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Chapter 1

Introduction

Today, XML is widely used as a technology for representation, storage and ex-
change of structured data. With the increasing emphasis on automated software
testing, the need for generators of suitable synthetic XML documents as test
cases rises. Many di�erent tools are already available for this purpose. From
the perspective of users, two requirements seem especially important - the ability
to adjust the generated documents to conform to the expectations of the target
applications and the ease of con�guration. Unfortunately, these two aspects con-
tradict with each other. The aim of the thesis is to �nd a suitable compromise
and come up with an algorithm that would allow to customize the results in detail
in a user-friendly way.

Designing a general-purpose generator which could be adapted for the needs
of applications of any sort and yet would be easy to work with is very hard, if not
impossible. To reach our goal, we decided to limit our focus on applications which
use XPath queries. XPath is a popular language for extracting data represented
in the form of XML documents. It is simple yet powerful and forms the basis
of more complex technologies, such as XQuery and XSLT. The following are
examples of applications that rely on it.

• XML databases,

• applications con�gured via XML documents,

• applications exchanging messages encoded as XML documents.

For these cases, to expect an XPath query on the input of our algorithm seems
like a promising idea. We expect to be able to extract a lot of information about
the way the resulting documents should look like from it. Moreover, target users
will typically already have a query which they need to get covered by testing
documents and thus providing it to the generator as a con�guration argument
should not constitute an obstacle.

1.1 Structure of the Thesis

The thesis is structured as follows.

• Chapter 1 introduces the goal of the thesis and describes its structure.
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• Chapter 2 de�nes some basic terms, which are used throughout the rest of
the thesis. It also brie�y introduces the XML, XML Schema and XPath
technologies.

• Chapter 3 compares existing generators, with a special emphasis on param-
eters that they accept.

• Chapter 4 forms the main part of the thesis. This is where we describe the
conclusions of our theoretical research and propose the solution.

• In Chapter 5, some important implementation details about the prototype
are speci�ed.

• Chapter 6 contains the experimental part of the thesis. It includes results
of running the prototype on sample data and introduces performance opti-
mizations.

• Chapter 7 contains the conclusion and suggestions for future work.
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Chapter 2

Used Technologies and De�nitions

In this chapter we will �rst give a few basic terms which will be used in de�nitions
later in the thesis to keep them clear and concise and then brie�y introduce the
family of XML technologies.

2.1 Basic De�nitions

2.1.1 Graphs

De�nition 1. Suppose we have a directed graph G = (V,E) and its node v ∈ V .
Then

• Edges(v) = {e ∈ E; v ∈ e} is the set of all edges incident with v,

• ChildNodes(v) = {w ∈ V ; (v, w) ∈ E} is the set of all child nodes of v,

• GrandChildNodes(v) = {u ∈ V ;∃w ∈ V : (v, w) ∈ E ∧ (w, u) ∈ E} is the
set of all grand-child nodes of v.

Moreover, when |Edges(v)| = 1, i.e. ChildNodes(v) = {u} for some node
u ∈ V , then

• ChildNode(v) = u is the only child node of v.

2.1.2 Sequences

De�nition 2. Let X be a �nite set of symbols and w = (x1, x2, ..., xn) a sequence
in X. We call xi a member of w for each i ∈ {1...n}. We denote the fact that
x ∈ X is a member of w as x ∈ w.

De�nition 3. Let X be a �nite set of symbols and v1 = (x1, ..., xn) and v2 =
(y1, ..., ym) two sequences in X. We say that v = v1� v2 is a concatenation of v1
and v2 if and only if v = (x1, ..., xn, y1, ..., ym).

De�nition 4. Let X be a �nite set of symbols and V1 and V2 two sets of sequences
in X. Then we call V = V1 � V2 a concatenation of V1 and V2 if and only if
V = {v1 � v2; v1 ∈ V1, v2 ∈ V2}.
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2.2 XML Technologies

XML is a set of technologies maintained by the W3C Consortium [12] which
includes languages such as XML, DTD, XPath, XML Schema, XSLT and other.
In the rest of this chapter we will brie�y describe those that are related to the
aim of the thesis and which we will therefore refer to in the rest of it. We will only
focus on those features of individual technologies that are important with regards
to our purpose. Describing these technologies in detail is beyond the scope of the
thesis.

2.3 XML

XML (Extensible Markup Language, [13]) is a technology designed for data stor-
age and exchange. It is a markup language which means that XML documents
are basically plain text documents augmented by certain marks that provide the
structure and indicate the meaning of individual parts.

Let us show an example. Figure 2.1 contains a simple email message encoded
as an XML document. Such a message has an address of the sender and the
receiver, a subject and the main body and might optionally contain one or more
attachments.

1 <?xml version=" 1 .0 " ?>
2 <message>
3 <sender>bob@gmail . com</ sender>
4 <r e c e i v e r>josh@gmail . com</ r e c e i v e r>
5 <sub j e c t>Hel lo from Thailand !</ sub j e c t>
6 <body>
7 Hi Josh !
8
9 I am gr e e t i n g you from the wonderful land o f Thailand ! We
10 are having a r e a l l y g rea t time here . I 'm sending you some
11 photos as attachments so that you can see the b e au t i f u l
12 country y ou r s e l f .
13
14 Looking forward to s e e i ng you again ,
15 Bob
16 </body>
17 <attachment f i l e ="photo−01.png" />
18 <attachment f i l e ="photo−02.png" />
19 </message>

Figure 2.1: The message XML document

2.3.1 Elements

The marks in an XML document are called tags. Every tag has a name and
always starts with an opening (<) and ends with a closing (>) parenthesis. Tags
always occur in pairs and each pair together denotes an element.

An element is a part of the document between (and including) an opening tag
and a closing tag. Both tags must have the same name and the closing one must
contain a slash (/). Each element has a name, which is the same as the name of
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its tags, and a content, which is anything that is placed between its opening and
closing tags.

Figure 2.2 contains a sample XML element. The name of the element is sender
and its content is bob@gmail.com.

1 <sender>bob@gmail . com</ sender>

Figure 2.2: The sender element

Based on the content type, XML elements can be divided into four groups:

Empty content

These are elements that do not contain any characters between their tags. A
sample empty content-like element is depicted on Figure 2.3.

1 <married></married>

Figure 2.3: An element with empty content

The XML de�nition allows an abbreviated syntax for this kind of elements
- the closing tag is omitted and the opening one has a slash appended before
the closing parenthesis. Figure 2.4 shows an equivalent notation for the married
element.

1 <married />

Figure 2.4: An element with empty content in the abbreviated form

Element content

An element of this type contains a sequence of other elements, so called sub-
elements. It does not directly contain any non-element characters.

Figure 2.5 contains a sample element with element content. Note that only the
name element has element content here - the firstname and surname elements
have text contents.

1 <name>
2 <f i r s tname>John</ f i r s tname>
3 <surname>S i n c l a i r</surname>
4 </name>

Figure 2.5: An element with element content

Text content

Elements with text content contain strings of characters directly, i.e. not within
sub-elements. A sample element with text content is depicted in Figure 2.2 above.
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Mixed content

Elements with mixed content contain both sub-elements and non-element text
characters, intermixed with each other. Element p in Figure 2.6 has mixed content
type.

1 <p>
2 <b>Touching</b> i s an important form o f communication among
3 <i>e l ephant s</ i>. I nd i v i dua l s g r e e t each other by
4 <b>s t r ok ing</b> or <b>wrapping t h e i r trunks</b>; the l a t t e r
5 a l s o occurs during <b>mild compet i t ion</b>.
6 </p>

Figure 2.6: An element with mixed content

We can observe that the sample email message XML document in Figure 2.1
contains seven di�erent elements - one (named message) with element content,
four (named sender, receiver, subject, body) with text contents and two (both
named attachment) with empty contents.

2.3.2 Attributes

Each element might optionally contain one or more attributes. An attribute
consists of a name and a value and forms basically a key-value pair. Figure 2.7
shows a sample element with two attributes - it depicts a t-shirt of size XL and
with blue colour.

1 <t−s h i r t co l our="blue " s i z e="XL" />

Figure 2.7: An element with two attributes

In the XML example in Figure 2.1 only the attachment elements have at-
tributes - a single attribute each - with file as names and photo − 01.png and
photo− 02.png as values.

2.3.3 Prolog

Every XML document starts with a prolog. It is the �rst line of the document
with a special syntax and contains the following attributes.

• version (mandatory) - denotes the version of the XML speci�cation that
the document conforms to,

• encoding (optional) - indicates the �le encoding (UTF-8 by default).

Figure 2.8 shows a sample prolog of an XML �le. It prescribes the 1.0 speci-
�cation version and the UTF − 8 encoding.

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>

Figure 2.8: An example of an XML prolog
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2.3.4 Well-Formed XML Documents

Every XML document must satisfy a few conditions in order to be syntactically
correct. We call such documents well-formed. A list of these conditions follows.

1. Each XML document must start with a prolog.

2. Every element must be delimited by a start and end tag pair (except for ab-
breviated empty content elements, see Section 2.3.1) with matching names
(in a case sensitive way).

3. Elements must not overlap, i.e. the pairs of tags must not cross.

4. The whole document must be enclosed in a single element, so called root
element.

The sample XML document in Figure 2.1 meets all the criteria and is therefore
well formed.

2.3.5 Common XML Data-Model

For the sake of simplicity we usually use trees to represent XML documents in
memory for further processing. Such a tree has elements of the document as
nodes and there are edges between nodes if and only if they represent an element
- sub-element relationship. Additionally, each node has a (possibly empty) set of
element attributes and a content.

Figure 2.9 contains a tree that represents the XML document from Figure
2.1. Nodes are represented by ellipses where the corresponding element name is
written in bold face and the attached content and attributes are depicted below
using the standard font. Edges are displayed using arrows.

Figure 2.9: The message XML �le data model

De�nition 5. The depth of an XML document doc (denoted as Depth(doc)) is
the number of edges on its longest path from the root node to a leaf node in its
data-model graph.
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De�nition 6. The size of an XML document doc (denoted as Size(doc)) is the
total number of nodes in its data-model graph.

2.4 DTD

The set of all well-formed documents is very broad and we often need to constraint
it in order to get a (more or less) narrow set of documents convenient for describing
a certain domain. Many languages were designed for this purpose. We will use
DTD in this thesis.

DTD (Document Type De�nition, [13]) is a language that allows to describe
the structure and content of XML documents using regular expressions. It is used
to denote sets of documents which conform to the descriptions. We say that such
documents are valid.

De�nition 7. The set of all documents valid against a schema S is denoted as
V alid(S).

Figure 2.10 shows a sample DTD schema. It describes a set of XML documents
to represent XML messages. For one of the set of all valid documents see Figure
2.1.

1 <!ELEMENT message ( sender , r e c e i v e r , sub jec t , body , attachment ∗)>
2 <!ELEMENT sender (#PCDATA)>
3 <!ELEMENT r e c e i v e r (#PCDATA)>
4 <!ELEMENT sub j e c t (#PCDATA)>
5 <!ELEMENT body (#PCDATA)>
6 <!ELEMENT attachment EMPTY>
7 <!ATTLIST attachment f i l e CDATA #REQUIRED>

Figure 2.10: A sample DTD de�nition

We will postpone a more detailed description of the DTD language to Chapter
4.

2.5 XPath

XPath (XML Path Language, [14]) is a language that allows to select speci�c
parts of XML documents. To refer to the particular document parts it de�nes a
dedicated query language. Such a query describes how to navigate through the
document to locate them.

The sample XPath query given in Figure 2.11 could be used to reference the
subject element of the document in Figure 2.1.

1 /message/ sub j e c t

Figure 2.11: A sample XPath query

We will give a more in-depth description of the XPath language in Chapter 4.
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Chapter 3

Existing Approaches

This chapter presents an overview of existing approaches to generating synthetic
XML documents. We are primarily interested in parameters that individual gen-
erators accept to a�ect the resulting documents. There are generators that can
be given:

• a schema,

• a query,

• other parameters.

3.1 Key Representatives

In this section we will introduce selected key representatives.

3.1.1 Partition-based Approach

In [1], C. de la Riva, J. García-Fanjul and J. Tuya present a solution based on
the category-partition method for generating testing data, which was proposed
in [2]. The intention is to generate a set of test cases in accordance with a given
query and then discard those that do not conform to a given schema. Only some
very basic XPath syntax elements are supported - the child, self, parent, and
descendant-or-self axes plus elementary predicates.

The authors also outline two di�erent possible implementation techniques -
using model checking (described in [3]) and using ToXgene (in [4]). They do not,
however, o�er a full and ready implementation.

3.1.2 Schema-based Partitioning

Another approach inspired by the category-partition method is introduced in [5].
Unlike in the previous article, this time a given schema instance alone is used to
extract test-cases. The authors also propose applying weights to individual parts
of the schema to reduce the size of the results. In order to make the generation
more �exible, the solution also allows users to decide if they want to get a �xed
number of resulting documents or a �xed functional coverage (or a compromise
between both).
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3.1.3 Oxygen

A di�erent representative of approaches that generate XML documents using a
schema instance is the Generate sample XML �les tool in Oxygen [6]. In addition
to a schema, it also accepts several other parameters, such as (among others):

• name of the root element,

• expected total number of documents,

• preferred number of element repetitions,

• maximum recursion level,

• maximum text content length.

3.1.4 ToXGene

The ToXGene generator [7] accepts a con�guration �le, which is basically an XML
schema de�nition augmented with special annotations. These are mainly prob-
ability distributions that in�uence the numbers of occurrences of elements and
attributes in the generated documents and also the text contents. The tool sup-
ports some more advanced annotations, which can be used to enforce additional
integrity constraints (such as IDs and IDREFs).

ToXGene allows users to adjust the generated documents very closely, but at
the cost of a di�cult and time-demanding con�guration.

3.1.5 Synthetic Benchmark

In [8], C. Dyreson and H. Jin propose a generator of XML documents and then
use it to compare several di�erent in-memory and persistent engines.

The generated documents are synthetic, which means that the aim was to
choose those that would highlight the impact of di�erent factors to querying e�-
ciency as much as possible, rather than to mimic real documents with reasonable
semantics. This e�ectively means that all elements at the same level of depth
have the same name, which allows to construct queries that descend into a certain
depth of the documents. Moreover, some elements (so called magic elements) can
have a �xed su�x ofMagic appended to their names. By changing the amount of
magic elements in the documents one can change the size of the result of queries
which locate them. We do not get to know anything about naming of attributes
or generating text content.

The authors propose a group of factors to control the structure and content
of the generated documents, such as (among others):

• document depth,

• the number of children per element,

• the number of attributes per element,

• the length of the text content,

• tree density (i.e. the percentage of nodes relative to the number of nodes
in a complete tree),
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• the level with magic nodes,

• the frequency of magic nodes at the speci�ed level.

To reduce the number of the resulting documents, the authors only vary each
single control factor while keeping all others �xed. This also allows them to isolate
the impact of this single factor and determine how it a�ects the performance of
query evaluation in various implementations.

3.1.6 XPathMark

In [9], M. Franceschet proposes an XPath benchmark to compare the functional
completeness, correctness, e�ciency and scalability of di�erent XML engines.
He uses XMark (see [10]), a tool to generate random XML documents which
adhere to a single �xed schema, to create input data. He also designs a �xed
set of XPath queries intended to cover all the various aspects of the language.
The queries are designed with the schema of the input documents in mind. The
author also proposes a methodology to evaluate XPathMark on a given engine
and demonstrates the idea on two well known representatives.

As XMark is used to generate the documents, the only parameter that can be
a�ected is the expected size.

3.2 Summary

The algorithms and tools that we have mentioned in the previous sections can be
compared from many di�erent perspectives. Following are those that are relevant
with regards to the aim of the thesis.

Type

We can divide the approaches into two basic groups - tools (Oxygen, ToXGene,
XPathMark) and papers (Partition-based Approach, Schema-based Partitioning,
Synthetic Benchmark). The former one contains well de�ned algorithms for which
there are robust implementations available. The latter one is formed by scien-
ti�c papers in which the proposed methods are only outlined. They also mostly
contain results of using prototypical implementations for benchmarking.

Con�gurability and con�guration complexity

These two aspects depend on each other inversely. On the one hand there is
XPathMark, for which only the size of the generated documents can be a�ected.
ToXGene represents the other extreme - it can be con�gured in detail, but at
the cost of a very demanding set-up and a steep learning curve. The rest of the
approaches are in between.

Completeness

Many of the described representatives, especially those that belong to the group
of scienti�c papers, do not deal with the full range of the task. The authors have
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typically chosen just a sub-set of the syntax o�ered by the underlying technologies
(XML, XPath, etc). Details have already been mentioned.

Table 3.1 shows an overview of the types of parameters expected by individual
solutions.

Query Schema Other

Partition-based Approach Yes Yes No

Schema-based Partitioning No Yes Yes

Oxygen No Yes Yes

ToXGene No Yes Yes

Synthetic Benchmark No No Yes

XPathMark No No Yes

Table 3.1: Key Representatives

The area of generating documents speci�cally for the purpose of covering the
resolution of XPath queries has not been properly explored yet. Particularly close
to our aim is Partition-based Approach. However, this paper o�ers just a basic
idea, rather than a complete algorithm.
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Chapter 4

Our Approach

The aim of the thesis is to �nd an algorithm to generate synthetic documents
for the purpose of testing XML applications. Apparently, the set of all well-
formed XML documents is too large (in�nitely large). Moreover, we are usually
only interested in testing applications on documents with certain structure and
content. Hence, the algorithm must return a reasonably small set of suitable
documents. It is therefore necessary to �nd a convenient set of constraints that
will narrow the set of generated documents. We have decided to focus on the
following types of constraints:

• constraints induced by the schema,

• constraints induced by the query,

• other constraints.

4.1 DTD

There are a number of languages available that can be used to describe the schema
of a set of documents. We have chosen DTD as it has been found to be the most
commonly used one (see [11]).

Let us suppose that we are given a schema de�ned in the DTD syntax on the
input of the algorithm. What information can we extract from the schema? How
can we characterize the set of all valid documents? What constraints does the
schema induce on the documents?

4.1.1 Syntax of the DTD Language

Let us show the relevant snippets of the DTD grammar as de�ned in the speci�-
cation by W3C (see [13]). Features that are beyond the scope of this thesis (such
as XML entities) were omitted for clarity.

As we can see in Figure 4.1, a DTD schema is a sequence of element and
attribute-list declarations.

1 <DTD_SCHEMA> ::= (<ELEMENT_DECL> | <ATTLIST_DECL>)∗

Figure 4.1: DTD grammar - part 1 (the schema)
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Figure 4.2 shows that each element declaration consists of the name of the
declared element and its content type.

1 <ELEMENT_DECL> : := "<!ELEMENT" <NAME> <CONTENT_SPEC> ">"

2 <CONTENT_SPEC> ::= "EMPTY" | "ANY" | <TEXT> | <MIXED> | <CHILDREN>

3 <TEXT> ::= "(#PCDATA)"

4 <MIXED> ::= "(#PCDATA" (" | " <NAME>)+ ") ∗"
5 <CHILDREN> ::= (<CHOICE> | <SEQUENCE>) ("?" | "∗" | "+")?

6 <CP> ::= ( <NAME> | <CHOICE> | <SEQUENCE> ) ("?" | "∗" | "+")?

7 <SEQUENCE> ::= "(" <CP> (" ," <CP>)+ ") "

8 <CHOICE> : := "(" <CP> (" | " <CP>)+ ") "

Figure 4.2: DTD grammar - part 2 (element declarations)

Finally, Figure 4.3 shows that an attribute-list declaration contains a reference
to an element (its name) and a list of attribute declarations. Each of them consists
of the name of an attribute, its content type and its default value declaration.

1 <ATTLIST_DECL> : := "<!ATTLIST" <NAME> <ATT_DECL>∗ ">"

2 <ATT_DECL> : := <NAME> <ATT_TYPE> <DEFAULT_DECL>

3 <ATT_TYPE> ::= <STRING_TYPE> | <TOKEN_TYPE> | <ENUM_TYPE>

4 <STRING_TYPE> ::= "CDATA"

5 <TOKEN_TYPE> ::= "ID" | "IDREF" | "IDREFS"

6 <ENUM_TYPE> ::= "(" <NAME> (" | " <NAME>)∗ ") "

7 <DEFAULT_DECL> ::= "#REQUIRED" | "#IMPLIED" | (("#FIXED") ? <VALUE>)

Figure 4.3: DTD grammar - part 3 (attribute-list declarations)

Note that an attribute-list declaration is in fact a sequence of attribute decla-
rations for the same element. Also note that a schema always binds each attribute
declaration to a speci�c element, which we will further call the target (or related)
element of the declared attribute.

De�nition 8. A DTD schema S is a pair (El,At), where El is the set of all
element declarations and At is the set of all attribute declarations.

De�nition 9. For a schema S = (El,At), given any attribute declaration a ∈ At,
let Element(a) be the target element declaration.

4.1.2 Element Declarations

We will now take a closer look at the syntax of element declarations as de�ned
in Figure 4.2.

De�nition 10. For a schema S = (El,At), given any element declaration e ∈ El,
the set of all valid sub-element sequences for e is denoted as ElSequences(e).

The content type of an element is in fact a set of valid sub-element sequences.
These sets can be written in the schema de�nition in �ve di�erent ways.
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Children

The content type can be declared as a (simpli�ed) regular expression. In that
case, for an element declaration e with an expression r, ElSequences(e) contains
any sequence that conforms to r.

De�nition 11. Given a regular expression r we denote the set of all sequences
valid against r as V alid(r).

For a regular expression r, the set of all valid sequences V alid(r) can be deter-
mined by induction as described in Table 4.1, where a stands for a single element,
alpha and beta for sub-expressions and λ for an empty sequence.

The expression r The set of valid sequences V alid(r)

a {a}
alpha|beta V alid(alpha) ∪ V alid(beta)
alpha, beta V alid(alpha)� V alid(beta)
alpha? V alid(alpha) ∪ {λ}
alpha+

⋃∞
i=1

⊙i
j=1 V alid(alpha)

alpha∗
⋃∞

i=0

⊙i
j=0 V alid(alpha)

Table 4.1: Valid sequences

In accordance with De�nition 11 it holds for an element declaration e of this
type with an expression r that ElSequences(e) = V alid(r).

Empty

In this case only the empty sequence is valid. I.e. for an element declaration e,
ElSequences(e) = {λ}.

Text

As in the previous case the only valid sub-element sequence is the empty sequence.

Mixed

It turns out (see [11]) that in reality this case is used quite rarely, especially
for XML documents designed to be processed by a computer without any direct
human intervention. We have therefore decided not to consider the mixed content
type in our thesis.

Any

This content type does not induce any constraints on the structure of valid doc-
uments (the enumeration contains all sub-element sequences) and therefore does
not bring in any information. We will ignore it for the rest of the thesis.
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4.1.3 The Repetitive Operators

The + and ∗ operators always lead to in�nitely large sets of sequences and thus to
documents with unlimited sizes. It would therefore seem convenient for our pur-
poses to choose an appropriate constant MC (max cardinality) and understand
these operators in the following sense:

• the + operator as 1 to MC,

• the * operator as 0 to MC.

We will accept the value of MC as an input argument of the algorithm. That
way users can customize the results according to their needs and potential.

Another option would be to let users set the value separately for each occur-
rence of these operators. This would allow for a more detailed con�guration but
at the cost of a more demanding setup by users.

4.1.4 Root Element Declaration

In a DTD schema itself there is no information about which element declaration
should correspond to the root element of the generated documents. We could
ask the user to specify the name of the root element as an additional parameter.
In order to minimize con�guration complexity, though, we prefer the following
convention - the element declaration that comes �rst in the DTD de�nition cor-
responds to the root element of the generated documents.

De�nition 12. The root element declaration of a schema S, denoted as
RootElement(S), is the element declaration that comes �rst in the schema de�-
nition.

4.1.5 Attribute Declarations

Let us now examine attribute declarations as de�ned in Figure 4.3. In this section
we will only look at them with regards to the structure of the generated documents
and ignore constraints on the content.

De�nition 13. Suppose we have a schema S = (El,At) and an attribute dec-
laration a ∈ At. We say that a represents a required attribute (denoted as
Required(a) = true), if and only if, for an XML document to be valid against
S, a must be speci�ed for all target elements. Otherwise a represents an optional
attribute (denoted as Required(a) = false).

We will now analyse the default-value part of attribute declarations. There
are four possible cases.

Required

As the name implies, attributes declared with the #REQUIRED �ag are re-
quired, i.e. have to be speci�ed for all target elements. For an example of a
declaration of a required attribute refer to attribute title in Figure 4.4.
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Implied

Attributes declared as implied (using the #IMPLIED �ag) are optional. At-
tribute sex in Figure 4.4 is an example of an implied attribute.

Default

If an attribute is neither required nor implied, it has to be declared with a default
value. It is then considered optional, meaning that an XML document is valid
even if the attribute is omitted for one or more target elements. Attribute lang
in Figure 4.4 falls into this category.

Fixed

The default value in an attribute declaration might be preceded by a #FIXED
�ag. Such an attribute is optional (as in the previous case), but, when it is
speci�ed for a target element, it can only be assigned the �xed default value.
Attribute read in Figure 4.4 is a sample �xed attribute.

4.1.6 Attributes with Default Values

If an attribute is declared with a default value, it is considered optional, meaning
that an XML document is valid even if it is omitted for one or more target
elements. On the other hand, according to the speci�cation [13], when an XML
processor encounters an element without the speci�cation of an attribute with
a default value, it must behave as if the attribute was in fact speci�ed with the
declared default value. This also applies to XPath resolvers. There would be a
point in suggesting that we treat default attributes as required in our algorithm,
for their presence does not a�ect the result of applying an XPath query to an
XML document. Moreover, it could lead to a more-or-less signi�cant reduction
of the number of generated documents. We will still consider these attributes
optional, though, as we perceive this as a way to detect some resolvers that do
not behave in exact accordance with the speci�cation.

4.1.7 Attribute Sequences

According to W3C [13] the order in which attributes are speci�ed for an element
is irrelevant. We can therefore choose the ordering of attributes for the generated
XML documents freely. We have decided to use the declaration order. From
this perspective it makes sense to think about (ordered) sequences of attributes
for individual elements with regards to the �nal XML documents (instead of
unordered sets). When we will talk about sequences of attributes later in this
section and further on, we mean sets of attributes sorted in the declaration order.

De�nition 14. For a schema S = (El,At) and an element declaration e ∈ El
let Attributes(e) be a sequence of all attribute declarations of S related to e sorted
in the declaration order.

De�nition 15. For a schema S = (El,At) given any element declaration e ∈ El
we call AttrSequences(e) the set of all attribute sequences valid for e.
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For an element declaration e, AttrSequences(e) is de�ned by induction in the
following sense.

1. Suppose that |Attributes(e)| = 0. Then AttrSequences(e) = {λ}.

2. Suppose now that Attributes(e) = (a1, ..., an) and let e′ be an element such
that Attributes(e′) = (a1, ..., an−1). Let AttrSequences(e

′) = K. Then

(a) AttrSequences(e) = K � (an) if Required(an) and

(b) AttrSequences(e) = K ∪ (K � (an)) if not Required(an).

An attribute sequence as valid for an element e is a set of attributes (each
with e as the target element) sorted in the declaration order such that an XML
document where only attributes from as are speci�ed for e is valid.

4.1.8 Example

Given the sample declaration in Figure 4.4, the following list holds all attribute
sequences valid for the book element. Note that the attributes in each of them
are indeed sorted in the declaration order.

To distinguish attribute and sub-element sequences, we will now and further
on pre�x attribute names with the @ character in our examples.

• @author_id, @title,

• @author_id, @title, @lang,

• @author_id, @title, @read,

• @author_id, @title, @lang, @read.

4.1.9 Schema Graph

In this section we will de�ne the schema graph data structure. We will use it
as a convenient in-memory representation of any given DTD schema. The graph
will hold information about the set of valid documents in a relatively compact
yet easy-to-work-with way.

De�nition 16. For a schema S = (El,At) and an element declaration e ∈ El let
the set of all content sequences of element e be Sequences(e) = AttrSequences(e)�
ElSequences(e).

De�nition 17. For a schema S = (El,At) and an attribute declaration a ∈ At
let the set of all content sequences of attribute a be Sequences(a) = {λ}.

Attributes are not allowed to have sub-elements (or sub-attributes) and thus,
for any attribute declaration, the only valid content sequence is the empty se-
quence.

De�nition 18. Suppose we are given a schema S = (El,At) in the DTD syntax.
The graph of the schema G is a quadruple (r, V,W,E) such that

• r is a node for which r /∈ V and r /∈ W ,
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• V and W are disjoint sets of nodes where

� V = El ∪ At,
� W = {(RootElement(S))} ∪

⋃
v∈El∪At Sequences(v),

• and E ⊆ ({r} ×W )∪ (V ×W )∪ (W × V ) is a multi-set of edges such that
for all v ∈ V and w ∈ W it holds that

� (r, w) ∈ E ⇔ w = (RootElement(S)),

� (v, w) ∈ E ⇔ w ∈ Sequences(v) and
� (w, v) ∈ E ⇔ v ∈ w.

A list of a few more things to observe follows:

• r is an arti�cial node which does not correspond to any part of any XML
document valid against the represented schema. Its purpose is to simplify
resolution of XPath expressions, as we will see later. We will call it the
document node.

• V is the set of all declared elements and attributes. We can therefore call
a node v ∈ V element node (if v ∈ El) or attribute node (if v ∈ At).
• W is formed by all valid content sequences of all declared elements and
attributes. It also contains sequence (RootElement(S)). We will call nodes
of W sequence nodes.

• There is always a single child node of r - the node which corresponds to
sequence (RootElement(S)).

• For every w ∈ W , ChildNodes(w) is the multi-set of elements/attributes
corresponding to all members of sequence w. Note that more than one
edge might exist between w and a particular element node as the same
sub-element might appear inside a single content-sequence more than once.

• For all v ∈ V such that v ∈ El, ChildNodes(v) contains nodes that corre-
spond to valid content sequences of element v.

• For all v ∈ V such that v ∈ At, ChildNodes(v) = {λ}.

De�nition 19. A schema S is recursive if the corresponding graph G contains
at least one directed cycle. Otherwise it is non-recursive.

We will use a common technique to display schema graphs in our examples.
For a schema graph G = (r, V,W,E) we will draw r using an indented rectangle,
nodes of V as ellipses, nodes of W as regular rectangles and edges of E as arrows
between incident nodes.

4.1.10 Example 1

Let us show an example. We will use a schema de�nition as depicted in Figure
4.4. It describes a set of documents which could be used to store information
about books in a library. Each document contains a set of authors and a set of
books divided into genres.

The related schema graph follows in Figure 4.5. Note that it does not contain
any directed cycles and thus the corresponding schema is non-recursive.
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1 <!ELEMENT l i b r a r y ( authors , genres )>
2 <!ELEMENT authors ( author+)>
3 <!ELEMENT author EMPTY>
4 <!ATTLIST author
5 id ID #REQUIRED
6 sex (male | female ) #IMPLIED
7 name CDATA #REQUIRED>
8 <!ELEMENT genres ( genre ∗)>
9 <!ELEMENT genre ( books )>
10 <!ATTLIST genre name CDATA #REQUIRED>
11 <!ELEMENT books ( book+)>
12 <!ELEMENT book EMPTY>
13 <!ATTLIST book
14 author_id IDREF #REQUIRED
15 t i t l e CDATE #REQUIRED
16 lang ( en | cz ) "en"
17 read CDATA #FIXED " true">

Figure 4.4: The library schema de�nition

Figure 4.5: The library schema graph
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4.1.11 Example 2

We will show one more example to illustrate the concept. The following schema
(see Figure 4.6) describes documents which hold information about the structure
of a company. Such a company has a CEO (chief executive o�cer) and one or
more departments. Every department has at least one employee and might be
further divided into sub-departments.

1 <!ELEMENT company ( ceo , department+)>
2 <!ELEMENT ceo (name , phone+)>
3 <!ELEMENT department (manager , s t a f f , subdepartments )>
4 <!ELEMENT manager (name , phone )>
5 <!ELEMENT s t a f f ( employee+)>
6 <!ELEMENT employee (name , s a l a r y )>
7 <!ATTLIST employee lang CDATA ' en '>
8 <!ELEMENT subdepartments ( department ∗)>
9 <!ELEMENT name EMPTY>
10 <!ELEMENT phone EMPTY>
11 <!ELEMENT sa l a r y EMPTY>

Figure 4.6: The company schema de�nition

Figure 4.7 displays the corresponding schema graph. This time note that it
contains a directed cycle on nodes department, subdepartments, department,
which implies that the schema is recursive.

Figure 4.7: The company schema graph

24



4.1.12 Basic Characteristics of Valid Documents

Let us start with examining non-recursive schemas and show algorithms that can
be used to �nd out characteristics that a schema imposes on valid documents.

The Number of Valid Documents

Suppose we have a non-recursive schema S with a graph G = (r, V,W,E). An
algorithm to �nd the number of all distinct documents which are valid against S
(denoted as Count(S)) is as follows in Algorithm 1.

1 ∀w ∈W, |Edges(w)| = 0 : Count(w) = 1

2 ∀w ∈W, |Edges(w)| > 0 : Count(w) =
∏

u∈ChildNodes(w) Count(u)

3 ∀v ∈ V : Count(v) =
∑

u∈ChildNodes(v) Count(u)

4 Count(r) = Count(ChildNode(r))

5 Count(S) = Count(r)

Algorithm 1: The Count function

Minimum Document Depth

Let S = (El,At) be a non-recursive schema with graph G = (r, V,W,E). The
minimum document depth MinDepth(S) = mindoc∈V alid(S)Depth(doc) can be
computed in accordance with Algorithm 2.

1 ∀w ∈W, |Edges(w)| = 0 : MinDepth(w) = 0

2 ∀w ∈W, |Edges(w)| > 0 : MinDepth(w) = maxu∈ChildNodes(w) MinDepth(u)

3 ∀v ∈ V, v ∈ At : MinDepth(w) = 0

4 ∀v ∈ V, v ∈ El : MinDepth(v) = minu∈ChildNodes(v) MinDepth(u) + 1

5 MinDepth(r) = MinDepth(ChildNode(r))

6 MinDepth(S) = MinDepth(r)

Algorithm 2: The MinDepth function

Maximum Document Depth

The way to determine the maximum document depth for a schema S is analogous
to the previous case.

Existence of a Valid Document with the Given Depth

Let us have a non-recursive schema S = (El,At) with graph G = (r, V,W,E) and
a natural number d. The description of an algorithm to determine the set of all
valid document depths Depths(S) = {Depth(doc); doc ∈ V alid(S)} with regards
to S follows in Algorithm 3. A valid document with depth d exists if and only if
d ∈ Depths(S).
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1 ∀w ∈W, |Edges(w)| = 0 : Depths(w) = {0}
2 ∀w ∈W, |Edges(w)| > 0 : Depths(w) = {maxz∈Z ;Z ∈

∏
u∈ChildNodes(w) Depths(u)}

3 ∀v ∈ V, v ∈ At : Depths(w) = {0}
4 ∀v ∈ V, v ∈ El : D(v) =

⋃
u∈ChildNodes(v){d+ 1; d ∈ Depths(u)}

5 ∀v ∈ V : D(v) =
⋃

u∈ChildNodes(v){d+ 1; d ∈ Depths(u)}
6 Depths(r) = Depths(ChildNode(r))

7 Depths(S) = Depths(r)

Algorithm 3: The Depths function

Possible Implementation Techniques

All of these algorithms traverse the schema graph and do the respective cal-
culations on its nodes. We describe them by giving a formulae of calculation
for every node. Dynamic algorithms (bottom-to-top traversal) or recursive al-
gorithms (top-to-bottom traversal with intermediate results stored in memory)
would be good choices of implementation techniques.

4.1.13 Example

Let us demonstrate the preceding algorithms to �nd information about the depths
of valid documents using a sample schema. We have chosen the schema listed in
Figure 4.8 as it is reasonably small to �t on the page and yet complex enough for
the demonstration purposes.

The schema describes a small set of documents which could be used to store
information about peripherals connected to a computer. There might be a printer
at a computer and a headset and the headset, which always contains speakers at
least, might also contain a microphone and/or a subwoofer.

1 <!ELEMENT computer ( p r i n t e r ? , headset ?)>
2 <!ELEMENT pr i n t e r EMPTY>
3 <!ATTLIST p r i n t e r r e s o l u t i o n #REQUIRED>
4 <!ELEMENT headset ( speakers , microphone ?)>
5 <!ELEMENT speaker s ( subwoofer ?)>
6 <!ELEMENT subwoofer EMPTY>
7 <!ATTLIST subwoofer wattage #IMPLIED>
8 <!ELEMENT microphone EMPTY>

Figure 4.8: The computer schema de�nition

Figure 4.9 depicts the corresponding schema graph.
The small squares with numbers are the result of the algorithm to �nd the

set of depths of valid documents. There is one for each node, as the algorithm
prescribes. We could start by evaluating the leaf node and continue in iterations
with nodes which have all child-nodes evaluated. Eventually we would get to the
root node.

The �gure also displays the results of the algorithms to �nd the minimal (and
maximal) document depths. For each node it is the smallest (greatest resp.)
number in the square adjusted to it.
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Figure 4.9: The computer schema graph

We can see that there exist valid documents with depths 1, 2, 3 and 4 (see
the square at the root node), which implies that the minimal document depth is
1 and the maximal one is 4.

4.1.14 The Recursive Case

As de�ned in De�nition 19, a schema is called recursive if its graph contains at
least one cycle. In that case, the set of all valid XML documents is in�nitely large
and contains, among others, in�nitely deep documents. Such a set is too large
for our purpose and needs to be constrained.

We could ask the user for the expected minimum and maximum depths of the
generated documents and then only take into account documents which satisfy
this condition. This should enable us to work with a set of non-recursive schema
graphs instead of the original recursive one. We could then apply all of the
methods described in this thesis for recursive schemas as well.

The conversion of a recursive schema graph into a set of non-recursive ones
would probably be ine�cient for all but the simplest instances (at the very least
it would have to deal with the set of all cycles of the schema graph, which is
hard to even �nd). However, it turns out (see [11]) that in reality XML docu-
ments typically only embody very simple recursion cases. The algorithm should
therefore be good enough for most of the real-world situations.

Despite this simpli�cation, we will only deal with non-recursive schemas in
this thesis and leave the conversion process as a suggestion for a future work.
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4.1.15 Content of Attributes

Let us now look at what features DTD provides to constraint the values of at-
tributes.

De�nition 20. Let S = (El,At) be a schema, a ∈ At one of its attribute declara-
tions and s an arbitrary text string. We say that s is a valid value for a (denoted
as V alidV alue(a, s) = true) if and only if there exists an XML document valid
against S in which s stands as the value of an attribute corresponding to a.

De�nition 21. For a schema S = (El,At) and an attribute declaration a ∈ At
let ContentType(a) = {string s;V alidV alue(a, s)} be the basic content type of
a.

The basic content type of an attribute declaration is the set of all values
which are valid for attributes that the declaration represents. A DTD schema
can additionally induce constraints on the relationships of values of pairs (or sets)
of attributes, which these de�nitions do not re�ect. We will deal with them later.

In accordance with the schema snippet in Figure 4.3 there are three ways to
declare the basic content type of an attribute.

String

An attribute declared with the string type may take any literal string as value.
In other words, ContentType(a) = {string s} for an attribute declaration a of
this type.

Attribute title in Figure 4.4 is an example of an attribute that falls into this
category.

Enum

The enum type declares a (�nite) set of string values that the attribute is per-
mitted to contain. For an attribute declaration a with an enumeration of values
v1, ..., vn, ContentType(a) = {v1, ..., vn}.

For an example see the declaration of attribute lang in Figure 4.4. It holds
that ContentType(lang) = {en, cz}.

Fixed

If an attribute is declared with the #FIXED �ag it can only be assigned its
default value. Therefore, for an attribute declaration a declared with string s as
a �xed default value it holds that ContentType(a) = {s}.

See attribute read in Figure 4.4 as an example of this declaration type.
ContentType(read) = {true}.

Note that in general, attribute values may contain any characters but for
<, & (except where part of a valid character or entity reference) and the quote
character used around the value in the XML document (i.e. ′ or ”). For the sake
of simplicity we have decided to only allow the space and single-quote characters
plus all alpha-numerical ones. As a rule, we will use the double-quote character
to surround values of attributes in the generated XML documents.
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4.1.16 The ID and IDREF Constraints

The last feature that DTD provides to constraint the values of attributes that we
will deal with in this thesis is the concept of IDs and IDREFs.

The ID keyword serves as a global uniqueness constraint. For an XML docu-
ment doc to be valid against a schema S, every attribute that appears in doc and
is declared using the ID keyword in S must be assigned a value which is unique
among all other such attributes.

De�nition 22. For a schema S let IDs(S) be the set of all attribute declarations
which are de�ned using the ID keyword.

While the ID construct could be seen as an equivalent to the primary key
concept from the world of relational databases from some point of view, the
IDREF construct would be an analogy to foreign keys.

For a document doc to be valid against a schema S, each attribute that appears
in doc and is declared as IDREF in S can only be assigned a value that some
other attribute of type ID in doc contains.

De�nition 23. For a schema S let IDREFs(S) be the set of all attribute dec-
larations which are de�ned using the IDREF keyword.

In addition to IDREF, the DTD language also supports the IDREFS keyword.
An attribute declared as IDREFS is in fact just a multi-value IDREF attribute.
Handling these is not much di�erent and we will not deal with them in this thesis.

4.1.17 Content of Elements

We can see in Figure 4.2 that the features that DTD provides with regards to
constricting the content of elements are just a subset of what it allows for at-
tributes. Basically an element either can or cannot have text content assigned -
there is no way to constraint it any further.

We have decided to ignore the text content of elements in this thesis. In all of
the generated XML documents no element will have any text content assigned.

Note that the documents will still be valid against the corresponding schema
- there is no way you could enforce an element to have a non-empty text content
in DTD.

4.2 XPath

Unfortunately the number of all XML documents valid against a DTD schema
is still very large. The set of generated documents therefore needs to be further
constrained. In this section we will look at how we can narrow it to contain only
documents which are useful for testing the evaluation process of an XPath query.

4.2.1 Syntax of the XPath Language

Supporting the full XPath syntax is beyond the scope of the thesis. We will only
take into account the child and attribute axes and node tests given as element
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names. We will also only support some basic forms of predicates. The (simpli�ed)
snippet of the XPath grammar as de�ned by W3C [14] follows in Figure 4.10.

1 <QUERY> ::= <ABS_QUERY> | <REL_QUERY>

2 <ABS_QUERY> ::= "/" <REL_QUERY>

3 <REL_QUERY> ::= <STEP> ("/" <STEP>)∗
4 <STEP> : := <AXIS_SPEC> <NODE_TEST> (<PREDICATE>)∗
5 <AXIS_SPEC> ::= (<AXIS_NAME> " : : " ) | <ABBR_AXIS_SPEC>

6 <AXIS_NAME> ::= " ch i l d " | " a t t r i b u t e "

7 <ABBR_AXIS_SPEC> ::= "@"?

8 <NODE_TEST> ::= <NAME>

9 <PREDICATE> ::= " [" <EXPR> "]"

10 <EXPR> ::= <QUERY> | <QUERY> "=" <VALUE> | <QUERY> "=" <QUERY>

Figure 4.10: XPath grammar

We can observe that an XPath expression can be either absolute or relative.
We will only support absolute queries on the input of our algorithm. Both types
of queries can be used inside predicates.

We can further see that an XPath expression is composed of a (non-empty)
sequence of steps, where each step consists of an axis, a node test and a (possibly
empty) sequence of predicates. Note that the speci�cation allows for some abbre-
viations - the child axis is assumed by default (i.e. if we omit the axis speci�cation
for a step) and the @ character represents the attribute axis.

De�nition 24. For an XPath query Q let Steps(Q) denote the sequence of steps
that Q consists of and let Step(Q, i) be the i-th step of Q.

De�nition 25. For an XPath query Q and its step Si ∈ Steps(Q) let Axis(Si)
denote the axis, NodeTest(Si) the node test and Predicates(Si) the sequence of
predicates of Si.

4.2.2 Predicates

Let us now look at what the syntax described in Figure 4.10 o�ers us with regards
to XPath predicates.

De�nition 26. Let P be a predicate that occurs in an XPath query Q. Then
Type(P ) ∈ {q, qv, qq} is the type of P and Queries(P ) is the sequence of XPath
queries that P consists of sorted in the declaration order.

In situations when the predicate consists of just one sub-query we will use the
following short-cut to refer to it. The intention is to make our de�nitions less
verbose.

De�nition 27. Let P be a predicate and Q′ the only sub-query that P consists
of. Then Query(P ) = Q′ denotes the sub-query of predicate P .

De�nition 28. Let Q be an XPath query and P one of its predicates of type qv.
V alue(P ) is the literal value that appears in P .

We will only deal with the following types of predicates. In all three cases
both absolute and relative sub-queries are supported.
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Query

In the simplest case a predicate might be formed by just a single sub-query. See
predicate [finished] in Figure 4.11 for an example.

For a predicate P of this type formed by a sub-queryQ′ it holds that Type(P ) =
q and Query(P ) = Q′.

Query equals value

This type represents predicates which compare a sub-query to a literal value. For
such a predicate P with a sub-query Q′ and a value v it holds that Type(P ) = qv,
Query(P ) = Q′ and V alue(P ) = v.

For the sake of simplicity we will only consider string literals and allow only
all alpha-numerical, the single-quote and the space characters. Support for other
types can be addressed in future.

Predicate [@label = ”SP14”] in Figure 4.11 falls into this category.

Query equals query

Predicates of this type compare one sub-query to another. Let P be such a
predicate and Q′1 and Q′2 the compared sub-queries. Then Type(P ) = qq and
Queries(P ) = (Q′1, Q

′
2).

For an example see predicate [@project_id = /data/project[@label = ”SP14”]
/sub− project[finished]/@id] in Figure 4.11.

Figure 4.11 shows a query that could be used to retrieve the list of all cus-
tomers associated with �nished sub-projects of a project labelled "SP14" from a
suitable XML data �le.

1 /data/ customer [ @project_id = /data/ p r o j e c t [ @label = "SP14 " ]/ sub−
p ro j e c t [ f i n i s h e d ] / @id ]

Figure 4.11: The customers query

4.2.3 The Element Axis

Since we have decided to leave the text content of all elements empty and only
deal with values of attributes, the last step of sub-queries for all predicates of type
qv and qq can only be of the attribute axis. The evaluation of predicates of type
q depends just on the structure of the target document and we can therefore have
these unconstrained. Note that all predicates in Figure 4.11 satisfy this criterion.

4.2.4 Document Trees

A schema graph represents all valid documents at once. In order to �nd and
work with documents which are relevant to a given XPath query, we need a way
to represent a single valid document. That is the purpose of the document tree
structure, as de�ned in De�nitions 29 and 30.
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De�nition 29. Let S be a non-recursive schema with graph G = (r, V,W,E).
A (partial) document tree over S is an acyclic connected directed graph G′ =
(r′, V ′, E ′) with a (not necessarily one-to-one) mapping function m : V ′ → {r} ∪
V ∪W such that:

• r′ ∈ V ′ is the root node of the tree,

• m(r′) = r,

• for every path P on nodes v1, v2, ..., vn where v1 = r′ and vn is a leaf node
in G′, m(v1),m(v2), ...,m(vn) is a path in G,

• |Edges(r′)| = 1 and m(ChildNode(r′)) = ChildNode(r),

• ∀w′ ∈ V ′,m(w′) ∈ W : ChildNodes(m(w′)) = {m(u′);u′ ∈ ChildNodes(w′)},

• ∀v′ ∈ V ′,m(v′) ∈ V : |Edges(v′)| ≤ 1∧(|Edges(v′)| = 1⇒ m(ChildNode(v′)) ∈
ChildNodes(m(v′))).

De�nition 30. G′ = (V ′, E ′) is a full document tree over S if it satis�es the
conditions for a partial document tree plus the following one.

• ∀v′ ∈ V ′,m(v′) ∈ V : |Edges(v′)| = 1.

The document tree is a tree-like structure similar to the common XML docu-
ment data model. But, instead of directly representing elements and attributes,
each node is just a pointer to the corresponding node in the schema graph. That
way the structure represents an XML document and, at the same time, it allows
an easy access to the related schema nodes and sub-trees.

The di�erence between a partial and a full document tree is that while the
full tree represents a complete XML document, the partial one might miss some
sub-trees.

We can divide nodes of a document tree into groups analogously to what
we did for schema graphs. Suppose a schema S = (El,At) with graph G =
(r, V,W,E) and a corresponding document tree G′ = (r′, V ′, E ′) with mapping
m. We can distinguish the following types of nodes:

• r′ is the document node as m(r′) = r,

• v′ ∈ V ′ such that m(v′) ∈ El are element nodes,

• v′ ∈ V ′ such that m(v′) ∈ At are attribute nodes and

• w′ ∈ V ′ where m(w′) ∈ W are sequence nodes.

4.2.5 Example

We will illustrate the concept of document trees with an example. Figure 4.12
shows a graph of a schema which could be used to describe books. Every book
has an author (with an id, a �rstname and a surname), a title and a content,
which is divided into chapters with headlines. For the sake of simplicity, we will
only consider books with up to two chapters.
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In addition to the schema graph, Figure 4.12 also displays a single document
tree over the same schema. We use dashed arrows to represent the mapping
function. Each arrow points from a node in the tree to its counterpart in the
schema graph.

Note that this tree is partial, as it violates the full-tree condition at nodes
author and title.

Figure 4.12: The book schema graph and a partial document tree

4.2.6 The Labelling Function

The document tree structure itself as de�ned in the previous sections represents
only the structure of an XML document. Both the schema (the content type
of attributes, the ID and IDREF constraints) and the query (predicates of type
qv and qq) allow for restrictions on its content as well. We can capture these
constraints using the labelling function de�ned here.

De�nition 31. Let G′ = (r′, V ′, E ′) be a document tree and U ′ ⊆ V ′ the set of all
its attribute nodes. Then l ⊆ {eq, neq}×U ′×{string s}∪{same, different}×

(
U ′

2

)
is a labelling function for G′.

We can view this as a set of labels that can be extracted from the schema
and from the query and then used as a guide when choosing correct values for
individual attributes. Each of the labels captures a constraint of one of four
di�erent kinds. LetG′ = (r′, V ′,W ′) be a document tree, U ′ the set of its attribute
nodes, u′ ∈ U ′ and v′ ∈ U ′ two of them and s a string value. Then

• (eq, u′, s) means that the attribute corresponding to u′ should be assigned
value s,
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• (neq, u′, s) means that the attribute represented by u′ should be assigned a
value di�erent from s,

• (same, u′, v′) means that the attributes represented by nodes u′ and v′

should be assigned the same value and

• (different, u′, v′) means that the attributes corresponding to u′ and v′

should be assigned di�erent values.

In our examples we will depict l as labels attached to individual attribute
nodes of the tree.

4.2.7 Example

Figure 4.14 contains a sample document tree with labels. As we can see the
depicted labelling function contains the following three items:

• (different, v′6, v
′
8) and

• (eq, v′7, King),

• (neq, v′9, King).

4.2.8 The Step Criterion

For each step of an XPath query the axis and node test together form a criterion
which separates schema graph nodes into two groups - those that satisfy it and
those that do not.

De�nition 32. Suppose we have a non-recursive schema S = (El,At) with graph
G = (r, V,W,E) and a node v ∈ V . Suppose we also have a query Q with a step
Si ∈ Steps(Q). We say that:

• v satis�es the node test NodeTest(Si) if and only if v = NodeTest(Si),

• v belongs to the axis Axis(Si) if and only if v ∈ At in case of the attribute
axis and v ∈ El in case of the child axis,

• v satis�es the step Si (denoted as Satisfies(Si, v) = true) if and only if v
belongs to the axis Axis(Si) and satis�es the node test NodeTest(Si).

Note that eventual predicates are irrelevant with regards to the satisfaction
criterion as de�ned above as it only takes into account the axis and the node
test of the query step. Unlike predicates these characteristics only involve the
respective node itself and thus to determine if they are satis�ed or not we do not
need to traverse any other graph nodes.

De�nition 33. For a non-recursive schema graph G = (r, V,W,E) and its se-
quence node w ∈ W and a query Q with a step Si ∈ Steps(Q) we say that w
satis�es Si (denoted as Satisfies(Si, w) = true) if and only if there exists a child
node v ∈ ChildNodes(w) such that Satisfies(Si, v) holds.

De�nition 34. Suppose a non-recursive schema graph G = (r, V,W,E) with a
node v ∈ V and a query Q with a step Si ∈ Steps(Q). We call
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• Satisfying(Si, v) = {w ∈ ChildNodes(v);Satisfies(Si, w)} the set of all
satisfying and

• NonSatisfying(Si, v) = ChildNodes(v) \ Satisfying(Si, v) the set of all
non-satisfying content sequences.

For a given element node v of a schema graph and a given step Si of a query,
Satisfying(Si, v) is the set of all valid content sequences of v which contain
at least one element or attribute that satis�es Si. NonSatisfying(Si, v) is the
set of those valid content sequences that do not contain any such elements and
attributes.

4.2.9 Example

Let us show an illustrative example. Figure 4.13 shows a snippet of a simple
schema graph which represents a person.

Figure 4.13: The person schema graph snippet

Let us analyse the following cases.

• Let S1 = @id (attribute axis, node test "id"). Then Satisfying(S1, v) =
{w1}.
• Let S2 = id (element axis, node test "id"). Then Satisfying(S2, v) =
{w3, w4}.
• Let S3 = gender (element axis, node test "gender"). Then Satisfying(S3, v) =
{w1, w2, w4}.

4.2.10 Predicate Evaluation

The semantics of the equals operator, as prescribed by the XPath speci�cation
([14]), are somewhat non-trivial and we will better describe them here in detail.
For our purpose it su�ces to consider the following two cases.

A Node Set and a String Value

Suppose a predicate P of type qv. As we will see in the next section, given a
document tree and a base node, the sub-query Q′ ∈ Queries(P ) can be evaluated
to a set of attribute nodes C. We consider P satis�ed if and only if there exists
at least one node in C whose value equals to V alue(P ).

When C contains more than one node then there is more than one situation
which leads to accepting the predicate as satis�ed. We will use labels of type eq
and neq to capture all of them (not just a single positive and a single negative
case), as each of them represents a di�erent situation that a resolver must deal
with.
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Two Sets of Nodes

Suppose a predicate P of type qq for which the sub-queries evaluate to sets C1

and C2. Then P is satis�ed if and only if there exists at least one attribute in C1

and at least one attribute in C2 with equal values.
As in the previous case we will capture all positive and negative situations,

this time using labels different and same.

4.2.11 Context Nodes

In this section we will de�ne the concept of context nodes.

De�nition 35. Let G′ = (r′, V ′, E ′) be a document tree with mapping m and a
labelling function l over a schema graph G = (r, V,W,E) with no cycles and Q
a query with steps (S1, ..., Sn). Let C ⊆ V ′ be a set of nodes such that ∀v′ ∈ C :
m(v′) ∈ {r} ∪ V . For each i ∈ {0, ..., n} we de�ne the set of context nodes after
executing step Si (or before executing step S1 in case of i = 0) when starting in
C, denoted as ContextNodes(G′, Q, C, i), by induction over i as follows.

• For i = 0 it holds that

� ContextNodes(G′, Q, C, 0) = {r′} if Q is absolute,

� ContextNodes(G′, Q, C, 0) = C if Q is relative.

• For i > 0 let C ′ = ContextNodes(G′, Q, C, i−1). Then ContextNodes(G′, Q,
C, i) =

⋃
u′∈C′{v′ ∈ GrandChildNodes(u′);Satisfies(Si,m(v′)) ∧ ∀P ∈

Predicates(Si) : Holds(P, v
′)}.

Let P ∈ Predicates(Si) be a predicate and v′ ∈ V ′ a tree node. For each
Q′i ∈ Queries(P ) let C ′i = ContextNodes(G′, Q′i, {v′}, |Steps(Q′i)|). We
say that P holds for v′ (and denote the fact as Holds(P, v′) = true) if and
only if the following conditions are all satis�ed:

� for all Q′i ∈ Queries(P ) it holds that |C ′i| > 0,

� if Type(P ) = qv there is a node c ∈ C ′1 such that (eq, c, V alue(P )) ∈ l,
� if Type(P ) = qq then there exist nodes c1 ∈ C ′1 and c2 ∈ C ′2 such that

(same, c1, c2) ∈ l.

For each step of a query the context set contains those grand-children of nodes
from the context set of the previous step that ful�l the step criteria and satisfy all
predicates. From a certain point of view this function traces the work of an XPath
resolver on an XML document that corresponds to the particular document tree.

For a predicate to hold for a tree node all the queries that it consists of must
evaluate to non-empty node sets and, in case of predicates of type qv and qq, the
equality operator must be satis�ed.

De�nition 36. Let G′ = (r′, V ′, E ′) with mapping m be a document tree over
a schema graph G = (r, V,W,E) with no cycles and b′ ∈ V ′ its node such that
m(b′) ∈ {r} ∪ V . Let Q be a query. Then NonContextNodes(G′, Q, b′) = {v′ ∈
V ′;m(v′) ∈ V ∧ ∀i ∈ {0...|Steps(Q)|}∀u′ ∈ ContextNodes(G′, Q, {b′}, i) : (v′ 6=
u′ ∧ ∀P ∈ Predicates(Q) : v′ ∈ NonContextNodes(G′, P, u′)) is the set of all
non-context nodes when starting in b′.
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De�nition 37. For document tree G′ = (r′, V ′, E ′) and a query Q let the set of all
non-context nodes be NonContextNodes(G′, Q) = NonContextNodes(G′, Q, r′).

The set of non-context nodes contains nodes of the document tree correspond-
ing to element/attribute nodes of the schema graph which do not belong to the
context set of any of the query steps of either the main query or any of the
sub-queries of individual predicates.

4.2.12 Example

Figure 4.14 shows a (partial) document tree G′ with a labelling function l. It
represents two authors with ids and names. The ids should be mutually di�erent
and the name of the left one should be King while the name of the right one
should be di�erent from King.

Figure 4.14: A relevant document tree

Suppose a query Q = /library/authors/author[@name = ”King”]/@id. We
distinguish the following sets of context nodes:

• ContextNodes(G′, Q, {r′}, 0) = {r′} as Q is an absolute query,

• ContextNodes(G′, Q, {r′}, 1) = {v′1},

• ContextNodes(G′, Q, {r′}, 2) = {v′2},
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• ContextNodes(G′, Q, {r′}, 3) = {v′4}, because, as we can see below, only
the �rst of the two author nodes satis�es the predicate,

• ContextNodes(G′, Q, {r′}, 4) = {v′6}.

Let us now focus on the predicate query Q′ = @name and on v′4 as a base
node. Then:

• ContextNodes(G′, Q′, {v′4}, 0) = {v′4} for Q′ is relative,
• ContextNodes(G′, Q′, {v′4}, 1) = {v′7}.

Finally, if we consider v′5 as a base node instead of v′4, then:

• ContextNodes(G′, Q′, {v′5}, 0) = {v′5} and
• ContextNodes(G′, Q′, {v′5}, 1) = {v′9}.

We can see that the predicate holds for node v′4, as (eq, v
′
7, King) ∈ l, but not

for v′5, because (eq, v
′
9, King) /∈ l.

Also note that the only nodes that do not belong to any of the sets for either
the main query or the sub-query are v′3 and v

′
8 and soNonContextNodes(G

′, Q) =
{v′3, v′8}.

4.2.13 Relevant Document Trees

In order to keep the results reasonably small, our algorithm should only generate
documents that are relevant (interesting) with regards to the given query. The
aim is to focus on documents with a high potential to di�erentiate XPath resolvers
that work correctly and e�ciently from those that do not. In this section we will
describe what such documents look like.

De�nition 38. For a given schema graph G = (r, V,W,E) with no cycles with
node v ∈ V and a given query Q with step Si ∈ Steps(Q) let Relevant(Si, v) =
Satisfying(Si, v) ∪ {shortest, longest} where

• shortest = {w ∈ NonSatisfying(Si, v); |w| = minu∈NonSatisfying(Si,v)|u|},
• longest = {w ∈ NonSatisfying(Si, v); |w| = maxu∈NonSatisfying(Si,v)|u|}.

For a given element node v and a given step Si of a query, Relevant(Si, v)
contains those valid child-nodes of v which are considered relevant with regards
to evaluating step Si (irrespective of eventual predicates - they will be dealt with
separately). That means nodes corresponding to all satisfying sequences and to
the longest and the shortest of the non-satisfying ones.

De�nition 39. Let G′ = (r′, V ′, E ′) be a document tree and b′ ∈ V ′ one of its
nodes. Let P be a predicate. We say that a set of labels l covers predicate P when
evaluated from b′, and denote that as CoversPredicate(G′, b′, P, l) = true, if and
only if the following conditions are satis�ed.

• Suppose that Type(P ) = qv, Q′ ∈ Queries(P ) and v = V alue(P ). Let
C = ContextNodes(G′, Q′, {b′}, |Steps(Q′)|). There exists a C ′ ⊆ C such
that:
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� (eq, c′, v) ∈ l for all c′ ∈ C ′ and
� (neq, c, v) ∈ l for all c ∈ C \ C ′.

• Suppose now that Type(P ) = qq and Queries(P ) = (Q′1, Q
′
2). Let Ci =

ContextNodes(G′, Q′i, {b′}, |Steps(Q′i)|) for i ∈ {1, 2}. For each c1 ∈ C1

there is a C ′2 ⊆ C2 such that:

� (same, c1, c
′
2) for all c

′
2 ∈ C ′2 and

� (different, c1, c2) for all c2 ∈ C2 \ C ′2.

This de�nition is based on how resolvers evaluate XPath predicates, which was
described in Section 4.2.10. Let us add a brief description to make our intentions
clear.

• We say that a set of labels l covers a predicate P of type qv if there exists
a sub-set of the node-set that P evaluates to such that included items are
labelled to match the V alue(P ) and all excluded items are labelled not to
match. Every such sub-set corresponds to a di�erent situation with which
a resolver has to deal with when evaluating P .

• A set of labels l covers a predicate P of type qq if for every node v′ that
the �rst sub-query evaluates to there is a sub-set of the node-set that the
second sub-query evaluates to such that v′ is labelled to match all included
nodes and not to match any excluded node.

De�nition 40. Suppose a document tree G′ = (r′, V ′, E ′) with labelling l and
mapping m over a schema graph G = (r, V,W,E) with no cycles and a query Q
with steps (S1, ..., Sn). Let v

′ ∈ V ′ be a node such that m(v′) ∈ {r} ∪ V . We say
that G′ is relevant with regards to Q and v′, denoted as Relevant(G′, Q, v′) =
true, if and only if l is the smallest set such that the following conditions are
satis�ed.

• For all i ∈ {1, ..., n} and u′ ∈ ContextNodes(G′, Q, {v′}, i−1) it holds that:

� |ChildNodes(u′) = 1| and m(ChildNode(u′)) ∈ Relevant(Si,m(u′)),

� for each P ∈ Predicates(Si) and each u′′ ∈ GrandChildNodes(u′)
such that Satisfies(Si, u

′′):

∗ Relevant(G′, P, u′′) and
∗ CoversPredicate(G′, u′′, P, l).

• For all u′ ∈ NonContextNodes(G′, Q, v′) it holds that |ChildNodes(u′)| =
0.

De�nition 41. A document tree G′ = (r′, V ′, E ′) is relevant with regards to
query Q if and only if Relevant(G′, Q) = Relevant(G′, Q, r′) = true.

A document tree is relevant with regards to a query if both its structure and
its content satisfy the conditions listed above. Which means that:
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• for each context node of each step of the query (and each sub-query) there
is a child node and it corresponds to a relevant sequence node,

• non-context nodes do not have any children at all,

• all predicates are covered by the labelling function.

As a labelling function we want the smallest set of labels that conforms to
the criteria. The reason is to avoid irrelevant content constraints. This way a
relevant labelling function contains only labels which are necessary in order to
cover all predicates.

4.2.14 Example 1

Let us return to the sample schema depicted in Figure 4.13. We can observe the
following facts.

• For S1 = @id (attribute axis, node test "id"), Relevant(S1, v) = {w1, w3, w4}
(w1 is the only satisfying and w3 is the shortest and w4 the longest of the
non-satisfying sequences).

• Let S3 = gender (element axis, node test "gender"). ThenRelevant(S1, v) =
{w1, w2, w3, w4}, as w1, w2 and w4 are the satisfying sequences and w3 is
both the longest and the shortest of the non-satisfying ones.

4.2.15 Example 2

Let us focus on the document tree in Figure 4.14 and verify that, consistently with
De�nition 39, the depicted labelling function l covers predicate P = [@name =
”King”] when either v′4 or v

′
5 is taken as a base node. Node that Type(P ) = qv.

• In case of v′4 the sub-query @name evaluates to C = {v′7}. For C ′ = C both
the conditions hold. The �rst one due to the fact that (eq, v′7, King) ∈ l
and the second one trivially because C \ C ′ = ∅.

• In case of v′5 we have C = {v′9}. This time both conditions hold for C ′ = {}.
The �rst one trivially and the second one because (neq, v′9, King) ∈ l.

4.2.16 Example 3

The document tree shown in Figure 4.14 is relevant with regards to query Q1 =
/library/authors/author[@name = ”King”]/@id as it satis�es all conditions.
Note especially that the only non-context nodes are v′3 and v′8 and that conse-
quently these are the only nodes for which a child-node was omitted.

On the other hand the same tree would not be relevant for some di�erent
queries, such as Q2 = /library/genres/genre/books/book. In case of Q2 not
even the constraints on structure would be satis�ed, due to the following defects:

• node v′3 belongs to context nodes after the second step and should have a
child-node and

• node v′2 is a non-context node and should not be assigned any children.
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4.2.17 Schema-Based Content Constraints

Besides XPath queries we can also extract text content restrictions from the
schema. We will now look at how we can express the ID and IDREF constraints
in terms of the labelling function.

De�nition 42. Let S be a schema and G′ = (r′, V ′, E ′) with mapping m and a
labelling function l a document tree over its graph. We say that l covers all ID
constraints, and denote that as CoversIDs(G′, l) = true, if and only if for each
u′ ∈ V ′ and each v′ ∈ V ′, where m(u′) ∈ IDs(S) and m(v′) ∈ IDs(S), it holds
that (different, u′, v′) ∈ l.

De�nition 43. Let S be a schema and G′ = (r′, V ′, E ′) with mapping m and
a labelling function l a document tree over its graph. We say that l covers all
IDREF constraints, and denote that as CoversIDREFs(G′, l) = true, if and
only if for each u′ ∈ V ′ where m(u′) ∈ IDREFs(S) there exists a v′ ∈ V ′ such
that m(v′) ∈ IDs(S) and (same, u′, v′) ∈ l.

4.2.18 Example

We can easily verify that the labelling function l displayed in Figure 4.14 covers
all ID and IDREF constraints of the schema de�ned in Figure 4.4. Let us make
the following two observations.

• Only nodes v′6 and v′8 correspond to elements with ID constraints and
(different, v′6, v

′
8) ∈ l.

• There are no nodes that would correspond to elements with IDREF con-
straints and thus the IDREFs coverage condition is trivially satis�ed.

4.2.19 The Value-Assignment Function

To be able to transform a document tree into an XML document we have to choose
a single value for each of its attribute nodes. The value-assignment function, as
de�ned in this section, denotes the chosen values.

De�nition 44. Let G′ = (r′, V ′, E ′) be a document tree and U ′ ⊆ V ′ the set of
all its attribute nodes. For each u′ ∈ U ′ let v(u′) ∈ {string s} denote the value
assigned to node u′.

In order for the value-assignment function to be valid it must adhere to the
content types of individual attributes and satisfy all constraints induced by the
set of labels of the corresponding document tree.

De�nition 45. Let G′ = (r′, V ′, E ′) with mappingm and labelling l be a document
tree and U ′ ⊆ V ′ the set of all its attribute nodes. We say that a value-assignment
function v is valid for G′ and l, and denote that as V alid(G′, l, v) = true, if and
only if the following conditions are all satis�ed for all u′ ∈ U ′.

• v(u′) ∈ ContentType(m(u′)),

• v(u′) = s for all string values s such that (eq, u′, s) ∈ l,
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• v(u′) 6= s for all string values s such that (neq, u′, s) ∈ l,
• v(u′) = v(v′) for all nodes v′ ∈ U ′ such that (same, u′, v′) ∈ l and
• v(u′) 6= v(v′) for all nodes v′ ∈ U ′ such that (different, u′, v′) ∈ l.
Sometimes there is no valid value-assignment function (e.g. when there are

two or more constraints of type eq for the same node, each with a di�erent string
value). In that case the document tree is invalid, even though relevant, and
cannot be transformed to an XML document.

On the other hand there are situations when multiple di�erent value-assignment
functions are valid. In that case any one of them can be chosen as they all mean
very similar situations for an XPath resolver to solve.

4.2.20 Example

Let us return once more to the document tree G′ with mapping m and labelling
l introduced in Figure 4.14. Suppose that:

• ContentType(m(v′6)) = ContentType(m(v′8)) = {string s} and
• ContentType(m(v′7)) = ContentType(m(v′9)) = {King, Poe, Tolkien}.
We will show examples of valid and invalid value-assignment functions. We

can observe that:

• {v′6 => 1, v′7 => King, v′8 => 2, v′9 => King} is valid.
• {v′6 => 1, v′7 => King, v′8 => 2, v′9 => Rowling} is not, as the value of
node v′9 does not belong to its content type, which breaks condition no. 1.

• {v′6 => 1, v′7 => Poe, v′8 => 1, v′9 => King} is not either. Nodes v′6 and v′8
have the same value and thus break the fourth condition and node v′7 was
assigned a value di�erent from King which breaks condition no. 2.

Note that the value of v′9 is not constrained by the labelling function in any
way and therefore any value from its content type would be valid.

4.3 The Algorithm

We will now describe an algorithm that, given a non-recursive schema S with
graph G and a query Q on input, generates the set of all relevant document trees
and converts them into the corresponding XML documents which it returns on
output. The algorithm runs in �ve phases, as depicted in Algorithm 4.

Non-deterministic Approach

The algorithm is quite complex and so, to achieve reasonable clarity, we have
decided to only describe it here in a non-deterministic form. That is the reason
why it returns just one (non-deterministically chosen) relevant XML document,
instead of the set of all of them. A deterministic counterpart can be derived using
backtracking.

When describing individual parts of the algorithm, we will point out each
non-deterministic choice.

Let us now take a closer look at each of these phases.
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1 Function Main( schema graph G , query Q) : an XML document
2 // Phase 1 − genera te a r e l e v an t ( p a r t i a l ) document t r e e .
3 Let G′ = Generate(G,Q) .
4 // Phase 2 − complete i t i n t o a f u l l document t r e e .
5 Call Complete(G′) .
6 // Phase 3 − cover the ID and IDREF con s t r a i n t s .
7 Call CoverIDs(G′) and CoverIDREFs(G′) .
8 // Phase 4 − f i n d a s u i t a b l e va lue−assignment func t i on .
9 Call Evaluate(G′) .
10 // Phase 5 − conver t i t to an XML document .
11 Let Doc = Convert(G′) .
12 Return Doc .
13 End .

Algorithm 4: The Main Function

4.3.1 Phase 1 - Partial Document Trees

Let us suppose to be given a non-recursive schema S with an acyclic graph G
and a query Q. In this section we will introduce a method to determine the set
of all partial document trees over S relevant to Q.

The Algorithm

The algorithm, as depicted in Algorithms 5 and 6, was too long to �t on a single
page and therefore had to be split into two parts.

It is not much di�erent from what De�nition 40 prescribes. First of all we
create a basic document tree which consists of just the root node and an empty
labelling function. Then we iterate over all steps of the query, extending the tree
with new branches and labels. For each step and each context node we choose
one of the relevant sequence nodes and append it to the tree together with all its
child nodes. Then we process each predicate of the step, use recursion to deal
with sub-queries and add new labels so that the predicate gets covered. Finally
we update the set of context nodes and continue with the next iteration. When
the last step of the query is processed, the tree has been extended into a relevant
document tree.

Absolute Predicate Queries

We have decided to support both relative and absolute queries inside predicates.
Unlike relative sub-queries, which only a�ect the sub-tree rooted by the current
context-node, absolute sub-queries can a�ect the whole document tree. We need
to be aware of the fact that the same tree node might appear in the context sets
of two (or more) di�erent steps. Apparently it is not possible to choose each
time a di�erent child node (see De�nition 40 where we state that, in a relevant
document tree, each context node might only have a single child node assigned).
As we can see on lines 56 - 63, if we are processing a node that has already been
processed in the past, instead of choosing a new sequence node we stick with the
one that was chosen previously.
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Non-deterministic Choices

See lines 35 and 45 where we choose the correct sub-sets and line 65 where we
choose the appropriate sequence node - all of these choices are non-deterministic.

4.3.2 Phase 2 - Full Document Trees

After we resolve the set of all relevant (partial) document trees, as described in
the previous section, it is necessary to complete them to full document trees, one
at a time. The process of completion is described below.

Motivation and Intent

According to De�nition 40 the non-context nodes of a relevant document tree do
not contain any children. In order for the generated documents to be valid against
the given schema, these nodes have to be assigned valid sub-trees as well. That
is the purpose of the following algorithm. The intention is to choose the smallest
possible valid sub-tree for each of them, for which the precomputed values of
MinDepth are relied upon.

Text Content

Each tree node involved in predicate evaluation is a context node and thus the
partial trees as a result of the previous phase already contain all of them. In
this phase we only �nish the non-relevant parts of the document (those that a
typical XPath resolver would not even visit when evaluating the query). For this
reason we do not need to add any new labels and so the labelling function stays
unchanged.

The Algorithm

Let G′ = (r′, V ′, E ′) with mapping m be a partial document tree over G =
(r, V,W,E). In order to transform G′ into a full document tree, we need to satisfy
the condition from De�nition 30, which means to complete all its in-complete
nodes. The algorithm is described in Algorithm 7.

4.3.3 Phase 3 - ID and IDREF constraints

Now that the have completed each relevant tree into a full tree G′ we must update
the labelling function l to cover the ID and IDREF constraints as declared in the
schema S. The algorithm, as described in Algorithm 8, directly follows De�nitions
42 and 43.

Non-deterministic Choices

Refer to line 10 where we choose a node of type ID for each node of type IDREF
in a non-deterministic way.
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1 Function Generate ( schema graph G = (r, V,W,E) , query Q) : a document
t r e e with a l a b e l l i n g func t i on

2 Let G′ = (r′, {r′}, {}) where r′ i s a new node such that m(r′) = r .
3 Let l = {} .
4 ExtendTree(G′, l, Q, r′) .
5 Return (G′, l) .
6 End .
7
8 Function ProcessQuery ( document t r e e G′ = (r′, V ′, E′) with mapping m ,

l a b e l l i n g func t i on l , query Q , node v′ ∈ V ′ ) : a s e t o f nodes
9 Assert that m(v′) ∈ {r} ∪ V .
10 Let C = {v′} .
11 For each Si ∈ Steps(Q) do

12 Let C ′ = {} .
13 For each v′ ∈ C do

14 Let w′ = ChooseNode(G′, Si, v
′) .

15 I f w′ 6= NULL then

16 For a l l u′ ∈ ChildNodes(w′) such that Satisfies(Si,m(u′)) do

17 Let ok = true .
18 For each P ∈ Predicates(Si) do

19 Let ok = ok ∧ ProcessPredicate(G′, l, P, u′) .
20 End

21 I f ok then let C ′ = C ′ ∪ {u′} .
22 End

23 End

24 End

25 Let C = C ′ .
26 End

27 Return C .
28 End .
29
30 Function Proce s sPred i ca te ( document t r e e G′ = (r′, V ′, E′) with mapping m ,

l a b e l l i n g func t i on l , p r ed i c a t e P , node u′ ∈ V ′ ) : a boolean value
31 Assert that m(v′) ∈ V .
32 I f Type(P ) = q then return |ProcessQuery(G′, l, Query(P ), u′)| > 0 .
33 Else i f Type(P ) = qv then

34 Let C = ProcessQuery(G′, l, Query(P ), u′) .
35 Choose a sub−s e t C ′ ⊆ C .
36 For each c′ ∈ C ′

let l = l ∪ {(eq, c′, V alue(P ))} .
37 For each c ∈ C \ C ′

let l = l ∪ {(neq, c, V alue(P ))} .
38 Return |C ′| > 0 .
39 End

40 Else i f Type(P ) = qq then

41 Assume that (Q1, Q2) = Queries(P ) .
42 Let C1 = ProcessQuery(G′, l, Q1, u

′) and C2 = ProcessQuery(G′, l, Q2, u
′) .

43 Let satisfied = false .
44 For each c1 ∈ C1 do

45 Choose a sub−s e t C ′
2 ⊆ C2 .

46 I f |C ′
2| > 0 then let satisfied = true .

47 For each c′2 ∈ C ′
2 let l = l ∪ {(same, c1, c

′
2)} .

48 For each c2 ∈ C2 \ C ′
2 let l = l ∪ {(different, c1, c2)} .

49 End

50 Return satisfied .
51 End

52 Assert false .
53 End .

Algorithm 5: The Generate Function (Part 1)
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54 Function ChooseNode ( document t r e e G′ = (r′, V ′, E′) with mapping m , query
step Si , node v′ ∈ V ′ ) : a t r e e node or NULL

55 Assert that m(v′) ∈ {r} ∪ V .
56 I f |Edges(v′)| > 0 then

57 Assert that |Edges(v′)| = 1 .
58 Let w′ = ChildNode(v′) .
59 I f Relevant(Si,m(w′)) then

60 Return w′ .
61 Else

62 Return NULL .
63 End

64 Else

65 Choose a node w ∈ ChildNodes(m(v′)) such that Relevant(Si, w) .
66 Let w′ be a new node such that m(w′) = w .
67 Let V ′ = V ′ ∪ {w′} and E′ = E′ ∪ {(v′, w′)} .
68 For each (w, v) ∈ E do

69 Let u′ be a new node such that m(u′) = u .
70 Let V ′ = V ′ ∪ {u′} and E′ = E′ ∪ {(w′, u′)} .
71 End

72 Return w′ .
73 End

74 End .

Algorithm 6: The Generate Function (Part 2)

1 Function Complete ( document t r e e G′ = (r′, V ′, E′))
2 For a l l v′ ∈ V ′

such that m(v′) ∈ V and |E(v′)| = 0 :
3 Complete(v′)
4 End

5 End .
6
7 Function Complete ( node v′ o f a document t r e e G′ )
8 Let v = m(v′) .
9 Assert that |Edges(v)| > 0 .
10 Find w ∈ ChildNodes(v) such that MinD(w) = minz∈ChildNodes(v)MinD(z) .
11 Let w′ be a new node such that m(w′) = w .
12 Let V ′ = V ′ ∪ {w′} and E′ = E′ ∪ {(v′, w′)} .
13 For a l l u ∈ ChildNodes(w) do

14 Let u′ be a new node such that m(u′) = u .
15 Let V ′ = V ′ ∪ {u′} and E′ = E′ ∪ {(w′, u′)} .
16 Call Complete(u′) .
17 End

18 End .

Algorithm 7: The Complete function

46



1 Function CoverIDs ( f u l l document t r e e G′ = (r′, V ′, E′) with mapping m and
l a b e l l i n g l )

2 For a l l v′1 ∈ V ′ and v′2 ∈ V ′
such that m(v′1) ∈ IDs(S) and m(v′2) ∈ IDs(S) do

3 Let l = l ∪ {(different, v′1, v′2)} .
4 End

5 End .
6
7 Function CoverIDREFs ( f u l l document t r e e G′ = (r′, V ′, E′) with mapping m

and l a b e l l i n g l )
8 For a l l v′1 ∈ V ′

such that m(v′1) ∈ IDREFs(S) do

9 Assert that {v′ ∈ V ′;m(v′) ∈ IDs(S)} 6= ∅ .
10 Choose a node v′2 ∈ V ′

such that m(v′2) ∈ IDs(S) .
11 Let l = l ∪ {(same, v′1, v

′
2)} .

12 End

13 End .

Algorithm 8: The CoverIDs and CoverIDREFs functions

4.3.4 Phase 4 - Value-Assignment Function

Suppose that we have a full document treeG′ = (r′, V ′,W ′) with a (�nal) labelling
function l that corresponds to schema S = (El,At). Algorithm 9 shows an
algorithm to produce a valid value-assignment function v (if it exists).

Intention

Our aim is to reduce this problem onto graph colouring. For that we need to
build a suitable graph and determine a domain of possible values (colours) for
each of its nodes. Any valid colouring should then give us a valid value-assignment
function.

Algorithm

We start with a new (non-directed) graph on the set of all attribute nodes of G′

with no edges and take the basic content types of corresponding attributes as
initial domains.

Then we deal with labels of each type, one at a time, updating the initial
graph. To capture eq and neq constraints it su�ces to update the domains of
individual attributes. For labels of type different and same we need to modify
the structure of the graph - add new edges and merge nodes.

It is important that the merging takes place at the end of the graph construc-
tion, when all other constraints are already re�ected.

Merging Nodes

To ensure that two nodes will get the same colour we merge them into a single
node. Note that we cannot merge nodes which are directly connected. There are
two other things to observe about the newly created node.

• It takes over all original edges.

• Its domain is the intersection of the original domains.

This way all original constraints are preserved.
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Graph Colouring

The algorithm to colour a graph has been omitted. Any standard technique can
be used, such as a greedy colouring strategy with backtracking.

1 Function Evaluate ( document t r e e G′ = (r′, V ′, E′) with mapping m and
l a b e l l i n g l ) : a value−ass ignment func t i on

2 Let U ′ = {v′ ∈ V ′;m(v′) ∈ At} .
3 For each u′ ∈ U ′

do

4 Let dom(u′) = ContentType(m(u′)) .
5 For each s such that (eq, u′, s) ∈ l let dom(u′) = dum(u′) ∩ {s} .
6 For each s such that (neq, u′, s) ∈ l let dom(u′) = dum(u′) \ {s} .
7 End

8 Let G′′ = (U ′, E′′) where E′′ = ∅ be a new non−d i r e c t ed graph .
9 For a l l (different, u′, v′) ∈ l let E′′ = E′′ ∪ {(u′′, v′′)} .
10 For a l l (same, u′, v′) ∈ l do

11 Assert that {u′, v′} /∈ E′′ .
12 Call Merge(G′′, u′, v′) .
13 End

14 Return a va l i d graph co l ou r i ng for G′′ .
15 End .
16
17 Function Merge (non−d i r e c t ed graph G′′ = (V ′′, E′′) , nodes v′′1 ∈ V ′′ and

v′′2 ∈ V ′′ )
18 Let v′′ be a new node in G′′ and V ′′ = (V ′′ \ {v′′1 , v′′2}) ∪ {v′′}) .
19 Let dom(v′′) = dom(v′′1 ) ∩ dom(v′′2 ) .
20 For each {v′′1 , u′′} ∈ E′′

let E′′ = (E′′ \ {{v′′1 , u′′}}) ∪ {{v′′, u′′}} .
21 For each {v′′2 , u′′} ∈ E′′

let E′′ = (E′′ \ {{v′′2 , u′′}}) ∪ {{v′′, u′′}} .
22 End .

Algorithm 9: The Evaluate function

4.3.5 Phase 5 - XML Documents

Let us have a non-recursive schema S = (El,At) with graph G = (r, V,W,E) and
a full document tree G′ = (r′, V ′, E ′) over G with values v and mapping m. Note
that the tree already contains all information about the corresponding document.
In order to do the transformation, we traverse the tree recursively, as described
in Algorithm 10.

4.3.6 Example

For an example see the following two �gures. Figure 4.15 contains a sample full
document tree which depicts a car with a coachwork, a motor and three wheels
with tyres. Figure 4.16 shows the corresponding XML document.
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1 Function Convert ( f u l l document t r e e G′ = (r′, V ′, E′) with va lues v ) : XML
document

2 Let R = Convert(GrandChildNode(r′), v) .
3 Return (P,R) where P i s the XML pro log .
4 End .
5
6 Function Convert ( t r e e node v′ such that m(v′) ∈ El , va lue func t i on v ) :

XML element
7 Create a new element e named v′ .
8 I f |Edges(v′)| > 0 then

9 Assert that |Edges(v′)| = 1 .
10 Let w′ = ChildNode(v′) .
11 For a l l u′ ∈ ChildNodes(w′) do

12 I f u′ ∈ At then s p e c i f y a t t r i b u t e named u′ with value v(u′) for e .
13 Otherwise add e′ as a sub−element o f e for e′ = Convert(u′, v) .
14 End

15 End

16 Return E .
17 End .

Algorithm 10: The Convert function

Figure 4.15: The car document tree
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1 <?xml version=" 1 .0 " ?>
2 <car>
3 <coachwork />
4 <motor type="MT602" />
5 <wheel>
6 <tyre />
7 </wheel>
8 <wheel>
9 <tyre />
10 </wheel>
11 <wheel>
12 <tyre />
13 </wheel>
14 </ car>

Figure 4.16: The car XML document

4.3.7 Evaluation

It is important to realize that, for a non-recursive schema S and an XPath query
Q on input, the set of XML documents R as the result of our algorithm satis�es
the following requirements:

1. R contains only documents valid against S.

2. R contains only documents with a high potential to exercise the resolver in
situations relevant with regards to evaluating Q.

Let us now focus on each of these in more depth.

Validity

The fact that the structure of the generated documents adheres to the schema
follows from the way we build the schema graph and the way we traverse it and
build the relevant document trees. As already mentioned, the fact that we assign
empty text content to all elements does not get us in con�ict with any DTD
schema de�nition. And �nally, the content we assign to attributes is also valid,
because it belongs to the declared basic content types and satis�es all ID and
IDREF constraints.

Relevance

It follows from the way we choose relevant document trees and the way we com-
plete them into full trees that the resultant XML documents are only developed
in areas that an XPath resolver is supposed to visit when evaluating the query.
For other areas we choose the simplest possible valid sub-trees and thus ignore
documents that would di�er in parts which a resolver would not visit at all.

The same applies for content of attributes. We choose values to expose di�er-
ent situations considering evaluation of individual predicates. For attributes that
are not referenced by any of them we pick just a single valid value.

Therefore each of the generated documents means a di�erent situation for the
resolver to deal with.

50



4.4 Similar Document Trees

The amount of documents valid against a given schema and relevant to a given
query is still very large. Moreover, many of them have a very similar structure
and di�er only in the ordering of elements at individual tree levels. We will
now de�ne a new relation called similarity which will help us recognize similar
documents.

De�nition 46. Documents G′1 = (r′1, V
′
1 , E

′
1) with mapping m1 and labelling l1

and G′2 = (r′2, V
′
2 , E

′
2) with mapping m2 and labelling l2 are similar if and only if

there exist bijective functions M : V ′1 → V ′2 and L : l1 → l2 such that:

• M(r′1) = r′2,

• for each v′1 ∈ V ′1 it holds that:

� m1(v
′
1) = m2(M(v′1)) and

� for each w′1 ∈ ChildNodes(v′1) there is a w′2 ∈ ChildNodes(M(v′1))
such that M(w′1) = w′2,

• for each l ∈ l1:

� if l = (t, v′, s) for t ∈ {eq, neq}, v′ ∈ V ′1 and a string s then L(l) =
(t,M(v′), s),

� if l = (t, v′1, v
′
2) for t ∈ {different, same}, v′1 ∈ V ′1 and v′2 ∈ V ′1 then

L(l) = (t,M(v′1),M(v′2)).

In other words, two trees are similar if it is possible to meet the following
requirements by changing the order of child nodes for one of them.

• The trees have the same structure. This means that for each node in the �rst
tree there is a corresponding node in the second tree, which is at the same
level and position. The corresponding nodes also have the same number of
child nodes.

• Each node in the �rst tree is mapped to the same schema graph node as
the corresponding node in the second tree.

• The trees have equivalent sets of labels, meaning that there exists a mapping
between these sets such that for each pair of corresponding labels the related
nodes correspond to each other.

Lemma 1. The similarity relation is an equivalence on the set of all documents
valid against a given schema S and relevant to a given query Q.

The similarity relation is an equivalence and we can therefore use it to divide
the set of all relevant document trees into disjoint groups, where all trees in each
group are mutually similar. We will only keep one tree per group.
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4.4.1 Example

To illustrate the notion of the similarity relationship we refer to the following
�gures. Figure 4.17 contains a (partial) document tree which represents a book,
which is divided into chapters and sections. Note that the second chapter com-
prises of two sections, while the �rst and the last chapters contain just one.

Figure 4.17: The book document tree no. 1

Figure 4.18 contains another document tree. It is not identical to the former
one - this time the �rst chapter contains two sections and the other two just one.
It is, however, similar to it as it satis�es all the criteria. If we swap the �rst two
chapters we get a tree that has the same structure and labels as the original one.

Figure 4.18: The book document tree no. 2

Figure 4.19 contains yet another document tree. This one is not similar to the
previous trees. We can see that each of the chapters contains just one section and
thus no ordering of child nodes would get us a tree with an identical structure.
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Figure 4.19: The book document tree no. 3

Figure 4.20 contains one last sample document tree. This one is not similar
to the �rst tree either, even though its structure is identical. While the �rst tree
contains just a single label, this time we have two. Clearly there is no bijective
mapping between the two sets.

Figure 4.20: The book document tree no. 4
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Chapter 5

Implementation

We have implemented a prototype of the algorithm as a part of the thesis to help
us further demonstrate and validate our intentions. In this chapter we will brie�y
describe its architecture and how to use it.

5.1 Third Party Tools and Technologies

The application is based on the Java platform. It was written in the Eclipse 4.3.1
IDE [15] using JDK 1.7 [16]. The Maven 3.1 project management tool [17] was
used as a build and dependency management system and the JUnit 4.1 framework
[18] for unit and integration tests. We chose the JavaCC tool [19] to generate
compilers for DTD schemas and XPath expressions. We used the JDOM 2 API
[20] to work with XML documents and the Apache Commons library [21] to
handle collections, �les, command-line arguments, etc. The Log4J 1.2 framework
[22] was used as a logging facility and Visual VM [23] as a pro�ling tool. GIT
[24] served as a version control system.

5.2 Overall Architecture

The application consists of three basic modules:

• the schema parser,

• the query parser,

• the pipeline.

Let us now introduce each of them.

5.2.1 The Schema Parser

This module represents a parser that can be used to convert XML schema def-
initions written in DTD (or, more precisely, in the subset of the DTD language
supported in our algorithm, as described in the previous chapter) into the corre-
sponding instances of the schema graph structure (see De�nition 18).
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5.2.2 The Query Parser

Analogously to the previous case, this module consists of a parser for XPath
queries.

5.2.3 The Pipeline

This is where the main part of the application, the algorithm itself, resides. It is
implemented in the form of a pipeline, which accepts a schema graph and a query
on input and gives a list of XML documents on output. Inside the pipeline the
data �ow through �ve stages, which correspond to di�erent parts of the algorithm
(as was described in Section 4.3). Each of them is implemented as a separate sub-
module. There are the following �ve stages:

• the generator (generates relevant partial document trees),

• the completioner (completes them into full document trees),

• the coverer (covers the ID and IDREF constraints),

• the assigner (chooses suitable value-assignment functions),

• the converter (converts the trees into XML documents).

The algorithms for all phases have already been described in pseudo-code. In
the assigner we use a greedy strategy to �nd valid colourings. To make it faster,
we sort all nodes by the number of permissible values at the beginning of the
search.

Similarity

The similarity relation is implemented as a standalone sub-module of the pipeline.
It provides an interface to decide whether two document trees are similar or not,
and, by extension, to choose a set of dissimilar representatives from a set of trees.

5.3 Usage

The prototype is a standard Java application with a command-line interface and
can be run using the following command:

1 java −j a r xmlgen−1.0 . j a r [ parameters ]

Let us now introduce the supported parameters:

• schemaFile (mandatory) - path to the �le which contains the DTD schema
de�nition (absolute, or relative to the installation directory),

• query (mandatory) - the XPath query,

• outputDir (mandatory) - path to a folder to which the resulting documents
should be saved (absolute, or relative to the installation directory),

• mc (optional, defaults to 2) - value of MC (max cardinality, see Section
4.1.3),
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• stepNo (optional) - index of an interesting step (will be explained in Section
6.5).
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Chapter 6

Experiments

In this chapter we will present the results of running our implementation on some
sample data using a computer with the following con�guration:

• a 2-core 2.30GHz CPU,

• 2GB of RAM for Java heap.

We will use the library DTD schema listed in Figure 4.4 and the following
XPath queries.

Addresses of all publishers (Q1)

Query /library/publishers/publisher/address is the most trivial one, as it does
not conform to the schema de�nition. There is no publishers sub-element under
library and so the application should return just one empty document (or, rather,
a minimal valid document).

Id of author named King (Q2)

Query /library/authors/author[@name = ”King”]/@id is the second simplest
one. It references just the authors sub-tree of the schema graph and so this sub-
tree should be the only part of the schema covered by the resulting documents.
For the genres sub-tree we should again get the minimal valid content.

Titles of books of genre named fantasy (Q3)

Query /library/genres/genre[@name = ”fantasy”]/books/book/@title is mod-
erately complex, as it covers the deeper and wider of the two sub-trees, the genres
sub-tree.

Titles of books written by author named King (Q4)

The last query we will use is /library/genres/genre/books/book[@author_id =
/library/authors/author[@name = ”King”]/@id]/@title. It is the most com-
plex one. It references both sub-trees of the schema graph and we should therefore
get the biggest number of generated documents.
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6.1 A Naive Implementation

We will start with an implementation which follows very closely the de�nitions
and pseudo-codes described in Chapter 4, without any intentional optimizations.

Table 6.1 holds application run-times (in milliseconds) and numbers of gener-
ated documents (in parentheses) for the di�erent queries and di�erent values of
MC (see Section 4.1.3). Each value was obtained as an average of �ve consecutive
runs. There are two special values:

• OOM (out of memory) - the application failed on an Out of memory excep-
tion and

• TLE (time limit exceeded) - the application did not �nish in an hour.

Q1 Q2 Q3 Q4

MC 1 155 (1) 181 (4) 185 (6) 313 (17)

MC 2 154 (1) 237 (14) 1949 (136) OOM

MC 3 145 (1) 531 (34) OOM �

MC 4 160 (1) 1643 (69) � �

MC 5 152 (1) 23593 (125) � �

MC 6 165 (1) 812509 (209) � �

MC 7 150 (1) TLE � �

Table 6.1: Naive Implementation

We examined the generated sets of documents for all cases and con�rmed
that the results were correct. As we can see, though, the performance of the
current implementation is very unsatisfactory. We can take the following actions
to improve it:

• relieve our expectations on relevant documents,

• take performance optimizations.

6.2 Algorithm Modi�cations

We have modi�ed the algorithm itself in two ways, as a trade-of between complete
correctness and performance.

6.2.1 Relevant Child Nodes

In the original implementation (an in accordance with De�nition 38) we regarded
every satisfying sequence node (plus the longest and the shortest of the non-
satisfying ones) as relevant, because each of them meant a di�erent situation to
a resolver. When examining the generated documents we noticed that in fact
some of them represent situations that are very similar to each other and decided
to modify this criterion in order to decrease the amount of generated documents
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and gain performance. This trade-of comes at a low cost, because we only only
loose documents that are not very di�erent from some other documents that we
keep.

De�nition 47. Let G = (r, V,W,E) be a non-recursive schema graph and v its
node. Then SatC(Si, v) = |Satisfying(Si, v)| is the satis�ability coe�cient of
node v for step Si.

The satis�ability coe�cient of a node v for a step Si is given as the number
of child-nodes of v which satisfy Si.

De�nition 48. Let G = (r, V,W,E) be a non-recursive schema graph and v one
of its nodes. Let Si be a step of a query and k ∈ N a natural number. Then
Satisfying(Si, v, k) = {w ∈ Satisfying(Si, v);SatC(Si, w) = k} is the set of all
satisfying child-nodes with coe�cient k.

While Satisfying(Si, v) is the set of all child-nodes of v that satisfy step Si,
Satisfying(Si, v, k) is a sub-set which contains just nodes for which the satis�a-
bility coe�cient equals k.

De�nition 49. For a non-recursive schema graph G = (r, V,W,E), its node v
and a natural number k ∈ N we de�ne the set of all relevant sequence-nodes with
coe�cient k, denoted as Relevant(Si, v, k), as follows.

• Let Relevant(Si, v, 0) = {shortest, longest} where

� shortest = {w ∈ NonSatisfying(Si, v); |w| = minu∈NonSatisfying(Si,v)|u|},
� longest = {w ∈ NonSatisfying(Si, v); |w| = maxu∈NonSatisfying(Si,v)|u|}

and

• Relevant(Si, v, k) = {v ∈ Satisfying(Si, v, k); |v| = minu∈Satisfying(Si,v,k)|u|}
for k > 0.

De�nition 50. Let G = (r, V,W,E) be a non-recursive schema graph and v its
node. Let Si be a step of a query. Then Relevant(Si, v) = ∪k∈NRelevant(Si, v, k).

As we can see in the new de�nition, only one satisfying node is included among
relevant child-nodes for each valid satis�ability coe�cient.

6.2.2 Example

Let us illustrate the concept with an example. Figure 6.1 contains a snippet of
a schema graph to represent books. There is a single book element node and �ve
di�erent sequence child-nodes.

We will now compare the old and the new de�nition. Suppose that Si =
chapter. Then:

• Relevant(Si, v) = {w1, w2, w3, w4, w5} as w1, w2, w3 and w5 are satisfying
and w4 is the only non-satisfying child-node.

• Relevant(Si, v) = {w2, w3, w4} because w2 is the shortest sequence node
with coe�cient 1 and w3 with coe�cient 2.
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Figure 6.1: The book schema graph snippet

6.2.3 Covering Predicates

The way we de�ne predicate coverage in De�nition 39 has a performance draw-
back. It means that when processing a predicate we have to generate a new
document tree for every sub-set of the �nal context-set of one of the sub-queries.
Many of these trees are similar and are discarded later, during the similarity
check. For larger sets the number of sub-sets grows very fast, which causes an
explosion of intermediary trees.

We have decided to only process one sub-set of each size instead of the whole
power-set. This reduces the number of cases that we have to deal with, but,
on the other hand, causes a loss of some relevant documents for some complex
queries.

6.2.4 Example

Let us demonstrate such a situation with an example. Suppose we have the
following two predicates in a single query - P1 = [Q1 = ”King”], where evaluating
the Q1 sub-query results in nodes {v1, v2, v3}, and P2 = [Q2 = ”King”], where
Q2 results in {v2, v3}.

We will now show what happens for sub-sets of size 1. For Q1 the sub-set we
choose is {v1} and we add the following labels to the tree.

• (eq, v1, King),

• (neq, v2, King) and

• (neq, v3, King).

For Q2 the sub-set of size 1 is {v2}, which means that we add the following
labels:

• (eq, v2, King),

• (neq, v3, King).

There is no correct value-assignment function, because labels for node v2 con-
�ict with each other, and so we loose the document. On the other hand, if we
chose some other pair of sub-sets of size 1, such as sub-set {v2} for both P1 and
P2, we could get a valid set of labels. Each of the predicates is processed sep-
arately, though, and there is no way to guess the right pair of sub-sets without
processing them all, which is what we wanted to avoid in the �rst place.
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6.3 Performance Optimizations

We have deduced (and con�rmed our conclusions using a pro�ler) that the main
spots worth optimizing are the generator and the similarity sub-modules. Let us
now describe each major optimization in more detail.

6.3.1 Fail Fast for Invalid Document Trees

In generator the relevant document trees are built gradually, starting with an
empty tree and adding new branches for individual steps of the query. A lot of
work can be saved if we can recognize invalid intermediary trees and immediately
discard them.

We have added checks for the following basic combinations of contradicting
labels:

• (eq, v, s) plus (neq, v, s) for some node v and a string s,

• (eq, v, s1) plus (eq, v, s2) for some node v and strings s1 and s2 such that
s1 6= s2,

• (different, v1, v2) plus (same, v1, v2) for some nodes v1 and v2.

6.3.2 Do the Similarity Checks in the Generator

Another way to prune the computation of the generator is to move the similarity
checks inside and �lter intermediary trees after each step (in the original imple-
mentation, the similarity checks were done only after all relevant trees have been
fully generated). This reduces the number of cases that we have to deal with, but
increases the importance of optimizing the similarity checks themselves, as they
are executed more often.

6.3.3 Optimize the Similarity Checks

The most important optimizations were performed on the similarity relation. In
the original code we �rst generated all mappings that were valid with regards
to the structure of the trees and then checked if for any of them labels matched
as well. For larger trees the total number of structurally correct mappings is
very high. In the optimized implementation, conformance of labels is veri�ed
already during the construction process, which prunes the computation greatly.
We traverse the trees, try to reorder the child-nodes for one of them, and stop
invalid computation branches right away, which is achieved via the following
checks. Two trees are not similar unless:

• the total counts of labels per type match and

• for each pair of matching nodes:

� the target schema nodes match,

� the sets of incident labels match,

� the sub-trees have the same depth and sizes of individual levels.
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6.4 The Optimized Implementation

We run the same test cases using the optimized implementation. The results are
available in Table 6.2, which is in the same format as before.

Q1 Q2 Q3 Q4

MC 1 137 (1) 143 (2) 148 (3) 159 (3)

MC 2 139 (1) 161 (5) 194 (10) 1300 (48)

MC 3 133 (1) 203 (9) 458 (35) OOM

MC 4 140 (1) 348 (14) 2475 (126) �

MC 5 137 (1) 601 (20) TLE �

MC 6 140 (1) 1180 (27) � �

MC 7 139 (1) 7714 (35) � �

Table 6.2: Optimized Implementation

Even though the time and memory savings are signi�cant, the results are still
not satisfying, especially for more complex queries. Also note the reduction of the
numbers of generated documents. It is caused by the two algorithm modi�cations
presented in Section 6.2.

6.5 Steps Priority

Apparently we are unable to fully process data of a certain level of complexity
with reasonable demands on time and memory. What we can do instead in these
cases is to allow users to give a relative priority for each step of the query. The
algorithm would then reduce the number of di�erent cases relevant with regards
to steps with lower priorities in favour of steps with higher. This could even be
used as a means to deliberately delimit the processing of uninteresting steps in
complex queries to avoid being overwhelmed by very large numbers of generated
documents.

We will only deal with a simpli�ed case in this thesis and leave the research on
other options as a suggestion for future work. We will allow users to (optionally)
mark one of the steps of the query as important. The denoted step will be
processed fully and all other steps will be suppressed. For suppressed steps only
a single satisfying child-node will be regarded as relevant. This should cause a
signi�cant reduction in the number of generated documents and hence also in the
application run-time.

6.6 Example

Let us return to the schema graph snippet shown in Figure 6.1 and step Si =
chapter. If Si was regarded as the interesting step, the set of relevant child-nodes
would stay the same as in the original example. Otherwise, we would only accept
node w2 as relevant, because it is the shortest of the satisfying child-nodes.
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6.7 The Final Implementation

We have chosen a few interesting steps for the two more di�cult queries (i.e.
Q3 and Q4), ran the tests for them and presented the results in Table 6.3. The
format is again same as before.

The numbers in square brackets next to the query identi�ers denote the indices
of the relevant steps. For example, Q3 [3] means the third step of query Q3. In
other words:

• Q3 [3] stands for genre[@name = ”Fantasy],

• Q4 [3] for genre,

• Q4 [5] for book[@author_id = /library/authors/author[@name = ”King”]
/@id] and

• Q4 [6] for @title.

The more complex a step is, the more demanding the computation and also
the greater the number of resulting documents. This is especially true for steps
with sub-queries.

Q3 [3] Q4 [3] Q4 [5] Q4 [6]

MC 1 162 (3) 166 (3) 161 (2) 182 (2)

MC 2 180 (6) 195 (5) 343 (14) 189 (2)

MC 3 223 (10) 286 (7) 1603 (53) 186 (2)

MC 4 372 (15) 540 (9) 108910 (157) 187 (2)

MC 5 675 (21) 1051 (11) TLE 182 (2)

MC 6 1269 (28) 1926 (13) � 187 (2)

MC 7 8612 (36) 8270 (15) � 186 (2)

Table 6.3: Final Implementation

While still not ideal, these results are far better than what we got with our
initial implementation. The optimization obstacles are partially inherent to the
problem itself, as the space of potentially interesting documents is large and grows
rapidly with increasing MC values and query complexity.

6.8 Comparison

The measurements presented in the previous sections are graphically summarized
on the following bar charts. Figure 6.2 depicts application run-times per di�erent
MC parameter values and implementation versions for query Q3. Figure 6.3
depicts the same data for query Q4.

6.9 Advanced Priority Settings

Let us yet shortly outline and discuss some of the options for more advanced
steps priority settings. The ideas captured in this section were not incorporated
into the implementation.
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Figure 6.2: Application run-times for query Q3

Figure 6.3: Application run-times for query Q4
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More than one important step

The algorithm could be modi�ed to allow marking multiple steps of the query as
important. The amount of generated documents would grow quickly with each
new important step, though. In cases when we need to cover more than one step
exhaustively, it might be better to run the application multiple times, each time
with a di�erent step marked as important, and gather the results.

Important steps in sub-queries

In the �nal prototype version only steps of the query itself can be selected as
important. When a step with predicates is marked, each step in all its sub-
queries is considered important as well. Extending the marking for sub-queries
would allow a more �ne-grained but also more complex set-up. We could reduce
the increase of con�guration complexity by choosing smart default values (e.g.
by default, the step could be marked as important with all its sub-queries).

Detailed priorities

Currently we can only choose one of two di�erent priority values for a particular
step - important (all relevant child nodes are considered) and suppressed (only
one of them is considered). These two strategies represent opposite extremes.
But we might also want to choose something in between.

Users could be allowed to associate each step with a fraction to denote the
percentage of relevant child nodes to consider. Di�erent strategies to choose the
target amount of nodes could be employed. Among others:

• uniform selection (sort all relevant child nodes by the lengths of the
represented sequences and then omit the expected number of them so that
the gaps are uniformly distributed),

• probabilistic selection (iterate over all relevant child nodes and omit
those for which a randomly generated value does not exceed the target
threshold).

In case of probabilistic selection the application should accept a �xed random
seed as an (optional) argument so that we could get the same results when running
the tool multiple times on the same input.
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Chapter 7

Conclusion

The goal of this thesis was to design an algorithm to generate synthetic XML
documents, which would be reasonably complex yet easy to con�gure. We have
studied and evaluated a wide range of existing approaches. It turned out that, for
general-purpose generators, the requirements for a large degree of con�gurability
and for the ease of con�guration contradict with each other. We have decided to
sacri�ce general applicability and focus on generating documents speci�cally for
the purpose of covering the resolution of a given XPath query.

The main part of our e�ort consisted of research on constraints that can
be derived from a given DTD schema instance together with an XPath query.
Based on the results we have then designed an algorithm that only required one
additional argument (mc - the maximal cardinality of repetitive DTD operators,
as introduced in Section 4.1.3).

As a next step, a prototype was implemented to demonstrate and validate
our conclusions. It turned out that the original algorithm was too heavyweight
and we had to apply several optimizations. One more parameter was needed for
performance reasons (stepNo - the index of an important step of the query, see
Section 6.5). Experimental results presented in the last chapter illustrate that,
while there still is space for improvement, the time and space demands of the
optimized version are promising.

As far as we have found out there are currently no other solutions that would
specialize in generating XML documents to cover XPath queries. Paper [1], men-
tioned in Section 3.1.1, only brie�y describes a proposed solution, and no robust
implementation is o�ered. The authors touch some schema and query constructs
that we did not deal with, such as data types of elements and attributes and more
advanced XPath axes.

Despite all our e�ort, there still remains space for further research, especially
in the following areas.

• Performance - we have shown that the proposed solution works well for
queries up to a certain amount of complexity. For larger queries, perfor-
mance issues have to be dealt with. We have outlined some optimization
approaches in Chapter 6. Nevertheless, there still is space for further re-
search in this area.

• DTD constructs - our solution supports a large part of the DTD speci�-
cation. We have used conclusions of third-party research regarding current
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rates of adoption of individual DTD constructs in real software projects as a
base for decisions as to which of them we should focus on and which should
be left out. Still, adding support for the rest of them would be bene�cial -
especially for recursive schemas and the text content of elements.

• XPath constructs - in the current version the algorithm only supports
elementary XPath features - the child and attribute axes, element/attribute
names as node tests and primitive forms of predicates. On these basic
constructs, properties of the proposed solution have been demonstrated.
We believe that extending support for more advanced XPath features would
be a viable task for a future work.
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Appendix A - Contents of the CD

The CD attached to this thesis has the following structure:

• text/

� thesis.pdf (a PDF version of the thesis),

• project/ (Maven project of the prototype - contains the POM �le, all
source �les and all test cases),

• install/ (installation of the prototype)

� README.txt (end user documentation),

� xmlgen-1.0.jar (the application JAR �le),

� *.jar (JAR �les of 3rd party libraries),

� logcon�g.xml (the Log4J con�guration �le),

� example/

∗ queries/ (batch �les to run the application on sample data, to-
gether with the corresponding expected outputs),
∗ library-schema.dtd (a sample DTD schema),
∗ output/ (a directory to store sample output),

• doc/ (technical java-doc documentation).
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