10.1007.

[18] Roger L. Costello. Global versus local. http://www.xfront.com/

GlobalVersusLocal.html.

[19] XCase team. Xcase - tool for xml data modeling. http://xcase.codeplex.
com/.

[20] OMG. Documents associated with uml version 2.2. http://www.omg.org/

spec/UML/2.2/, 02 2009.

[21] DaemonX Team. Daemonx. http://daemonx.codeplex.com/, 6 2011.

[22] Jakub Klimek, M. Necasky, and Irena Mlynkova. Evolution and change man-
agement of xml applications. none, 1:0�0, 2011.

[23] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Xpath processing in
a nutshell. SIGMOD Rec., 32:21�27, June 2003.

[24] Pieter H. Hartel. A trace semantics for positive core xpath. In Proceedings of
the 12th International Symposium on Temporal Representation and Reason-
ing, pages 103�112, Washington, DC, USA, 2005. IEEE Computer Society.

[25] Balder ten Cate and Maarten Marx. Axiomatizing the logical core of xpath
2.0. Theor. Comp. Sys., 44:561�589, April 2009.

[26] Michael Kay. Saxon the xslt and xquery processor. http://saxon.

sourceforge.net/, 5 2011.

[27] Massimo Franceschet. http://sole.dimi.uniud.it/~massimo.

franceschet/xpathmark/FT.html.

[28] Amazon. Amazon web services. http://amazonpayments.s3.amazonaws.

com/documents/order.xsd.

91

http://relaxng.org/
http://www.xfront.com/GlobalVersusLocal.html
http://www.xfront.com/GlobalVersusLocal.html
http://xcase.codeplex.com/
http://xcase.codeplex.com/
http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
http://daemonx.codeplex.com/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/FT.html
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/FT.html
http://amazonpayments.s3.amazonaws.com/documents/order.xsd
http://amazonpayments.s3.amazonaws.com/documents/order.xsd

	1 Introduction
	1.1 Motivation
	1.2 Aim of the Thesis
	1.3 Structure of the Thesis

	2 XML Evolution Architecture
	2.1 XML Schema
	2.2 XML Path Language (XPath)
	2.2.1 XPath Data Model
	2.2.2 XPath Axes
	2.2.2.1 Abbreviations

	2.2.3 Location Steps
	2.2.4 Other Model Parts

	3 Related Work
	3.1 Preserving XML Queries during Schema Evolution
	3.1.1 Taxonomy of XML Schema Changes
	3.1.2 Impact on Queries
	3.1.3 Compatibility of Queries across Schema Versions
	3.1.4 Discussion

	3.2 Identifying Query Incompatibilities with Evolving XML Schemes
	3.2.1 Internal Representation
	3.2.2 Logical Formulas
	3.2.3 Query Representation
	3.2.4 Analysis Predicates
	3.2.5 Framework Evaluation Process
	3.2.6 Framework Real-World Use-case Tests
	3.2.7 Discussion

	3.3 CoDEX
	3.3.1 Conceptual Model
	3.3.2 Schema Evolution
	3.3.3 Discussion

	3.4 Comparison of the Related Works

	4 XSEM PSM
	4.1 XSEM
	4.2 XSEM PSM

	5 Mapping XPath to XML Schema
	5.1 XPath Syntax
	5.1.1 Predicates
	5.1.2 Abbreviations

	5.2 XPath Model Visualization
	5.2.1 Query of the Model

	5.3 Location Path Mapping
	5.3.1 Mapping with Simple Result
	5.3.2 Mapping with Multiple Results

	5.4 Operations
	5.5 Atomic Operations
	5.5.1 XSEM PSM Model Operations
	5.5.2 XPath Model Operations

	5.6 Recognizing of Changes and Propagation
	5.6.1 Recognizing of Changes

	6 Evolution Algorithms
	6.1 Correctness of the Propagation
	6.2 Analysis of the Changes
	6.2.1 Refinement
	6.2.2 Removal
	6.2.3 Renaming
	6.2.4 Reordering
	6.2.5 Reconnection

	7 Implementation and Experiments
	7.1 DaemonX
	7.2 Implementation
	7.3 Experiments
	7.3.1 XPathMark XPath-TF
	7.3.2 Sophisticated Queries

	8 Conclusion
	8.1 Open Problems
	8.1.1 Suggestion When Propagation Is Impossible
	8.1.2 Query Optimization

	8.2 Future Work
	8.2.1 Richer XPath Syntax
	8.2.2 Semantic Relations

	A CD Contents
	B Used XSD Schemes and XPath Queries
	B.1 Purchase Schema
	B.2 XPathMark
	B.3 Order Schema

	Bibliography

