
MASTER THESIS

Bc. Vojtěch Š́ıpek

Comparison of Approaches for Querying
of Chemical Compounds

Department of Software Engineering

Supervisor of the master thesis: Doc. RNDr. Irena Holubová, Ph.D.
Study programme: Computer Science

Study branch: Software Systems

Prague 2019

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague date 5.5.2019 signature of the author

i

Title: Comparison of Approaches for Querying of Chemical Compounds

Author: Bc. Vojtěch Š́ıpek

Department: Department of Software Engineering

Supervisor: Doc. RNDr. Irena Holubová, Ph.D., Department of Software Engi-
neering

Abstract: The purpose of this thesis is to perform an analysis of approaches to
querying chemical databases and to validate or invalidate its results. Currently,
there exists no work which would compare the performance and memory usage of
the best performing approaches on the same data set. In this thesis, we address
this lack of information and we create an un-biased benchmark of the most pop-
ular index building methods for subgraph querying of chemical databases. Also,
we compare the results of such benchmark with the performance results of an
SQL and a graph database.

Keywords: Chemical database, Chemical Compounds, Benchmark, Subgraph
querying, Graph database, Subgraph isomorphism

ii

I would like to take this opportunity to thank to the people who helped me
during my studies and without whom I would not be able to finish this work.
My supervisor Doc. RNDr. Irena Holubová, Ph.D. for great support during the
whole time I has been writing this thesis. My family for the support during my
whole studies. My brother, who helped me to submit this thesis while I was
abroad. And my girlfriend for never-ending reminders to finish this work and not
to give up.

iii

Contents

Introduction 3
Structure of the Thesis . 3

1 Base Terms and Definitions 5
1.1 Definitions . 5
1.2 Subgraph Querying . 5

2 Analysis of Related Work 7
2.1 Subgraph Isomorphism Algorithms 7
2.2 Index Building Methods . 7

2.2.1 GraphGrep . 8
2.2.2 GraphGrepSX . 8
2.2.3 GIndex . 9
2.2.4 GIRAS . 11
2.2.5 GString . 12
2.2.6 C-Tree . 13
2.2.7 GDIndex . 14
2.2.8 Benchmark Results . 15

2.3 Database Management Systems Utilization for Subgraph Querying 16
2.3.1 SQL Substructure Search 16
2.3.2 Neo4j Substructure Search 17

2.4 Commercially Used Solutions . 18
2.4.1 AMBIT-SMARTS . 18
2.4.2 JChem Cartridge . 19
2.4.3 ABCD Cartridge . 20

3 Experimental Work 21
3.1 Introduction . 21
3.2 Hypotheses to be verified by the experimental work 22

3.2.1 Hypothesis 1: GString vs GraphGrepSX 22
3.2.2 Hypothesis 2: GIRAS performance for large queries 22
3.2.3 Hypothesis 3: How the SQL and graph oriented databases

perform in comparison with the domain specific solutions . 23
3.3 Description of the Experimental Work 23

3.3.1 GraphGrepSX . 23
3.3.2 GString . 24
3.3.3 SQL Database . 26
3.3.4 Graph Database . 28
3.3.5 GIRAS . 29

4 Experimental Results 31
4.1 Index Building Time . 32
4.2 Index and Data Size . 33
4.3 Candidate Set Creation Time . 34
4.4 Verification Time . 35

1

4.5 Hit Ratio of Candidate Set . 36
4.6 Query Execution Time . 37
4.7 Hypotheses Results . 38

Conclusion 40
Future Work . 41

Bibliography 42

List of Figures 46

List of Tables 47

List of Abbreviations 48

Attachments 49

2

Introduction
Querying is the essential utility of each database and the same applies to chemical
databases. Nowadays, the largest publicly accessible databases contain around
100 million compounds. The chemical compounds can be naturally represented
as graphs where atoms are represented as vertices and bonds are represented as
edges. The typical chemical compound is a connected sparse graph with labeled
edges and vertices where the size of the labeling alphabet for edges is less than
10 and size of the labeling alphabet for vertices is in order of low hundreds.

The size of chemical compounds is variable. The vertex count varies typically
from very small compounds with less then 10 vertices to huge compounds with
hundreds of vertices. These sizes multiplied by the size of the database implies
that querying over such databases might be a challenging task.

The most common queries over chemical databases are exact match query,
shortest path search, similarity search and substructure search which are usually
used in graph databases. The latter will be the main point of interest in this
thesis.

The goal of subgraph querying is to obtain a list of graphs from the database
which contain the queried graph as its subgraph. The result of this process has a
wide range of utilization e.g. in chemoinformatics and bioinformatics and there-
fore in pharmaceutic industry. Several indexing techniques have been proposed
to minimize the number of subgraph isomorphism tests since it is known as NP-
complete problem.

There are several benchmarks of the mentioned indexing techniques already.
The problem is that all found benchmarks has been created by the authors of
some of the indexing technique and therefore the intention of the benchmark is
to show that the particular index is more powerful than others. There is a lack
of independent benchmarks which would compare the best performing indices on
the same data and on the same hardware.

In this thesis we compare the best performing indexing techniques using the
same environment. We also compare these techniques with the classical SQL
database performance as well as with the performance of the modern graph
databases.

Structure of the Thesis
This thesis is divided into four main parts. In the first part called Base Terms
and Definitions we define the main problem of this thesis, subgraph isomorphism,
and we define the main terms related to the graph theory which are used later in
the thesis.

3

In the second part called Analysis of Related Work we analyze the found lit-
erature about the algorithms for resolving subgraph isomorphism problem and
most importantly we analyze and briefly describe the indexing techniques pro-
posed in related work.

In the third part, Experimental Work, several hypotheses are formulated. For
their verification the author’s experimental work is used. These experiments are
described in detail and the issues found out during the implementation are ex-
plored.

The last part of the thesis called Experimental Results covers the results of
experimental work and the comparison with results of related researches. We
will comment on the findings and propose some directions in possible following
research.

4

1. Base Terms and Definitions

1.1 Definitions
Definition: Graph G = (V, E) is a ordered pair where V is a set of vertices and
E ⊆ V × V is a set of edges .

Definition: Labeled Graph G = (V, E, LV , LE, fV , fE) is an ordered 6-tuple of
set of vertices V , set of edges E ⊆ V × V , set of vertex labels LV , set of edge
labels LE, function assigning the vertex labels to vertices fV : V −→ LV and
function assigning the edge labels to edges fE : E −→ LE.

Definition: Graph G = (V, E) is a Subgraph of graph G′ = (V ′, E ′) if and only
if V ⊆ V ′, E ⊆ E ′ and ((v1, v2) ∈ E =⇒ v1, v2 ∈ V). We denote it as G ⊆ G′.

Definition: Graph G = (V, E) is an Induced Subgraph of graph G′ = (V ′, E ′) if
G ⊆ G′ and for all edges e = (u, v) ∈ E ′, (u ∈ V)&(v ∈ V) =⇒ e ∈ E.

Definition: Graphs G = (V, E) and G′ = (V ′, E ′) are Isomorphic to each other
if there exists a bijection I : V −→ V ′ so that (v1, v2) ∈ E ⇔ (I(v1), I(v2)) ∈ E ′.

Definition: Graph G is Subgraph Isomorphic to graph H if there exists a sub-
graph H ′ ⊆ H which is isomorphic to G.

The last four definitions can be extended for the labeled graphs intuitively.

1.2 Subgraph Querying
Due to the NP-complete nature of the subgraph isomorphism problem (is one
graph subgraph isomorphic to other?), we cannot expect good results using a
naive approach where we test iteratively all database records to find out whether
they match the query graph or not. Usually, we need to cut down the number of
these tests to the minimum.

Most of the techniques, described later in chapter 2, are working using the
following pattern:

1. Based on the database statistics and approach specific heuristics, construct
a database index

2. Utilizing the index structure, build a candidate set of graphs for particular
query

3. Use a sub-graph isomorphism algorithm to filter out false positives from the
candidate set to obtain answer set

As we cannot expect significant improvement in the verification step since it
is a known NP-complete problem, most of our focus in the rest of this thesis will

5

be targeted on the first two steps, i.e. index construction and its utilization for
the candidate set creation.

6

2. Analysis of Related Work
In this chapter we summarize the work done by other authors which is related to
the topic of this thesis. At first, we summarize the algorithms which have been
developed for subgraph isomorphism matching and their comparison. Next we
describe indices which might be used for obtaining the candidate set and algo-
rithms which are used for their construction. The next part of this chapter focuses
on approaches which utilize query mechanisms of particular relational and graph
databases. In the last part we provide a summary of commercially used solutions.

2.1 Subgraph Isomorphism Algorithms
This section does not provide in-depth comparison of available algorithms since
it is not a main topic of this thesis.

Almost all papers related to subgraph query methods refer two algorithms -
Ullmann [1] and VF2 [2]. Those two algorithms are deeply compared in the [3]
benchmark where VF2 outperforms Ullmann.

In paper [4] there is a comparison of four algorithms derived from Ullmann’s
algorithm. These are VF2, QuickSI [5], GraphQL [6], GADDI [7] and SPath
[8]. They were compared using three real-world data sets. Although all three
comparisons have a different winner, it seems that the most efficient algorithm is
QuickSI in an average use-case.

2.2 Index Building Methods
In the first part of this section we briefly describe algorithms for building indices
on top of chemical compound databases. These are GraphGrep [9][10], GIndex
[11], GString [12], GraphGrepSX [13], GIRAS [14], C-tree [15] and GDIndex [16]

They form just a selection from a much bigger set of applicable methods and
they were picked for different reasons:

• The method is mentioned in a majority of relevant articles

• The method uses an original algorithm or data structure

• The method has excellent results in benchmarks

Some of them can be used in generic graph databases, some of them are very
specific to the field of chemical compounds but with some effort they might be
used also for other graph databases with a specific point of interest.

In the following sections we will briefly introduce the basic ideas behind all
the previously mentioned methods.

7

2.2.1 GraphGrep
Very simple and intuitive indexing technique which can be used in any graph
database with labeled graphs is called GraphGrep. The presumption is that ev-
ery vertex has a defined unique ID.

For each graph in the database there is a constructed index represented as a
hash table where the key is a hashed value of a label-path (a concatenation of the
vertex/edge labels on the path) and the value is a number of unique id-paths (a
concatenation of the vertex IDs on the path) which represent a particular label-
path in the graph. In the hash table there are all label-paths which are present
in the graph up to length l, where l is a parameter. This hash table is called a
graph fingerprint.

For example the graph in Figure 2.1 would be represented in the index with
l = 3 as depicted in Table 2.1. The numbers in the picture represent the vertex
ID, characters next to each vertex represent its label.

Figure 2.1: GraphGrep example graph

The same process is used for the query. The query itself is also a graph and
therefore the hash table can be created too. Then, in the candidate set creation
part, each graph’s fingerprint is compared to the query fingerprint.

If any value in the query fingerprint is higher than value in the graph finger-
print for the same key or when some key from the query fingerprint is missing
in the graph’s fingerprint, it means that this graph can be filtered out from the
candidate set because we know that the query cannot be its subgraph.

2.2.2 GraphGrepSX
GraphGrepSX is an improved version of GraphGrep. It uses the very same ap-
proach for obtaining all the indexed features - it takes all the paths up to the
length l from all the graphs in the database. The core of the improvement is in
the data structure where the index is stored.

Storing all the paths for each graph in a hash table is quite ineffective. Most
of the paths appear in more than one graph and we do not need to store these
duplicate keys more than once.

This method stores the paths in the suffix tree instead. Each node in the
suffix tree represents a path (which is an extension of its parent) and contains a
set of pairs (graph, count) where graph is an ID of the database record and count

8

Key Value Key Value

h(A) 1 h(ABC) 2

h(B) 2 h(ACB) 2

h(C) 1 h(BAC) 2

h(AB) 2 h(BCA) 2

h(AC) 1 h(BAB) 2

h(BA) 2 h(BCB) 2

h(BC) 2 h(CBA) 2

h(CA) 1 h(CAB) 2

h(CB) 2

Table 2.1: GraphGrep example graph fingerprint

is the number of occurrences of the represented path in the graph.

The way how the query is processed is very similar to the GraphGrep. It mines
all the paths up to length l from the query graph and finds the matching nodes
in the index tree. For each matched node we need to check whether the number
of occurrences for each graph is equal or higher than the number of occurrences
in the query graph. If so, we can add this database record into the candidate set.
If some path from the query graph is not in the index, we can return an empty
candidate set.

2.2.3 GIndex
This method utilizes the concepts of frequent subgraphs and discriminative frag-
ments. It also comes with an innovative data structure for storing the index.

Since the number of all subgraphs grows exponentially with the size of the
graph and therefore it would be impossible to index all of them, we need to prune
the number of index records to be as compact and still as efficient as possible.

Because of the mentioned reasons the frequent subgraphs and discriminative

9

fragments concepts have a significant role.

Frequent subgraphs are all subgraphs which are contained in at least
minSup (minimum support) graphs in the database. The survey of frequent
subgraph mining can be found in [17]. Suppose we have an index from all fre-
quent subgraphs and for each record in the index we have a set of IDs of graphs
in the database in which it occurs. If the query graph q is frequent, we have the
candidate set immediately. If not, we can get the candidate set as an intersection
of matched graphs sets of all frequent subgraphs of q.

Utilization of pure set of frequent subgraphs with static minSup attribute has
a couple of issues. With minSup set too low, we get an enormous set of frequent
subgraphs. If the minSup is too high, the candidate set can be too large (at least
minSup) with larger probability of false positives.

That is why the described method comes with size-increasing support func-
tion. It is a non-decreasing function which takes the graph size as an argument
(defined as the number of edges) and returns the minSup for given size. This
results in smaller minSup for small graphs (because of the efficiency) and bigger
minSup for large graphs (because of the compactness). To prevent too big sub-
graphs in the index, it is necessary to specify a threshold starting from which the
function returns infinite.

An additional pruning of the index can be done. There is a very high chance
that frequent subgraph g will not be enough discriminative. It means that the
candidate set of g is not significantly smaller than the intersection of candidate
sets of its subgraphs.

Discriminative fragments concept brings a new metric. It measures how
much discriminative the frequent subgraph is in comparison to the set of its
subgraphs in the index. The discriminative ratio is defined as

γ =
| ⋂︁

i Dfϕi
|

|Dx|
where Dx is the set of graphs containing x and Dfϕi

is the set of graphs which
contain subgraphs of x which are in the index. If the discriminative ratio is close
to 1, we know that the discriminative power is low.

gIndex is a prefix tree data structure. Its nodes are of 2 types - discriminative
and redundant. Each node’s key is a text string which represents the subgraph. It
is serialized and canonized based on special application of DFS algorithm. This
technique is called DFS Coding and is described in [18].

Discriminative nodes are both frequent (based on given size-increasing support
function) and discriminative (based on specified γ) and they contain a list of IDs
of all graphs in the database which contain the particular subgraph. Redundant
nodes are present just to satisfy the structure of the gIndex tree.

10

The root of the tree is an empty graph, whose candidate set is the whole
database. Level 1 of the tree is the set of vertices (graphs of size 0). Each node
in the tree (from level 2) has 1 more edge than its parent (because of the canon-
ization it has its parent’s key as its prefix).

It would be very inefficient to check all subgraphs of a query graph. But,
we know that if subgraph g is not present in graph G, then no superstructure
of g is present in G. Also, we know that if g and h are subgraphs of G and
g ⊂ h, then the candidate set generated by h is a subset of candidate set gener-
ated by g and therefore it has a bigger pruning power and usage of g is redundant.

From the two previously mentioned statements it is apparent what is the
search algorithm. We need to enumerate all fragments of query graph q starting
from 1-node fragments and iteratively enlarge the fragments by adding 1 edge
each time. We stop this process at the point where the fragment is not in the
index anymore.

Each of the fragments which were created in the last iteration can be found
in the index. We only need to check whether the matched node in the index is
discriminative or redundant. If it is redundant, we find the closest discriminative
node on the path to root. Having the set of matched discriminative nodes in the
tree, we compute an intersection of their sets of matched graphs in the database
to get the desired candidate set.

2.2.4 GIRAS
As gIndex comes with an idea of indexing frequent and discriminative fragments,
GIRAS indexes rare and discriminative fragments. The idea is to get higher prun-
ing power and put the indexing focus on the graph features which are specific for
a particular record in the database. Ultimately, to have a unique index for each
graph in the database. This leads to much smaller index size.

For getting the rare fragments it utilizes the modified version of gSpan algo-
rithm [18]. Although, the original gSpan is designed to get all subgraphs whose
support in the database is n or higher, the modified version finds all the sub-
graphs whose support is equal to n.

The modified gSpan utilizes minimal DFS codes which were already described
in gIndex section. It starts with an empty DFS code and in each call it finds
all the possible right-most extensions from the whole database. For all of them
it finds out whether they are minimal DFS codes and, if so, it checks what the
support of this subgraph is. If it is equal to the specified support f , the subgraph
is added into the result set. If the support is higher, we continue recursively.

Note that it returns only the minimal rare substructures with a given fre-
quency. This is important since the extensions of these minimal rare substruc-
tures with the same frequency would not give us any more pruning power but it
would increase the index size significantly.

11

The GIRAS itself then calls the modified gSpan. It starts for f = 1. After
each call of modified gSpan it checks which database records are represented by
the result set of gSpan. If there are database records which are not indexed yet,
the modified gSpan is called iteratively with f + 1. Once there are all database
records indexed, we are finished. The last f is called fmin and it is the threshold
defining the meaning of rare substructure.

Although it is not discussed in the paper [14] what data structure it uses
for the index representation, we found out from the source code obtained from
Dr. Azaouzi, the author of the described research, that it uses very similar data
structure which was described in gIndex section, as well as the same technique
for the querying process.

2.2.5 GString
All other methods can be used in any graph database. On the other hand, GString
method is very specific for the organic chemical databases (but can be internally
modified to support different graph databases with specific content).

The main ideas come from the knowledge of common structures of the graphs
in the database. The chemical compounds consist of 3 types of semantic struc-
tures - paths, cycles and stars (a central node with a fan-out). Each chemical
compound can be converted into a graph whose nodes are not atoms but one of
the mentioned structures. This converted graph is significantly smaller than the
original one.

The other observation is that we can omit the hydrogens since their number
can be easily computed and we can omit the labels of carbon atoms and single
(saturated) bonds.

Based on previous preliminaries, each graph in the database can be shrinked
to the graph of common structures. Each node contains 3 types of information:

• Type - path, cycle or star

• Size - For path and cycle it is the number of nodes, for star it is the fan-out

• Triple < nn, nb, ne > where:

– nn is the number of non-carbon atoms
– nb is the number of branches (connected paths of the length 1)
– ne is the number of double or triple bonds

For each such graph we can get a set of all paths up to length l. The index
structure of GString method is a suffix tree of these paths, where each node is
identified by tuple < Type, Size > and contains a set of pointers to the detail
table where quadruples < nn, nb, ne, id > are stored for matched nodes from a
particular graph. The suffix tree is built from all paths up to length l from all

12

graphs in the database.

The candidate set is obtained as follows. The query graph itself is trans-
lated to the common structure graph by the same process which was utilized for
index building. Then we just identify suffix tree nodes which were visited and
use the pointers to the detail table in such nodes. The graph is added into the
candidate set if it is represented in each visited suffix tree node and if the triple
< nn, nb, ne > satisfies the query.

It means that for cycles, the nn and ne has to be equivalent in both query
and database record, nb has to be equal or lower in the query comparing to the
database record. For the paths and stars all three attributes has to be same or
lower in the query.

Note that the answer set of this method can be different from previous meth-
ods. Let us take a path of four carbons c − c − c − c as an example of a query
and assume that the benzene (cycle of six carbons) is a part of the database. The
previous methods marks the benzene as a match. On the other hand the GString
will filter it out from the candidate set because it finds out that its common
structure graph is completely different.

However, this is a correct behavior for the chemical compound database since
we can expect that if somebody asks for a path of four carbons, he or she does
not expect a benzene as a result since cycles and paths have different semantics.

2.2.6 C-Tree
Contrary to the previous methods, this one does not utilize the fragments of the
graph to find the candidate set. It builds the state-of-the-art tree structure where
the nodes are closures of their children so they contain the same substructures
as their whole subtrees. Also it comes with the term of pseudo sub-isomorphism
which is similar (and weaker) to subgraph isomorphism but it can be verified in
polynomial time.

The core of the C-tree method are the graph closures. Let G, G′ be graphs
and m be the mapping between them (graphs can contain dummy nodes for en-
abling mapping between graphs of different size). Let v, v′ be nodes from G or
G′, respectively and let m(v) = v′. Vertex closure which corresponds to v and v′

then contains a union of labels of v and v′. The very same approach is used for
edges. Let e, e′ be edges from G or G′, respectively and let m(e) = e′. Edge clo-
sure which corresponds to e and e′ contains a union of labels of e and e′. Graph
closure of graphs G and G′ is a tuple (V C, EC) where V C is a set of vertex
closures and EC is a set of edge closures. Note that G and G′ can be both graphs
and graph closures.

Several approaches how to get the mapping m are described in [15] and we will
not describe these in the this section to not dive too deep into the technical details.

13

The C-tree data structure is a tree where leaf nodes are graphs from the
database and every internal node is a graph closure of its children. Each node
has at least m children unless it is root, m ≥ 2, and each node has at most M
children, M+1

2 ≥ m. All operations with the tree are done in polynomial time
and their implementation is analogous to those on R-trees [19]

The idea of the method is to approximate the subgraph isomorphism by a
weaker statement, pseudo subgraph isomorphism, which can be tested in
polynomial time. An important note is that pseudo subgraph isomorphism can
be tested on both graphs and graph closures.

Full description of the theory behind the pseudo subgraph isomorphism would
be too exhaustive for the purposes of this thesis. Very briefly, the idea is to con-
struct a bipartite graph G between vertices of graph G1 = (V1, E1) and vertices
of G2 = (V2, E2). There is an edge between v ∈ V 1 and u ∈ V 2 if breadth-first
search tree around v with the paths up to the specified length n is isomorphic to
the one around u. If G has a semi-perfect matching, G1 is level-n pseudo subgraph
isomorphic to G2

The authors of C-tree are also proposing a recursive algorithm which can ef-
fectively obtain the information whether two nodes should be connected by an
edge in the previously mentioned bipartite graph for the level n based on the
bipartite graph for the level n − 1.

The candidate set creation process utilizes the C-tree. It goes from the root to
leafs and every time it finds out that a query is not pseudo subgraph isomorphic
to some node, this node and its subtrees are pruned out. Leafs which are pseudo
subgraph isomorphic to the query are added to the candidate set.

The main advantage of this method is that contrary to the previous methods,
this one does not loose information during the index creation time. It does not
count with paths or any other fragments, the closure tree does contain all the
information about all the graphs in the database. This helps to increase the level
of the pruning during candidate set creation.

2.2.7 GDIndex
This method’s approach is quite different to the previous ones. It tries to com-
pletely omit the verification step and therefore computationally hard usage of any
subgraph isomorphism detection algorithm. It is achieved by all the subgraphs
of all database records.

It uses two structures in the index:

1. Directed acyclic graph (DAG) of all subgraphs. Each node in the DAG
represents a specific connected subgraph. Each such node contains also the
information whether it refers an actual record in the database. There is a
directed edge from node N to node M if N is a subgraph of M , N contains
exactly 1 vertex less than M and N is an induced subgraph of M .

14

2. Lookup hash table of subgraphs. There is a record in the hash table for each
node in the DAG. For hashing, the canonical form of the graph is defined.
This canonical form is derived from the adjacency matrix.

Both index building and querying is straightforward. To build the index we
just take each graph, add it to the DAG and by gradual removing of its vertices
we repeat the same procedure for all its subgraphs. In each step we just need to
check whether such node already exists in the DAG which we can easily achieve
using the lookup table.

To reduce the number of subgraphs, the canonization technique is introduced
and from all isomorphic subgraphs only one is used in the index. This canon-
ization technique is very similar to the DFS codes described in gIndex, however,
instead of minimal DFS code it is using maximal adjacency matrix serialization
(but both approaches are equally strong and have the same computational diffi-
culty).

Querying is even simpler. All we need to do is to create a canonical represen-
tation of the query graph and use the lookup table. If the particular record is not
present in the index, we know that the candidate set is empty. If there is such
node, we recursively iterate through all its descendants in the DAG and find all
pointers to the database graphs. Since we are using hash table, we can get false
positives. Therefore, for each record in the matched row of a hash table we need
to compare the exact canonical code and we will use only the the record which
is exact match.

The big advantage of this method is that we do not have to do the NP-
complete subgraph isomorphism test since we store the subgraphs in the index
and we have the canonical representation.

What we have found as a missing piece (and there is no information about
this case in the paper) is that the query does not have to be an induced subgraph
of any node in the database. It can be more sparse. In this case we cannot expect
the exact match of the canonical code and therefore we cannot expect any results.

The possible solution to fix this problem would be to index all the subgraphs
instead of just induced ones. On the other hand that would have serious impact
on the index size.

2.2.8 Benchmark Results
GraphGrep, GIndex, GString and C-Tree have been compared in [12]. As the
testing data set the AIDS Antiviral Screen Dataset [20] was used. It contains 43
000 molecules with an average number of 25 vertices.

All measured metrics except for the speed of index creation had the same win-
ner. The GString algorithm outperforms the others in the size of index, accuracy
of the candidate data set and the search time.

15

On the other hand, in [13] we can find the benchmark of the GraphGrepSX
method which looks like a more generic version of GString. While in [12] GString
outperforms CTree just by few percents, in [13] GraphGrepSX outperforms the
CTree by the two levels of magnitude despite larger candidate sets.

In [16] there is a comparison of GDIndex and C-tree where GDIndex signif-
icantly outperforms C-tree in all measured metrics - the size of index and its
construction time and the search time.

What we may question is that how GDIndex would perform over a database
with larger graphs such as the AIDS dataset which was used in experimental
parts of all other methods.

In [14] we can find a benchmark of the GIRAS, C-tree, gIndex and couple of
other approaches. On the AIDS dataset GIRAS outperforms gIndex and C-tree
in all query sizes. In the dataset with bigger graphs, GIRAS outperforms the
other two methods only in larger query sizes (12 vertices and more).

What is not measured in [14] is the size of index and time needed for index
construction.

2.3 Database Management Systems Utilization
for Subgraph Querying

Surprisingly we have not found many articles about substructure querying in
DBMS using just their native way how to structure data and their specific query
language.

The first approach [21] we found is about the utilization of relational database
management system and SQL queries. The second one [22] is referring about
utilizing a graph DBMS, Neo4j [23], and its query language Cypher.

2.3.1 SQL Substructure Search
Contrary to typical subgraph matching algorithms which use variations of the
depth-first-search algorithm, the authors of [21] come with an SQL based solu-
tion which utilizes the principles of the BFS.

In the database the molecules are described as follows. The database contains
3 tables - molecules, atoms and bonds. The bonds have an extended type column
which is a string identifier that identifies bond type and types of both end atoms
type (e.g. there is a unique identificator of two carbons connected by double
bond).

The bond table has three indices built on top of it. The first one is built
for bond type which helps us to do efficient filtering, the second one is built for

16

atom1 id column (a reference to the atoms table) which helps us to get all neigh-
bours for each atom. The last index is built based on unique identifier of records
in bond table by atom pairs.

When the substructure query is obtained, the minimal spanning tree is con-
structed. The value of each edge depends on the statistics of the database. We
can say that the most rare atom-bond-atom edge has the lowest value. Also in
this tree we find a root node which has the least valuable edges on it. This span-
ning tree will help us to construct an efficient SQL query, because thanks to the
spanning tree minimality and the root selection the constraints (edges) with the
highest probability of failure will be checked first.

The query itself uses only the edge table. It starts from the root of the span-
ning tree. For each edge there is a specification of an extended bond type and
specification of a join to other instance of edge table. At the end there are edges
which are not a part of a spanning tree.

As an example we can use a subgraph query where we want to find all struc-
tures which contain O = C − N . The bond C − N is more rare in the sample
database and therefore this bond is described as the first one in the query. The
query itself would look as follows:

SELECT b1.compound_id, b1.atom1_id, b1.atom2_id, b2.atom2_id
FROM bonds b1, bonds b2
WHERE b1.bond_type = "C-N" and

b2.atom1_id = b1.atom1_id and
b2.bond_type = "O=C"

where C − N means carbon and nitrogen connected by a single bond and O = C
means oxygen and carbon connected by a double bond.

This example is quite simple. On the other, hand we need to build an SQL
query which describes the whole Constrain Satisfaction Problem. It means that
for each pair of bonds, we have to define whether their atoms do or do not have
the same IDs.

Where it is possible, we can force usage of built indices. For the first edge
we should use the index built for the bond type column. For other spanning tree
edges we should use the index for atom1 id column which literally does the BFS.
For edges outside the spanning tree we should use the index built for atom1 id,
atom2 id pair since we already know the IDs of both atoms of the edge we need
to check.

2.3.2 Neo4j Substructure Search
Hoksza et al. in [22] describe their case-study of mining the protein graphs.
They use the Neo4j graph DBMS to store the protein database and query it by
the Cypher language.

17

They found out that the query time is factorial with respect to the number
of edges in the query. Beginning from size 15, the queries were impossible to
execute in a reasonable time and therefore they recommend the usage of Neo4j
only for small subgraph queries.

They have also tried to compare their results with results for an SQL database.
However, the SQL results significantly outperform Neo4j. But the comparison is
not fair enough since the SQL approach used pre-computed neighborhood rela-
tions and therefore had a significant advantage in comparison with Neo4j.

However, based on this paper we can be pessimistic in case of Noe4j utilization,
we should keep in mind that the database had a different structure comparing
to our molecule databases which are the target of this thesis. Graphs used in
the experiment have an average size of more than 500 edges. On the other hand,
typical molecule databases contain significantly smaller graphs and therefore we
cannot be sure that the numbers from the mentioned paper can be applied also
for such databases.

2.4 Commercially Used Solutions
In this section we introduce three real-world solutions. The first one is the AMBIT
project [24] which offers chemoinformatics functionality via REST web services.
One of the functionality is, of course, the substructure search. This project rep-
resents a standalone solution - the querying is not dependent on any particular
database management system.

The second solution, JChem Cartridge [25], is an example of an Oracle car-
tridge [26]. The reason why we picked this cartridge from the set of existing ones
is that it has the best results in the benchmark presentation at [27].

The third solution, ABCD Cartridge [28], is a pure commercial one devel-
oped by the Johnson & Johnson company [29]. We picked this one because its
architecture is well described in [28] despite the software is not publicly available
.

2.4.1 AMBIT-SMARTS
AMBIT-SMARTS is a Java based software built on top of the Chemistry Devel-
opment Kit (CDK [30]). It implements the whole SMARTS querying language
specification [31] for querying chemical databases. It uses two indices. Both are
in the form of a bitstring which is stored for each record in the database.

Each bit in the first bitstring represents whether some structure is a part of
the particular record. The structures are of two kinds.

The first set of structures is selected automatically based on the database
content. It considers each atom’s topological layers. The first topological layer is
the atom and all its neighbours. n-th topological layer is the whole (n-1)-th layer

18

and some or all of its neighbours. All such structures up to a selected layer level
are recorded. Structures which are a part of at least 50% of database records
are considered as those which will be represented in the bitstring.

The second set of the structures represented in the first index is selected by
the database administrator who should be aware of what types of queries are
most likely to be used in such database.

The second bitstring represents all paths up to length 7. Because the number
of these paths is enormous, they are not represented directly in the bitstring, but
they are at first hashed and this hashed value is added (by logical OR) to the
bitstring. This concept is called fingerprints and it is described in [32].

2.4.2 JChem Cartridge
The JChem Cartridge is a part of the JChem package from ChemAxon [33]. It
allows users to build their chemical database in the Oracle database easily. A part
of the cartridge contains tools for chemical formats conversion, similarity search
and sub-structure search. It also implements functions for SMARTS queries.

With regards to the substructure search it filters the database based on the
fingerprints which are present for every molecule. It uses the hashed fingerprints
similarly to the AMBIT-SMARTS. The keys for hashing are:

• All paths in the molecule up to a specified length

• The branching points (atoms with degree higher than two)

• All cycles

The fingerprint itself is generated based on 3 user-defined parameters:

• The length of the fingerprint

• The maximum path length (how long paths are used for generating the hash
keys)

• How many bits are set to 1 for each hash key

In the documentation there is stated that for the substructure search the opti-
mal values in most cases should be 512 bits long fingerprints, the maximum path
length set to 5 or 6 and the number of bits per hash key set to 2.

The cartridge also has a tool for analyzing the efficiency of the fingerprints. As
a good metric the idea of darkness is used. Darkness is defined as a ratio between
numbers 0 and 1 in the fingerprint. The analysis tool provides the user with
information about the lowest, average and highest darkness in the database and
also provides a distribution. The darkness should be as low as possible, highest
values should not exceed 80%, but best performance is expected under 66%.

19

2.4.3 ABCD Cartridge
ABCD is an integrated drug discovery informatics platform developed by the
Johnson & Johnson Pharmaceutical Research & Development, L.L.C. It consists
of a set of algorithms for subgraph isomorphism checking and index building and
an interoperability layer, cartridge, for the Oracle database which enables the
RDMS to use the algorithms and indices during the SQL query evaluation.

For the filtering it uses a set of hashed fingerprints. There are 5 types of
fingerprints which are used for each molecule - atom, edge, ring, path and cluster
fingerprint. For each type there is a different algorithm which generates the hash
keys. Also for each hash key, the number of occurrences of a particular feature is
stored.

Contrary to AMBIT it does not store the fingerprints for each record in the
database. It utilizes the concept of inverted bitstrings.

The algorithm proceeds as follows. Every molecule in the database is analyzed
and the set of hash keys along with the number of occurrences in that molecule
are computed. The information for each key is stored as a triplet h, c, m, where h
is the hash code, c is the number of occurrences, and m is the ID of the molecule
in the database. The list is then traversed and for each unique hash code, h, a
series of binary masks, M(h, cmin), are defined, where M(h, cmin) contains the
IDs of the molecules for which the hash code h occurs at least cmin times.

For more compact representation of the inverted bitstring there are three types
of their representation where N is the size of database and K is the number of
database records in the matching set:

• If K < N
32 then the representation is an array of IDs of database records

which belong to the set.

• If (N − K) < N
32 then the representation is an array of IDs of database

records which do not belong to the set.

• Otherwise it is stored as a classing bitstring where n-th bit represents
whether n-th record belongs to the set.

20

3. Experimental Work

3.1 Introduction
During the research of the related work, many questions have arisen. The papers
are usually very brief and they miss a lot of implementation details. Sadly, even
if we tried to contact the authors, we did not get the original source code for the
described methods, nor for the described benchmarks. The only exception is the
GIRAS method where we were successful in contacting its author and we do have
the complete implementation.

All the benchmarks we mentioned in the previous chapter were a part of the
papers which describe each particular method. Knowing that we cannot be much
surprised that each presented method outperformed the others. The question is
whether we do get the same results on different data sets.

The other interesting question is how the winners of the various benchmarks
would perform on the same data set. For example, when GString outperforms
C-tree just by few percents in [12] and GraphGrepSX outperforms C-tree by two
levels of magnitude, we cannot implicitly say that GraphGrepSX would outper-
form GString. There might be three reasons why this presumption might be
wrong:

• The lack of knowledge of the tested data set. In most of the papers there
is an information which dataset has been used. On the other hand, there is
usually no information about which part of the dataset has been used since
the dataset is usually cut down to only a small part of the original size.
Moreover, not all the benchmarks are using the same datasets at all.

• The lack of knowledge about the implementation of the verification step.
In none of the mentioned papers is an information about which algorithm
has been used for the final subgraph isomorphism testing. This can cause
quite a significant difference in the final query measurements (although it
cannot influence in the candidate set time computing).

• We do not even know how much time the authors spent on the optimization
of the code itself. Whether they cared more about the code readability and
maintainability of the code or whether they did try to optimize the code
as much as possible. Moreover, we do not know anything about which
languages and compilers have been used.

What we did not find at all is some comparison of the performance of the de-
scribed indexing techniques and utilization of SQL or graph databases. It might
be interesting to see how significant difference in performance we get when we
use very graph specific technique comparing to the very generic ones which the
databases offers.

In the following sections we will describe what hypotheses do we found inter-
esting to prove or disprove and we describe the process and the implementation

21

of those proofs.

What is probably fair to mention is that due to the brevity of the related
work we cannot be sure whether we did not omit some important part of the
algorithms. There have been a lot a situations where we had to improvise since
we found out that some very important implementation detail has been omitted
in the method descriptions. These cases will be described in following sections
as well. Although, we did implement all the methods with opened mind without
any endeavor to make some method better or worse, we cannot guarantee that
we did not do any mistake or bad implementation decision which can influence
the final benchmark results.

3.2 Hypotheses to be verified by the experimen-
tal work

In this section we will list several hypotheses which came to our mind during the
related work research.

3.2.1 Hypothesis 1: GString vs GraphGrepSX
GString and GraphGrepSX use very similar data structures for indexing the
database. The main difference is that GraphGrepSX uses all graph paths, whereas
GString uses all paths in the condensed graph. Also GString uses heuristics which
are very specific for our field of research, i.e. the organic chemical databases.

• Hypothesis H1.1: The index size of GString will be significantly smaller
compared to GraphGrepSX due to the condensed graph usage.

• Hypothesis H1.2: Due to the specificity of GString, it will outperform
GraphGrepSX which can be used for any graph dataset.

3.2.2 Hypothesis 2: GIRAS performance for large queries
As described in paper [14], for small queries (of size 4 and 8) the performance
of GIRAS is about the same as C-tree. On the other hand, for larger queries,
the performance is ten times better comparing to C-tree and even better results
there are for the candidate set sizes. What we may question is how it will perform
comparing to GString and GraphGrepSX.

• Hypothesis H2.1: Based on the benchmark results we expect Graph-
GrepSX will outperform GIRAS despite the smaller candidate sets.

• Hypothesis H2.2: Time to build GIRAS index will be significantly larger
compared to other methods since the algorithm seems to be computationally
complicated

22

3.2.3 Hypothesis 3: How the SQL and graph oriented
databases perform in comparison with the domain
specific solutions

We may question what performance we may get when we use an SQL or a graph
database. In this case we do not need to implement any special algorithms for
index building, we just use the possibilities of the databases, i.e. create a query
which describes the subgraph and in case of SQL databases to build the indices
to help the query process.

• Hypothesis H3.1: Domain specific indexes will perform much better. I.e.
methods where we are building the index will perform better than SQL and
graph database.

• Hypothesis H3.2: Graph database will perform better than SQL database
because it runs completely in memory and is optimized for querying graph
data.

3.3 Description of the Experimental Work
In this section we will describe the implementation details of the experimental
work. Based on the uttered hypotheses we have implemented:

• GraphGrepSX and GString algorithms

• Adapter for the GIRAS implementation obtained from Dr. Azaouzi to be
working on the same dataset

• Tools for inserting and querying an SQL and a graph database

The whole implementation has been written in Java language [34]. Most of
the work uses Java version 10, a graph database adapter uses Java version 8 due
to the technology dependencies.

For the chemical database parsing we use the Chemistry Development Kit [30]
version 2.1.1, a Java library for working with chemical formats and data struc-
tures.

In case of verification step for the GraphGrepSX and GString algorithms, we
are using the SMARTSQueryTool from the Chemistry Development Kit. It uses
Ullmann [1] algorithm inside.

3.3.1 GraphGrepSX
Since the GraphGrepSX algorithm is very simple, the implementation was quite
straight-forward.

We had to do only one change in the algorithm to make it applicable to our
use-case. The original description of the algorithm expects that the suffix tree

23

represents the vertex label paths. Since we need to represent even the edge labels
we have changed the original suffix tree presumption so that the odd levels of the
suffix tree represent the vertices and the even levels of the suffix tree represent
the edges.

The previous statement does not affect the maximum path length parameter
l of GraphGrepSX algorithm. It is still valid that this parameter sets the maxi-
mum length of the index path with regards to the number of vertices, therefore
the index tree will have depth up to 2l − 1.

For our experiments, we have set the parameter l to the value of 6.

3.3.2 GString
In contrary to the previous GraphGrepSX description, the GString algorithm de-
scription offers a wide range of pieces which were not described at all. Most of
the unknown parts are related to the original graph reduction process where the
graph representing the atoms and bonds is transformed into a graph consisting
only of nodes representing cycles, stars and paths and edges representing the
connection between these structures.

The first issue which we faced was the process of extracting the cycles from
the original graph. In the algorithm description there are no references on how
to extract the cycles, nor which method should be used. The obvious issue is
that the cycles are not necessarily independent. They can share both vertices
and edges and in some cases the vertices and edges can be shared even by several
cycles.

After some research we have found out that the Chemistry Development Kit
has an utility for retrieving MCB - Minimum Cycle Basis (also known as SSSR -
Smallest Set of Smallest Rings) described in [35]. Cycle Basis is defined as a set
of cycles by which one can express any other cycle present in a particular graph
as the result of a symmetric difference operation on the cycle basis.

The MCB is defined as a cycle basis which consists of the shortest possible
cycles. A good example might be naphthalene which we can see in Figure 3.1. It
contains three cycles, two of size 6 and one of size 10, and any pair of these can
serve as a cycle basis. On the other hand, there is only one MCB which consist
of two cycles of size 6.

In this picture it is also clearly visible why we cannot use all the cycles. If all
three cycles were represented in GString graph, it would be very unclear what is
the the relationship between these cycles and how they should be connected in
GString graph. Also, it may lead to false positives from chemistry point of view
because naphthalene consist of two aromatic cycles and it does not make sense
to include an information about the cycle of the size 10.

The MCB finder utility requires specification of the maximum cycle size pa-

24

Figure 3.1: Molecule of naphthalene

rameter. This parameter defines a threshold above which the cycles are not
considered as cycles. When we tried to set this threshold high enough to not
omit any cycle in the testing database, we had big issues with performance and
in some cases the process died on the lack of memory. Since the target of this
thesis is to measure the performance in usual use-cases, we have decided to set
the threshold to 10 which should cover the vast majority of real cases.

Bigger cycles are described as paths of the length equal to the cycle size. These
paths begin at each point in which the cycle interfere with another GString struc-
ture. For each such interference there are two paths, one in each direction

Another question which arose is how to set the threshold which defines the
minimum degree of an atom to be considered as a star. The original thought was
to set the threshold to 3. The reason was that if we set this threshold to a higher
number we get another problem to solve - how to handle path joints. We can
demonstrate this problem on methyl propionate in Figure 3.2

Figure 3.2: Molecule of methyl propionate

We can see that there are six possible paths, two are between the carbons
(one from each side), and four between each carbon and oxygen (again, one from
each side). If we define the threshold of stars to three, we do not have to han-
dle such situations because in our algorithm, we extract the stars first and then
we are finding paths connected to already found stars and cycles. In this case
we would have 1 star (the atom in the middle) and two paths connected to it
(the oxygen connected by double bond would be considered as a branch which is
by definition a path of length 1). This would simplify the algorithm quite a lot
because we would not need to handle paths which are connected to another paths.

During the testing we found out that it is possible to use this threshold but
in practice, we would loose the majority of results. The reason is the same as we

25

described in the first chapter. If we try to query a path which may be described
as C − O − C − C − C there is obviously such path in methyl propionate but
our algorithm would filter this candidate out, because it does not contain a path
of length 5 but a star and two paths of length 2. Since this is a very common
case (it is very rare that chemical compounds do contain long paths without any
branching), we had to use a higher threshold and develop some logic for handling
the connected paths.

What we did was to implement DFS which finds all the paths and all of these
paths are included into the GString graph. In case of methyl propionate there
would be 2 independent paths, since we do not have a connection to any other
structure, we start DFS in random atom with degree 1. This is quite a special
case because the molecule consist only of paths. If the methyl propionate would
be connected on one end to a star or a cycle, there would be 2 nodes in the
GString graph - one cycle/star and two paths connected to this structure.

The rest of the algorithm mimics the GraphGrepSX implementation including
the notes described in section 3.3.1. The only difference is that due to the fact
that we expect significantly smaller graphs due to the condensation process, we
have set the parameter l to value of 5.

3.3.3 SQL Database
We have based our implementation on the proposal in [21]. We have chosen the
Oracle Database 12c. For the Java API we have used Oracle Database JDBC
driver 12.2.0.1.

Based on the mentioned paper we have designed our table with 5 columns -
ATOM1 ID, ATOM2 ID, BOND ID, BOND TYPE and
COMPOUND ID.

The implementation itself is quite straightforward and it consist of two parts.
The first part is a routine for the database creation. In this routine we just iterate
through the whole database and for each molecule, at first, we iterate through all
its atoms and assign an unique ID to each of them. Later, we iterate through all
the bonds and for each we create one INSERT statement.

We already have the IDs of atoms and the compound ID (this comes from
the original chemical DB on the input), we generate an unique ID for the bond
itself. The type of bond consists of the type of each atom at the bond’s end and
the type of the bond itself. Each bond, if it is not symmetrical, is represented
by two rows in the database, because we need to make the graph representation
undirected. During the process of inserting the bonds we are updating the in-
memory statistics - we are maintaining the count of rows for each bond type.

The inserts are happening in batches. We did test the performance and found
out that batch size of 50 rows for one INSERT statement is quite optimal.

26

The second part of the implementation is the query building. As proposed in
[21], at first we build the minimal spanning tree of the query graph. The edge
value is based on the database statistics which we gather during the insert phase.
For spanning tree construction we have implemented Kruskal algorithm [36].

Then, in the spanning tree we find the edge with the lowest value and from
this edge we start a BFS algorithm and for each edge we add the rule into the
SELECT statement. We also need to mark all the neighbours by stating that
atom ID of one edge is equal to the atom ID of the neighbour edge. The same
we have to do for non-neighbours. For each such pair we have to explicitly state
that their atom IDs are not equal. The same we have to do for the bonds, we
need all the bonds unique so we have to state for each pair of bonds that their
IDs are not equal.

Since we are interested only in the information whether the subgraph is present
in particular compound, we start the SELECT statement with SELECT DIS-
TINCT b0.COMPOUND ID FROM ... which returns the set of compounds
matching the subgraph query which is exactly the result we need.

As an example of SQL query building process we may use the path of 4 carbons
connected by single bonds. The SELECT statement looks like following:

SELECT DISTINCT b0.compound id

As we use only bonds table, we need to specify that we want to join three
instances of bonds table, one per each bond in the query graph:

FROM BONDS b0, BONDS b1, BONDS b2

As a next step we need to specify that all bonds are distinct:

WHERE b0.BOND ID != b1.BOND ID AND
b0.BOND ID != b2.BOND ID AND
b1.BOND ID != b2.BOND ID AND

As a last step, we need to specify all the constrains for each bond. At first we
specify the specification which atoms are shared with previous bonds to mimic
BFS. Next, we describe the type of the bond which should help a lot with pruning.
In last step we have to specify that all the atoms which were not marked in the
first part are distinct, i.e. every pair of atom IDs has to be distinct:

/*first bond*/
b0.BONDTYPE=’C-C’ AND

/*second bond*/
b1.ATOM1 ID = b0.ATOM2 ID AND b1.BONDTYPE=’C-C’ AND

b1.ATOM2 ID != b0.ATOM1 ID AND
b1.ATOM2 ID != b0.ATOM2 ID AND

/*third bond*/
b2.ATOM1 ID = b1.ATOM2 ID AND b2.BONDTYPE=’C-C’ AND

b2.ATOM2 ID != b0.ATOM1 ID AND
b2.ATOM2 ID != b0.ATOM2 ID AND

b2.ATOM2 ID != b1.ATOM2 ID

27

3.3.4 Graph Database
As observations of paper [22] state that the Neo4j is not performing well in sub-
graph querying, we have tried to look for alternative graph databases which can
perform better. We found the graph analytic tool PGX [37].

It is not a graph database in its original meaning. It is a toolkit for graph
analysis with an ability to load and store graphs from / to various data formats.
It does support an SQL-like query language called PGQL [38] and it advertises
a scalable solution with a focus on high performance.

Since it is an analytic tool and not a real database, it does not support the
ACID transaction model as other databases do, but for the purposes of this thesis
it does not take serious role.

Oracle did a benchmark which compares the performance of subgraph match-
ing in PGX and Neo4j. The results are available at presentation [39] on slide 31.
Note that the benchmark compares the results on so-called hot data. In other
words, it makes sure that the graphs which are being queried are already loaded
in memory to prevent result inconsistencies due to data fetching from the disk.

The results of this benchmark are quite convincing. Although there are huge
differences of result times according to the query size, PGX outperforms Neo4J
in all categories.

The first issue we had to solve was that although Oracle offers windows batch
files for starting PGX, we were not successful to run the database. To make the
results of the performance measuring as precise as possible, we did not want to
use other hardware or different operating system for executing the performance
testing of PGX than the hardware and system used for other performance testing
of other methods.

As a viable compromise we have decided to use the Windows 10 Subsystem
for Linux utility [40] and we have downloaded the Ubuntu system to be used in
this way. On Ubuntu there were no issues with the PGX database usage.

The client side was implemented in Windows environment using the PGX
Java client library. The implementation is quite straight-forward. Instead of cre-
ating the graph in PGX for every single molecule in the database, we create one
huge graph for each 10 000 compounds where each graph component represents
one molecule. This helps the performance since we do not have to load and store
the a huge number of small files, we are executing query just on several big graphs
instead.

For each vertex we generate a unique ID, use a label to mark the representing
atom symbol and we store a molecule ID as a vertex’s property. For each edge
we use a label to mark the type of represented bond.

For the querying we use the PGQL language which is supported by PGX. For

28

each atom in the query graph we generate a unique ID and then for each bond
in the query graph we insert a rule into the query where we define that the two
atoms with particular IDs and of particular type are connected by a bond of a
particular type. As the last thing in the query we need to state for each pair of
atom IDs that they represent different vertex.

A demonstration of simplicity of PGQL usage in our case might be a query
representing the path of three carbons. We start the query with the following
statement which tells us that we want to select all molecule IDs (which are being
stored for each vertex) except the duplicates. Note that a1 is an ID of the first
atom in the query graph.

SELECT DISTINCT a1.moleculeId

The following part of PGQL query describes the bonds in the query graph.
The colon sign means that we describe the label of the vertex or edge. We can
see that in this case we are looking for two pairs of carbons connected by a single
bond (represented by character S), where atom a2 is shared in these two bonds.

MATCH (a1:C)-[:S]-(a2:C), (a2:C)-[:S]-(a3:C)

As the last part we need to state that all atoms a1, a2 and a3 are different.
Otherwise the query would match every pair of connected carbons since a1 and
a3 could represent the same atom

WHERE a1 <> a2 AND a1 <> a3 AND a2 <> a3

We must admit that the work with PGQL is quite intuitive and compared
to building the SQL query it is way more user-friendly. On the other hand, this
is quite an expected result since PGQL is designed to query graphs and SQL is
designed to query generic data.

3.3.5 GIRAS
As we were successful with the request of the original implementation of the GI-
RAS algorithm, there was not much implementation needed on the side of this
thesis. For the measurement we are using the original solution. We had to imple-
ment only an adapter which translates the chemical database which we are using
for other methods to the format - vertex and edge lists - accepted by the GIRAS
code.

However, during the testing we have found out that the results do not match
the results of other methods. After some investigation, we have realized that the
problem is not in the implementation but in the algorithm itself. The core of the
problem is in the way how the structures which are being indexed are chosen.

As we mentioned in the analysis chapter, the GIRAS method is trying to find
the rare substructures with the condition that every graph in the database has
to be represented by at least one rare subgraph. We have found out that when

29

we create a query which should have only several results, everything works fine.
On the other hand when we build a query which should match nearly the whole
database, we do not get any results at all.

We did an explicit test which proves that the algorithm cannot work properly
in all cases. We have created a database with 4 molecules where each of them
contains a path of four aromatic carbons but in each of them there is a unique
substructure which does not contain this particular path.

When we have executed a query of the mentioned path we did not get any
results. When we have added a new molecule into the database which represents
the query itself, i.e. a path of four aromatic carbons, and we ran the query again,
the result was that the query matches all the graphs in the database.

This observation invalidates the statement in [14] that the indexing is com-
plete. We may then question how the results of the performance measurements
are valid. If we know that the indexing is incomplete, it should be also faster
since the index is smaller and therefore it should take less time to use it. So even
for the queries whose results are valid, it is questionable how seriously we can
take the performance numbers.

30

4. Experimental Results
In this chapter, we present the results of the experimental work. We have mea-
sured the following statistics:

• The time needed for building the index (or database in case of SQL and
graph database)

• Sum of the sizes of the index and data representation

• Time needed for obtaining the candidate set

• Time needed for verification of the candidate set

• Hit ratio of the candidate set

• Total time for query execution

Candidate set related numbers are not applicable for SQL and graph database
since we do not create a candidate set during the query execution.

We have measured the results on laptop Dell Inspiron 15 7000 with Intel(R)
Core(TM) i7-6700HQ CPU processor with frequency of 2.60GHz and 16GB of
RAM with installed Windows 10 operating system.

As a data set we have used the first 100 000 compounds of the ChEMBL
database [41] release 24. We wanted to have large enough data set to have as
precise results as possible. On the other hand, most of the experiments are com-
puted just in memory and therefore the data set cannot be larger. We did not
find any order pattern in which the compounds are placed into the database and
therefore we assume that this order is random.

Here are the statistics of the used data set:

• Vertex count of the smallest compound: 1

• Vertex count of the largest compound: 548

• Average vertex count: 28

• Average edge count: 30

• Number of vertex labels: 18

• Number of edge labels: 4

For query testing, we have created four sets of queries with sizes of 4, 8, 16
and 24 vertices respectively. Each set contains 10 different queries defined in the
SMILES language [42]. Queries are listed in attachment Set of tested queries.
All measured values are listed in attachment Results of measurements.

At the end of this chapter we summarize the results and use them to prove or
disprove the hypotheses formulated in Section 3.2.

31

4.1 Index Building Time
We define index building time as the time difference between the time when the
chemical database is loaded into the memory and the time the index/database is
ready to execute queries.

In case of GraphGrepSX, GString and GIRAS it means the index building
itself, in case of SQL and graph database it means the set of API calls to upload
the data into the database. The complete results are provided in Figure 4.1. For
better graph scale we also present results with excluded SQL database results in
graph at Figure 4.2

Figure 4.1: Index building time

Figure 4.2: Index building time without SQL database

We may see that it is significantly slower to create the database from scratch

32

than create just an index as it is in case of GraphGrepSX and GString. The
results of database methods are quite convincing - SQL database creation time
is 50 times slower compared to PGX. This is quite an expected result since PGX
does work only in memory contrary to the SQL database which writes all the
data to the disk.

In other two methods the difference is not so significant. GraphGrepSX is
two times slower than GString. There might be two reasons for this observation.
The first one is that for GString we have used smaller parameter l compared to
GraphGrepSX. The other explanation might be that it is worth to spend some
time in condensation process, because it significantly reduces the number of dis-
tinct paths in the graph and therefore it makes the index building process faster.

We are not presenting the results for GIRAS. The reason is that we were not
able to get the results in a reasonable time. Even for 10 000 compounds we did
not get the built index even after two days of computation. The reason is that
the data set contains small structures which are substructures of many others
and therefore there are not present any rare subgraphs.

After two days of computation for 10 000 compounds we stopped at the mo-
ment where we were missing indexing of 39 compounds and the currently searched
support level was 600. In other words, these 39 compounds do not contain any
subgraph (of maximal size of 8 vertices) which is rare enough to be a part of less
than or equal to 600 compounds in the data set.

Just for verification, we tested GIRAS on small datasets (hundreds of com-
pounds) and the computation has finished in a reasonable time (several hours)
and with expected results.

Because we were not able to build the GIRAS index for our data set, we do
not present the results of other metrics for this method since we had no way to
measure them.

4.2 Index and Data Size
Since it is tricky to measure just the index size (and in a graph database this
term does not even make sense) we have decided to measure the whole amount
of memory needed for a particular method.

In case of GraphGrepSX and GString it is the memory used by the running
process after the index is built and after triggered garbage collection.

In case of the SQL database we are querying the size of the index structure
and BONDS table itself. The query looks as following:

SELECT sum(bytes)/1024/1024 as ”SIZE in MB”
FROM dba segments

33

WHERE segment name=’BONDS/INDEX NAME’

In case of graph database we use the getMemoryMb method which is offered
by the Java API of PGX graph representation.

The results are provided in Figure 4.3. What we found as an interesting obser-
vation is the size of the GString’s index. After we saw these numbers we started
to investigate what is the reason. It turned out that the premise that using the
condensed graph to reduce the number od different paths is not valid. We have
found out that the built index on the tested database contains more than one a
half million nodes in the GString index tree. The root node itself has almost 150
children, i.e. there are almost 150 different node types. This is a huge number
compared to GraphGrepSX which contains only 21 vertex node types.

Figure 4.3: Index size

Other results are quite expected. The reason why PGX data representation is
significantly smaller compared to SQL database is that PGX does not build any
indices. The amount of memory consumed by SQL table representation (without
the indices) is about the same as for PGX.

4.3 Candidate Set Creation Time
This metric is meaningful only for GraphGrepSX and GString. As we described
in Chapter 3, the candidate set concept is not applicable to SQL and graph
databases.

By candidate set creation we mean the time difference between the time when
a query is executed and the time when we finish the index utilization for the
particular query.

34

The results are provided in Figure 4.4. We can see that GString is signifi-
cantly slower compared to GraphGrepSX. This is most probably because of the
significantly bigger index size.

Figure 4.4: Candidate set creation time

The other interesting fact for GString is that due to the ”stars versus paths”
issue described in Section 2.2.5 it is almost impossible to get meaningful results
for large queries and therefore the candidate sets are cut down to almost empty
sets.

4.4 Verification Time
Verification time does have two different meanings in this context. For methods
where we create the candidate set, we understand verification time as time needed
to verify the candidate set.

In case of SQL and graph databases, where we do not work with the candidate
set concept, we understand verification time as the time needed for executing the
query since we need to verify every single record in the database.

The results are provided in Figure 4.5 in which we can observe several inter-
esting outcomes.

At first, we can be surprised by very low numbers for verification time in case
of GString. This is caused by a significantly smaller candidate set compared to
GraphGrepSX. On the other hand, the candidate set is not smaller because of
better pruning ability of GString index, but because of the fact that GString in-
validates even the results which are valid for other methods. This was described
in detail in Section 2.2.5.

35

Figure 4.5: Verification time

The other interesting observation are the values for PGX. Although, the val-
ues for queries of sizes 4 and 8 are very good (even better than for GraphGrepSX
which is indexed) we have found out that for queries with the size bigger than 14
it is barely usable.

Also, we have tried to test it even on database with 1 graph with 2 vertices and
1 edge between them. We would expect that any query will be executed quickly
because there is not much to compute. However, we have found that even on this
small graph, big queries are very slow and the complexity grows exponentially,
while query with 12 vertices took 46 seconds and query with 14 vertices took 50
minutes. Even after 3 hours of computation we were not able to get results for
query with 16 vertices.

It seems that PGX spends a lot of time on PGQL query parsing and on
creation of execution plan. We were unsure whether we did anything wrong.
Luckily, the author of this thesis consulted this issue with a member of the Oracle
PGX team, who confirmed that the query structure is correct and that it takes
an enormous time even on Oracle internal infrastructure. We may then doubt
how valid results are described in presentation [39] where very promising numbers
even for large queries are presented.

4.5 Hit Ratio of Candidate Set
This section is only applicable for methods which create the candidate set. The
metric is defined as a ratio between the candidate set size and the result set size.
It measures the quality of the index, i.e. the higher the ratio is, the better results
are obtained from the index.

The results are available in Figure 4.6. We can see that for GraphGrepSX
the efficiency of its index decreases with the query size. This is natural since the

36

GraphGrepSX ’s index describes only paths of length up to 6. Therefore, it is
expectable that with growing size of query, the accuracy will decrease, since the
indexed paths cover a smaller portion of the query.

Figure 4.6: Candidate set hit ratio

On the other hand, even queries of size 24 are not big enough to overflow the
capacity of GString. The condensed graph does not contain paths longer than 5
in these cases and therefore we would expect more or less constant hit ratio for
all query sizes which matches the actual results. However, we can see that the
hit ratio is significantly smaller compared to GraphGrepSX.

4.6 Query Execution Time
In this section we describe the time results for the whole query process. It can be
defined as a sum of the candidate set creation time and verification time. Note
that in case of SQL and graph databases this is equal to the verification time.
For the end user, this is probably the most crucial metric.

The results are provided in Figure 4.7. The first thing we can observe is that
this graph is not much different from the one in Figure 4.5. In other words, the
time for obtaining a candidate set plays only very minor role in the total query
time.

The very good performance of GString is a result of the fact that the result
set is smaller compared to other methods. This might be confusing and a user
of such method has to be aware of its limitations. On the other hand, if the user
knows what are the GString restrictions, it may be a very efficient way of querying.

In case of small queries, the best choice seems to be PGX. The implemen-
tation is very straight-forward and most of the work is very intuitive. Also, the
implementation of PGX handler is very easily improvable to work with even much

37

Figure 4.7: Query time

bigger data sets which cannot fit into the memory.

In case of the SQL database, we are quite surprised that it is a viable solution.
The difference in performance times to other methods is not that significant as
we would expect. Also, SQL solution is the only one which does not have to fit
into memory as it is.

Although all other methods have their own benefits, GraphGrepSX seems to
be an overall winner. It is quite simple to implement, it has the best overall
performance and reasonable index size as well as its build time.

4.7 Hypotheses Results
In this section we summarize the results of the hypotheses formulated in Section
3.2 in Table 4.1.

38

Hypothesis Result Comments

H1.1 False Index of GString is significantly larger. The num-
ber of distinct nodes in case of GString is much
bigger compared to GraphGrapSX on a real-world
data set.

H1.2 Uncertain The performance of GString is indeed better com-
pared to GraphGrepSX. On the other hand, the
main reason is a smaller answer set because the
rules for candidate set creation are too restrictive
in some cases.

H2.1 Cannot be
verified

We were not able to build the GIRAS index in a
reasonable time.

H2.2 True We were not able to build the GIRAS index in a
reasonable time even for the one tenth of the tested
data set size.

H3.1 True In general, both GraphGrepSX and GString per-
form better than SQL and PGX approaches. On
the other hand, for small queries, the PGX is
slightly faster. Moreover, in case of the SQL
database we did expect much worse results.

H3.2 Uncertain The hypothesis is definitely valid for small queries,
in which case the performance difference is enor-
mous. On the other hand, for larger queries PGX
starts to be barely usable due to the issues with
PGQL query parsing.

Table 4.1: Hypotheses results

39

Conclusion
In this thesis we have explored the existing approaches focusing on subgraph
querying of chemical databases. We have identified the most popular and the
most performing indexing techniques for such purpose.

In particular, We have identified three indexing algorithms – GraphGrepSX,
GString and GIRAS – which were not compared, yet, in any related paper and
which won the performance tests in the benchmarks presented as a part of the
papers which describe the algorithms. We have implemented two of these algo-
rithms – GraphGrepSX and GString – and we have obtained the GIRAS source
code from its author.

We have created a benchmark of the mentioned indexing methods which uses
a data set of 100 000 chemical compounds. In this benchmark we measure the
index size and its creation time, efficiency of the index and the total time needed
for evaluation of queries of various sizes.

We have also implemented a framework for testing the SQL and PGX
databases on the same data set to compare the graph oriented indexing methods
to the solutions which are designed to store and query generic data.

We have found out that many of the results of related papers are not fully
valid. For example, we have found out that GIRAS does not provide complete
indexing and therefore we can identify a lot of queries with invalid results. Also,
we have found out that this method is barely usable on large real-world data sets
since the time needed for index to be built is enormous.

For GString, we have found out that its method for condensing the graph size
is very efficient in the matter of acceleration of the index building process. On
the other hand, it omits a lot of valid results since the query graph’s condensed
graph does not have to match the condensed graph of actual compound which
does contain the graph query as its subgraph.

Also, one of the main reasons of graph condensation in GString is to make
the index smaller compared to GraphGrepSX. We have proved that on real-world
data set this is not a valid presumption because the size of the vertex label set
on such database is significantly smaller compared to the size of distinct vertex
labels on condensed graphs where we introduce a new label for each distinct size
of path, cycle or star respectively.

We have identified PGX as a viable and very well performing solution for
small queries. On the other hand, the performance for larger queries is getting
worse exponentially and it becomes barely usable even for queries of size 16. We
have reported this issue to Oracle. This result seems to be very close to the
observation made by Hoksza et al. in [22].

40

In case of other two methods – SQL database and GraphGrepSX – we were
surprised by their performance. Even though the SQL database is the only tech-
nique which does use disk for storing the data, its performance is not bad at all
and it seems to be a viable solution for data sets which cannot fit into the memory.

Although GraphGrepSX is much simpler indexing technique compared to the
other described ones, we have identified it as the best performing one. It is not
anyhow customized to be used for chemical databases and can be utilized for any
data which can be described by graphs.

Future Work
All described indexing techniques do work only in memory. This is a significant
issue for big databases. It might be an interesting research task to find out the
possibilities of improving the described methods to store the indices on the disk.
Or even better, divide the chemical compounds into some classes and store these
separately in different indices.

An other interesting research direction might be to compare our benchmark
results to the performance of commercially used solutions which we have described
in the Chapter 2 of this thesis.

41

Bibliography
[1] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–

42, January 1976.

[2] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(10):1367–1372, Oct 2004.

[3] Hans-Christian Ehrlich and Matthias Rarey. Systematic benchmark of sub-
structure search in molecular graphs - from ullmann to vf2. Journal of
Cheminformatics, 4(1):13, 2012.

[4] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee.
An in-depth comparison of subgraph isomorphism algorithms in graph
databases. Proc. VLDB Endow., 6(2):133–144, December 2012.

[5] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming ver-
ification hardness: An efficient algorithm for testing subgraph isomorphism.
Proc. VLDB Endow., 1(1):364–375, August 2008.

[6] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query language and ac-
cess methods for graph databases. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’08, pages 405–
418, New York, NY, USA, 2008. ACM.

[7] Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: Distance index based sub-
graph matching in biological networks. In Proceedings of the 12th Interna-
tional Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’09, pages 192–203, New York, NY, USA, 2009. ACM.

[8] Peixiang Zhao and Jiawei Han. On graph query optimization in large net-
works. Proc. VLDB Endow., 3(1-2):340–351, September 2010.

[9] E. S. S. Dongoran, W. K. Rahmat Saleh, and A. A. Gozali. Analysis and
implementation of graph indexing for graph database using graphgrep algo-
rithm. In 2015 3rd International Conference on Information and Communi-
cation Technology (ICoICT), pages 59–64, May 2015.

[10] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics and
applications of tree and graph searching. In Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’02, pages 39–52, New York, NY, USA, 2002. ACM.

[11] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: A frequent
structure-based approach. In Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’04, pages 335–346,
New York, NY, USA, 2004. ACM.

[12] H. Jiang, H. Wang, P. S. Yu, and S. Zhou. Gstring: A novel approach
for efficient search in graph databases. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 566–575, April 2007.

42

[13] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and
Dennis Shasha. Enhancing Graph Database Indexing by Suffix Tree Structure,
pages 195–203. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[14] Mehdi Azaouzi and Lotfi Romdhane. A minimal rare substructures-based
model for graph database indexing. volume 557, pages 250–259, 02 2017.

[15] Huahai He and A. K. Singh. Closure-tree: An index structure for graph
queries. In 22nd International Conference on Data Engineering (ICDE’06),
pages 38–38, April 2006.

[16] D. W. Williams, J. Huan, and W. Wang. Graph database indexing using
structured graph decomposition. In 2007 IEEE 23rd International Confer-
ence on Data Engineering, pages 976–985, April 2007.

[17] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent sub-
graph mining algorithms. The Knowledge Engineering Review, 28(1):75–105,
2013.

[18] Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern min-
ing. In 2002 IEEE International Conference on Data Mining, 2002. Pro-
ceedings., pages 721–724, Dec 2002.

[19] Antonin Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’84, pages 47–57, New York, NY, USA,
1984. ACM.

[20] Daniel Zaharevitz (NIH/NCI). Aids antiviral screen data. https://wiki.
nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data, 2015.
[Online; accessed 19-May-2017].

[21] Adel Golovin and Kim Henrick. Chemical substructure search in sql. Journal
of Chemical Information and Modeling, 49(1):22–27, 2009. PMID: 19072559.

[22] D. Hoksza and J. Jeĺınek. Using neo4j for mining protein graphs: A case
study. In 2015 26th International Workshop on Database and Expert Systems
Applications (DEXA), pages 230–234, Sept 2015.

[23] Neo4j database. https://neo4j.com/. [Online; accessed 19-May-2017].

[24] Ambit. http://ambit.sourceforge.net/. [Online; accessed 19-May-2017].

[25] Krisztina Vajda (ChemAxon). Jchem cartridge for oracle. https://docs.
chemaxon.com/display/docs/JChem+Cartridge+for+Oracle, 2015. [On-
line; accessed 19-May-2017].

[26] Oracle. Oracle9i data cartridge developer’s guide. https://docs.oracle.
com/cd/B10501_01/appdev.920/a96595/dci01wht.htm. [Online; accessed
19-May-2017].

43

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://neo4j.com/
http://ambit.sourceforge.net/
https://docs.chemaxon.com/display/docs/JChem+Cartridge+for+Oracle
https://docs.chemaxon.com/display/docs/JChem+Cartridge+for+Oracle
https://docs.oracle.com/cd/B10501_01/appdev.920/a96595/dci01wht.htm
https://docs.oracle.com/cd/B10501_01/appdev.920/a96595/dci01wht.htm

[27] John May (NextMove Software). Substructure search
face-off: Are the slowest queries the same between
tools? https://nextmovesoftware.com/blog/2015/06/01/
substructure-search-face-off-are-the-slowest-queries-the-same-between-tools/,
2015. [Online; accessed 19-May-2017].

[28] Dimitris K. Agrafiotis, Victor S. Lobanov, Maxim Shemanarev, Dmitrii N.
Rassokhin, Sergei Izrailev, Edward P. Jaeger, Simson Alex, and Michael
Farnum. Efficient substructure searching of large chemical libraries: The
abcd chemical cartridge. Journal of Chemical Information and Modeling,
51(12):3113–3130, 2011. PMID: 22035187.

[29] Johnson & johnson. https://www.jnj.com/. [Online; accessed 19-May-
2017].

[30] The chemistry development kit. https://github.com/cdk/. [Online; ac-
cessed 19-May-2017].

[31] Daylight Chemical Information Systems Inc. Smarts - a language for describ-
ing molecular patterns. http://www.daylight.com/dayhtml/doc/theory/
theory.smarts.html. [Online; accessed 19-May-2017].

[32] Daylight Chemical Information Systems Inc. Fingerprints - screening
and similarity. http://www.daylight.com/dayhtml/doc/theory/theory.
finger.html. [Online; accessed 19-May-2017].

[33] Chemaxon. https://www.chemaxon.com/, 2017. [Online; accessed 19-May-
2017].

[34] Oracle. Java. https://www.java.com/en/. [Online; accessed 18-April-2019].

[35] Ulrich Bauer. Minimum cycle basis algorithms for the chemistry development
toolkit.

[36] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the trav-
eling salesman problem. Proceedings of the American Mathematical Society,
7(1):48–50, 1956.

[37] Oracle. Pgx. https://www.oracle.com/technetwork/oracle-labs/
parallel-graph-analytix/overview/index.html. [Online; accessed 25-
April-2019].

[38] Oracle. Pgql. http://pgql-lang.org/. [Online; accessed 25-April-2019].

[39] Oracle. An introduction to graph: Database, analytics,
and cloud services. https://www.slideshare.net/JeanIhm/
an-introduction-to-graph-database-analytics-and-cloud-services?
fbclid=IwAR2liLiNYui4EbEJWPEmrPxji_u7jzRproo1u86G10qbabekgvLOruPPskw.
[Online; accessed 25-April-2019].

[40] Microsoft. Windows subsystem for linux documentation. https://docs.
microsoft.com/en-us/windows/wsl/about. [Online; accessed 25-April-
2019].

44

https://nextmovesoftware.com/blog/2015/06/01/substructure-search-face-off-are-the-slowest-queries-the-same-between-tools/
https://nextmovesoftware.com/blog/2015/06/01/substructure-search-face-off-are-the-slowest-queries-the-same-between-tools/
https://www.jnj.com/
https://github.com/cdk/
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
https://www.chemaxon.com/
https://www.java.com/en/
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/overview/index.html
http://pgql-lang.org/
https://www.slideshare.net/JeanIhm/an-introduction-to-graph-database-analytics-and-cloud-services?fbclid=IwAR2liLiNYui4EbEJWPEmrPxji_u7jzRproo1u86G10qbabekgvLOruPPskw
https://www.slideshare.net/JeanIhm/an-introduction-to-graph-database-analytics-and-cloud-services?fbclid=IwAR2liLiNYui4EbEJWPEmrPxji_u7jzRproo1u86G10qbabekgvLOruPPskw
https://www.slideshare.net/JeanIhm/an-introduction-to-graph-database-analytics-and-cloud-services?fbclid=IwAR2liLiNYui4EbEJWPEmrPxji_u7jzRproo1u86G10qbabekgvLOruPPskw
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

[41] Chembl. https://www.ebi.ac.uk/chembl/. [Online; accessed 2-May-2019].

[42] Smiles. http://www.daylight.com/dayhtml/doc/theory/theory.
smiles.html. [Online; accessed 2-May-2019].

45

https://www.ebi.ac.uk/chembl/
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

List of Figures

2.1 GraphGrep example graph . 8

3.1 Molecule of naphthalene . 25
3.2 Molecule of methyl propionate . 25

4.1 Index building time . 32
4.2 Index building time without SQL database 32
4.3 Index size . 34
4.4 Candidate set creation time . 35
4.5 Verification time . 36
4.6 Candidate set hit ratio . 37
4.7 Query time . 38

46

List of Tables

2.1 GraphGrep example graph fingerprint 9

4.1 Hypotheses results . 39

47

List of Abbreviations
• DFS - Depth-First search

• DAG - Directed Acyclic Graph

• DBMS - DataBase Management System

• SQL - Structured Query Language

• BFS - Breadth-First Search

• REST - REpresentational State Transfer

• CDK - Chemistry Development Kit

• SSSR - Smallest Set of Smallest Rings

• MCB - Minimum Cycle Basis

• API - Application Programming Interface

• JDBC - Java DataBase Connectivity

• PGX - Parallel Graph analytiX

• PGQL - Property Graph Query Language

• ACID - Atomicity, Consistency, Isolation, Durability

• CPU - Central Processing Unit

• RAM - Random Access Memory

48

Attachments

Set of tested queries

Queries of size 4
1. c:c:c:c

2. C=NCC

3. S(=O)(=O)C

4. C=CC=C

5. N=CCC

6. CN=CO

7. SCCC

8. c:n:c:c

9. CSCC

10. CSC=C

Queries of size 8
1. COc1ccccc1

2. CCCCCCCC

3. c:c:c:c:c:c:c:c

4. S(CCC)(CCC)(C)

5. C(=O)NCCCCC

6. c1cc(C(=O))ccc1

7. CCC(=O)C(=O)NC

8. c2c(Cl)cccc2Cl

9. C(C)(C)C(C)(C)C(=O)

10. S(CNCC)(C=O)(C)

49

Queries of size 16
1. CNC(=O)c1cc(C(=O)CCCC)ccc1

2. CCCCCCCCCCCCCCCC

3. c:c:c:c:c:c:c:c:c:c:c:c:c:c:c:c

4. c1cccc2c1ccc3c2cccc3CC

5. S(CC)(=O)(=O)Nc1cc(CCCC)ccc1

6. C(C)(C)C(C)(C)C(C)(C)C(C)(CCCCC)

7. C(O)CCCC(=C)CCCc1ccccc1

8. CCCCCNCCCCCCCNCC

9. c1ccccc1CCc2cc(CC)ccc2

10. Oc1cccc2Cc3ccccc3C(=O)c12

Queries of size 16
1. C(C)NC(=O)C(NC(=O)OC)CCCCNC(=O)c1ccccc1

2. CCCCCCCCCCCCCCCCCCCCCCCC

3. c:c

4. c1cccc2c1ccc3c2ccc4c3ccc5c4cccc5CC

5. S(C)(=O)(=O)Nc1cc(C(c2c(=O)oc(CC)cc2)CCC)ccc1

6. C(C)(C)C(C)(C)CCCC(C(NCCCCC)=O)(CCCCCC)

7. C(O)C(O)C(O)C(O)CCCC(=C)C(O)C(C)Cc1ccccc1

8. CCCCCNCCCCCCCNCCCCCCCCCC

9. c1ccccc1CCc2cc(CCCNc3ccccc3)ccc2

10. Oc1cccc2Cc3ccc(Cc4ccccc4)c(O)c3C(=O)c12

50

Results of measurements

Index building

51

Queries of size 4

52

Queries of size 8

53

Queries of size 16

54

Queries of size 24

55

	Introduction
	Structure of the Thesis

	Base Terms and Definitions
	Definitions
	Subgraph Querying

	Analysis of Related Work
	Subgraph Isomorphism Algorithms
	Index Building Methods
	GraphGrep
	GraphGrepSX
	GIndex
	GIRAS
	GString
	C-Tree
	GDIndex
	Benchmark Results

	Database Management Systems Utilization for Subgraph Querying
	SQL Substructure Search
	Neo4j Substructure Search

	Commercially Used Solutions
	AMBIT-SMARTS
	JChem Cartridge
	ABCD Cartridge

	Experimental Work
	Introduction
	Hypotheses to be verified by the experimental work
	Hypothesis 1: GString vs GraphGrepSX
	Hypothesis 2: GIRAS performance for large queries
	Hypothesis 3: How the SQL and graph oriented databases perform in comparison with the domain specific solutions

	Description of the Experimental Work
	GraphGrepSX
	GString
	SQL Database
	Graph Database
	GIRAS

	Experimental Results
	Index Building Time
	Index and Data Size
	Candidate Set Creation Time
	Verification Time
	Hit Ratio of Candidate Set
	Query Execution Time
	Hypotheses Results

	Conclusion
	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

