
DOCTORAL THESIS

Marek Polák

Evolution and Adaptability of Complex
Applications

Department of Software Engineering

Thesis supervisor: doc. RNDr. Irena Holubová, Ph.D.

Study programme: Computer Science

Specialization: Software Systems

Prague 2017

First of all I would to sincerely thank my supervisor Irena Holubová for her
support and guidance throughout my doctoral studies, especially to her helpful
comments and prompt responses, whenever I needed. Next, my thanks belong to
Eva Mládková for her dedication and sometimes difficult administrative support,
as well as to members, colleagues and fellow students from the XML and Web
Engineering Research Group. However, achieving results of my research would
not be possible even without the effort of all the anonymous reviewers. Nev-
ertheless, my greatest gratitude no doubt deserve my my parents, all the other
family members and friends for their support, patience as well as encouragement.
Last but not least, I would like to thank for the financial support provided by
the following institutions, grants and projects: Charles University Grant Agen-
cy (SVV-2013-267312, SVV-2014-260100, SVV-2015-260222, SVV-2017-260451,
GAUK-1416213) and Czech Science Foundation (P202/10/0573).

I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on June 16, 2017 Marek Polák

Název práce: Evoluce a adaptabilita komplexńıch aplikaćı
Autor: Marek Polák
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı disertačńı práce: doc. RNDr. Irena Holubová, Ph.D.

Abstrakt: V současné době se aplikace stávaj́ı stále složitěǰśımi, což přináš́ı problémy
během jejich vývoje. Změna v jedné části aplikace může netriviálně ovlivnit jiné
části aplikace. Daľśım aspektem mohou být systémy, které s aplikaćı komunikuj́ı.
Ty muśı být upraveny, aby se zajistila správná funkcionalita. Tyto problémy
se mohou týkat r̊uzných domém – UML diagramů, XML schémat, relačńıch
schémat, API, atd. V této práci jsme se na zmı́něný problém zaměřili z perspek-
tivy MDA, která pro obecný náhled na problém využ́ıvá platformově nezávislého
modelu (PIM) a pro konkrétńı domény využ́ıvá platformově specifické modely
(PSM). Tyto modely mohou být nav́ıc propojeny a vzájemně závislé. Náš návrh
obsahuje nové definice model̊u z r̊uzných, široce využ́ıvaných domén, operace
nad těmito modely a algoritmy pro transformace model̊u. Dı́ky principu MDA
je možné představené modely kombinovat a modelovat tak komplexńı aplikace.
Veškeré prezentované modely a algoritmy byly experimentálně implementovány
ve frameworku DaemonX a testovány na reálných datech, aby byla ověřena jejich
správnost.

Kĺıčová slova: MDA, MDD, Management evoluce, Transformace

Title: Evolution and Adaptability of Complex Applications
Author: Marek Polák
Department: Department of Software Engineering
Supervisor: doc. RNDr. Irena Holubová, Ph.D.

Abstract: In these days the applications become more complex that causes main-
tenance issues while evolving these applications. A change in one part of the
application can significantly affect other parts of the application. The next as-
pect can be related systems which communicate with this application. They must
be updated to satisfy their correct functionality. These issues can concern mul-
tiple domains, e.g., UML diagrams, XML schema diagrams, relational schemas,
APIs, etc. We focus on this problem from the perspective of the MDA, which
uses the platform independent model (PIM) for a general view of the problem
and the platform specific model (PSM) for particular domains. Moreover, these
models can be interconnected and related to each other. We propose novel PSM
models from various widely used domains, operations over these models and al-
gorithms for model transformations. Thanks to the MDA principle, it is possible
to combine presented models and model a complex application. All models and
related algorithms we present were experimentally implemented and tested in the
DaemonX framework on real-world data for their verification.

Keywords: MDA, MDD, Evolution Management, Transformation

Contents

1 Introduction 5

2 Preliminaries 17
2.1 Models . 17
2.2 Operations . 18
2.3 Model Relations . 18
2.4 Evolution Process . 19

3 DaemonX 21
3.1 Introduction . 21
3.2 Related Works . 22

3.2.1 eXolutio . 22
3.2.2 Enterprise Architect . 22
3.2.3 Power Designer . 22
3.2.4 Eclipse . 23
3.2.5 Visual Studio . 23
3.2.6 Comparison of the Related Works 23

3.3 Architecture . 25
3.4 Plug-in Support . 25
3.5 Evolution Process Management 26
3.6 Undo/Redo Management . 28
3.7 Additional Framework Extensions 28
3.8 Conclusion . 28

3.8.1 Future Work . 30

4 XML Query Evolution 33
4.1 Introduction . 33
4.2 Related Works . 34

4.2.1 Preserving XML Queries During Schema Evolution 34
4.2.2 Identifying Query Inconsistencies with Evolving XML Schemas 36
4.2.3 Transformation of structure-shy programs with application

to XPath queries and strategic functions 38
4.2.4 Evolution of XML-Based Mediation Queries in a Data In-

tegration System . 40
4.2.5 Comparison of the Related Works 41

4.3 Models for XML Schema and XPath 42
4.4 Evolution Algorithm . 44

4.4.1 Operations for the XSEM Model 44
4.4.2 Operations for the XPath Model 45

4.5 Analysis of Propagation of Operations 47
4.5.1 Adding . 47
4.5.2 Removing . 49
4.5.3 Renaming . 50
4.5.4 Reordering . 51
4.5.5 Reconnection . 53

1

4.6 Implementation and Experiments 55
4.7 Conclusion . 58

4.7.1 Future Work . 58

5 Relational Schema and SQL Queries Evolution 59
5.1 Introduction . 59
5.2 Related Works . 60

5.2.1 Database Schema Integration Process 60
5.2.2 QuickMig . 61
5.2.3 The PRISM Workbench 63
5.2.4 Automating the Database Schema Evolution Process . . . 66
5.2.5 Adaptive Query Formulation 67
5.2.6 Synchronization of Queries and Views Upon Schema Evo-

lutions: A Survey . 69
5.2.7 Comparison of the Related Works 70

5.3 Database Model . 71
5.4 Query Model . 73
5.5 SQL Query Visualization Model 74

5.5.1 Visualization Model Components 74
5.5.2 Mapping to the Database Model 76
5.5.3 Mapping of Operations . 77

5.6 Change Propagation in the Graph 78
5.6.1 Query Graph Operations 78

5.7 Implementation and Experiments 79
5.8 Conclusion . 83

5.8.1 Future Work . 83

6 Service Interfaces and Business Processes Evolution 85
6.1 Introduction . 85
6.2 Related Works . 87

6.2.1 UML and XML Schema 87
6.2.2 XSEM – A Conceptual Model for XML 88
6.2.3 An Extension of Business Process Model for XML Schema

Modeling . 89
6.2.4 Comparison of the Related Works 90

6.3 Business Processes and Conceptual Modeling 91
6.4 Proposed Approach . 92

6.4.1 Derivation Part . 95
6.4.2 Evolution Part . 105

6.5 Implementation and Experiments 107
6.6 Conclusion . 107

6.6.1 Future Work . 109

7 REST API Management and Evolution 113
7.1 Introduction . 113
7.2 Related Works . 114

7.2.1 API Versioning Best Practises 114
7.2.2 API Documentation Generation 114
7.2.3 Comparison of the Related Works 115

2

7.3 Resource Model . 115
7.4 Mapping and Evolution . 117

7.4.1 Model Mapping . 117
7.5 Atomic PIM Model Operations 118
7.6 Atomic Resource Model Operations 121
7.7 Operation Propagation Policies 124
7.8 Propagation Algorithms . 125

7.8.1 Cardinalities . 136
7.8.2 API Versioning . 137
7.8.3 View Model . 137
7.8.4 Model Nesting . 137
7.8.5 Resource Parameters Evolution 138
7.8.6 Applying the Solution on Existing Clients 138

7.9 Implementation and Experiments 139
7.9.1 Experimental Data . 139
7.9.2 Experiments . 141

7.10 Conclusion . 146
7.10.1 Future Work . 147

8 Schema Mapping 149
8.1 Introduction . 149
8.2 Related Works . 150

8.2.1 COMA . 150
8.2.2 Similarity Flooding . 151
8.2.3 Decision Tree . 151
8.2.4 XML Schema Clustering with Semantic and Hierarchical

Similarity Measures . 152
8.2.5 Minimizing User Effort in XML Grammar Matching 153
8.2.6 XML Matchers: Approaches and Challenges 155
8.2.7 Comparison of the Related Works 157

8.3 Schema Matching . 157
8.3.1 Applications of Schema Matching 158

8.4 Proposed Solution . 159
8.4.1 Original Decision Tree Construction 159
8.4.2 Decision Tree Training via C5.0 161

8.5 Implementation and Experiments 166
8.6 Conclusion . 173

8.6.1 Future Work . 174

9 Experiments 177
9.1 Description of Experiments . 177

9.1.1 Experimental Data . 177
9.1.2 Experimental Evaluation 178
9.1.3 Database Model . 179

9.2 Particular Experiments . 179
9.2.1 Experimental Results . 184

9.3 Conclusion . 185

10 Conclusion 187

3

Bibliography 191

4

1. Introduction

The most common application of the today’s information-technology (IT) world
are information systems (IS). They can be characterized as a network of soft-
ware and hardware components that enable people and companies to create,
collect, distribute and process data. There exist various types of ISs, such as,
e.g., decision-support systems, database-management systems, office-information
systems, customer relationship management systems, etc.

Currently a very popular kind of IS in these days are distributed ISs and
the micro-service architecture that are typically base on the Service Oriented
Architecture (SOA) [54] and its most common implementation – Web Services
(WS) [131], Representational State Transfer (REST) [39] and/or Web Sock-
ets [133]. This architecture brings many advantages especially to system scal-
ability, performance, and resource management. On the other hand, separation
of the system to micro-services brings drawbacks, such as more demanding change
management and version compatibility. For example, a change of the message
structure in one part of the system can influence all related services, integration
tests are more complex and must cover more edge cases than in case of mono-
lithic systems, etc. A mechanism that can analyze the changes, propagate them,
and/or at least inform the developer about possible inconsistency can reduce time
needed for updates and unnecessary troubleshooting.

An IS often involves a huge set of data resources (known as data intensive
ISs [102]) and applications which process them. A typical current IS also usually
consists of a set of sub-applications, each being responsible for a particular logical
execution part (termed a system of applications), e.g., database management,
business logic, route management, balancing management, etc. An example of a
typical IS is depicted in Figure 1.1.

A data resource consists of the particular pieces of information (i.e., data
instances), integrity constraints (ICs) over the data instances, and selected inter-
pretations of the data. For instance, an IS for storing and analysis of scientific
publications of academic institutions involves records of publications of a par-
ticular university, i.e., articles, books, SW prototypes, etc. Over the records we
can identify various ICs, such as, e.g., that “each book must be assigned with
a unique ISBN” or that “a publication cannot have two authors with the same
name”. Finally, for the purpose of presentation of the results at web sites of the
institutions, the data may be exported in XML [129], JSON [26], HTML [112]
or RDF [14], described in WSDL [128], exchanged using SOAP [127] messages or
REST API, etc. [95].

The life-cycle of a complex system of applications is similar to the life-cycle of
a single application; however, the complexity is much higher. First of all we need
to design numerous data structures, i.e., schemas, which are usually mutually
related or overlayed. In other words, each application of the system utilizes
several views of a common problem domain. Hence, they cannot be designed
separately. In addition, sooner or later the user requirements for the applications
change and, hence, the data structures they process must be modified respectively
– this is known as the problem of evolution. Due to the relations and overlays,
such a modification can influence multiple parts of the system and we need to

5

Web server Mobile applica�on

Database server 1Publish-subscribe service

Third party

service 1

Service 1 Service 2

Service 3 Database server 2

Proxy server Third party

service 2

Figure 1.1: An example of simple IS

maintain them during the whole life-cycle to be able to propagate the changes to
all affected parts correctly and efficiently. The ability of an IS to adapt to the
changes is called adaptability.

Even though such ability is a rather natural feature, currently it is being
solved mostly manually by an IT expert who knows the IS well and is able to
identify all its components that need to adapt. In some situations there exist spe-
cial mechanisms that can help with necessary changes, e.g., automatic database
migration in most Object Relational Mapping (ORM) tools [8]. But, in a complex
IS it is not possible for a single person to consider and cover all the components
and aspects, which can lead to faults in the system.

Another approach, utilized mainly by standardization entities is preservation
of backward compatibility. For example, an open XML standard OpenTravel.org1

currently offers 329 XML schemas which standardize communication in the trav-
eling community. OpenTravel.org is changed twice a year (A and B revisions) and
the changes are published in a form of a new version of the XML schemas and
a documentation of the changes in a form of human-readable document. This
solution, however, requires tremendous manual effort from designers to adapt
their transformation scripts and potentially their database, their own XML for-
mats and their program code as well. Thus, OpenTravel.org tries to preserve the
backward compatibility as much as possible. The amount of backward inconsis-
tent changes is very small – 7,5% on average. However, this approach results in

1http://www.opentravel.org

6

http://www.opentravel.org

artificial data structures with plenty of optional items, obsolete data structures,
etc.

Definition 1. (Forward Compatibility). Let S be an original schema and S ′

a new version of S. S ′ is called forward-compatible when all documents valid
against S are also valid against S ′.

Definition 2. (Backward Compatibility). Let S be an original schema and S ′

a new version of S. S is called backward-compatible when all documents valid
against S ′ are also valid against S.

Model Driven Architecture

MDA (Model Driven Architecture) [47] is an approach to software development
which enables to define parts of systems via various models for specific purposes.
It is model-driven, because it provides means for using models to understanding,
design, construction, deployment, operation, maintenance and modification. One
of the main aims is to separate a design from an architecture. It shifts the
development process from a code-centric to model-centric approach. Instead of
writing lines of a code, architects model systems according to business processes.
MDA deals with the idea of separating the specification of the operation of a
system from details of the way the system uses the capabilities of its platform.
There are defined three different types of models (layers of abstraction) for specific
purposes:

• A Computation Independent Model (CIM) is a view of a system from the
computation independent point of view. It focuses on the environment
of the system, and the requirements for the system. It has no detailed
specification of the structure of the system. (Note that we omit this part
in our work because it is not important from our point of view.)

• A Platform Independent Model (PIM) is a view of a system from the plat-
form independent point of view. It focuses on the operation of a system
and hides details necessary for a particular platform. A common language
used for modeling PIM diagrams is UML [50].

• A Platform Specific Model (PSM) is a model representing specific platform.
It uses PIM and adds a view specific for a particular model.

Over all models there can be defined various operations for manipulating with
them, e.g., creating of model parts, updating of properties, removal of model
parts, etc.

The next important aspect of MDA is a definition of relations (interconnec-
tions or mappings) between the models. Mapping marks can be represented as
(directed) lines between PIM and PSM items. A general example of a simple sys-
tem is depicted in Figure 1.2. This aspect, together with operations, enables to
define transformations based on model operations propagated to other model(s),
called Model Transformation. Thanks to these abilities it is possible to design a
complex system which contains various models at various levels of abstraction.
And, additionally, when one model is changed, these changes can be propagated
to other related models.

7

Figure 1.2: An example of the PIM-to-PSM mapping from one PIM model to
multiple PSM models

MDA provides an approach for the following actions:

• Specifying a system independently of the platform.

• Specifying platforms.

• Choosing a particular platform for the system.

• Transforming the system specification into the one selected for a particular
platform.

In the context of example in Figure 1.2, if we make changes in PIM model,
a model transformation is executed and changes are propagated to related PSM
models.

Evolution Management

To be able to manage models, operations over them and respective transforma-
tions, there must be defined a process capable of performing it.

As we have mentioned, a natural and real-world solution of the evolution
problem is to rely on an IT expert who knows the information system well and
is able to denote the part of the system which is modified and has to be evolved.
This task is related to several nontrivial problems (P1-P5), namely being able:

(P1) To make the required change semantically correctly

All changes which can be done over any of the models must be defined seman-
tically correctly. Before and after the change, the system must be in a consistent
state.

(P2) To identify all affected parts of the system

It means that before the change, all related parts must be identified and
checked if it is needed to change them too.

(P3) To make the respective changes of the affected parts semantically
correctly

If the related parts will not be changed, the whole system can become incon-
sistent which is not required.

8

(P4) To express the changes also syntactically correctly regarding the
selected format

In a complex information system involving hundreds of schemas it is impos-
sible for a single person to consider and cover all the components and aspects.
Especially if the system may involve multiple formats.

(P5) To integrate new schemas and discover relations to the current
ones

It is common that the system may naturally grow, e.g., new models or schemas
may appear or be required and, hence, the possibility of necessary system change
must be analyzed, e.g., to guarantee backward compatibility.

Solution Based on System Partitioning

In papers [92, 94] the authors described the idea of a five-level evolution man-
agement framework. Using several levels of abstraction it enables to model all
parts of the system regardless technical details of a selected format. Preserved
relations between the levels enable to propagate the changes correctly among
multiple related and overlapping schemas.

An example of a complex system representing an evolution management frame-
work is depicted in Figure 1.3. If we consider the vertical partitioning, we can
identify multiple views of the system. We have depicted the three most common
and representative views. The blue (leftmost) part covers an XML view of the
data processed and exchanged in the system. The green (middle) part repre-
sents a storage view of the system, e.g., a relational view of the processed data
which need to be persistently stored. Finally, the yellow (rightmost) part repre-
sents a processing view of the data, e.g., processing by sequences of Web Services
described, e.g., using BPEL scripts [98].

If we consider the horizontal partitioning, we can identify five levels, each rep-
resenting a different view of the system and its evolution. The lowest level, called
extensional level, represents the particular instances that form the implemented
system such as, e.g., XML documents, relational tables or Web Services that are
components of particular business processes. Its parent level, called operational
level, represents operations over the instances, e.g., XML queries over the XML
data expressed in XQuery [11] or SQL/XML [61] queries over relations. The
level above, called schema level, represents schemas that describe the structure
of the instances, e.g., XML schemas or SQL/XML Data Definition Language
(DDL) [62].

Even these three levels indicate problems related to evolution. For instance,
when the structure of an XML schema changes, its instances, i.e., XML docu-
ments, and related queries must be adapted accordingly so that their validity and
correctness is preserved respectively. In addition, if we want to preserve optimal
query evaluation over the stored data, the storage model also needs to adapt re-
spectively. What is more, in practice there are usually multiple XML schemas (or
schemas in other formats) applied in a single system, i.e., multiple views of the

9

Figure 1.3: Five-level evolution management framework

10

common problem domain. In general, a change at one level can trigger a cascade
of changes at other levels.

Considering only the three levels leads to evolution of each affected schema
separately. However, this is a highly time-consuming and error-prone solution.
Therefore, we introduce two additional levels, which follow the MDA principle,
i.e., modeling of a problem domain at different levels of abstraction. The topmost
one is the PIM which comprises a schema in a platform-independent model (PIM
schema). The PIM schema is a conceptual schema of the problem domain. It
is independent of any particular data (e.g., XML or relational) or business pro-
cess (e.g., Web Services) model. The level below, called platform-specific level,
represents mappings of the selected parts of the PIM schema to particular data
or business process models. For each model it comprises schemas in a platform-
specific model (PSM schemas) such as, e.g., XSEM [91] schemas which model
hierarchical data structures implemented using a selected XML schema language
or ER [17] schemas which are typically implemented using relational schemas.
Each PSM schema can be then automatically translated into a particular lan-
guage used at the schema level (e.g., XML Schema [123] or SQL DDL) and vice
versa.

Now, having a hierarchy of models which interconnect all the applications and
views of the data domain using the common PIM level, change propagation can
be done (semi)automatically and much more easily. We do not need to provide
a mapping from every PSM to all other PSMs, but only from every PSM to the
PIM. Hence, the change propagation is realized using this common point. For
instance, if a change occurs in a selected XML schema, or even (although not
usually [12]) in a selected XML document, it is first propagated to the respective
XML schema, PSM schema and, finally, PIM schema. It is known as upwards
propagation, in Figure 1.3 represented by the white arrows. It enables one to
identify the part of the problem domain that was affected. Then, we can invoke
the downwards propagation and propagate the change of the problem domain to
all the related parts of the system. In Figure 1.3 it is denoted by the grey arrows.

In paper [93] the authors focused on one specific area called XML view [93],
i.e., evolution of a set of XML schemas based on evolution of underlaying PSM.
In this thesis we extend the idea towards other possible formats, i.e., we consider
the system in its full generality – to be able to evolve every defined model or
schema on different levels.

XML Data Similarity

In these days, over the internet, there are millions of various documents. Doc-
uments from different sources, but similar sectors can highly resemble in their
structures. If we want to use them, we have to manage every single structure.
Documents can differ in their naming conventions, dialect, etc. An example can
be a service that aggregates (AG) other similar services, extracts data from them
and recalls them, e.g., a service for reserving flights or accommodations. The
problem is that there is no general structure of the data that these third party
services accept – AG has to store and maintain specific external structures for
each third party service. Additionally, AG has own internal data structures and
they are mapped to external structures. And, in addition, a very common situa-

11

tion is that AG designers want to add a new third party service. So they have to
analyze data structures that the service provides and map them to internal data
structures.

If we look at this problem from the MDA perspective, there can be created
a common PIM (internal data structure) and specific PSM for each third party
service (external data structures). The problem is that rewriting all these similar
structures into particular PSM, their analysis and mapping them into PIM is
time-consuming and error-prone process. This problem can be solved by the
following steps:

• PSMs of third party services are generated from particular XML schemas.

• These PSMs are analyzed by algorithms for similarity measurement.

• Results of the similarity analysis are used for mutual mapping of common
PIM to particular PSMs. This step can be done (semi)automatically, de-
pending on the analysis results.

The described functionality, in combination with an evolution framework,
brings a possibility to extend existing systems with new data structures in a
more simple way.

Contributions

In order to provide a quick navigation, the references to the author’s original con-
tributions are marked with a star (see on the left). We result from the mentioned
architecture designs, frameworks and ideas and define various platform-specific
models based on these ideas. These models cover currently used technologies
and languages, such as XML Schema, XPath [132], SQL, REST, or BPMN [49].
All these models are described in the subsequent chapters. When we combine all
the presented models, algorithms, experimental implementations and experiments
together, we obtain a complex solution with the following abilities:

Definition of new models We provide a set of various platform-specific
models of technologies and languages widely used in these days, namely:

• The model representing XPath query language described in Chapter 4, de-
noted with number 1 in Figure 1.4.

• The model representing SQL query model described in Chapter 5, denoted
with number 2 in Figure 1.4.

• The model representing BPMN described in Chapter 6, denoted with num-
ber 3 in Figure 1.4.

• The model representing REST API described in Chapter 7, denoted with
number 4 in Figure 1.4.

12

Definition of model operations A model itself is not sufficient – it just
describes a structure or a view. Hence, we provide a set of operations defined over
these models for model design and management. These operations are the most
important part and essential condition to be able to use and work with models.
Thanks to them we can change/update models by well-defined conditions. Op-
erations are also needed for subsequent definition of transformation algorithms.
They must be analyzed and they form the output of the transformation algorithm
as well.

Transformation algorithms We present algorithms for performing trans-
formations and evolution process between particular models. This is the natural
next step after definition of models and respective operations. Transformation al-
gorithms use operations defined over particular models – they accept operations,
make an analysis of the operations and generate operations for other model(s) as
an output. That means that if one model is changed, these changes can be propa-
gated to related models based on the performed operations and transformations.
This concept is described more precisely in Chapter 2.

Experimental implementation and experiments We have experimen-
tally implemented all the presented models, their operations and transformation
algorithms and used real-world data in complex tests to verify their correctness.
Except for a proof of correctness, an experimental implementation is important
from the user perspective too. Although an algorithm of transformation can
be correctly defined, it is possible that it is not correct or does not make sense
from the user point of view. To be able to validate this situation, real-world
implementation is an important task.

DaemonX framework The experimental implementation was carried out
as multiple extensions (plug-ins) of the DaemonX framework. It is described in
Chapter 3. The framework was designed to be a general base for modeling that
contains a support for model transformations. Thanks to this solution we have a
common base for all implemented models and defined transformation algorithms.

XML data similarity We have also focused on the XML data similari-
ty topic to be able to map multiple similar PSM schemas to the common PIM
schema. In this case we do not define any new model or transformation al-
gorithms. We approach from different point of view – we have multiple PSM
schemas that have similar structure. If we can map multiple PSM schemas to
one PIM schema, the respective changes can be propagated to all affected schemas
in a simple way. Specifically, we have improved existing algorithms to obtain more
accurate results of the document similarity.

Advanced undo/redo management in complex environments We
have also dealt with the issue of providing advanced undo/redo management in
complex environments (IDEs). As we have mentioned, almost every GUI appli-
cation, e.g., development IDEs, document or graphical editors, supports undoing
and redoing of user actions. Although they can support separate undo/redo for

13

multiple tabs, it can be not sufficient for an application where we expect multiple
models which can be interconnected/related to each other. Additionally, with
the support for model transformation, a change in one model can change other
related models. And a subsequent switch to a different model and application
of an undo operation must be processed correctly. And, finally, there is another
important fact that is user experience – the behavior must be understandable for
users. We tried to analyze requirements and define a new manner how to solve
this problem from both technical and user viewpoint.

Due to space limitation, the chapter describing this topic was omitted from
this thesis. Even the chapter discuss important subject of the complex applica-
tions, it has the least relation to evolution and adaptability which is the theme of
this work.

Publication of the research All the mentioned research results were pub-
lished and presented at multiple international conferences or in journals, namely:

• Paper XML Query Adaptation as Schema Evolves was presented at ISD’2013,
Prato, Italy [107].

• Paper Evolution of a Relational Schema and its Impact on SQL Queries
was presented at IDC’2013, Prague, Czech Republic [20].

• Paper DaemonX: Design, Adaptation, Evolution, and Management of Na-
tive XML (and More Other) Formats was presented on iiWAS’2013, Vienna,
Austria [108].

• Paper Data and Query Adaptation using DaemonX was published in Com-
puting and Informatics Journal’2014 [104]

• Paper Adapting Service Interfaces when Business Processes Evolve was pre-
sented at IEEE RCIS’2014, Marrakesh, Morocco [75].

• Paper Undo/Redo Operations in Complex Environments was presented at
ANT’2014, Hasselt, Belgium [64]. Due to a space limitation, this paper is
not presented in this thesis.

• Paper Adaptive Similarity of XML Data was presented at ODBASE’2014,
Amantea, Italy [66].

• Paper REST API Management and Evolution Using MDA was presented
at C3S2E’2015, Yokohama, Japan [106].

• Paper Advanced REST API Management and Evolution Using MDA was
presented at DChanges’2015, Lausanne, Switzerland [105].

• Paper Information System Evolution Management – A Complex Evaluation
was accepted for ECBS’2017, Larnaca, Cyprus [83].

Thesis Outline

In Chapter 2 we present basic models and important formal definitions used in
this thesis.

In Chapter 3 we describe DaemonX – a general framework used for experimen-
tal implementation and experiments of all presented models and transformation
algorithms.

14

Chapters 4, 5, 6, and 7 describe multiple models belonging to different layers
in the five-level evolution management framework.

In particular, the purpose of Chapter 4 is to introduce evolution management
of XPath queries based on changes done in a related XML schema. We describe
a model for XPath queries, its operations and transformation algorithms from
PIM to XPath PSM.

In Chapter 5 we present a solution for evolution of SQL queries when the
underlaying database schema changes. As in the previous chapter, it contains
description of the model, operations and transformation algorithms.

Chapter 6 describes an approach for adapting and optimizing service inter-
faces when related business process changes. It presents the model representing
business processes, operations and algorithms for transformation and a strategy
for optimization of underlaying XML schemas.

In Chapter 7 we introduce a model representing a REST API resource and
algorithms for its transformation based on changes in the underlaying model.

The purpose of Chapter 8 is to present an approach dealing with similarity
mapping of XML schemas to a common PIM schema. It can be integrated with
the models, e.g., with the model from Chapter 4.

In Chapter 9 we present a complex example of evolution process of an IS based
on real-world data. We model complex situations that, starting from a single
point, influence the whole system, e.g., change the database schema, change the
producer resource or producer data structures.

To conclude, in Chapter 10 we review all the defined models and algorithms
and recall their novel features and contributions.

15

Figure 1.4: Five-level evolution management framework with denoted chapters

16

2. Preliminaries

The purpose of this section is to provide common definitions, notations and the-
oretical background used in this thesis. First we define basics of the MDA and
its parts. Next we describe terms related to model evolution.

2.1 Models

Definition 3. (PIM model). Let MS = (CS, IS) be a PIM model. CS is a set
of classes, IS is a set of connections, where Ik(Cl, Cm), k ∈ [1, n] is a connection
between classes Cl and Cm and it has a name IkN . Each class Ci ∈ CS, i ∈ [1, v]
has a name CiN , a set of attributes CiP , and a set of functions CiF . Every attribute
Pj, j ∈ [0, s] has a name PjN and a type PjT . Every function Fo, o ∈ [0, t] has
a name FoN , a return type FoT , and a set of parameters FoR . Each function
parameter Rq, q ∈ [0, u] has a name RqN and a type RqT .

An example of a PIM model representing structures used in GitHub API [45]
is depicted in Figure 2.1.

Figure 2.1: PIM model example

Since there exist different PSM models for specific domains, there is no com-
mon definition for PSM model. Particular models will be defined separately in
the respective chapters.

17

2.2 Operations

Operations are needed for changing and updating models. There exist multiple
types of operations.

Definition 4. (Atomic operation). An atomic operation is the minimum indi-
visible operation which can be applied on a model.

Definition 5. (Composite operation). A composite operations consists of one or
more atomic operations or other composite operations.

Atomic operations form a collection. When a composite operation is executed,
its atomic operations are executed sequentially. Naturally, composite operations
can consist also of other composite operations (eventually combined with atomic
operations). Then we use the idea of the collection of operations recursively.

Example 1. Suppose we have defined the following atomic operations over PIM
from Definition 3: operation CreateAttribute(class, name) which creates a new
attribute of name in class and operation DeleteAttribute(class, attributeId) which
removes attribute of attributeId from class. But in the model we want to have
the ability to move an attribute from one class to another class. One possibility is
to define a new atomic operation MoveAttribute(classFrom, classTo, attributeId).
Or we can compose such operation in the following way:

• Call operation CreateAttribute(targetClass, nameOfTheAttribute) in the tar-
get class to create copy of the attribute in the target class.

• Call operation DeleteAttribute(sourceClass, attributeId) in the source class
to remove original attribute.

2.3 Model Relations

To be able to propagate operations (changes) between models, there must be
defined relevant relations (mappings) between these models.

Definition 6. (Relation). Let OS be a set of items of model S (source model)
and OT be a set of items of model T (target model). Relation R(s, t) is a tuple,
where s ∈ OS and t ∈ OT .

Additionally, there can be two types of relations: single-directional relation
and bi-directional relation. In case of single-directional relation, the source model
is not related to the target model. Only the target is related to the other member
of the relation and can react on actions performed in the source model. On the
other hand, when models are in a bi-directional relation, there are two single-
directional relations – one from the source model to the target model and second
one from the target model to the source model.

Next, there can be specified restrictions if particular parts of different models
can be in relation or not. This situation depends on the author of the model or
the particular relation. Suppose we want to define relations between two PIM
models. Relations which make sense are Class – Class, Attribute – Attribute,
Method – Method. But the relation Class – Attribute does not.

18

An example of relations between PIM and PSM (XSEM, defined in Chap-
ter 4) is depicted in Figure 2.2. Using red lines relations between PIM and PSM
classes are depicted and using blue lines respective relations between attributes
are depicted.

Figure 2.2: An example of relations between PIM and PSM models

2.4 Evolution Process

The evolution process is based on analysis of operations done in the source model.
The result of the analysis is a collection of operations which must be applied on the
target model. It is possible to set these generated operations as source operations
for transitive propagation to other models. A simple process diagram is depicted
in Figure 2.3.

Figure 2.3: Evolution process diagram

Based on the design of the evolution process, models and relations between
models, there can exist further restrictions. E.g., to prevent infinite processing,
operations can be generated for one model only once in the process. On the other

19

hand, it is not needed to restrict relations between models. They can form a
general graph including cycles.

Example 2. In Figure 2.4 there is a simple diagram of related models. As we
can see, there are relations Model 1 → Model 3 and Model 3 → Model 1 which
form a cycle. If the initial source model is Model 1, operations will be propagated
to Model 2, to Model 3 and from Model 3 to Model 4. To prevent infinite
propagation, propagation from Model 3 to Model 1 is not possible. This situation
is depicted in Figure 2.5.

Another situation will be if the initial model is Model 3. In this case, op-
erations will be propagated to Model 1 and to Model 4. Next from Model 1 to
Model 2. Again, to prevent infinite propagation, propagation from Model 1 to
Model 3 is not possible. This situation is depicted in Figure 2.6.

Figure 2.4: An example of related models

Figure 2.5: An example of propagation from Model 1

Figure 2.6: An example of propagation from Model 3

20

3. DaemonX

In this chapter we introduce DaemonX – an evolution management framework,
which enables to manage evolution of complex applications efficiently and correct-
ly. Using the idea of plug-ins, it enables to model almost any kind of a data format
(currently XML, UML, ER, BPMN and REST). Since it preserves relationships
among the modeled constructs, it naturally supports propagation of changes to all
related affected parts. We describe the general proposal of the framework and,
then, its architecture and implementation. All presented approaches except for
the one described in Chapter 8 were implemented in DaemonX as an experimen-
tal implementation and proof of the concept. DeamonX was described in detail in
papers [108, 104].

3.1 Introduction

The DaemonX project is a plug-in-able framework tool for data and/or process
modeling. It was developed by the DaemonX team at the Faculty of Mathemat-
ics and Physics of the Charles University in Prague as a student software project
and served as an environment for various experimental implementations. The
application was designed to support user-defined plug-ins which define particular
functionality needed by the author of the plug-in. These plug-ins are then man-
aged by the application core to provide inter-operability and evolution process
between defined models. If we consider Figure 1.3, DaemonX covers all five levels
of the evolution management framework.

The key abilities of DaemonX are as follows:

• Support for user defined plug-ins – for model and evolution process.

• Support for core functionalities for plug-in inter-operability.

• Evolution process management of the models which are defined in user-
defined plug-ins.

• Multiple views (diagrams) of the model, i.e., when one model can be dis-
played in different views for particular purposes.

• Multi-diagram undo/redo management.

DaemonX is currently available with the support for modeling of:

• UML Class diagrams for general data structures.

• PIM model for base models.

• Relational database model for database schema.

• SQL model for SQL database query.

• BPMN models for business processes.

• XSEM model for XML data.

• XPath model for XPath query.

• REST model for REST resource.

21

3.2 Related Works

In this section the best known and popular Computer-Aided Software Engineer-
ing (CASE) tools and Integrated development Environments (IDEs) and their
key functionalities are discussed. At the end, a comparison of these tools and
DaemonX is presented.

3.2.1 eXolutio

eXolutio [71] is a tool based on the MDA approach and models XML schemas
at two levels – PIM and PSM. It is a predecessor of DaemonX developed as a
SW project at the Charles University in Prague. It allows to model in PIM and
PSM, interconnect these models and propagate changes between them in both
directions. Its key features are as follows:

• Modeling of PIM and PSM of
XML schema.

• Schema mapping.

• Model transformation.

3.2.2 Enterprise Architect

Enterprise Architect 13 [118] (EA) is one of the most commonly used commercial
UML CASE tool developed by Sparx Systems1. It enables to build and model
complex diagrams of various types. Next, a particular code can be imported
and/or exported to/from these models. E.g., generation of an SQL schema by
EA and import of the schema to the EA is possible. It is also possible to extend
the tool with multiple plug-ins. The key features of the tool are mentioned as
follows:

• Requirements management.

• Business modeling and analysis.

• Simulation.

• System development.

• Test management.

• Visual execution analysis.

• System engineering.

• Data modeling.

• Project management.

• Change management.

3.2.3 Power Designer

Power Designer [115] 16 is another robust enterprise CASE tool for business
modeling developed by SAP 2. As EA, it provides a huge set of functionalities
such as UML modeling, code generation, ETL transformation (based on Visual
Basic scripts), etc. In the following list the key features of the tool are mentioned:

• Business process modeling.

• Code generation.

• Data modeling.

• Data warehouse modeling.

• Eclipse plug-ins.

• Object modeling.

1https://www.sparxsystems.com/
2https://www.sap.com/

22

https://www.sparxsystems.com/
https://www.sap.com/

• Report generation.

• Model repository.

• Requirements analysis.

3.2.4 Eclipse

Eclipse Neon [41] by the Eclipse Foundation 3 is one of the widely used develop-
ment IDEs with modeling support by default or via plug-ins. It involves:

• Business process modeling.

• MDD support.

• Object modeling.

• Plugin support.

3.2.5 Visual Studio

As a second very popular development IDE with multiple abilities and possible
extensions we mention Visual Studio 2015 [24] by Microsoft 4. It involves:

• Business process modeling.

• MDD support.

• Object modeling.

• Plugin support.

3.2.6 Comparison of the Related Works

In this section we discuss the key features that we defined and demanded from
an IDE to fulfil our requirements.

Extensibility by Plug-ins Extensibility is an important aspect of IDEs. Even
if it is a robust and mature tool, there can be missing some specific functionality
required by the user, but its implementation is not an important feature for the
tool provider. An ability to be able to implement this feature itself can solve this
problem.

Modeling Abilities An ability to model parts of an application is the main
feature of CASE tools we were looking for. Some IDEs support this feature by
default or via plug-ins.

Model Transformation Model transformation is also one of the most impor-
tant features. It enables to transform a model to another model or (source) code.
An example can be transformation of the UML class diagram to the C# code.

Evolution Support Thanks to this ability it is possible to transform one model
based on changes done in another model via defined rules and relations.

3https://eclipse.org/org/foundation/
4https://www.microsoft.com/

23

https://eclipse.org/org/foundation/
https://www.microsoft.com/

Open Source An ability to get a source code of an application allows to make
more complicated changes that cannot be provided by a plug-in due to some
design limitations. An example can be an update of the undo/redo functionality
with more advanced features which can impact the core of the tool. But a second
aspect must be considered in this situation – the spent time and the complexity
of the change versus implementation of a new tool with required functionalities
covered in the application design.

Even the presented IDEs are mature and widely used, no of them fulfil all
requirements we defined. The aim of DaemonX was to define and develop a
robust and extensible evolution framework that enables to concurrently model
all related parts of the system. Next important requirement was to be able to
implement plug-ins for various models and evolution algorithms in a simple way
without need of deep knowledge of the tool internals.

Schema Mapping Schema mapping is an important feature during integra-
tion of various data sources or systems. Mapping a schema manually is a tedious,
error-prone and expensive work. Therefore, automatic schema mapping ability
brings significant savings of manual effort and resources.

In Table 3.1 there are displayed particular tools compared by selected criteria.

Enterprise
Architect

Power
Designer

Eclipse
Visual
Studio

eXolutio DaemonX

Extensibility
by plug-ins

X X X X x X

Modeling abilities X X X X X X

Model
transformation

X X X X X X

Open source x x X x X X

Evolution
support

x x x x X X

Schema mapping x x x x X X

Table 3.1: Comparison of the related tools

As we can see, abilities such as plug-in extensibility (except eXolutio), model-
ing ability and model transformation are provided by all mentioned tools. Open
source property is not so common, especially for commercial tools. Finally, evo-
lution support and schema mapping are supported by DaemonX only. The main

Enterprise
Architect

Power
Designer

Eclipse
Visual
Studio

eXolutio DaemonX

PIM (UML) X X X X X X

DB X X X X × X

SQL × × × × × X

XML X X X X X X

XML Query × × × × × X

REST × × × × × X

BPMN X X X X × X

Table 3.2: Comparison of the related tools models

24

reasons why DaemonX was developed as an environment for various experimental
implementations instead of use and/or modification of existing solutions.

Next, in Table 3.2 we compare the mentioned tools according to the available
models. As we can see that all tools support PIM (or UML class) model, a model
representing database schema (DB), an XML schema model (XML) and a BPMN
model. The rest of them is available in DaemonX only. Some of the tools allow
export from these models, e.g., export of source code in a particular language
from PIM (UML class) model or generation of an XSD or DTD from the XML
schema model.

3.3 Architecture

The core of DaemonX is based on the Meta-Object Facility (MOF) approach [52],
a standard for model-driven engineering. This architecture pattern gives the
ability to define a model at different layers of abstraction. DaemonX itself de-
fines the meta-meta-model (M2 layer in MOF). This M2 layer model is used by
DaemonX core as an abstraction over all model plug-ins which application con-
trols. Next, the design of the application uses the Model-View-Controller pattern
(MVC) [136]. This approach enables the design of a model (e.g., UML) in logical-
ly separated parts. The model consists of application data, the view (or multiple
views) represents the output of the data for the user, and the controller mediates
input and actions and manages the model and the view.

Both these approaches – MOF and MVC – are loosely coupled in DaemonX .

M2 Layer
In the M2 layer there are defined M2 Construct, M2 Controller and other need-
ed structures of this layer like M2 Property, which represents a property of the
M2 Construct and M2 Relation, which is a special structure representing connec-
tion between two M2 Constructs (for the full list see the developer documenta-
tions [119]). The authors of the particular model plug-in have to inherit from
these structures in their model design and give specific behaviors to their model.

M1 Layer
Specific models form the next MOF layer, called M1 layer. This layer represents
a specific model, e.g., the UML class diagram.

M0 Layer
Finally, an instance of the specific UML class in the diagram is called M0 layer.
A user of the framework works with instances of this class. The described idea
with particular framework elements and an example of UML class diagram model
is depicted in Figure 3.1.

3.4 Plug-in Support

As we have mentioned, the strength of DaemonX is based on the idea of plug-ins.
Basically, the application provides two types plug-ins:

25

Figure 3.1: Schema of MOF layers and a UML example

• Modeling plug-in. • Evolution plug-in.

Modeling Plug-in
This type of plug-in defines a specific model which will be used by the designer
(for example the UML class diagram model). In the plug-in there are defined all
behaviors and operations of the model. There are given no limitations of the plug-
in abilities except for DaemonX interfaces which the plug-in has to implement.

Evolution Plug-in
The main purpose of this type of plug-in is to support single-directional evolution
process between two particular modeling plug-ins. As in the modeling plug-in,
there are no limitations of the functionality except for implementation of the
required interfaces. The next restriction is that the plug-in is naturally related
to two modeling plug-ins, called source and target modeling plug-ins.

3.5 Evolution Process Management

The next important and novel part of DaemonX is the evolution process (de-
scribed in Section 2.4) which is ensured by the evolution manager. Evolution
manager controls the evolution plug-ins defining single-directional description of
propagation changes from a particular source model to a specific target model.
This means that the plug-in knows about all public operations of both model
plug-ins.

Next important part defined by the evolution plug-in are so-called evolution
references (relations) which define how elements from one model can be related
to elements from another model (for example that a UML class can be related
only to a UML class, but not to a UML class attribute). Hence, there can be
defined specific behavior of the evolution process between the models.

26

The evolution process is based on analysis of the operations done in source
modeling plug-ins. The result of the operation analysis is a collection of operations
generated by the evolution plug-in which must be processed in the target models.
And these changes can be subsequently set as an input of another evolution plug-
in. A simple process diagram was depicted in Figure 2.3.

The framework core and the evolution manager are loosely coupled, so its im-
plementation can be easily modified. The current implementation of the manager
supports transitive propagation in a tree graph which satisfies that one diagram
can be changed by evolution process only once and the process can not get into
an infinite loop.

The first release of DaemonX contained the basic core framework with exper-
imental implementation of the following model plug-ins:

• PIM Model for modeling of the problem domain,

• XSEM PSM Model for modeling of XML data,

• UML Class Model for modeling general data structures,

• Relational database schema model for modeling relational data, and

• BPMN Model for modeling business processes.

Also the following evolution plug-ins between existing model plug-ins were
involved:

• UML → UML,

• PIM → XSEM PSM,

• XSEM PSM → PIM, and

• PIM → relational database schema model.

In Figure 3.2 and 3.3 there are depicted screenshots of the application and
diagrams created in the implemented modeling plug-ins. In Figure 3.2 we can
see simple PIM and XSEM PSM models. In Figure 3.3 we can see simple BPMN
model, UML class diagram model, and relational model.

Example 3. In Figure 3.4 and 3.5 there is depicted an example of the evolu-
tion process between two related models. In Figure 3.4 on the left we can see a
PIM model and on the right its related XSEM PSM model. Parts of both models
are connected with references defined by the user. Figure 3.5 presents evolution
management between these models. In particular, we moved attribute address
from class User to class Details in the PIM model. This change is automatically
propagated to the related PSM model, as we can see in Figure 3.5 on the right.
Relations between these two models are depicted in Figure 3.6 in a special window
called Evolution Manager Window, where relations between models can be viewed
and managed.

27

Figure 3.2: A screenshot of DaemonX with PIM and XSEM PSM models

3.6 Undo/Redo Management

Another ability of DaemonX is that it is fully command-based. All operations
which are done by user with the model or view must be defined as commands
in the model plug-in. This ensures the ability to provide full undo/redo support
by framework part called undo/redo manager. As evolution manager, it is also
loosely coupled with DaemonX .

In Figure 3.7 we can see a screenshot of DaemonX . A command stack for
undo/redo management is situated on the right-hand side. Commands which can
be undone are marked with blue color and commands which can be redone are
marked with green color.

3.7 Additional Framework Extensions

Since its first release DaemonX was significantly extended within multiple papers
which enrich the first release application core and/or new add modeling and
evolution plug-ins. First, it was practically verified that framework can be used
for various models and, second, that introduced algorithms are defined correctly.
We will describe selected extensions in more detail in the following chapters.

3.8 Conclusion

The aim of DaemonX was to create a robust and extensible evolution framework
that enables to concurrently model all related parts of the system (i.e., data

28

Figure 3.3: A screenshot of DaemonX with BPMN, UML class and relational
models

Figure 3.4: An example of evolution process (PIM and XSEM PSM model) –
initial state

structures, ICs and operations) as precisely as possible (i.e., with a rich set of
constructs), to preserve the relations between system components, and to enable

29

Figure 3.5: An example of evolution process (PIM and XSEM PSM model) –
propagation

respective change management (i.e., correct propagation of changes to all the
affected parts).

The key contributions of the approach can be summed up as follows:

• In all the cases we bring new ideas and contributions that have not been
considered yet in the literature, or have not been integrated in such a com-
plex system.

• Consequently, we provide a robust and open source tool that covers various
possible use cases of change management.

• At the same time, using plug-ins the framework is extensible and, hence,
can be further adapted for new use cases.

3.8.1 Future Work

• Support for more complex constructs: For the purpose of demonstration
of the proposed strategies we used only a subset of respective standards
(i.e., XML Schema, SQL, XPath, etc.). Hence, a natural following step is
to extend the particular plug-ins towards more complex constructs of the
standards and possibly their full support. While some of the constructs
require only straightforward implementation effort, others require specific
algorithm approaches that need to proposed first.

• Integrity constraints : In almost all data models we specify not only the
structures, but also various integrity constraints, i.e., conditions which fur-
ther specify the data in terms of logical predicates. Currently the most
common language for this purpose is OCL [51]. This topic is partly cov-
ered in work [101] which extends DaemonX towards integrity constraints
evolution management.

30

Figure 3.6: A screenshot of DaemonX – evolution manager window

• Storage strategies : So far we have considered only the data models and
respective operations. Even in the storage view we have considered the
relational model and the model of SQL queries. However, the modeled
data (of any kind) should be somehow persistently stored. And consider-
ing this aspect, the change of the data structures may influence also the
storage strategies and, consequently, also the efficiency of respective opera-
tions (e.g., query evaluation). Hence, we not only need to deal with query
consistency, but also query effectiveness.

• Reverse Engineering : The five-level framework can be built in two directions
– either in the top-down manner starting from the most abstract level PIM
or in the bottom-up manner starting from the most concrete extensional

31

Figure 3.7: A screenshot of DaemonX with command stack for undo/redo man-
agement

level. Such example is mapping of XML schema presented in Chapter 8.
However, in case of other views (data formats) the related problems will
probably be quite different and need to be explored and studied with respect
to the different context.

32

4. XML Query Evolution

In this chapter we study the impact of XML schema evolution on related XML
queries when the evolution can affect the result of those queries. We provide a
novel approach and present preliminary solution to the problem. In our approach,
we define changes in the schema and propagate these changes to the queries. We
focus on a subset of XPath queries and show how particular changes in data
structure can be propagated to them, either automatically or with user interfer-
ence. The model presented in this chapter is depicted in Figure 4.1 in the context
of the five-level evolution management framework. The implementation of our
approach is incorporated into DaemonX framework and it enabled us to provide
a proof of the concept. The approach was presented in [107].

Figure 4.1: Location of the XPath model and change propagation in the context
of the five-level evolution management framework

4.1 Introduction

As XML has become a de-facto standard for data representation, there exists
a large number of XML-based applications. Since most applications are also
dynamic, sooner or later the structure of the data in these applications needs
to be changed and other related aspects have to be changed also to preserve
consistency. This fact has raised the issue of evolution and adaptability of XML-
based applications. One particular task that has received much attention is the
evolution of XML schemas.

Current approaches involve techniques to propagate changes from selected
XML schema such as DTD [3] or XSD [87] to the respective data, and vice
versa [12]. Other approaches consider changes in an abstraction of a schema
through a graphical representation [70, 34], and the propagation of the changes
to the data. However we can observe that schema change can cause not only data
inconsistency, but also query inconsistency. The XML queries over the original
schema and over the evolved schema may return different results. The result
can also be an error caused by a non existing element, as one example. These
possibilities are not desirable and should be recognized and corrected.

33

4.2 Related Works

There exist several approaches focused on query compatibility or analyzing pos-
sible changes of the document schema and including recommendations how the
schemas should be written to reduce potential changes of the related queries [88].
But we have found no paper discussing how the evolution of the queries should
be done (semi)automatically with a minimal contribution of the designer. This
section contains an analysis of five most related works. The first one deals with
preserving valid queries during schema evolution. The second paper presents a
framework for analyzing compatibilities between different versions of schemas.
The last one presents a framework for processing evolution of XML schemas.

4.2.1 Preserving XML Queries During Schema Evolution

Paper [88] discusses XML schemas, their evolution and transformation in time
and the problems which it brings to administrators. The main aims of the paper
are:

• To present taxonomy of possible changes in XML schemas.

• To overview their impact on schema structure.

• To introduce guidelines for managing schema by controlling its changes and
writing queries across schema versions.

Taxonomy of XML Schema Changes

The authors examined and divided the changes into two basic groups which are
shown in Table 4.1 and described below.

Basic Changes Complex Changes

Refinement (adds optional or required el-
ements to the schema)

Element composition (groups related el-
ements under a new element)

Removal (deletes elements from the
schema)

Element decomposition (ungroups
subelements into individual elements)

Extension (adds new constructs to the
schema)

Renaming (updates the name of an ele-
ment or attribute)

Reinterpretation (changes the semantics
of an element without changing its struc-
ture)

Optionality (changes the participation
semantics of an element from optional to
required)

Redefinition (updates the schema with-
out changing the document instances for-
mat)

Renumbering (changes the element car-
dinality)

Retyping (modifies the data type of an
element)

Namespaces (changes the namespace)

Default values (changes the element)

Reordering (changes the order of the el-
ements inside a complex type)

Table 4.1: Defined changes

34

Impact on Queries

Changes of document schema have variable influence on the queries. In this paper
possible impacts on queries are divided into the following three groups of schema
changes.

1. General queries: These are all queries which do not use any element
affected by the evolution process. The queries work in both schema versions
– original and new one in the same way.

2. Basic changes: From the basic changes defined in Table 4.1, only Removal
and Refinement have an impact on queries which can cause inconsistency.

3. Complex changes: From complex changes all possibilities can cause an
inconsistency of evaluation of queries on new and original schemas.

(a) Element composition: There are two major problems. First, the
name of the newly created element can be different from the original
element. Second, the query may refer to a specific path in the docu-
ment tree. So, although there are the data in the document, evaluation
of query returns no data.

(b) Element decomposition: As in the previous case if the query refers
to a specific path, evaluation of the query can return no data.

(c) Renaming: The change of an element name causes that the result of
the query is different or it returns no data.

(d) Optionality: A change from required to optional is not an issue, but
a change in the opposite direction causes that the original query can
return more data in the evolved schema version.

(e) Renumbering: Changing a cardinality can cause issues in both di-
rections. A change from a singleton to multiple elements evokes that
there can be more possible results. A change from multiple elements
to a singleton only reduces the result.

(f) Retyping: In case of retyping it needs checking of the value type and,
if needed, the value must be cast to the needed type.

(g) Default value: If the element value is changed, different values can
be returned in the evolved schema.

(h) Namespaces: This change can be a problem if the query uses a spe-
cific namespace. A different namespace can give different results.

(i) Reordering: Usage of positions in queries can cause that different
data is returned if the position of elements changes.

Compatibility of Queries Across Schema Versions

The last section of the paper gives advices or patterns how to write queries to
prevent changes in queries while schema evolves and ensure that queries will
return correct results.

35

1. Required elements (or attributes) should not be set in the middle of a
sequence of elements. For example all required elements in a sequence
should be set at the beginning, followed by optional ones. If necessary,
queries should have ancestor//descendant axis.

2. Do not delete required elements from the middle of the sequence of elements.
A query can contains exists() function, which can cause a problem in the
evolved schema if position predicate is used in the query.

3. If queries depend on the order of elements, do not change it if not necessary.

4. If queries are strongly typed, do not change the atomic type of the used
values.

5. Do not change the name of elements used in queries. If it is necessary, use
dictionary of synonyms to map them.

6. If queries are sensitive to namespaces which are changed, a query can return
an empty set for a new document which has a different schema. If the
requested behavior is to return the same results, the query should be written
with ′∗′ for namespace.

7. Functions like exist should be used carefully. If the required element is
removed, the query will always return false in the new XML schema.

Discussion

The paper presents a set of possible changes which can be done through evolution
of XML schemas. It classifies them into categories according to their complexity
and shows an impact on related queries. As a conclusion the authors give advices
how the queries should be written to ensure minimal additional changes in queries
while XML schema is being changed. But, it does not give an optimal solution
how to provide XML schema evolution without inspection of related queries in
all cases.

4.2.2 Identifying Query Inconsistencies with Evolving XML

Schemas

Paper [43] discusses a system for monitoring the effect of schema evolution on a
set of admissible documents and on the results of queries. An implementation
of a framework for automatic verification of properties related to XML schema
and query evolution is presented. As a query language the framework considers
XPath.

The system is based on a set of predicates which allow for an analysis of a
wide range of forward and backward compatibility issues. On the other hand,
the system can produce counter examples to prove inconsistency of schemas and
queries. The framework was tested with realistic use cases on the real-world data.

36

Internal Representation

As an internal representation regular tree type expressions [43] are used. This
representation can capture and convert a schema expressed, e.g., in DTD, XML
Schema and Relax NG [21]. The defined tree type expressions are shown in
Table 4.2.

τ ::= tree type expression
/O empty set

() empty sequence

τ — τ disjunction

τ , τ conjunction

l(a)[τ] element definition

x variable

let x = τ in τ binder

Table 4.2: Tree type expressions

Logical Formulas

The core of the framework are logical formulas. They operate on binary trees
with attributes. The framework translates all unranked trees [43], which represent
XML documents, into binary trees.

The semantics of formulas corresponds to µ − calculus [44] interpreted over
finite trees. All XPath expressions defined by the authors can be translated into
these logical formulas. A translated XPath expression operates with a binary
tree and uses only forward axes. Conversion to µ − calculus is done, because
only with this modification the program can solve both XPath emptiness and
other decision problems such as containment. For this purpose the framework
implements a compiler which takes any XPath expression and makes its logical
translation.

Definition 7. (Containment Problem). The containment problem takes as an
input XPath expressions E and E ′, asking whether the output of E is contained
in the output of E ′ on any source document at any node.

Query Representation

The framework is focused on the XPath language which is used in many cases and
other standards like XQuery or XSLT [135]. The used semantics of the XPath
language is described in [132].

Analysis Predicates

Special predicates and a compiler for them are defined to solve decision problems
at a higher level of abstraction. Users can use the predicates to do basic verifi-
cation like backward or forward compatibility. Within predefined predicates it is
possible to create own custom predicates on the basis of defaults by combining
them.

An example of a predicate is backward inconsistent(τ, τ ′) which takes two
type expressions as parameters and assumes that τ ′ is an altered version of τ .
This predicate is unsatisfiable if all instances of τ ′ are also valid against τ .

37

Framework Evaluation Process

The process of evaluation which is done by the presented framework is as follows:

1. A predicate is provided to the framework. It contains all information for
evaluating and returning a result.

2. The given predicate is parsed. The input schema is converted to regular tree
expressions and the input XPath query is converted to a logical formula.

3. A satisfiability test which returns either of two possible results is carried
out. If both schema versions are compatible, information about this fact is
returned. Otherwise a message with a counter example of the inconsistency
is returned.

Framework Real-World Use Case Tests

The paper also gives examples of real usage of the presented framework based on
checking backward inconsistency between XHTML 1.0 and XHTML 1.1 schema
versions. An internal backward inconsistent predicate is used in the test. It takes
DTDs of XHTML 1.0 and XHTML 1.1 as parameters. As a result it returns
a counter example of an HTML document, which is permitted in XHTML 1.1
schema definition, but prohibited in XHTML 1.0.

Discussion

The presented solution can be used by XML designers to recognize if the query
needs to be evolved due to schema evolution. The tool expects a predicate which
should be verified and both versions of the schemas. It returns a result of the
predicate, or it can return a counter example, which can help designers with facil-
itating the queries. The solution covers most of the frequently used XML schema
languages such as DTD, XML Schema and Relax NG, whose definitions are con-
verted into a common representation of regular-expression tree. The XPath lan-
guage is translated into logical formulas which allow for validation for the given
expression tree.

4.2.3 Transformation of structure-shy programs with ap-
plication to XPath queries and strategic functions

In paper [27] the authors present an algebraic approach to transformation of
declarative structure-shy programs, in particular for strategic functions and XML
queries. A structure-shy program specifies type-specific behaviour for a selected
set of data constructors only. For the remaining structure, generic behaviour is
provided. It allows to program process various data from various sources without
knowing its structure and/or need to update program when a new document
structure is published. It enables to focus on algorithms, reduces development
time and improves understandability, e.g., using XPath for querying.

The other side of this approach is a potentially worse space and time behavior,
e.g., a query //title should traverse the whole document to find all title elements
in document.

38

The presented approach builds on the pioneering work of Backus [7] and the
ensuing tradition of algebraic transformation. Authors introduce various alge-
braic and structure-shy approaches, e.g., point-free functional programming (a
variable-free style of functional programming, on the basis of the ease of formu-
lating and reasoning with algebraic laws over such programs).

XPath Optimizer

The application of these technics is in optimizing of compilations of XPath queries
and in query migration in the context of coupled transformation of schemas, doc-
uments, queries, and constraints. The authors incorporated the rewrite system
into a schema-aware XPath compiler called XPath Optimizer (XPTO) [38]. XP-
TO receives as input an XML schema and an XPath query. As output it produces
an executable file that can be used to run the query against multiple XML doc-
uments conforming to the schema. The compilation process has two phases:

1. The schema and the query are parsed into the respective type-safe represen-
tations. The query is then optimized. The resulting point-free expression
is written to an intermediate Haskell file, together with datatype declara-
tions to represent all XML elements. The main function of this file parses
an XML document using the HaXml library, converts it to the respective
datatype, applies the optimized query and pretty-prints the results.

2. The intermediate Haskell file generated in the first phase is then compiled
using GHC library in order to obtain the desired executable.

Two-level Transformations

The authors extend their previous works for coupled transformations and gen-
eralize rewrite systems for point-free program transformations to structure-shy
programs. As an immediate consequence, their approach to coupled transfor-
mations now also encompasses migration and mapping of structure-shy queries
and constraints. In particular, we can use the rewrite systems for structure-shy
programs to:

1. Determine whether query q on the original schema A can be re-used as is
on the transformed schema A′ with meaning.

2. Migrate a structure-shy query q on schema A to a new structure-shy query
q′ on an evolved schema A′.

The authors conclude with a statement that the presented core fragments of
strategic programming and XPath can be used for more complicated languages
and rules.

Discussion

The authors present an algebraic approach to transform declarative structure-shy
programs. They formulate sets of algebraic equivalences for strategic programs
and for the conversion between strategic and point-free programs. They mod-
el the core of the XPath language in terms of strategic program combinators,

39

augmented with universal node type and associated operations. The model re-
lies on generalized algebraic datatypes, rather than type classes. They formu-
late sets of algebraic equivalences for XPath queries, and for their conversion
into strategic and point-free programs. These equivalences allow derivation of
static types for dynamically typed queries. Finally, the authors offer a unified
framework for point-free, strategic, and XPath transformations, where structure-
sensitive, point-free programs are used as the solution space for transformation
of structure-shy programs.

4.2.4 Evolution of XML-Based Mediation Queries in a
Data Integration System

The authors of paper [77] present an approach to the problem of mediation queries
maintenance for data integration systems which adopt the relational model as the
common data model. They deal both with the evolution of the user needs and the
evolution of the data source schemas. The mediation queries evolution process
was developed as part of a data integration system [78], which adopts the global-
as-view (GAV) approach. Due to its flexibility to represent both structured and
semi-structured information, XML is used by the system as the common language
to data exchange and integration.

In the approach, the mediation schema and the data source schemas are de-
fined in the XML Schema language. The XML schema is used to validate the local
data returned by the data sources as well as the integrated data returned by the
mediator in response of a user query. Although being very useful for these tasks,
an XML schema is not suitable for tasks requiring knowledge about the semantics
of the represented data. For such tasks, as generation and maintenance of medi-
ation queries, the system needs a high level description. To provide a high-level
abstraction for information described in an XML schema they propose a concep-
tual data model, called X-Entity, that is an extension of the Entity-Relationship
(ER) model model. Next, from an X-Entity schema can be generated XML
Schema or DTD as described in [78].

To specify modifications performed in the mediation schema or in the local
schemas the authors define a set of X-Entity schema change operations.

Mediation Queries Definition

As the mediation schema is represented by an X-Entity schema, the process of
mediation queries generation consists of discovering a computing expression for
each entity in the mediation schema. At the end of the mediation queries genera-
tion process, each mediation entity is associated with a mediation query, which is
represented by an operation graph. The operation graph describes all information
that is relevant to compute a given integrated view. Another important issue to
be considered is that an operation graph can be incrementally created and it can
be easily modified.

Data source schemas or user’s requirements changes are propagated to the
mediation queries through a set of event-condition-action (ECA) rules, which are
triggered according to the different schema changes. The propagation process
consists of two main tasks: first, the triggering, evaluation and execution of the

40

rules in order to update the mapping views and the operations among them,
and secondly, new mediation queries are generated using the modified operation
graphs.

Discussion

The authors present an approach of the process of managing the evolution of
XML-based mediation queries. They define a new X-Entity model and schema
used for query evolution process where the XML schema is not sufficient. The
proposed solution was developed as part of a data integration system which adopts
the GAV approach.

4.2.5 Comparison of the Related Works

All presented works study the problem of schema evolution from different points
of view and propose solutions how to ensure the compatibility in the system of
the schemas and the related data and queries.

The first paper [88] analyzes possible operations which can be used for an
evolution of the schema, classifies them according to their complexity and gives
advices to designers how to design XPath queries to reduce possibility of query
inconsistency while schema evolves.

The second paper [43] presents a complex framework for identifying inconsis-
tencies of the queries and the evolved schemas. They use own internal structures
for schemas and predicates for queries. Thanks to this solution they can cover the
most frequently used schema languages such as DTD, XML Schema and Relax
NG. But no suggestion is given how to evolve related queries automatically.

Paper [70] presents a tool for providing evolution of the schemas and for
updating related XML documents by using these schemas. It offers a complex
framework which was tested on real-world data similarly to the second paper.

Paper [27] is based on an algebraic approach and transformation of structure-
shy programs. The authors formulate sets of algebraic equivalences for XPath
queries and present a framework for point-free, strategic, and XPath transforma-
tions.

Paper [77] presents a process of managing the evolution of XML-based me-
diation queries. These queries may be changed due to changes in data sources
or in the user’s requirements. The approach was developed as a part of data
integration system based on the GAV approach.

All the mentioned works present various solutions how to preserve compat-
ibility during schema evolution. This chapter uses some ideas from mentioned
papers, put them together and creates a complex solution. The main motiva-
tion was to define models representing XPath queries over XML schema and to
provide (semi)automatic change management for model evolution analysis and
processing. It focuses on the following key topic:

• The definition of a model representing XPath query.

• The relation between an XML schema and an XPath query.

• The analysis of changes done in an XML schema.

• The propagation of changes to preserve compatibility of an XML schema
and an XPath query.

41

Figure 4.2: Sample PSM schema

4.3 Models for XML Schema and XPath

The PSM of the platform-specific level enables us to specify how a part of the
reality modeled at the platform-independent level is represented in a particular
XML schema. In addition, the designer works in a UML-style way which is more
user-friendly than editing the XML schema. The model we use is called XSEM.

Definition 8. (XSEM PSM Schema). An XSEM PSM schema is an 8-tuple S
= (SC, SA, SR, SE, CS , content, class, participant). SC , SA, and SR are sets
of classes, attributes, and associations, respectively. SE is a set of association
ends. An association is an ordered pair R = (E1, E2), where E1, E2 are different
association ends. Any two associations are disjoint. CS ∈ SC is a schema class of
S. Function content assigns a class C with an ordered sequence of all associations
with C as the parent.

An XSEM PSM schema is displayed as a UML class diagram in an ordered
tree layout which reflects the hierarchical structure of XML data. Note that we
omit names, types and cardinalities from the definition for simplicity. We do not
cover all the schema constructs – they are covered in the full definition of the
model [91]. An actual XML schema can be automatically generated from our
PSM schema and vice versa. A sample self-explanatory XSEM PSM schema is
depicted in Figure 4.2.

For the purpose of evolution of XPath queries related to XML schemas, there
must exist a mapping between an XML schema and an XPath query. Since the
full XPath syntax is too extensive, we use its subset based on the Positive Core
XPath [58] with some modifications. Our syntax at the current stage does not
consider predicates and we add the operator except to the definition.

Definition 9. (Updated Positive Core XPath). Let X denote a location path
and A represent an axis. Then updated positive core XPath is defined as:

42

X ≡ X|X ‖ /X ‖ X/X ‖ (X) ‖ X except X ‖ A :: L
A ≡ self ‖ child ‖ parent ‖ descendant ‖ ancestor ‖ preceding ‖ following ‖
descendant−or−self ‖ ancestor−or−self ‖ preceding−sibling ‖ following−
sibling
where X denotes location path and A represents an axis.

As we can see, the only one node test is possible – name test, denoted L. The
original Positive Core XPath definition contains predicates, but it can only be
used to test for element/attribute occurrence. A query using predicates can be
rewritten to a query without them and still returns the same result set [16]. This
solution has only one problem – the query is transformed to a complex form not
transparent for the designer at the first sight. In the defined syntax, it is also
possible to use all classical XPath abbreviations for axes, such as “∗” for all child
elements, “ ” for the child axis, “.” for the self axis, “..” for the parent axis and
“//” for /descendant− or − self :: node()/.

To be able to map an XSEM PSM diagram to an XPath query, an XPath
model must be defined. We propose a model that follows ordered tree structure
of the XPath query, it results from the presented syntax, and it visualizes its
textual representation. The components of the model can be divided into two
parts – nodes which represent nodes in the location path and edges that represent
axes. An edge and a node together comprise a location step of the XPath query.
The model contains the following components:

• Node (E) representing node test, or name test if name is specified

• Axes child (Lch), descendant (Ld), descendant-or-self (Ldos), parent (Lpa),
ancestor (La), ancestor-or-self (Laos), following (Lf), following-sibling (Lfs),
preceding (Lpr), preceding-sibling (Lprs) and self (Ls)

• Expression node (Eex) representing disjunction (denoted by ‘|’) and ex-
cept operators. Its first output edge represents the first part of the expres-
sion, the second output edge represents the second part of the expression.
The third edge represents the following part of the query in the sense of:
(first expression operator second expression)/third expression

Definition 10. (XPath Model). An XPath model P is a directed graph P =
(PE , PA), where PE is a set of nodes or expression nodes and PA is a set of axes.
For the XPath model it must hold that it is a tree. Every node Ei has a name
EiN . An axis is an ordered pair A = (Ei, Ej), where Ei, Ej are different nodes.

Nodes and axes are visualized in Figure 4.3; an expression node is visualized
in Figure 4.4. In particular, we use the notation we have proposed in [103] and
implemented in [119].

Since the XSEM PSM schema has a tree structure and the XPath query
follows a tree structure, it is straightforward and natural to map XSEM PSM
to a location path. An example is shown in Figure 4.5; its formal definition is
provided in [103]. As we can see, an axis can intervene not only a single node in
the schema tree, but also a part of a tree. We say that the part of the tree is hit by
the location step. When the schema evolves, the query is gradually evaluated and
the hit parts are compared with the previous version. If a difference is discovered,
the evolution algorithm is executed.

43

Figure 4.3: XPath axes and nodes

4.4 Evolution Algorithm

Every change in the source XSEM PSM can cause changes in multiple location
steps of the XPath model. Furthermore, there can be done multiple changes in
the PSM model step by step. All operations which change the source XSEM
PSM schema are atomic. We use the subset of operations for query adaptation
identified in [72] (see Section 4.4.1). Naturally, from the atomic operations any
composite and more user-friendly operations can be created.

4.4.1 Operations for the XSEM Model

First, we need to define operations for the XSEM model:

• Root Class Adding (αC : (S, Ci) → S ′): The operation adds root class
Ci as a root in model S. It returns model S ′, where S ′

C = SC ∪ {Ci}.

Precondition: Class name CiN must be set (eventually to a default value).

• Class Adding (αC : (S, Ci, Cj) → S ′): The operation adds class Ci as a
child of class Cj in model S. It returns model S ′, where S ′

C = SC ∪ {Ci}.
This operation creates an association Ak between classes Cj and Ci – S

′
A =

SA ∪ {Ak}.

Precondition: Class name CiN must be set (eventually to a default value).

• Class Removing (δC : (S, Ci)→ S ′): The operation removes class Ci ∈ Sc

from model S. It returns model S ′, where S ′
C = Sc\{Ci}. If there exists an

association Ak(Cj, Ci) ∈ Sa for a Cj ∈ SC , it is first removed. So, then the
operation returns model S ′, where S ′

C = SC\{Ci} and S
′
A = SA\{Ak}.

Precondition: Class Ci must exist in model S. There must not exist an
association Ak(Cj, Ci) ∈ S for any Cj ∈ SA, i.e., Ci must be a leaf node.

44

Figure 4.4: XPath expression node

• Association Removing (δA : (S,Ai)→ S ′): The operation removes asso-
ciation Ai from model S. It returns model S ′, where S ′

A = SA\{Ai}.

Precondition: Association Ai(Ci, Cj) must exist in model S. Either class-
es Ci or Cj must be a leaf node, i.e., there must not exist an edge outgoing
from Ci or Cj .

• Class Renaming (γC : (Ci, m) → C ′
i): The operation returns class C ′

i,
where C ′

iN
= m.

Precondition: Class Ci must exist in model S.

• Class Moving (ψC : (Ci, d)): The operation moves class Ci to the left or
to the right in the sequence of its siblings.

• Class Reconnection (µC : (Ci, Cj)): The operation reconnects class Ci as
a last child of class Cj.

4.4.2 Operations for the XPath Model

Subsequently we established similar set of operations for the XPath model:

• Root Node Adding (αE : (X,Ei)→ X ′): The operation adds root node
Ei as a root in model X . It returns model X ′, where X ′

E = XE ∪ {Ei}.

Precondition: Node name EiN must be set (eventually to a default value).

• Node Adding (αE : (X,Ei, Ej) → X ′): The operation adds node Ei as a
child of node Ej in model X . It returns model X ′, where X ′

E = XE ∪{Ei}.

Precondition: Node name EiN must be set (eventually to a default value).

• Node Removing (δX : (X,Ei)→ X ′): The operation removes node Ei ∈
XE from model X . It returns model X ′, where X ′

E = XE\{Ei}. If there
exists an axis Ak(Ej , Ei) ∈ XA for a Ej ∈ XE, it is first removed. So,
then the operation returns model X ′, where X ′

E = XE\{Ei} and X ′
A =

XA\{Ak}.

Precondition: Node Ei must exist in model X .

45

Figure 4.5: Mapping between XSEM and XPath models

46

• Axis Edge Creating (αE : (X,Ai, Ej , Ek) → X ′): The operation creates
axis edge Ai(Ej , Ek) between nodes Ej and Ek in model X . It returns
model X ′, where X ′

A = XA ∪ {Ai}.

Precondition: Nodes Ej and Ek must exist in model X .

• Axis Edge Removing (δA : (X,Ai) → X ′): The operation removes axis
edge Ai from model X . It returns model X ′, where X ′

A = XA\{Ai}.

Precondition: Axis edge Ai(Ei, Ej) must exist in model X .

• Node Renaming (γE : (Ei, m) → E ′
i): The operation returns node E ′

i,
where E ′

iN
= m.

Precondition: Node Ei must exist in model X .

Formally, let Q be the original query over the original schema S, Q′ be the
adapted query over the evolved schema S ′, R = Q(S) be the result set of Q
over S and R′ = Q′(S ′) be the result set of Q′ over S ′. Let AOXSEM be an
atomic operation done in an XSEM PSM schema (from list in Section 4.4.1) which
should be propagated and let OSXPath be a sequence of atomic operations in an
XPath model which was generated from AOXSEM to preserve the same results
of the queries with the original and the new XSEM PSM schema. Then R =
R′ = Q(S) = Q′(S ′) = OSXPath(Q)(AOXSEM(S)) if there exists an appropriate
propagation algorithm which generates OSXPath.

In the following cases, we will use some simplifications. (For the full descrip-
tion see [103].) We will consider changes with a single class corresponding to
element x (to be added, deleted, etc.). Also, if not specified otherwise, all consid-
ered elements are in a sequence element. In all presented situations we suppose
that there exist no two sibling elements of the same name in S and in S ′. In the
description we will use functions with self-explanatory names, such as parent(),
descendant(), absolute path to(), absolute path to previous sibling() etc.

In the following text we will consider cases when query consistency is violated
(i.e., R 6= R′) and Q′ needs to be adapted accordingly. Since each query can be
divided into separate location steps, we can consider only one location step of the
query Q.

4.5 Analysis of Propagation of Operations

In this chapter we analyze operations done in the XSEM PSM model and their
propagation to the XPath model.

4.5.1 Adding

This operation adds element x as a child of an existing element in S. In the
current location step we consider context element p ∈ S.

• Ancestor, Ancestor-or-self, Parent axes: Since x can be added only
as a child element (see Section 4.4.1), adding x as ancestor/self/parent of p
to the root will be solved in another location step.

47

• Child axis: If Q = p/child :: ∗, then Q′ = p/child :: ∗ except
absolute path to(x) (see Example 4).

• Descendant, Descendant-or-self axes: If Q = p/descendant :: ∗, then
Q′ = p/descendant/ :: ∗ except absolute path to(x).
Note: This modification is possible only if there exists no sibling element
q ∈ S ′, s.t. name(q) = name(x). Otherwise, we should use function
position which in combination with different values of minOccurs disallows
precise selection of x. Therefore, we assume no sibling elements in S and
S ′ with the same name.

• Following, Following-sibling axes: If Q = p/following :: ∗, then Q′ =
p/following :: ∗ except absolute path to(x).

• Preceding, Preceding-sibling: If Q = p/preceding :: ∗, then Q′ =
p/preceding :: ∗ except absolute path to(x).

• Self : New added element cannot cause a change in a result of the self axis.
If the adding operation cause a change, it will be detected by another axis.

Figure 4.6: Schema example for adding

Figure 4.7: Query example for adding

Example 4. Consider S in Figure 4.6 on the left and XPath model of Q =
/vehicle/child :: ∗/registration number in Figure 4.7 on the left. If element
motorcycle is added as a child of element vehicle (see Figure 4.6 on the right),

48

sub-query /vehicle/child :: ∗ will return all elements includingmotorcycle. Hence,
the location step is updated from child :: ∗ to child :: ∗ except /vehicle/motorcycle
and Q′ = /vehicle/(child :: ∗ except /vehicle/motorcycle) /registration number.
The model of Q′ is shown in Figure 4.7 on the right.

4.5.2 Removing

This operation removes element x from S. According to operation definition, the
removed element must be a leaf of the schema tree. If we want to remove a whole
sub-tree, it can be done by its iteration. Let p = parent(x), the particular cases
are discussed in following list.

• Ancestor axis: If Q = x/ancestor :: ∗, then Q′ = absolute path to(p)/
ancestor − or − self :: ∗ | x/ancestor :: ∗.
If the removed element is not x, it is solved in another location step.

• Ancestor-or-self axis: If Q = x/ancestor − or − self :: ∗, there is no
possibility to preserve query compatibility, because R′ ⊂ R. In other cases,
no update is needed.

• Child, Descendant axes: If Q = x/child :: ∗ and x is a leaf node, then
R = ∅.

If Q = p/child :: ∗, it is not possible to preserve query compatibility,
because the removed element x cannot be hit.

• Following axis: If there are more occurrences of element x (i.e., elements
with the same name) in S and x is hit, then:
If x is not the only child of p and not the last one, then Q = x/following :: ∗
is updated to Q′ = x/following :: ∗ | absolute path to next sibling(x)/
(descendant− or − self :: ∗ | following :: ∗).

If x is the only child of p or the last one with this name in S, then
Q = x/following :: ∗ is updated to Q′ = x/following :: ∗ | absolute path-
to next element right(x)/ (descendant − or − self :: ∗ | following :: ∗).
Note: Next element right is the first element returned by the following axis.

• Following-sibling axis: If x is not the only child of p, thenQ = x/following−
sibling :: ∗ is updated to Q′ = absolute path to next sibling(x)/ (self :: ∗
| following − sibling :: ∗) | x/following − sibling :: ∗.

If x is the only child of p, then R = ∅.

If the removed element is not x, but is hit by the following-sibling axis,
it is not possible to preserve query consistency.

• Preceding axis: A situation symmetric to the following axis.

• Preceding-sibling axis: A situation symmetric to the following-sibling
axis.

49

Figure 4.8: Schema example for removing

Figure 4.9: Query example for removing

• Parent axis: Q = x/parent :: ∗ is updated to Q′ = absolute path-
to(p)/self :: ∗ | x/parent :: ∗.

• Self axis: Q = x/self :: ∗ cannot be updated, since x does not exist any
more.

Example 5. Consider S in Figure 4.8 on the left and Q = //Address/following ::
∗ in Figure 4.9 on the left. If element /Purchase/Person/Address is removed
(Figure 4.8 on the right), Q is updated as depicted in Figure 4.9 on the right.

4.5.3 Renaming

Renaming operation changes the name of a selected element x. A change of the
name can cause a change of the result set R. Possible situations are similar for all
axes, so we do not provide the respective list. Update of Q must be done only if
x is hit by the name test. If the location step uses name test with ∗ or element(),
no change is needed. There are two cases how the change of the name can affect
the result of the query. Let the new name of x be y, then:

• If more elements are in the result set (R ⊂ R′), the location step must be
extended with except absolute path to element(y)

50

Figure 4.10: Schema example for renaming

Figure 4.11: XPath example for renaming

• If less elements are in the result set (R′ ⊂ R), the location step must be
extended with | absolute path to element(y) (see Example 6)

Example 6. Consider S in Figure 4.10 on the left. In the red rectangles there
are classes returned by Q = //Address shown in Figure 4.11 on the left. If the
name of class /Purchase/Delivery/Address is changed to Delivery Address,
then Q′ = //Address | /Purchase/Delivery/Delivery Address depicted in Fig-
ure 4.11 on the right.

4.5.4 Reordering

Now we suppose that an element x is in a sequence where the order of elements
is significant and that element x has at least one sibling. It can be moved only
one position left or right in one step (see Section 4.4.1). Again, its iteration can
provide various reordering of the whole sequence. Let pos(x) be the position of x
in S within its siblings and pos′(x) be the position of x in S ′ within its siblings.
Consider elements x, y, z, p such that parent(x) = parent(y) = parent(z) = p,
pos(y) = pos(x) + 1 and pos(z) = pos(x)− 1.

• Self, Child, Parent, Ancestor, Ancestor-or-self, Descendant,
Descendant-or-self axes: Change of the position of element x has no
impact on the result.

51

• Following axis: If the position of x is changed to pos′(x) = pos(x) + 1,
then Q = x/following :: ∗ is updated toQ′ = x/following :: ∗ |
absolute path to(y)/descendant− or − self :: ∗ (see Example 7).

If the position of x is changed to pos′(x) = pos(x)−1, thenQ = x/following ::
∗ is updated toQ′ = x/following :: ∗ except absolute path to(z)/descendant−
or − self :: ∗.

• Following-sibling axis: If the position of x is changed to pos′(x) =
pos(x) + 1, then Q = x/following − sibling :: ∗ is updated to Q′ =
x/following − sibling :: ∗ | absolute path to(y)/self :: ∗.
If the position of x is changed to pos′(x) = pos(x)−1, thenQ = x/following−
sibling :: ∗ is updated to Q′ = x/following − sibling :: ∗ except
absolute path to(z)/self :: ∗.

• Preceding: A situation symmetric to the following axis.

• Preceding-sibling: A situation symmetric to the following-sibling axis.

Example 7. In Figure 4.12 on the left there is schema S before reordering. In
the blue rectangle is x. In the green rectangle is marked result R returned by the
following axis. On the right there is schema S ′ after moving element Item to the
left. Element Address in the red rectangle is now additional to R and must be
eliminated from the query.

Figure 4.12: Reordering and following axis

52

Figure 4.13: Example of reconnection problem – following axis

4.5.5 Reconnection

For simplicity, we consider that element x can be reconnected only as a child of
one of its siblings or as a sibling of its parent. Multiple iterations of the operation
enable moving of the element to any place in the schema. Let l(x) denote the
level of x and l(root) = 0. Then x can move to l(x) + 1 or l(x) − 1. Next, we
again assume that it is not possible to move an element as a child of an element
where its child has the same name.

Note that an evolution of the query after a reconnection in the schema can be
done with all axes, only if the location step is the last one in the query. If not, it
is not possible to ensure query consistency in a simple way.

In general, reconnection of an element implies that an axis applied on this
element can return different result than if they were applied on the element in
the original position (see Figure 4.13 for an example with following axis when
element Address is moved). The particular location step has to be evolved with
disjunction of R \R′ and exclusion of R′ \R.

Suppose that element x is moved to another position in the schema tree, i.e.,
we change parent element p of x to element p′. Let q be a parent of element p
and r be a sibling of x. The particular situations are discussed in following list.

• Ancestor axis: If x is moved up, s.t. parent(x) = q, thenQ = x/ancestor ::
∗ is updated to Q′ = x/ancestor :: ∗ | absolute path to element(q).

If x is moved down, s.t. parent(x) = r, then Q = x/ancestor :: ∗ is
updated to Q′ = x/ancestor :: ∗ except absolute path to element(r).

• Ancestor-or-self axis: If x is moved up, s.t. parent(x) = q, then Q =
x/ancestor − or − self :: ∗ is updated to Q′ = x/ancestor − or − self :: ∗
| absolute path to element(q).

If x is moved down, s.t. parent(x) = r, then Q = x/ancestor−or−self :: ∗
is updated to Q′ = x/ancestor − or − self :: ∗ except absolute path-
to element(r).

• Child axis: If x is moved up, s.t. parent(x) = q, then Q = p/child :: ∗ is
updated to Q′ = p/child :: ∗ | absolute path to element(x).

If x is moved down, s.t. parent(x) = r, then Q = p/child :: ∗ is up-
dated to Q′ = p/child :: ∗ | absolute path to element(x).

53

If x is moved up, s.t. parent(x) = q, then Q = q/child :: ∗ is updated
to Q′ = q/child :: ∗ | absolute path to element(x).

If x is moved down, s.t. parent(x) = r, then Q = r/child :: ∗ is updated to
Q′ = r/child :: ∗ except absolute path to element(x).

• Descendant, Descendant-or-self axis: If x is moved up, s.t. parent(x) =
q, then Q = p/descendant :: ∗ is updated to Q′ = p/descendant :: ∗ |
absolute path to element(x)/ descendant− or − self :: ∗.

If x is moved down, s.t. parent(x) = r, then Q = p/descendant :: ∗
does not need any update.

If x is moved down, s.t. parent(x) = r, then Q = r/descendant :: ∗ is
updated to Q′ = r/descendant :: ∗ except absolute path to element(x)/
descendant− or − self :: ∗.

• Following axis: If Q = x/following :: ∗, the reconnected element is not
x and the reconnection is done in the part of the tree hit by the following
axis, no update is needed.

If Q = x/following :: ∗ and the reconnection of an element y caus-
es that it is added into a part of tree hit by the axis (R ⊂ R′), then
Q = x/following :: ∗ is updated to
Q′ = x/following :: ∗ except absolute path to element(y)/descendant −
or − self :: ∗.

If an element y is moved out from the hit part of the tree (R′ ⊂ R), then
Q = x/following :: ∗ is updated to
Q′ = x/following :: ∗ | absolute path to element(y)/descendant − or −
self :: ∗.

If the reconnected element is x, the revalidation depends on its position
of x among siblings. Location paths to the missing elements and location
paths to exclude redundant elements must be added.

• Following-sibling axis: If y is a sibling of x, where pos(x) < pos(y), and
if y is moved up as a sibling of p or down as a child of one of its siblings, then
Qx/following − sibling :: ∗ is updated to Q′ = x/following − sibling :: ∗
| absolute path to element(y).

If y is a sibling of p or a child of one of siblings of x and if it is reconnected
as sibling of x, where pos(x) < pos(y), thenQ = x/following−sibling :: ∗ is
updated toQ′ = x/following−sibling :: ∗ except absolute path to element(y).

When we reconnected element x, the same situation as in the case of fol-
lowing axis occurs.

• Preceding axis: A situation symmetric to the following axis.

54

• Preceding-sibling axis: A situation symmetric to the following-sibling
axis.

• Parent axis: Reconnection of element x in both cases (up or down) causes
that Q = x/parent :: ∗ is updated to Q′ = absolute path to(p)/ self ::
∗exceptabsolute path to element(x)/parent :: ∗ | x/parent :: ∗.

• Self axis: A change of the position of x does not change the result of the
query.

4.6 Implementation and Experiments

The full experimental implementation of the proposed approach was integrated
into the DaemonX framework. Since there are no existing approaches providing
similar abilities, it is not possible to compare our solution and results of others.
Therefore, queries from the XPathMark XPath-TF [42] are used to provide a
proof of the concept and for validation. In addition, since this test set is quite
simple, we also created our own more complex queries using various axes to test
abilities of the solution.

Firstly, from the XPathMark test set we selected tests corresponding with our
XPath syntax, i.e., A1 – A11, P1 – P11 (rewritten to queries without predicates)
and operators O1, O3, O4. Examples of the queries are as follows:

//l/ancestor::* (A5)

//l/following::* (A9)

//l/descendant::* (P5)

//l/preceding-sibling::* (P7)

//q/following::*/parent::* except //g/ancestor::* (O1)

All these queries were applied on the respective schema and then all possible
edit operations (see Section 4.4.1) were tested.

Secondly, to test the approach on more complex queries, we took a real-world
XML schema of an order from the Amazon AWS [5] used for communication with
customers by Web Services. An XSEM PSM model was created from this schema
and a set of XPath queries utilizing all available axes in various combinations
was defined. These queries were automatically mapped to the schema by the
DaemonX framework. Examples of the queries are as follows:

//RegionDefinition/parent::ExcludedRegions/parent::*

/Order/ParameterizedUrls/*/*

//AmazonUpsellPreferences/child::*

//ShippingRate/following-sibling::*/descendant::*

//MerchantUpsellItem/Images/preceding-sibling::*

//ShippingMethods/following::*

//RegionDefinition/ancestor::*

//Taxamount/following::Shipping/child::*

//Images/parent::*/ItemCustomDate/ancestor::Cart

Next, we made various changes in the schema to simulate a designer. After
propagation, the results of both original and new queries were checked.

From the experiments, the following results were observed:

55

Figure 4.14: Initial schema part of the Amazon example

• Applying of the operations in XSEM PSM model (see Section 4.4.1) over
related 40 queries produced 388 changes in the evolved queries. A manual
check and evolution of these queries is a big and time consuming task for
the designer.

• The resulting query strongly depends on the original query and the up-
date operation. E.g., absolute query /db/user/address/city that returns
elements city needs to be updated when element name address is changed
to primary address. On the other side a query //city does not need any
update if the element name is changed.

• Usage of axes returning a subtree, not only a single node or value, e.g.,
following-sibling axis and subsequent changes in schema model, can evolve
the query into a complex form depending on particular schema model.

• Removing of a part of schema can invalidate a related query, e.g., removing
of an element that is queried by its name. In this situation a manual update
is required.

We present an example of adding a new element DefaultRegion to the Ama-
zon AWS schema and its impact on the query //ShippingRate/following −
sibling :: ∗/descendant :: ∗. The initial schema (its affected part) and the initial
query is depicted in Figure 4.14 and Figure 4.16 (on the left) respectively. The
query result is marked with red rectangles. When a new element DefaultRegion
is added as the last child of the element ShippingMethod (see Figure 4.15, the
new element is marked with a green rectangle), it must not be returned in the
query result. The initial query is evolved to the form
//ShippingRate/(following − sibling :: ∗exceptDefaultRegion)/descendant ::
∗. The final query is depicted in Figure 4.16 on the right.

The implementation and all queries and applied changes of the schema can
be found at this resource1.

1http://www.ksi.mff.cuni.cz/~polak/daemonx/

56

http://www.ksi.mff.cuni.cz/~polak/daemonx/

Figure 4.15: Evolved schema part of the Amazon example

Figure 4.16: Original and evolved query of the Amazon example

57

4.7 Conclusion

The aim and the main contribution of our approach is the ability to recognize
and analyze changes in XML schema and to automatically update related queries
respectively based on non-trivial algorithms. If the revalidation of the query is not
possible, this situation is reported to the designer with information that a manual
update is required. For this purpose we defined a model representing XPath query
and operations for model manipulation. Next we defined a mapping between
model representing XML schema to be able to analyze changes in schema model
and propagate them to query model. Transformation algorithms are defined over
model of updated positive core XPath and support all XPath axes, union and
except operators and name test.

4.7.1 Future Work

Even though the approach is complex and robust, there exists problems that are
not covered:

• Not decisive cases : There are cases when the propagation cannot be pro-
ceeded and a designer must interfere. A natural extension would be to
suggest possible “clues” to simplify the process.

• Query optimization: Also, after the changes are made to the queries, it can
get into a non-optimized state. Hence, an optimization would be a useful
extension.

• Extension of XPath query syntax : Used query syntax can be extended to
support more constructs, e.g., more tests which enables to transform more
complex queries.

58

5. Relational Schema and SQL
Queries Evolution

In this chapter we study another specific part of the evolution and change prop-
agation problem – evolution of a relational database schema and its impact on
related SQL queries. The proposed approach shows an ability to model database
queries together with a database schema. The feature then provides a solution
how to adapt database queries related to the evolved database schema. The model
presented in this chapter is depicted in Figure 5.1 in the context of the five-level
evolution management framework. The proposal was implemented within the Dae-
monX framework and various experiments proving the concept were carried out.
This approach was presented in [20].

Figure 5.1: Location of the relational database model and related change propa-
gation in the five-level evolution management framework

5.1 Introduction

One of the aspects of the evolution and adaptability problem is an adaptation of
the respective storage of the data. The adaptation of the storage covers many
related issues, such as database schema evolution (i.e., retaining system function-
ality despite schema changes), database schema integration (i.e., cases when more
database schemas have to be combined together), data migration (i.e., a situa-
tion when data have to be moved from one system to another), or adaptation of
respective queries (i.e., reformulation of queries with regard to changes in data
schemas).

A change of the underlying database schema can cause that SQL queries over
this schema may become inconsistent with the evolved schema, e.g., a database
table has a new name in the evolved schema, a table column has a new name in
the evolved schema, a database table does not exist in the evolved schema, a table
column does not exist in the new schema, a new table column, which should be
used in an SQL query, appeared in the evolved schema, etc. All these cases lead
to incorrect SQL queries or queries that do not return the original result. So they

59

should be corrected. For example, suppose an SQL view PendingOrders, which
returns all information about the pending orders, including all items of the given
order. Now, when the name of the column itemName is changed (for instance to
productName), all SQL queries where this column is used have to be checked by
a designer and updated respectively.

In this chapter we present an ability to model database queries together with
a database schema model. The feature then provides a solution how to adapt
database queries related to the evolving database schema.

5.2 Related Works

This section contains an analysis of four works dealing with the database schema
adaptation problem. It introduces the given problem, the solution described in
the work and possibilities of the solution. The last part of this section provides
a comparison of all discussed works and briefly introduces the main issue of this
work.

5.2.1 Database Schema Integration Process

Paper [79] describes an approach for integration of complex database schemas.
The main aims of the paper are:

• To design a database schema through the approach of a gradual integration
of external schemas.

• To suggest a new conceptual modeling design able to be used for conceptual
database schema design instead of ER data model.

• To develop a CASE tool which provides complete support for the schema
integration process.

Phases of the Database Schema Design Process

Design of a complex database schema is based on a gradual integration of external
schemas. An external schema is a complex structure that formally defines a user
view of a database schema (at the conceptual level). The authors divide the
whole process of the database schema design into five phases:

1. Identifying groups of similar end-user business tasks.

2. Conceptual modeling (integration of the external schema into a common
conceptual schema).

3. Transformation of the subschema into relational data model.

4. Generating a database schema.

5. Consolidation (detection of constraint collisions and their resolving).

60

Form Type Concept

Form type concept is an approach for conceptual database schema design. The
authors assume that the form type concept may be used for conceptual database
schema design instead of ER data model or UML class diagrams. The concept
is based on the fact that users communicate with an information system through
application forms (see [18]). So the designer’s work is to specify screen forms of
transaction programs. The main reason for using form type is the fact that the
concept is more familiar to end-users’ perception of an information system than
the concepts of entity and relationship types in ER data model. In addition,
form type is a concept that is formal enough to precisely express all the rules
significant for structuring future database schema.

IIS*Case

Integrated Information Systems*Case (IIS*Case) is the resulting software devel-
oped by the authors of the paper, that supports an approach for gradual inte-
gration of external schemas. It is based on the form type concept mentioned
before. IIS*Case is designed to provide complete support for developing complex
database schemas with regard to the number of concepts used, and to give an in-
telligent support in the course of the whole schema integration process. IIS*Case
supports:

• Conceptual modeling of external schemas.

• Automated design of the so-called relational database subschemas in the
3rd normal form [82].

• Automated integration of relational database schema from designed sub-
schemas.

• Detecting and resolving the constraint collisions between a database schema
and a set of subschemas.

Discussion

The paper presents an original approach to automatic integration of database
schemas. The approach is based on the form type data model. From the design-
er’s point of view, the form type data model offers a simple way for defining the
initial set of attributes and constraints. For the designers, the database design of
even complex information systems became easier because the process of modeling
is shifted to the level of a user without an advanced knowledge of the database de-
sign. The paper also suggests methods how to detect and finally resolve collisions
between independently designed database schemas. The presented approach is
supported by own CASE tool – IIS*Case.

5.2.2 QuickMig

Paper [35] describes a (semi)automatic approach to determining semantic corre-
spondences between schema elements for data migration applications.

61

The QuickMig Migration Process

The QuickMig approach divides the process of migration into five phases:

1. Answering a questionnaire

2. Injection of sample instances

3. Schema and instance import

4. Matcher execution

5. Review

Answering a Questionnaire The purpose of the first phase is to collect as
much information as possible about the source system. This data will be used to
automatically reduce the complexity of the target schemas. This also helps with
reduction of the complexity of the matching process. The first phase has to be
performed manually by a person with some knowledge of the capabilities of the
source system.

Injection of Sample Instances In this phase instances existing in the target
system are manually created in the source system. These samples are used by
the instance-based matching algorithms in order to determine correspondences
between the source and the target schemas. Using sample data this knowledge
can be exploited by the matching algorithms. By injecting sample data into the
source system the matching algorithms not only have arbitrary instances available
but also one dedicated instance which maps exactly to a specific instance of the
target schema.

Schema and Instance Import In the third phase of migration process the
source schemas as well as corresponding sample instances are imported into the
QuickMig system.

Matcher Execution In this phase schema matching algorithms are executed.
These automatically determine a mapping proposal using different matching al-
gorithms. The resulting mapping proposal includes similarities between elements
of the source and target schemas as well as a proposal for the mapping categories.

Review In the final phase a developer reviews and corrects the mapping pro-
posal. When the mapping proposal is acceptable, real mapping code is generated
and the mapping is stored.

Mapping Categories

Each returned correspondence from the matching phase (phase 4 of the migration
process) is associated with some mapping category. These mapping categories
are used to create parts of the necessary mapping expressions. At least it can be
used to provide a mapping expression template that can be easily completed by
a developer. QuickMig distinguishes the following eleven mapping categories:

62

• CreateInstance

• KeyMapping

• InternalId

• LookUp

• Move

• ValueMapping

• Code2Text

• DefaultValue

• Split

• Concatenate

• Complex

The QuickMig Architecture Overview

The QuickMig is based on COMA++ [55]. QuickMig extends COMA++ by
implementing three new matching algorithms:

• Equality Matcher: It is the simplest matcher. It tries to identify equal
instance values in the source and target schema.

• SplitConcat Matcher: This matcher checks the instance data for splitting
or concatenation relationships.

• Ontology-Based Matcher: This matcher exploits background knowledge
provided in a domain ontology in addition to instance data in order to
identify corresponding schema elements.

Each matching algorithm returns a list of correspondences between the source
and the target schema and also the associated mapping category. The results of
all algorithms are combined in order to create the resulting mapping.

Discussion

QuickMig is a system for the (semi)automatic creation of schema mappings in
data migration projects based on 5-phase migration process. The most important
phase is the phase of matching execution, where the mapping proposal is created
and each found correspondence is associated with some mapping category.
The proposal approach was experimentally evaluated using real SAP [25] schemas.
In these experiments QuickMig achieved very good results. QuickMig is planned
to be integrated into SAP data migration tools in future.

5.2.3 The PRISM Workbench

Paper [29] describes an advanced approach to support database schema evolution
in traditional information systems. In such projects the frequency of database
schema changes has increased while tolerance for down-times has nearly disap-
peared. The main aim of the paper is to create a tool to manage and automate:

• Predicting and evaluating the effects of the proposed schema changes,

• rewriting queries and applications to use the evolved schema, and

• migrating the database.

63

SMO Language

The whole evolution process is described by Schema Modification Operators (SMO),
e.g., table creation, table merge, table split, column creation, etc. Each SMO
represents an atomic operation performed on both schema and data. All SMOs
together represent the SMO language. Basically, PRISM provides the simple
SMO language to express schema changes in the process of designing evolution
steps.

Evolution Process

The process of evolution is divided into five phases:

1. Evolution design

2. Inverse generation

3. Validation and query support

4. Materialization and performance

5. Deployment

Evolution Design The first phase of evolution process can be further divided
into the sequence of six steps:

• The database administrator expresses by the SMO language the desired
atomic changes to be applied to the input schema.

• The system virtually applies the SMO sequence to input schema and creates
the candidate output schema.

• The system verifies whether the desired evolution is resistant against loss
of data during executing the evolution. If so, we call the evolution as
information preserving.

• Each SMO in sequence is analyzed for redundancy. For instance, Copy
table SMO generates redundancies. A database administrator has to decide
whether such redundancy is intended or not.

• The system translates the desired SMO sequence into a logical mapping be-
tween schema versions. This mapping is expressed by so-called Disjunctive
Embedded Dependencies (DEDs).

• Query chase engine rewrites the queries expressed over the old schema into
equivalent queries expressed over the evolved schema. Alternatively the
SMO sequence is translated into SQL Views corresponding to the mapping
between versions to support queries over the data stored in the basic tables.

The whole phase can be iterated until the candidate schema is satisfactory
and the final schema is obtained.

Inverse Generation In this phase, on the basis of the forward SMO sequence,
the system computes the candidate inverse sequence. Then it checks, whether
the inverse SMO sequence is information preserving. If both forward and inverse
sequences are information preserving, the schema evolution is guaranteed to be
completely reversible.

64

Validation and Query Support In this phase the system translates the in-
verse SMO sequence into a logical mapping using DEDs. As in the last step
of the first phase, queries expressed over the evolved schema are rewritten into
equivalent queries expressed over the old schema. Also corresponding SQL views
are generated. According to results of this phase, the database administrator can
repeat phases one to three to improve the evolution.

Materialization and Performance This phase can be further divided into
four steps:

• The system translates both the forward and inverse SMO sequences into
SQL data migration scripts.

• On the basis of the previous step the system materializes evolved schema
and supporting queries in the old schema by views or query rewriting.

• Rewritten queries are tested against the materialized evolved schema for
absolute performance testing.

• Old queries are tested natively against the old schema. The results are
compared with the results of the previous step.

The database administrator can improve performance by modifying the schema
layout, for instance by modifying indices in evolved schema.

Deployment In the last phase, the old schema is dropped and old queries are
supported by SQL views or by query rewriting. The whole evolution process is
recorded into an enhanced information schema, to allow schema history analysis.
It is possible to preform a late rollback by generating an inverse data migration
script from inverse SMO sequence.

Data Migration And Query Support

The logical mapping between versions is expressed by DEDs. Each SMO in an
input SMO sequence is converted into DED, so each DED represents a given
mapping rule between the old schema and the evolved schema. Each SMO pro-
duces both forward and backward mapping. Forward mapping expresses how to
migrate data from the source (old) schema version to the target (new) schema
version. Using the generated DEDs, the queries are rewritten by engine using the
chase and backchase algorithm [30].

SMO to SQL SMOs are tailored to assist data migration tasks, therefore many
SMOs combine actions on both schema and data. In phase 4 of evolution process,
each SMO is translated into corresponding SQL data migration code. PRISM also
supports expressing of the mapping between versions in terms of SQL views. This
often happens in the data integration area. Views are usually used to enable what-
if analysis (forward views), or to support old schema versions (backward views).
Each SMO can be translated into a corresponding set of SQL views.

65

Discussion

PRISM workbench is a system for the support of database schema evolution. The
whole evolution process is based on 5-phase evolution process, including manu-
al design of desired evolution by SMO language and automated work of PRISM
tools to perform corresponding schema evolution, generate data migration scripts
and rewrite queries into equivalent one expressed on the new database schema.
The system was tested on Wikipedia database schema. Its 170+ schema versions
provided good testing environment for validating PRISM tools and ability to sup-
port legacy query rewriting. PRISM deserves further research, especially in the
field of optimization of performance or query rewriting, but it is clear that PRISM
takes a big step toward needs of database administrators to have methods and
tools to manage and automate the whole process of database schema evolution.

5.2.4 Automating the Database Schema Evolution Pro-

cess

In paper [28] the authors describe techniques and systems for automating the
critical tasks of migrating the database and rewriting the legacy applications. The
approach is an extension of the PRISM/PRISM++ framework [29]. Specifically,
SMOs are extended with integrity constraints (ICs) modification operators (key,
foreign key, and value). The main requirement mentioned by the authors is
to reduce time needed for particular migration process, e.g., downtime of the
system needed for migration. The paper extends previous results with following
extensions:

• Characterization of the impact on integrity constraints of structural schema
changes.

• Proposal of representations that enable the rewriting of updates.

• A unified approach for query and update rewriting under constraints.

Impact of an SMO on Integrity Constraints

To be able to handle IC problem, there must be generated a correct set of output
ICs for each SMO type and each set of input ICs. Suppose a schema S1 with IC
IC1:
S1 : V (a, b, c)
IC1 : V (a, b, c), V (a, b

′, c′)⇒ b = b′, c = c′.

Next, let the SMO is a decomposition of V into V 1(a, b) and V 2(a, c) Then,
the resulting schema S2 with output IC2 will be:
S2 : V 1(a, b), V 2(a, c)
IC2: V 1(a, b), V 1(a, b

′)⇒ b = b′

V 2(a, c), V 2(a, c′)⇒ c = c′

V 1(a, b)⇒ ∃cV 2(a, c)
V 2(a, c)⇒ ∃aV 1(a, b)

66

Rewriting Technology

The authors present a new rewriting technology for queries and for SMOs with
ICs. To be able to incorporate new features presented in this paper, the rewriting
engine had to be completely redesigned.

Automating the extraction of SMO

The next part of the paper introduces a (semi)automatic approach for generation
of SMOs from migration scripts written in MySQL dialect of SQL.

Discussion

The paper presents new abilities of the PRISM/PRISM++ framework – handling
ICs over SMOs. The authors present this feature as another important aspect of
the DBMS migration. Next, they introduce an approach for (semi)automatic gen-
eration of SMOs from an SQL migration script. Conclusion of the work compares
the presented solution with a number of commercial tools used in IT industry.

5.2.5 Adaptive Query Formulation

Papers [100] and [99] describe a graph-based approach to database schema evo-
lution.

Graph-based Model

The authors propose a graph-based model that uniformly covers relational ta-
bles, views, database constraints and SQL queries. Formally, the given database
schema is represented as directed graph G = (V,E), where V are the nodes of
the graph representing the entities of the model, and E are the edges represent-
ing the relationships between these entities. There are the following essential
components:

• Relations: The relation in the database schema is represented as a directed
graph, which includes:

– Relation node, representing relational schema.

– Attribute node, one for each attribute.

– Relationship edges directing from relation node to attribute nodes,
indicating belonging of an attribute to the relation.

• Conditions: The conditions refer to selection conditions (of queries and
views) and constraints (of a database schema). A condition node repre-
sents a given condition. The node is tagged with appropriate operator and
it is connected to the operand nodes. Composite conditions are simply con-
structed by tagging the condition node with a Boolean operator and the
appropriate edges to the conditions composing the given composite condi-
tion.

67

• Queries: The graph representation of the query includes a query node and
attribute nodes corresponding to the query projection. In order to determine
relationships between the query and the relations, the query is divided into
these essential parts:

– Select part: This part of the query maps appropriate attributes of
the involved relations to the attributes of the query projection through
edges of type map-select directing from the query attributes towards
the relation attributes.

– From part: This part of a query is considered as the relationship be-
tween the query and involved relations. The relations involved in this
part are combined with the query node through edges of type from-
relationship directing from the query node towards the relation nodes.

– Where and Having parts: These clauses are assumed to be in con-
junctive normal form (CNF) [73]. There exist two edge types where-
relationship and having-relationship directing from a query node to-
wards an operator node at the highest level of the conjunction.

– Group and Order By parts: For this part there are two special
nodes: a group-by node (GB) to capture the set of attributes acting
as the aggregators and an aggregate function node. There are the
following types of edges: group-by directing from a query node to a GB
node, and from a GB node to each aggregator, andmap-select directing
from each aggregated attribute to an aggregate function node and from
an aggregate function node to an appropriate relation attribute. Order-
by clause is performed similarly.

• Views: Views are considered either as queries or in case of materialized
views as relations.

Evolution Policies

In the context of the proposed graph-based model, changes in the database schema
are events which transform specific parts of the graph and eventually affect other
dependent graph constructs, which recursively may raise new changes, with an
impact on other graph constructs. To handle schema evolution, the graph con-
structs have to be annotated with policies that allow the designer to specify the
behavior of a given construct whenever change events occur. This combination of
event and policy triggers the execution of the appropriate action - blocks the event
or reshapes the graph respectively. Possible events are defined as the Cartesian
product of a set of hypothetical actions (addition, deletion, modification) and set
of graph constructs, which are subject of evolution (relations, views, attributes
and conditions). There exist three kinds of policies, which can be used with a
given event:

• Propagate the change, i.e., the graph has to be reshaped to adjust new
semantics.

68

• Block the change to retain old semantics and the event has to be blocked.

• Prompt the user to interactively decide what will eventually happen.

SQL Extensions

The authors propose an extension of a database system catalog with extra in-
formation regarding evolution purposes. Each assertion is considered as a tuple
(event, policy). These assertions extend SQL syntax both in DDL statements as
well as in SQL queries. The general syntax is: ON < event > THEN < policy >.
An event refers to evolution events in the database schema (delete, add, modify,
rename) and a construct type (node, relation, query, view, attribute, condition,
PK, FK, NNC, UC). The policy can take the values mentioned in previous section
(propagate, block, prompt).

Discussion

The papers present a graph-based approach to performing database schema evo-
lution. They focus on propagating potential changes of the database system to
all the affected parts of the system. There was introduced a complex graph-
based model, which covers the whole database system, including such elements
like queries or views. Also there was introduced an extension to the SQL lan-
guage specifically tailored for the management of evolution. The applicability
and efficiency of this approach has been tested in real-world evolution scenario
extracted from an application of the Greek public sector in a Hecateus tool. The
main goal of the test was to minimize the human effort required for defining and
setting the evolution metadata by using the proposed language extension.

5.2.6 Synchronization of Queries and Views Upon Schema

Evolutions: A Survey

Paper [15] presents an overview of various approaches dealing with database
schema evolution and query-view synchronization (QVS) in the last decades. The
authors divide approaches into three base groups:

1. Operation based approach: These approaches define commands for ev-
ery supported change operation and are based on analysis of these com-
mands.

2. Mapping based approach: The idea of mapping based approaches is
based on comparing and mapping the original and the evolved schema and
subsequent analysis.

3. Hybrid approach: Hybrid approaches exploit advantages and strength
points of both basic types.

Classification Framework

The authors define a classification framework for evaluation and the character-
ization each approach in terms of its capabilities and its proper context of use.
The proposed framework is structured into two groups of parameters:

69

1. Structural issues: The parameters in this group characterize how the
QVS problem is tackled by a single approach.

2. Semantic issues: The parameters in this group concern the aspects of the
QVS problem of a single approach faced by each approach.

The authors present and analyze particular approaches by the defined char-
acteristics and compare them by their abilities.

Comparison Results

Operation Based Approaches The authors compared seven approaches. They
concluded that only two of them are completely implemented. Next, they evalu-
ated that approaches differed in used query languages – some of them used SQL,
its extensions or custom non-SQL languages. Concerning the semantic issues,
most of the surveyed operation-based approaches provided a complete automat-
ed support to QVS.

Mapping Based Approaches The authors compared five approaches when
only one approach completely implemented the approach. As for schema change
languages, except for two approaches, which used algebraic mapping operators,
each of the remaining three approaches used a different mapping language, such
as matching formulas and local and external mappings.

Hybrid Approaches The authors evaluated six approaches from this group.
As was expected, hybrid approaches mix the characteristics of both operation-
based and mapping-based approaches. Hybrid approaches are based on many
different models and techniques that have little in common with the other two
classes of approaches. Thus, one important conclusion about this survey was
that there had been no leading model or technique that had conditioned the
development of QVS approaches.

Discussion

The paper presents an extensive set of current approaches of schema evolution.
The authors present a framework for comparison these approaches by defined
characteristics and present results of these analyzes. The analysis of the existing
approaches reveals that a considerable research effort has been devoted to this
area, which has led to the proliferation of many different approaches and tools.
They claim that although some of the surveyed approaches seem to be perfect
from a theoretical and an architectural point of view, they still lack implemen-
tation accuracy and completeness. They conclude that although the proposed
analysis does not allow them to determine which is the best approach, it enables
them to perform both a general comparison based on relevant characteristics and
to detect the most useful and suitable approach for a given application context.

5.2.7 Comparison of the Related Works

All presented works study the problem of database schema adaptation, but each
of them focuses on a separate part of this complex issue.

70

The first paper [79] describes an approach to the process of integration of
complex database schemas. It is based on the form-type concept, which is used
for conceptual database schema design in contrast to mainly used ER data mod-
el or UML class diagrams. The second paper [35] describes a (semi)automatic
approach to determining semantic correspondences between schema elements for
data migration applications. It focuses on the matching process where a mapping
proposal is created and each found correspondence is associated with some map-
ping category. These are then used to create parts of the mapping expressions.

The authors study the same problem in works [29, 28] – database evolution,
but each from the different point of view. The work [29] focuses on the support of
database schema evolution in traditional information systems. It introduces the
SMO language to design the desired evolution changes. Paper [28] is an extension
of the previous approach [29]. It adds a support for integrity constrains over SMOs
and a (semi)automatic generation of SMOs from SQL migration scripts. To be
able to incorporate these new abilities, current engine of the PRISM/PRISM++
tool had to completely redesigned.

Approach [99] is based on graph model of the whole database system, includ-
ing views, queries or constraints. The graph is annotated by policies to specify
behavior of given database system construct whenever change events occur. The
result of the work [29] is a sequence of traditional SQL statements, in contrast
to the last work [99], where the evolution is performed in place and all affected
elements are automatically adjusted into new version.

Paper [15] presents an extensive survey of existing approaches focused on
schema evolution. The authors classify the approaches by various issues and pro-
vide an analysis that can be used as an overview and start point of subsequent
approaches.

In this chapter we focus on the problem of database queries adaptation. We
focus especially on the following problems which were not solved in the papers:

• Modeling of database queries in a CASE tool together with the database
schema model.

• The mapping between a database schema and database queries.

• The propagation of changes between a database schema and database queries.

The main motivation for this solution was an ability to manage SQL schema
model changes, change analysis and (semi)automatic propagation to related SQL
query models without need of manual analysis and changes. Subsequently, this
solution can be interconnected with another models to form a complex tool for
system evolution management.

5.3 Database Model

The database model we consider is based on the relational database model. Such
a database model is used as platform-specific according to the MDA approach.

We are using a database model in two roles. Besides the classical PSM for
data, it is used as the PIM for a query model described in Section 5.4. The idea

71

of using the database model this way is simple. From the perspective of an arbi-
trary query language (not only SQL), the database model creates a basic concept
of a database schema. Each query language then creates own platform-specific
view of the platform-independent database model. The PSM database model is
described as follows:

Database Model Constructs

The model contains the following constructs:

• Table represents a given table in a given database system. Each table
construct can represent only one class from the PIM model. Every table
construct has a name and contains column constructs. Table constructs can
be connected by relationships.

• Column is a construct that can exists only as a child of a table construct.
Each column construct represents at most one PIM attribute. Every column
construct has a name, a data type, an indicator if it is used as primary key,
nullable or with a unique value.

• Relationship construct represents a connection between two table con-
structs. Every relationship construct has a role, which represents a logical
label for such connection, and cardinality of relationship. There can exist
more than one relationship between two table constructs, but each such
relationship must have a unique role.
The relationship between two tables is not only logical or virtual. It is based
on the concept of keys and foreign keys. If there exists a column construct
C, which is in table construct T1 used as primary key and in table construct
T2 used as foreign key, there must exist a relationship construct connecting
constructs T1 and T2.

An example of the model visualization is depicted in Figure 5.2.

Figure 5.2: An example of PSM database model

72

5.4 Query Model

For the ability of evolution of SQL queries related to a given database schema
there must exist a mapping between an SQL query and a database schema model.
This mapping helps to manage the evolution process to evolve the query related
to the evolved database schema. In this section we introduce a graph-based SQL
query model which is particularly designed for the evolution process. We describe
its visualization model, limitations and possibilities. The mapping between the
SQL query model and the database schema will be introduced as well. (The
algorithm to generate the SQL query from the model can be found in [19].)

The full SQL language syntax was not used in the proposal and for this reason
there exist some limitations on the used subset of SQL language:

• Projection operator ‘∗’ is banned to use. It is always necessary to enumerate
all the columns used in the SELECT clause.

• In queries it is possible to use only simple column enumeration, other ex-
pressions or functions other than aggregate functions are banned to use.
This limitation relates to the CASE construct as well.

• The model does not support UNION, INTERSECT and EXCEPT con-
structs.

• Each condition used in the SQL query is assumed to be in the conjunctive
normal form (CNF) [73].

The idea of the graph-based model results from papers [100] and [99]. Howev-
er, in this approach we use a graph-based model for query modeling, in contrast
to the mentioned papers, where graph-based model is implemented as a part
of the database management system (DBMS). The idea of a graph-based model
from [100] and [99] is adjusted and extended for the purposes of our approach.

First, each SQL query in the model is represented as a directed graph with
particular properties.

Definition 11. (Query Graph). A query graph G of the SQL query Q is a
directed graph GQ = (V,E), where V is a set of query vertices and E is a set of
query edges.

Definition 12. (Query Model). A query model M of the SQL query Q is a
pentad MQ = (GQ, TV , TE , τV , τE), where GQ is a query graph GQ = (V,E),
TV is a set of vertex types {AggregateFunction, Alias, BooleanOperator, Combi-
neSource, ComparingOperator, ConstantOperand, DataSource, DataSourceItem,
From, FromItem, GroupBy, Having, OrderBy, OrderByType, QueryOperator, Se-
lect, SelectItem, Where}, TE is a set of edge types {Alias, Condition, Condi-
tionOperand, DataSource,DataSourceAlias, DataSourceItem, DataSourceParent,
FromItem, FromItemParent, FromItemSource, GroupBy, GroupByColumn, Hav-
ing, MapColumn, MapSource, OrderBy, OrderByColumn, SelectColumn, Select-
Query, SourceTree, Where}, a function τV : V → TV assigns a type to each vertex
of the query graph GQ and a function τE : E → TE assigns a type to each edge of
the query graph GQ.

73

A query vertex represents a particular part of the SQL query, e.g., a database
table, a table column, a comparing operator in condition, a selected column in the
SELECT clause, etc. A query edge connects parts of the SQL query together and
gives a particular semantics to this connection. For instance the edge connecting
a From vertex and a Where vertex means that the query contains a WHERE
clause represented by the Where vertex.

Each query graph can be logically divided into smaller subgraphs. These sub-
graphs are called essential components. Each essential component has a visual
equivalent in the query visualization model (described in Section 5.5). There
exist the following essential components: DataSource, From, Select, Condition,
GroupBy, OrderBy. For instance, the simplest SQL queries of the form ’SELECT
projection FROM table’ require only DataSource, From and Select components.
Figure 5.3 illustrates a simple example of the modeled GROUP BY clause. The
example is equivalent to the following parts of the SQL query:

SELECT

CustomerId
as cid ,

COUNT(OrderId)
as orderCount

. . .
GROUPBY

CustomerId

Figure 5.3: An example of a simple model of the GROUP BY clause

(All these components contain subcomponents. The full list of the subcom-
ponents with their descriptions can be found in [19].)

5.5 SQL Query Visualization Model

Although the graph-based query model can describe any SQL query, it is relatively
complex. Even the query model for a simple SQL query contains a lot of vertices
and edges (see Figure 5.3). For this reason we proposed a visualization model,
which simplifies an underlaying query model for users and model creation.

5.5.1 Visualization Model Components

The visualization model is divided into so-called essential visual components.
Each essential component described in Section 5.4 has its visual equivalent by

74

an essential visual component, so each visual component represents a part of the
SQL query graph model. We distinguish the following visual components: Data-
Source, QueryComponent and Component Connection.

DataSource Visual Component A DataSource visual component visualizes
a DataSource essential component. Each DataSource has a name, which clearly
identifies the given data source. The content of the DataSource component is
a list of DataSourceItem visual components. The DataSource visual component
itself corresponds to the DataSource vertex. The DataSourceItem visual com-
ponents correspond to the DataSourceItem vertices. For example, the rectangle
Customer in Figure 5.4 shows an example of DataSource visual component. The
example represents a database table Customer with columns: customerId, first-
name, lastname, email and phone.

QueryComponent Visual Component A QueryComponent is a universal vi-
sual essential component, which represents parts of the SQL query. A basic
appearance of all query components looks the same. We distinguish the follow-
ing types of query components according to the clause of the SQL query they
represent: Select, From, Where, GroupBy, Having, OrderBy. For example, the
rectangle Where in Figure 5.4 illustrates an example of the QueryComponent vi-
sual component. The example shows visualization of the WHERE clause.

Component Connection A Component Connection does not correspond direct-
ly to any essential component of the query graph. Instead, it covers a connection
of two essential components to finish the correct and complete query graph. We
distinguish the following types of connections: DataSource → From, Select →
From, Where → From, GroupBy → Select, Having → From, OrderBy → From.
For example, Figure 5.4 shows a visualization model of a more complex SQL
query. The modelled SQL query is the following one:

SELECT

c . f i r s tname , c . lastname ,
a . s t r e e t , a . c i ty ,
a . postcode

FROM

Customer as c JOIN

Address as a
ON c . customerId = a . customerId

WHERE

(c . f i r s tname = ’ John ’ OR

c . f i r s tname = ’ Jane ’)
AND

(c . lastname = ’Doe ’)
ORDER BY

c . customerId ASC,
c . lastname ASC, a . postcode DESC

75

Figure 5.4: An example of a visual model of a more complex SQL query

Figure 5.5: An example of a mapping between database model and query model

For comparison, the underlaying query graph model consists of 45 vertices
connected by 87 edges.

5.5.2 Mapping to the Database Model

Since the database model consists of tables and its columns which we can interpret
as a general source of data, we have a direct mapping from the database model
to the query model. We do not consider database relationships between database
tables in the database model. For the purpose of the query model they are not
important.

The mapping between the database model and the query model is described
as follows:

• Database table→ DataSource The database table in the database mod-
el is mapped to the DataSource visual component which corresponds to the
DataSource vertex of the underlaying query graph.

• Table column → DataSourceItem The table column in the database
model is mapped to the DataSourceItem visual component which corre-
sponds to the DataSourceItem vertex of the underlaying query graph.

An example of the mapping is shown in Figure 5.5. The example illustrates
the mapping from a database table Customer to a DataSource visual component
called Customer.

76

Note that the mapping does not preserve keys (primary keys, foreign keys)
and any other column attributes like NOT NULL or UNIQUE. For the purpose
of the data querying this property is insignificant.

5.5.3 Mapping of Operations

In this section we describe the mapping of the operations of database and query
models used in the evolution process.

All changes in the database model are done via atomic operations. All atomic
operations in the database model which have an impact on the SQL query model
are translated by the evolution process into corresponding atomic operations in
the SQL query model.

Database Model Operations

Let us suppose a database model MD, which is a set of tables Ti, i ∈ [1, n].
Each table Ti ∈ MD has a name TiN and a set TiC , which is a set of columns cj,
i ∈ [1, ni]. Each column cj has a name cjN .

• Renaming Database Table (αT : (Ti, m) → T ′
i): The operation returns

table T ′
i where T

′
iN

= m and T ′
iC

= TiC .

• Removing Database Table (βT : (MD, Ti) → M ′
D): The operation re-

moves database table Ti ∈ MD from the database model MD. It returns
database model M ′

D where M ′
D =MD\{Ti}.

• Creating Table Column (γC : (Ti, cj) → T ′
i): The operation adds the

column cj into table Ti. It returns table T ′
i where T ′

iN
= TiN and T ′

iC
=

TiC ∪ {cj}.

• Renaming Table Column (αC : (cj , m) → c′j): The operation returns
column c′j where c

′
jN

= m.

• Removing Table Column (βC : (Ti, cj) → T ′
i): The operation removes

column cj ∈ Ti from the table Ti. It returns table T
′
i where T ′

iN
= TiN and

T ′
iC

= TiC\{cj}.

SQL Query Model Operations

Let us suppose a query model MQ, whose query graph GQ consists of a set of
DataSources Di, i ∈ [1, k] and other components, which are not important for
our purpose. Each DataSource Di ∈ MQ has a name DiN and a set DiI , which
is a set of DataSourceItems dj, j ∈ [1, ki]. Each DataSourceItem dj has a name
djN .

• Renaming DataSource (αD : (Di, m) → D′
i): The operation returns

DataSource D′
i where D

′
iN

= m and D′
iI
= DiI .

• Removing DataSource (βD : (MQ, Di) → M ′
Q): The operation removes

DataSource Di ∈ MQ from the query model MQ. It returns query model
M ′

Q where M ′
Q =MQ\{Di}.

77

• Creating DataSourceItem (γI : (Di, dj) → D′
i): The operation adds

DataSourceItem dj into DataSource Di. It returns the DataSource D
′
i where

D′
iN

= DiN and D′
iI
= DiI ∪ {dj}.

• Renaming DataSourceItem (αI : (dj, m)→ d′j): The operation returns
DataSourceItem d′j where d

′
jN

= m.

• Removing DataSourceItem (βI : (Di, dj) → D′
i): The operation re-

moves DataSourceItem dj ∈ Di from the DataSource Di. It returns Data-
Source D′

i where D
′
iN

= DiN and D′
iI
= DiI\{dj}.

Complex Operations

More complex operations like Split, Merge, Move done in the database model can
be propagated to the SQL query model as well. In the SQL query model these
operations are simply composed of the mentioned atomic operations.

5.6 Change Propagation in the Graph

The database model operations described in Section 5.5.3 have an impact on
the queries in the SQL query model. During the evolution process, changes in
the database model have to be propagated to the SQL query model, where the
modeled queries are adapted to the current database model. However, sometimes
a simple direct propagation is not correct. For instance, if a new column is added
to the database table, we may not want to add a new column to the SELECT
clause of the query. For this reason we propose so-called propagation policies,
which influence the behavior of the propagation. The policies are defined for the
vertices of the query graph, which participate in the change distribution process.

We distinguish the following propagation policies:

• Propagate: This policy allows to perform the change directly. Subse-
quently, the propagation is passed on the following vertices in the change
process.

• Block: This policy does not allow to perform the change. The subsequent
propagation is stopped and the following vertices in the change process are
not visited.

• Prompt: The system asks a user which of the two above policies should
be used to continue.

5.6.1 Query Graph Operations

As mentioned before, the SQL query model operations described in Section 5.5.3
are atomic operations, i.e., they cannot be divided into smaller operations. In
fact, these atomic operations consist of many smaller steps called graph opera-
tions, which modify the query graph of the SQL query model. In the following
definitions GQ represents a query graph GQ = (V,E). We distinguish the follow-
ing graph operations:

• CreateVertex (γv : (GQ, v) → G′
Q): The operation returns graph G′

Q =
(V ∪ {v}, E).

78

• CreateEdge (γe : (GQ, vsource, vtarget, etype) → G′
Q): The operation creates

edge e = (vsource, vtarget) such that EdgeType(e) = etype and returns graph
G′

Q = (V,E ∪ {e}).

• RemoveVertex (βv : (GQ, v)→ G′
Q): The operation returns graph G′

Q =

(V \{v}, E
⋂

(

V \{v}
2

)

).

• RemoveEdge (βe : (GQ, e) → G′
Q): The operation returns graph G′

Q =
(V,E\{e}).

• ChangeLabel (λ : (v, l) → v′): The operation returns query vertex v′,
where vertex type v′type = vtype and label v′L = l. (For instance, it returns
the DataSourceItem vertex with a new name.)

• ChangeConnectionType (η : (C, t)→ C ′): This operation returns Com-
bineSource vertex C ′ with connection type C ′

T = t.

• ResetContent (ρ(GQ, C)): Since the visualization model visualizes the
query graph, they have to be synchronized. This operation is used to signal
the parent visual component C that a change in the query graph GQ has
been done and the content of the visual component has to be updated.

These atomic operations are combined in the set of composite operations
which are called in the evolution process. All these functions with their algo-
rithms are described in [19].

Example 8. First, Algorithm 1 creates a new FromItem vertex in the corre-
sponding From vertex and connects it with appropriate vertices. Subsequently it
traverses to the Select vertex, where it creates corresponding vertices and edges
using algorithm DistributeCreatingDatasourceItemSelect (see [19]). Finally, it
traverses to the OrderBy vertex, where it creates corresponding vertices and edges
using algorithm DistributeCreatingDatasourceItemOrderBy. Figure 5.6 depicts
adding of a new DataSourceItem OrderDate to the DataSource component using
Algorithm DistributeCreatingDatasourceItem and to the From component using
Algorithm 1. In Figure 5.6 the original elements are black and the new elements
of the query graph are highlighted with a red color.

Algorithm DistributeCreatingDatasourceItemSelect creates a new SelectItem
vertex in the SELECT clause. Then it checks, whether the GroupBy vertex
exists. If it does, it connects the GroupBy vertex with the new SelectItem vertex.
Finally, it traverses to all Alias vertices of dependant queries and applies already
mentioned Algorithm 1.

5.7 Implementation and Experiments

The full experimental implementation of the presented approach was incorporated
into the DaemonX framework. (In fact, Figures 5.2, 5.4 and 5.5 are screenshots
of the application.) Our approach adds two new plug-ins into the framework.
The first plug-in is a plug-in for SQL query modeling described in Section 5.5
(a screenshot from this plug-in is depicted in Figure 5.4). The second plug-in is

79

Figure 5.6: An example of adding new DataSourceItem to the DataSource and
to the From components

used for evolution propagation from the PSM database model to the SQL query
model (as described in Section 5.6).

Since there are no existing applications which provide similar functionality,
to be able to compare our approach in a meaningful way we used an existing
database project Adventure Works [1] to evaluate validity of the algorithms. Next,
we measure and compare the effort that must be done by manual update of the
queries against (semi)automatic changes done by the algorithms. An inspiration
was taken from [99]. We modeled in the database model a set of tables of a given
database schema (the list of them can be found in [19]). From this database model
(74 tables) we derived to the query model tables as DataSources, which we used to
model queries and views. Next, we applied various operations over the database
model to simulate propagation to the query model. After the propagation the
new queries were inspected if they correspond to the expected results. Next, the
number of required manual changes to update related queries was evaluated.

To demonstrate a part of the experiments we present an example of adding
a new column to the table and its propagation to the related GroupBy query.
Suppose the following SQL query which model is depicted in Figure 5.7:

80

Algorithm 1 DistributeCreatingDatasourceItemOnAlias

Require: Alias vertex A, change context C
Ensure: Graph operations to create new DataSourceItem.
1: fromV ertex← A.GetNeighbour(DataSourceAlias)
2: newItem← new FromItem(C.Name)
3: C.P lan← CreateV ertex(C.GQ, newItem)
4: C.P lan← CreateEdge(C.GQ, C.Originator, newItem, FromItemSource)
5: C.P lan← CreateEdge(C.GQ, newItem,A,Alias)
6: C.P lan← CreateEdge(C.GQ, fromV ertex, newItem, FromItem)
7: C.P lan← CreateEdge(C.GQ, newItem, fromV ertex, FromItemParent)
8: C.Originator← newItem
9: selectV ertex← fromV ertex.GetNeighbour(SelectQuery)

10: if selectV ertex != null then
11: DistributeCreatingDatasourceItemOnSelect(selectV ertex, C)
12: end if
13: orderByV ertex← fromV ertex.GetNeighbour(OrderBy)
14: if orderByV ertex != null then
15: DistributeCreatingDatasourceItemOnOrderBy(orderByV ertex, C)
16: end if
17: C.P lan← ResetContent(C.GQ, fromV ertex)

SELECT

d .GroupName ,
COUNT(d .Name)

as NumberOfDepartments
FROM

HumanResources . Department as d
GROUPBY

d .GroupName
HAVING

COUNT(d .Name) > 2
ORDER BY NumberOfDepartments DESC

A new column GroupID was added to the table HumanResources.Department.
This change was propagated to the complex GroupBy query. The new column
was added to all its components. A manual update of the query requires three
updates (to SELECT, GROUP BY and ORDER BY). The original query was
transformed by algorithm DistributeCreatingDatasourceItem (described in [19])
to the new query (its model is depicted in Figure 5.8):

SELECT

d .GroupName ,
COUNT(d .Name)

as NumberOfDepartments ,
d . GroupID

FROM

HumanResources . Department as d
GROUPBY

d .GroupName , d . GroupID
HAVINGCOUNT(d .Name) > 2

81

ORDER BY

NumberOfDepartments DESC,
d . GroupID ASC

Figure 5.7: Model of the complex usage of complex GroupBy query

Figure 5.8: Updated model of the complex GroupBy query

In general, the full experiment uses all 74 tables with correspondent relations.
As SQL queries we used 20 views included in the DB scripts plus 10 additional,
more complex queries (involving use of GROUP BY, HAVING, multiple JOIN s,
etc.). We updated the SQL table model by adding and removing and renaming
various tables and columns, totally by applying 20 changes. Updated queries
were verified to return expected results. From the experiment we can observe the
following results:

• The number of changes is naturally related to occurrences of tables and
columns of database model contained (related) in query models.

• During the experiments 476 query updates were done automatically.

• All changes except adding a new table have an impact on the SQL queries
if the constructs are presented in the queries.

82

• There were found no invalid queries except some edge cases, e.g., removing
of the column that was used alone in the SELECT clause which leads to
an invalid SQL query. The same holds for table removing. This situation
should be reported to the user and needs a manual update.

The experimental implementation can be found at this resource1.

5.8 Conclusion

In this chapter we have focused on a specific part of the problem of change
management of applications – evolution of a relational schema and its propagation
to respective SQL queries. For this purpose we defined a model representing
SQL queries. The main contribution of our approach is the ability to model
SQL queries concurrently with the respective schema, to interconnect schema
and query models and to analyze changes performed in the database model and
to update the query model to preserve their compatibility and correctness. The
approach enables the user to perform changes in the database model without an
inspection of all the related views / queries by looking for an inconsistency of the
queries and the new database schema. Changes in the database schema model
are propagated immediately to the respective SQL query model using mutual
mapping algorithms.

5.8.1 Future Work

Although the approach presents a new SQL query model and multiple algorithms
of model operations and evolution, there exists a number of open problems:

• More complex constructs : A natural first extension is towards more complex
SQL constructs we have omitted, e.g., use of asterisk in SELECT clause.

• Support for other languages : we can consider also other query languages,
such as XQuery for XML data or SPARQL [130] for RDF data. And, last
but not least, there is an important aspect of semantics of the data and
queries which may highly influence the propagation mechanism.

1http://www.ksi.mff.cuni.cz/~polak/daemonx/

83

http://www.ksi.mff.cuni.cz/~polak/daemonx/

84

6. Service Interfaces and
Business Processes Evolution

In the previous two chapters we focused on evolution of XML and relational
schemas and propagation of the changes to related queries. This idea can how-
ever be extended to a distinct area of business processes. If there exists a model
describing a business process, it is possible to analyze changes and define algo-
rithms providing evolution of a business process – i.e., not only data or query
model. In this chapter we present a method which derives and adapts optimal
communication XML schemas for a given conceptual schema of a business pro-
cess, complemented with a conceptual schema of the exchanged data. The model
presented in this chapter in the context of the five-level evolution management
framework is depicted in Figure 6.1. The approach was implemented within the
DaemonX framework including experiments proving the concept. The approach
was presented in [75].

Figure 6.1: Location of the business process model and respective change propa-
gation in the five-level evolution management framework

6.1 Introduction

Nowadays, there are various popular notations of business process modeling, such
as, e.g., BPMN. Modeling of business processes at the conceptual level allows do-
main experts to cooperate in the analysis and to design the software at a higher
level of perspective. Business processes are modeled as tasks and communica-
tions among them. One communication is usually represented by one data object
transferred from one task to another. Hence, business process modeling notations
are usually extended with a conceptual data modeling language, e.g., UML, to
support modeling of the data objects. It is also common that related business
rules are expressed in special languages, e.g., in OCL, to represent restrictions
on the data objects.

The business process model can be then translated to a set of web services
and executable BPEL scripts which orchestrate all related parts together. Besides
this, it is necessary to define the structure of each data object in the business
model. Since web services usually communicate by exchanging XML data, a

85

software architect also has to define XML schemas of the data, e.g., using the
XML Schema language. In addition, there exist common requirements for the
structure of the XML schema used in web services – the structure should be
readable, it should satisfy the conditions of business rules and it should not
contain redundant data.

Situations such as changes of BPEL scripts or XML schemas can raise several
problems. In particular, adaptation of business processes covers many related
issues. The two key ones are the evolution of a software and integration with
other softwares.

• A change of the conceptual model of a data object can cause a malfunction
of the whole system. It is necessary to change an XML schema of the data
object.

• A change of business rules of a data object can cause an inadequate behavior
and response of the system. A previous XML schema of the data object
was designed for previous business rules.

• Adding or removing of tasks can cause a malfunction of the whole system.
It is necessary to change an XML schema of the data object reconnected to
the new or different tasks.

In particular in this chapter we focus on the sub-problem of changes in con-
ceptual models and their consequences on the data objects. For example, assume
that for one business process sequence flow Order which transfers data about
user’s order a data object was designed. This data object represents a part of
the conceptual data model of the whole system. The business of the company
was later extended and it is necessary to have more information about the us-
er. Therefore, the conceptual model of the system was extended with two more
information about the user, e.g., phone and email. This information has to be
transferred everywhere where the user’s information occurs. That is why the se-
quence flow Order and all others, which contain the user’s information, have to
be updated. In particular, the task is:

1. to identify all XML schemas working with the user’s information

and

2. to define a change for each found XML schema from the first phase.

We present a method which derives (and adapts) optimal XML schemas for
a given conceptual schema of a business process, complemented with a concep-
tual schema of the exchanged data. We derive several XML schemas from the
given inputs and choose the one which has minimal values for three proposed
metrics which measure the quality of an XML schema document with respect to
the conceptual model of the exchanged data and business rules applied on them.
Hence, we also discuss the problem of change adaptation of the derived XML
data. In other words, an optimal communication XML schema is a schema which
has the best result given by the several quality metrics with respect to the busi-
ness process conceptual schema defined and applied on the schema. The quality
metrics measure redundancies in exchanged XML documents and complexity of
evaluating business rules specified by the business process conceptual schema.

86

6.2 Related Works

In this section, three papers related to generation of an XML schema from an
other model are discussed. The last part of this section provides a summarizing
comparison of all discussed papers and briefly introduces the main issue of this
work.

6.2.1 UML and XML Schema

Paper [96] describes an approach for mapping between the UML class diagram
and the XML Schema using a three-level design approach. The main aims of the
paper are:

• To define the three-level design approach.

• To introduce a logical level of the design.

• To propose a general algorithm for transformation from the conceptual level
to the logical level.

Three-Level Design Approach

The paper introduces the three-level design approach consisting of the following
parts:

• Conceptual level

• Logical level

• Physical level

The conceptual level is the UML class diagram with several non-standard
annotations, such as a primary identification of a class. The logical level uses a
defined UML profile for an XML Schema (i.e., an extension of the UML). It uses
mainly stereotypes of classes to define XML Schema concepts in the UML profile.
A detailed description of this UML profile can be found in Section 3 of paper [96].
The physical level defines data structures by using the implementation language
– in this case the XML Schema. It is a particular XML Schema generated from
the logical level model. There is a direct bidirectional mapping from the logical
to the physical level.

Conceptual to Logical Level Mapping

An XML schema is hierarchical structure from its nature. Hence, generating
of a logical level model from a conceptual one requires to choose one or more
conceptual classes to root the tree-hierarchy. The approach proposed by the
authors of paper [96] aims to minimize redundancy and to maximize connectivity
of XML data structures (i.e., make the structure compact without redundant
elements) and it is directly based on paper [9]. There are however differences in
the algorithm because of differences between Object Role Modeling (ORM) [57]
and UML. One of the main differences is that the concept of Anchors used in
paper [9] to identify the direction of the nesting was not used in this approach.
Instead, the authors use the navigation and cardinalities of a relation.

The mapping consists of the following four steps:

87

• Generate Type Definitions: It creates type definitions for each attribute
and class in the conceptual diagram. It means, creation of complex types
and primitive types with restrictions.

• Determine Class Groupings: It determines how to group and nest con-
ceptual classes based on relations between them. It uses simple rules based
on the navigation of relations and their cardinalities. These rules try to
reduce redundancy of the created XML schema and to maximize the con-
nectivity.

• Build the Complex Type Nestings: After identifying of nesting di-
rections from the previous step, it is necessary to perform complex type
nesting. This is done in this step which creates the hierarchical structure.
This is done by an analysis of uniqueness key and mandatory constrains of
elements. An example can be elements Lecturer and Subject. If a Subject
can be headed by more than one Lecturer, nesting Subject inside Lecturer
causes redundancy. Next, if a Subject does not need to be headed, then
nesting a Subject inside a Lecturer makes impossible to represent a Subject
without a Lecturer.

• Create a Root Element: At the end, it is necessary to define the root
element of the created XML schema. A new element representing a root of
the schema is created and nested elements created from the previous step
are added as subelements.

Discussion

The paper presents an approach to automatic generation of an XML schema
from a UML model. It uses a three-level design which is similar to the MDA.
From the user’s point of view, this method is useful for reducing redundancy and
maximizing connectivity in the created XML schema. Beside advantages of this
paper, it has some limitations. It needs additional constructs in UML. In the
solution presented in this paper, it is also impossible to define a mixed content.

6.2.2 XSEM – A Conceptual Model for XML

Paper [90] describes an approach for conceptual modeling of XML data. It
presents a two layer design. The first layer, XSEM-ER, represents an overall
conceptual layer. It uses an extension of the ER. The second layer, XSEM-H,
represents hierarchical organization of structures from the first layer. It introduces
the transformation from XSEM-ER to XSEM-H by Operators. It is possible to
create more than one XSEM-H model from one XSEM-ER model. It is also
possible to use only a part of XSEM-ER in the transformed XSEM-H model.

During the transformation of XSEM-ER to XSEM-H, an interconnection be-
tween two models is created. Thanks to this, it is possible to support evolution
operations, which were described in [93]. The evolution is based on a propagation
of changes from the XSEM-ER model to the connected XSEM-H model. Changes
on XSEM-ER are made by atomic operations, which have their counterparts on
XSEM-H.

The visualization of the XSEM-H model is the most important part of this
paper for the purpose of our approach. This model and the visualization with

88

a small extension are used for the modeling of XML schema results. Therefore,
this part of the paper is described bellow.

XSEM-H

XSEM-H is an extension of the UML class diagram. It takes a part of class
diagram components and adds new components. Next, there is defined a bidirec-
tional mapping between XSEM-H and the XML schema.

The new components of the XSEM-H are as follows:

• Class: It represents a class from the XSEM-ER model. Each class has a
name, a label and it contains attributes. It can be connected with other
classes by associations.

• Attribute: It represents an attribute from the XSEM-ER model. It can
exist only as a part of the class. It can represent zero or one attribute from
the XSEM-ER model. Each attribute has a name, a data type, a cardinality
and a position.

• Association: It represents a connection between two XSEM-H classes in
the relation parent-child. It can represent a whole set of XSEM-ER associ-
ations.

• Content Choice: It represents choice element of the XML schema.

• Content Sequence: It represents sequence element of the XML schema.

• Content Set: It represents all element of the XML schema.

This functionality of the mapping was implemented in tool XCase [121] and
visualization of XSEM-H was implemented in DaemonX framework as a modeling
plugin.

Discussion

The paper presents a novel and detailed approach for conceptual modeling of XML
data that uses two interconnected layers of abstractions. In related paper [93],
the evolution process between these two layers is described. Presented approach
was experimentally implemented in [121] and [119].

6.2.3 An Extension of Business Process Model for XML
Schema Modeling

Paper [80] describes an approach for deriving optimal communication XML for-
mats for a given conceptual schema of a business process with a conceptual schema
of exchanged data. The authors use the approach of MDA. They introduce PIM
and PSM models for a conceptual model of exchanged data and they further
extend it with OCL constraints over the PIM model.

89

Metrics

An optimal XML format is defined by two metrics computed over the PSM model.
To choose the optimal PSM model, it is necessary to create all possible PSM
models from the given PIM model. Hence, this approach has an exponential
complexity in all cases.

This paper is however important because of the presented metrics:

• Redundancy Metric: It defines functions which compute a positive num-
ber for each class of the PSM model. The value of the metric is the sum of
the computed class values.

• Business Rules Metric: For each OCL expression defined over a PIM
model it creates paths of classes from the PIM model. For each path, it finds
a subpath in a PSM model. Classes from the PSM model are connected
to classes from the PIM model. This connection was created during the
derivation of all possible PSM models from the PIM model. For each path,
a positive number based on subpaths in the PSM model is computed. The
value of the metric is the sum of computed path values.

For each PSM model, these two metrics are computed. According to user’s
preferences, which metric is more important, the final value for one PSM model
is computed. The optimal PSM model has the lowest value.

Discussion

The paper presents a novel approach to the generation of conceptual model of
exchanged data in business process modeling. It defines two metrics used to
choose the optimal XML schema for exchanged data. These metrics choose a
conceptual model with minimal redundancy and a maximal connectivity.

It uses a restricted UML class diagram as a PIM model. Because of that, it
is not usable in larger systems, where more complex concepts of the UML class
diagram are required to create a conceptual model of the exchanged data.

6.2.4 Comparison of the Related Works

All presented works study problems related to conceptual modeling of an XML
schema. Each of them focuses on the problem from a different point of view.

Paper [96] describes an approach to three-level conceptual modeling and to
generation of a logical level using UML and UML profile. It uses a set of rules to
define nesting and hierarchical structure.

Paper [90] describes an approach to conceptual modeling and to generation
of the PSM model. It defines an extended ER model for conceptual modeling.
It uses own PSM model XSEM-H. It introduces a transformation, which allows
multiple PSM models for one PIM model. The authors continue with the work
and introduce methods for propagation of evolution operations.

Paper [80] describes an approach to conceptual modeling and to generation of
the PSM model by defining own PIM and PSM model. It uses metrics to choose
an optimal PSM model from the set of all possible PSM models.

In this chapter, we focus on the problem of derivation an optimal XML schema
for business process models and on the influence of changes in the business process

90

model on the generated XML schemas. The main motivation of this solution was
to evolve business model and to generate related optimal communication schemas
in a (semi)automatic way to limit manual effort of user. This solution brings
benefits in situations of complex business models and communication schemas
where the analysis of the process change and subsequent update of the schema is
a non-trivial task. We focus especially on the following problems:

• To identify metrics for choosing the optimal XML schema for a business
process.

• To propose an algorithm for creating PSM models from the given PIM
model.

• To analyze changes in the business process model and their influence on the
generated XML schema.

• To propose algorithms to update the derived XML format, with user’s co-
operation, according to changes made in the business process model.

6.3 Business Processes and Conceptual Model-

ing

First of all we will provide a brief overview of modeling tools related to business
processes which we exploit in the rest of the chapter. We refer the interested
reader to the respective specifications for further details.

The Business Process Model and Notation (BPMN) describes graphical no-
tation that business process analysts and users can use to model and to define
business processes. It is also used as a support for process interactions and a
documentation of a system. A business process diagram consists of five primary
elements: (1) flow objects divided into activities, events and gateways, (2) con-
nection objects which connect flow objects (we distinguish sequence flows and
message flows), (3) swimlanes used to organize processes and responsibilities in
the diagram, (4) artifacts extending basic BPMN with associations, groups and
text annotations, and (5) data objects.

The UML specification contains a lot of different types of diagrams. The class
diagram is the most important one for the purpose of our solution. It divides the
modeled structures of a system into classes with different attributes representing
their properties and relationships representing relations to other classes, such as
association, aggregation, composition or generalization. In the area of business
processes UML is used to describe the structure of data objects.

The OCL is a formal language used to describe expressions over UML models,
especially class diagrams. These expressions usually define invariants and condi-
tions over objects described in the model. In the area of business processes we use
OCL to create business rules connected to data objects. Each OCL expression
has a context, i.e., an instance of a class from the class diagram. Expressions
consist of paths navigating through the class diagram and functions from the
standard OCL library.

91

6.4 Proposed Approach

Primarily we had to extend DaemonX for the purposes of business process mod-
eling indicated in Section 6.3. Thanks to its plug-in-ability it was not a difficult
task. First, we used the common conceptual model of the whole problem domain
of the system (the general PIM). Second, since the data objects are usually as-
sociated with only a part of this problem domain, we use a new model called
PIM-View for this purpose. It is a general UML class diagram extended with
a new value. Each class contains a property count, where count ∈ N0 ∪ {∗} is
the maximum number of instances of the class assigned by a domain expert (we
will show its usage later). Third, the resulting optimal XML format is stored
as a conceptual model XSEM PSM. Fourth, for business process modeling, we
have implemented a new BPMN model called PIM process which is a classical
BPMN model extended with one new artifact named data artefact. It represents
the data exchanged in the business process model. Fifth, to express business
rules over a conceptual model of the data objects we use OCL. This functionality
was introduced to DaemonX within Master thesis [101]. Figure 6.2 depicts the
MDA architecture of the models. Note that the figure shows also the schema and
physical level which we omit for space limitations. For the formal definitions of
the models see [74].

Figure 6.2: MDA and business process modeling in DaemonX

For an illustrative example consider Figure 6.3. The PIM diagram contains
the conceptual model of the whole problem domain. The PIM-View diagram is
based on the PIM diagram. Mapping between elements of diagrams are depicted
by blue lines. Both diagrams have to be created by a domain expert. OCL
constraints can be created too. They have to be connected to elements from
the PIMs. This can be done by choosing correct values in drop-down lists. The
mappings are depicted by yellow lines. The PIM process diagram has to be
created by the domain expert too. Its data artifacts have to be connected to the
created PIM-View diagram and, consequently, the XSEM PSM. This mapping is
depicted by green lines.

92

The final optimal XML schema (format) is stored as a conceptual model
presented in paper [90]. However, we had to extend this XML conceptual model
with specialization, keys and key references to support all functionalities used
in our approach. This extension is straightforward and based on XML Schema
constructs inheritance, key and key-ref. Therefore, we omit its explanation. The
business process model is modeled by BPMN and business rules are described in
OCL.

93

Figure 6.3: PIM and PSM example of business process modeling

As we have mentioned, we also extended BPMN with one new artifact called
Data Artefact. It can be connected only with sequence flows, whose source is an
activity. It represents the data exchanged in the business process model. During
creation of this element, it is necessary to define a PIM-View diagram, which
represents a conceptual model of this data. After derivation of an optimal XML
schema, it stores the connection to the created XSEM PSM diagram. Figure 6.4

94

depicts the whole architecture of our models.

Our approach can be divided into two parts. The derivation part (Sec-
tion 6.4.1) involves derivation of several XML schema documents for given inputs,
computing their quality and selecting the optimal one. The evolution part (Sec-
tion 6.4.2) involves the analysis of user’s changes and their influence on derived
XML schema document.

Figure 6.4: Architecture of DaemonX models related to business process model-
ing

6.4.1 Derivation Part

We re-use and extend the approach of paper [80] to define features of an optimal
communication XML schema for a given conceptual schema of a business process,
complemented with a conceptual schema of the exchanged data. Especially, we re-
use two metrics and we add one new. In particular, paper [80] ignores cardinalities
of relations which leads to loss of information, specifically for cardinalities with
the bound value equal to zero. Hence, we use the idea presented in [96] and
we study navigation and cardinalities of relations in the conceptual model of the
exchanged data. First, we generate candidate XML schemas, then we apply the
given metrics and choose the optimal one.

In the whole derivation process, we work with a forest of XML schemas. The
root of an XML schema is an artificial class, which is not important for derivation
process. We call it schema root class and its children we call root classes.

Relation Types and Cardinalities

The first step in deriving an optimal XML schema is to derive XSEM PSM
schemas, i.e., to create hierarchical tree structures from general PIM graphs.
First, let us discuss types of relations. In general, relation types of a PIM-View
model are equivalent in semantics to relation types of a UML class diagram. As-
sociation is a general relationship between two classes. Hence, we cannot use this
information to specify the nesting of classes. Aggregation is a specialization of
the association. It specifies a whole-part relationship. In basic aggregation rela-
tionships, the lifetime of a part class is independent of the whole class’s lifetime.
Therefore, we also cannot use this information. Composition is a stronger form
of the aggregation, where the whole and parts have coincident lifetimes. Thus,
we can use only this type of a relation to specify the nesting of classes. If we do

95

not nest the part class into the whole class, we have to use keys to refer to this
part class. We always nest classes according to the direction of the composition.

On the other hand, cardinalities are the main indicator for nesting of classes.
Note that a domain expert can change cardinalities in a PIM-View diagram, i.e.,
they do not have to be the same, as in the PIM diagram. For us only few types
of cardinalities are important: 〈0, 1〉, 〈0, m〉, 〈0, ∗〉, 〈1, 1〉, 〈1, m〉, 〈1, ∗〉, 〈m,n〉,
〈m, ∗〉, where m,n ∈ N0 and m,n > 1 and m,n 6= ∗. We will work with two
features of the XML schema:

• Data redundancy means occurrence of the same data more than once.

• Compactness (or connectivity) means storing related data together in the
hierarchical structure of the XML schema.

Having a relation between classes A and B, we will discuss only the most
important cardinality combinations (denoted card(A) and card(B)):

1. card(A) = 〈1, 1〉 and card(B) = 〈x, y〉 where x and y are ≥ 0 (see Figure 6.5
(a)): If we nest class B into class A, it leads to data redundancy and to
creation of a separate root class for class B in the XML schema. Therefore,
we nest class A into class B.

2. card(A) = 〈x, y〉, where A.x ≥ 1 and A.y is arbitrary and card(B) = 〈0, y〉,
where B.y ∈ {1, m, ∗} (see Figure 6.5 (b)): If we nest class B into class
A, we get the same problem as in the previous case. If we nest class A
into class B, we create data redundancy, but there is no need to create a
separate global class. Therefore, we nest class A into class B.

3. card(A) and card(B) are of type 〈x, y〉, where x ≥ 1 and y > 1 (see
Figure 6.5 (c)): In this case, we try to reduce data redundancy by nesting
the class with the lower upper cardinality into a class with the higher upper
cardinality. If A.y < B.y, we nest class A into class B. If A.y ≥ B.y, we
nest class B into class A. If A.y = B.y = ∗, we can use only the direction
of the relation, if it is defined, i.e., if the direction is from class A to class
B, we will nest class A into class B. If the direction is not defined, we will
process the relation like in the last case.

4. card(A) = card(B) = 〈1, 1〉 (see Figure 6.5 (d)): In this case, we do not
use cardinalities or directions to define nesting. We process these relations
after all the others. First, we compute the depth of subtrees of class A and
class B. If one of the depths is smaller, we nest the subtree with smaller
depth into the other one. If the depths are equal, we check if class A or
class B is nested in some other class. If, e.g., class A is nested and class B
not, we nest class B into class A. In other cases we nest class A into class
B.

5. Other relations (see Figure 6.5 (e)): In all other cases we can not use
cardinality information for nesting. Therefore, we create two keys1. One
becomes the child of class A and it points to class B by the relation’s
orientation. The other one vice versa.

96

Figure 6.5: Cardinality examples

Note that there can be also generalizations in a PIM-View. Hence, we use a
special operation to hide generalizations in the first part of the derivation process
(we need to re-create them later). This operation is necessary to simplify creation
of the hierarchical structure. It replaces each generalization tree in the PIM-View
diagram with one new class. Each relation connected to classes in the general-
ization tree is reconnected to this new class. This new class stores information
about the hidden classes, generalizations between them and relations connected
to them.

The inverse operation then creates the whole generalization tree in XSEM PSM
diagram (here it is specialization) and reconnects XML schema relations (associa-
tions, specializations) according to the hidden relations from PIM-View diagram.
After this operation, there can be relations in XSEM PSM diagram violating
conditions of XML schema structure. There can be XML schema relations vio-
lating the condition of rooted directed tree. Therefore, a corrective operation is
required. It removes the XML schema relation and replaces it with two new keys
like in the discussion on relation cardinalities (see Section 6.4.1).

Derivation of the First XML Schema

The derivation algorithm2 starts with derivation of the first XML schema which
is used in the next part to derive other XML schemas. For the sake of sim-
plicity we assume that the PIM-View diagram is an acyclic graph (with hidden
generalizations). This creates a copy of the PIM-View diagram with a modified
structure.

1We use classical XML Schema key and keyref constructs.
2For formal pseudo codes of all the mentioned algorithms see [74].

97

First, we find nested classes according to our discussion about relation types
and cardinalities (see Section 6.4.1). The nested classes define the hierarchical
structure of our XML schema. However, after this first definition there might be
some duplicities in nesting – e.g., one class is nested into two different classes.
We begin to build the XML schema tree. At first, we find root classes, i.e., classes
which are not nested in any other class. For each root class R, we recursively
search classes, which nest into R and we construct the respective XML schema
tree. During this construction phase, we store information about duplicated
nesting of classes. After processing the whole graph, we take classes that were
used more than once and we replace them with keys like in the last case of relation
cardinalities (see Section 6.4.1, point e)). At the end, we re-create the hidden
generalizations. This operation creates the first XML schema, which is derived
from the given PIM-View diagram.

Derivation of Other XML Schemas

The first derived schema contains lots of often unrealistic XML Schema keys and
key references which can be replaced with XML schema parent-child relations
instead. This replacement leads to a more redundant XML schema, but it is
more compact and for some metrics it can have better results. Figure 6.6 depicts
examples of possible reducing of keys.

In the process of replacing, it is necessary to switch the parent, the child and
the cardinalities of selected XML schema relations in particular cases. The main
part of the operation is to reverse some relations in the tree, s.t. one particular
class is a new root class of the tree. However, in some cases it is not possible:

Specializations We cannot switch the parent and the child of a specialization.
This replacement changes the stored information derived from PIM-View diagram
generalizations. An example is depicted in Figure 6.7 (a).

Cardinalities In this case there is a problem with cardinalities which have the
lower bound equal to zero. Replacement of these cardinalities does not solve the
problem of keys. Since we do not want to lose any information, we need to create
new keys to preserve the information. Examples are depicted in Figure 6.7 (b).

Hence, to be able to replace the keys, we define two conditions when it is
possible:

Condition 1. (Key Relation) Let R′
k be an XML schema relation, where the ends

of the relation are (c′, k′) for a defined key k′ and c′ being a parent class of k′.
R′

k was derived from a PIM-View relation R. Let c1 be a PIM-View class, which
c′ was created from and let c2 be a PIM-View class, which k′ was created from.
Then, conditions (I) or (II) has to be satisfied for R:

1. both cardinalities of R have lower bounds > 0,

2. card(c1) = 〈0, x〉 ∧ card(c2) = 〈z, x〉, where x ∈ (N ∪ {∗}), z ≥ 1.

Condition 2. (Reverse Path) Let c′r be a class referenced by a defined key k′.
Then we have the XML root-path (R′

1, ..., R
′
n), where child of R′

n is C ′
n = c′r, C

′
0

is the root class and ∀i ∈ {1..n} : parent of R′
i = C ′

i−1∧ child R′
i = C ′

i. It is the

98

Figure 6.6: Examples of reducing keys in a PSM schema

shortest path from the given class to the root of the tree. Then, conditions (a)
and (b) must be satisfied for each R′

i, where i ∈ {1..n}:

1. R′
i is not a specialization,

2. R′
i is derived from PIM-View relation Rpv and both cardinalities of Rpv have

lower values > 0.

Condition 1 checks cardinalities of the PIM-View relation from which the
XML schema relation was derived. This XML schema relation is depicted in
Figure 6.8 by the green color. The blue XML schema relation is derived from the
same PIM-View relation but its parent and child are switched. Condition 2 checks

99

relations and specializations in the whole XML root-path. This XML root-path
is depicted in Figure 6.8 by the red color. Both conditions check cardinalities,
but with different strictness. The first condition checks the relation which is not
going to be reversed. Therefore, it allows 0 for the lower bound of the parent
cardinality. The second condition checks relations and specializations which are
going to be reversed. Therefore, it does not allow any 0 for lower bounds of both
cardinalities and it also does not allow any specializations.

Figure 6.7: Replacement problems for specializations (a) and cardinalities (b)

The algorithm of this part of the derivation process uses only one operation
which replaces the key with a referenced tree. The key can be replaced with the
referenced tree only if it satisfies both the conditions. This part of the algorithm
is, hence, a single recursive function, which iterates through all unprocessed keys.
If a key satisfies the conditions, the algorithm applies the replace operation and
starts a new recursion. The result of this algorithm is a set of XML forests, which
represent a set of XML schemas. Figure 6.8 depicts an example of the replace
operation.

100

Figure 6.8: Examples of replace key operation

Metrics

The described algorithms create several XML schemas. Now, we need to use
appropriate metrics to choose the optimal one for the modeled case. As we have
mentioned, we use three metrics, two inspired by paper [80], one brand new. (Note
that character ∗ which is used in function count and in cardinalities represents
∞.)

Redundancy Metric The redundancy metric calculates the measure of redun-
dancy in a given XML schema. This metric is based on [80].

Definition 13. (XML Class Redundancy). An XML class redundancy redpsm
is a total function, which assigns a positive integer (including ∗) to each XML
schema class C ′ and key K ′. For a given XML schema class or key D′, it is
defined as follows:

• If D′ is a root class and it is derived from PIM-View class C, then
redpsm(D

′) = count(C).

• If D′ is not a root class, then let us have XML schema relation R′ and let
C ′

rp be a parent in R′, D′ is a child in R′.

– If R′ is a relation, then redpsm(D
′) = redpsm(C

′
rp) ∗ u, where u is the

upper value of card(C ′
rp).

– If R′ is a specialization, then redpsm(D
′) = redpsm(C

′
rp).

Note that we work with specializations in this definition. The specialization
is not translated into an XML document directly. It just specifies semantics be-
tween types of elements in an XML schema. Therefore, the value of XML class
redundancy of the child in a specialization is taken from the parent.

Definition 14. (Redundancy Infliction). Let D′ be an XML schema class or key
and let R′ be an XML schema relation or specialization, s.t. child of R′ = D′ .
We say that an XML schema class or key inflicts redundancy, if redpsm(D

′) > 1
and cardinality of D′ in R′ is > 1.

101

The XML class redundancy reflects redundancy of one XML schema class.
Therefore, if redpsm > 1, it means that the class can represent redundant data in
some XML document. However, this is not sufficient, because the parent can be
redundant, but its subtree does not have to contain any redundant data. There-
fore, we also check child participation in the relation.

Definition 15. (Redundancy Metric). Let S ′
c be a set of XML schema classes

and keys for XML schema S ′. A redundancy metric Ω is a function, which assigns
a positive number or zero to XML schema S ′ as follows:

Ω(S ′) =
∑

C′∈S′
c

{
0 if C ′ does not inflict redundancy
size(C ′) if C ′ inflicts redundancy

where size(C ′) denotes the number of XML schema classes and keys in the subtree
of C ′ including C ′. Similarly for the XML schema key.

In general, it represents how redundant can be one PSM schema class. We
count the size of the subtree to represent it. It can be computed by the depth-first
search traversal of S ′.

Context Metric The context metric calculates the position of context classes
from business rules. These context classes are important, because they are the
beginning of all expressions used in business rules. Therefore, we try to put these
classes close to the top of the hierarchical structure of an XML schema. In the
following definition we use function classcontext which is an auxiliary function used
to get a context class from a business rule. In other words, it is a function which
maps a business rule to a PIM-View class.

Definition 16. (Context Metric). Let S ′
br be a set of business rules for XML

schema S ′. A context metric Φ is a total function, which assigns a positive
number to an XML schema S ′ as follows:

Φ(S ′) =
∑

r∈S′
br

depth(classcontext(r))

where depth denotes the number of XML schema relations and specializations in
the XML root-path for C ′ = classcontext(r).

The context metric finds all elements of the BPMN schema, which can have
an influence on the connected PIM-View schema. It takes all business rules for
found elements and for each it gets a depth of a context class. The context metric
is a sum of these depths. It can be computed by the depth-first search traversal
of S ′.

Path Metric This metric calculates paths in business rules. Business rules
contain paths different from a PIM-View. The metric measures the position of
the paths in an XML schema. It is similar to the context metric, i.e., we try to
place paths from business rules closer to root classes.

102

Definition 17. (PIM Path) A PIM path P is a sequence (R1, . . . Rn) of relations
or generalizations from R ∪RG, where (∀i ∈ {1, n})(ends(Ri) = (Ci−1, Ci)). C0

and Cn are called the start and the end of P . Functions start and end return for
P the start and end of P , respectively. P denotes the set of all PIM paths in S.
This definition can be applied to the PIM-View schema similarly with restricted
sets and functions.

Definition 18. (PIM Subpath). Let P = (R1, . . . , Rk) be a PIM path in S. A
PSM subpath of P in S ′ is each PSM path P ′ = (R′

1, . . . , R
′
n), where

• R′
i ∈ R

′ ∪ R′
K ∪R

′
S

• 1 ≤ k ≤ n

• (1 ≤ i ≤ n− 1)(child′(R′
i) = parent′(R′

i+1) ∨ parent
′(R′

i) = child′(R′
i+1))

• (∀i ∈ {1 . . . n})(Ipimv
(R′

i) ∈ {R1, . . . , Rk})

• start(P) = Ipimv
(start′(P ′)) ∧ end(P) = Ipimv

(end′(P ′))

• P ′ is maximal, i.e., adding any PSM relation to P ′ violates previous condi-
tions

Functions start′ and end′ are equivalents to functions start and end from the
definition of PIM path, respectively. We use psmsubpaths(P) to denote the set
of all PSM subpaths of P in S ′.

A PSM subpath of a PIM path represents a path in a PSM schema, which is
semantically equivalent, when using an interpretation Ipimv

between a PIM-View
schema and a PSM schema.

A PSM subpath can be longer than a PIM path, because of our derivation
method of an association classes and because of using key-relations in a PSM
schema.

The function paths is an auxiliary function used to get all PIM paths from
business rules rules(E), where E ∈ T ∪ O. These expressions can contain more
PIM paths for one expression, because they can contain functions working with
collections. The function always returns a pair (PIM-View path, PSM path).

Definition 19. (Path Metric). Let S ′
br be a set of business rules for XML schema

S ′. A path metric Ψ is a total function, which assigns a positive number to an
XML schema S ′ as follows:

Ψ(S ′) =
∑

r∈S′
br

{
∑

(P,P ′)∈paths(r)

length′(P ′)

length(P)
∗ depthpath(P

′)}

where length(P) and length′(P ′) denote the number of PIM-View relations and
generalization and XML schema relations and specializations in P and P ′, re-
spectively.

Note that we count XML schema relations with key twice to reflect referencing
using keys. We also use depthpath(P

′) to denote minimal depth of the first or the
last XML schema class of the given path P ′. The single path metric computes a
positive number for one PIM path. This number represents a position of a given

103

PIM path in a PSM schema. Since, there can be more PSM subpaths for one PIM
path, we have to compute a value for each PSM subpath. This value works with
a length of a PSM path. If a PSM path is longer than a PIM path, it computes
worse number.

Final Metric Formula To use the metrics together, we need three weights
reflecting their importance depending on the nature of a business process. There-
fore, we need a project analyst to define the weight of each metric.

Definition 20. (Final Metric). The final metric consists of metric functions
and three user-defined positive numbers (α, β, γ). It is a total function ∆, which
assigns a positive number to S ′ as follows:

∆(S ′, α, β, γ) = α ∗ Ω(S ′) + β ∗ Φ(S ′) + γ ∗Ψ(S ′)

Example 9. Finally, we will explain the metrics on an example. In particular,
we will use the PIM-View schema depicted in Figure 6.9 and two PSM schemas
depicted in Figure 6.10. (Note that, child cardinalities are depicted by the red
color.) And we will consider the following business rule:

Context Purchase

inv: self.price = self->Item:collect(a | a.price * a.amount):sum()

For the first business rule, there is no PIM path. The expression uses at-
tributes of the context class. For this business rule there is only one PIM path
(Purchase, Item). The lengths of the PIM path and the PSM path are the same,
both 1. Therefore, we only need to work with the beginning or the end of the path.

Figure 6.9: An example of a PIM-View schema for metrics evaluation example

In the PSM schema a) only the class Purchase can inflict redundancy. All
other child classes participate in the relation with the upper value of the cardinality
equal to 1. The class redundancy metric of its parent Item is ∗, because the upper
value of the Product’s cardinality is ∗. The size of the subtree is 2. Therefore,
the value of Ω(schema a)) = 2. Context classes are in depths 2 and 1. Therefore,

104

Figure 6.10: Examples of a PSM schemas for metrics evaluation example

Φ(schema a)) = 3. The end of the path, class Item, is in a lower depth than the
beginning, hence Ψ(schema a)) = 1.

In the PSM schema b), only classes Purchase and Product can inflict redun-
dancy for the same reason. The class redundancy metric of their parent Item
is ∗. Sizes of the subtrees are 2 and 1. Therefore, Ω(schema b)) = 3. Context
classes are in depths 0 and 1. Therefore, Φ(schema b)) = 1. The end of the path,
class Item, is in a lower depth than the beginning. Ψ(schema b)) = 0.

Having weights α = 0.33, β = 0.34, γ = 0.33, we get ∆(schema a)) = 2 and
∆(schema a)) = 1.35. Therefore, schema b) is optimal for the given models.

Since there is no existing real-world project that provides a similar functional-
ity, it is not possible to compare our solution and results with others. Therefore,
we created a complex example to test abilities of the solution. Thesis [74] presents
this example having 10 activities, 5 conceptual models of the exchanged data and
9 sets of business rules. We used different types of cardinalities and relations.
Our derivation process created 7 XML schemas for the most complex conceptual
model of the exchanged data. The first derived XML schema has 10 keys. The
optimal XML schema does not have any key and its depth is 5.

In this complex example we prove useability of the presented approach on bigger
conceptual and business process model. We also tested our metrics and algorithms
on different models and business rules.

6.4.2 Evolution Part

In this section, we analyze the influence of user-specified changes on the derived
optimal communication XML schema. Since we use the data artefact to connect
the conceptual model of the exchanged data with the business process model, we

105

can focus on changes with an influence on the data artefact and on parts used to
derive the XML schema.

Conceptual Model of the Exchanged Data

Any change made in the conceptual model of the exchanged data has a direct
influence on the derived XML schema. For example, a change of the name of a
class has to be propagated into the derived XML schema. This example is quite
simple, but these changes can be more complex, e.g., adding a new relation or
a new class. This change can lead to changes of the hierarchical structure of
the derived XML schema. During derivation, we create connections between the
derived XML schema and the PIM-View diagram. It serves for propagation of
changes from PIM-View to PSM. This problem is already discussed in papers [90]
and [93]. Therefore, for these changes, we can use the described approach directly.

Business Rules

Any change made in business rules used in the derivation process has also a
direct influence on the derived XML schema. For example, adding a new business
rule can rapidly change metrics used in the derivation process and some other
hierarchical structure can be more optimal than the one which is already used.
During the derivation, we use business rules only in the metric part. Hence, we
cannot make a partial propagation of changes made in business rules.

Business Process Model

The data artefact is connected to a sequence flow in a business process model
and business rules are connected to elements of this business process model. Any
change in the business process model can have an influence on the derived XML
schema:

• reconnection of the sequence flow can change business rules,

• adding of a new gateway or event can change business rules,

• removing of a task can lead to a change in a conceptual model of the ex-
changed data.

Changes of Business Rules

According to the previous discussion about changes of business rules, we propose
an approach for updating the derived XML schema. We apply the derivation
process described in the previous section on a data artefact and we compute
metrics for the XML schema connected to the data artefact. Then, we display
statistic information about a new XML schema and the connected XML schema
to the user. After that, the user has to choose one of these XML schemas. The
chosen XML schema is reconnected to the data artefact.

106

6.5 Implementation and Experiments

The prototype of the proposed approach is implemented as an extension of Dae-
monX framework. This prototype uses existing PIM, XSEM PSM and PIM
process modeling plug-ins and an extension which was created in [101]. Note
that Figures 6.3, 6.6, 6.9, 6.10, 6.12, 6.11, 6.13 and 6.14 are screenshots of the
application. The implementation adds 4 new plug-ins:

• The first plug-in is a modeling plug-in for the PIM-View model.

• The second plug-in enables creation of mapping between the PIM model
and the PIM-View model.

• The third plug-in enables creation of mapping between the PIM-View model
and the XSEM PSM model.

• The fourth plug-in is used to express OCL expressions over the PIM-View
model.

Since there is no existing real-world project that provides similar abilities, it
is not possible to compare our solution and results with others. Therefore, we
created own complex example to test abilities and advantages of the solution. In
particular, our example contains 10 activities, 5 conceptual models of exchanged
data provided with 9 sets of business rules. The business process model is depicted
in Figure 6.11. It models booking of rooms in a hotel and paying by a credit card.
The conceptual model of the whole problem domain is depicted in Figure 6.12. It
is not the whole model of the problem domain. It contains only a part necessary
for this example. As we can see, we use different types of cardinalities and
relations.

Our derivation process created 7 different XML schemas for the most complex
conceptual model of the exchanged data. The first derived XML schema had 10
keys. The optimal XML schema had no key and its depth was 5. Next we tested
changes of business rules. In these tests we focused on context metric. To depict
the result, we will show for example the PIM-View schema named PIMView
CustomersInfo. It is connected to the sequence flow, which starts in the task Get
Customers details. This PIM-View schema is depicted in Figure 6.13.

The PSM schema derived from PIMView CustomersInfo is depicted in Fig-
ure 6.14. It is a single tree, because we can use class Book as the root class.
Note that in this case, there is no relation which violates conditions described in
Section 6.4.1. Therefore, it is possible to create a PSM schema with a single tree.

Using this complex example we proved useability of the presented approach on
a bigger conceptual and business process model. We also tested our metrics and
algorithms on different models and business rules and showed that the resulting
XML schemas have a realistic structure. Note that all schemas related to the
example can be found in [74]. The implementation can be found at this resource3.

6.6 Conclusion

The aim of the approach was to present a novel approach to generation of service
interfaces in business process models and to analysis of the influence of user’s

3http://www.ksi.mff.cuni.cz/~polak/daemonx/

107

http://www.ksi.mff.cuni.cz/~polak/daemonx/

Figure 6.11: Business process model of the experiment

108

Figure 6.12: PIM schema of the experiment

changes on the derived XML schema. The main contribution of our approach is
the ability to create a conceptual model of the exchanged data as a partial view of
the whole problem domain and automatic derivation of an optimal communication
XML schema based on the defined metrics. It also involves a (semi)automatic
algorithm for updating already derived communication XML schema according
to user-specified changes of business rules which reduces possible errors during
manual schema update. Finally, the presented solution was implemented and
tested on real-world examples to provide its correctness and usability.

6.6.1 Future Work

Even though the proposed approach can be applied successfully in real-world
situations, there are still several open problems and issues:

• Changes in the Business Process Model : In our work, we focus on derivation
of an optimal communication XML schema and on changes of inputs of the
derivation process. The data artefact is connected to a sequence flow in a
given business process model and business rules are connected to elements
of this business process model. However, any change in the business process
model can have an influence on the derived XML schema:

– Reconnection of the sequence flow can change business rules, which
are used in the derivation process,

– adding of a new gateway or event can change business rules, which are
used in the derivation process,

– removing of a task can lead to a change in a conceptual model of the
exchanged data, which are used in the derivation process.

109

Figure 6.13: PIM-View schema PIMView CustomersInfo

• Richer Derivation Process : The main limitation which is most binding for
a domain expert is the acyclic conceptual model of exchanged data. This
can be in some cases a difficult task.

• Attribute Type Derivation: Our work does not cover mechanisms for deriv-
ing data types of attributes and their constraints. More complex data types
must be defined using classes and relations.

• Order of Children in the Generated XML Schema: An XML schema has a
hierarchical structure and ordering of children is important in this hierarchy.
It can carry a particular information. As we derive an XML schema from
the conceptual model which does not have hierarchical structure, it can
have a position information stored only in its elements, e.g., a class or an
attribute. Therefore, positions of children are not important in our proposed
algorithm and we do not work with it.

• Optimization of Derivation Process : The derivation process presented in
this approach has in some cases better time complexity in some cases than
the derivation process presented in paper [80]. However, it can still have an
exponential time complexity in cases, where there are relations with both
lower values of cardinalities equal to ∗. To improve the time complexity,
we would need additional information, such as semantic information about
the conceptual model of exchanged data.

110

Figure 6.14: PSM schema derived from PIMView CustomersInfo

111

112

7. REST API Management and
Evolution

The REST has become a popular and preferred way of communication on the Web.
In this chapter we focus on managing and generating REST resources based on
the MDA principle which enables design and maintenance of complex projects.
We introduce a way how to describe the REST API in MDA and how to provide
automatic evolution management between subsequent API versions derived from
the original version. The proposed solution describes a novel model which repre-
sents REST resources and algorithms for providing evolution of this model based
on changes done in the PIM of MDA. The model for REST and related change
management presented in this chapter in the context of the five-level evolution
management framework is depicted in Figure 7.1. The approach was presented
in [106, 105].

Figure 7.1: Location of the REST model and related change management in the
context of the five-level evolution management framework

7.1 Introduction

Nowadays, the REST is becoming the most commonly used way how to create,
publish, and consume Web Services. The most popular data interchange format
is the JSON. However, although these technologies are used widely over the In-
ternet, there are no official standards for REST (like, e.g., the WSDL for Web
Services) and for JSON (like, e.g., the XML Schema for XML documents). There
only exist several projects partially covering these topics for specific purposes,
such as, e.g., RAML [137], Swagger [120], or HAL [68], which enable generating
human/machine description (documentation) of the API, its routing, JSON con-
tent structure, etc. But a more important and difficult related issue is versioning
of the APIs. The mentioned solutions, surprisingly, do not solve this problem at
all. They do not provide any relations between two subsequent versions except for
API designer/developer comments. This brings the need to manually check ev-
ery new version by the API consumer and subsequent updates of the consumer’s
code to ensure compatibility. With the growing size of an application this task

113

becomes highly difficult and error-prone.
Hence, our aim is to define a way how to describe the REST API as a PSM,

called Resource Model, based on the MDA and how to provide (semi)automatic
change management between subsequent API versions derived from an original
version. The proposed solution describes a novel model which represents REST
requests and algorithms for ensuring evolution management of this model based
on changes done in the PIM of the MDA. Thanks to MDA it is possible to
incorporate our approach with other PSM models to have a complex solution for
distinct parts of the application.

7.2 Related Works

In this section we describe and compare related solutions. Currently there exist
papers discussing best practises how to define and design API to prevent complex
future changes. Next, we discuss papers that present various methods how to
generate documentation of API from a source code.

7.2.1 API Versioning Best Practises

Papers dealing with API versioning [22, 97] propose creation of a new API version
and suggest a list of the best practises for their maintenance such as:

• Keep compatible name conventions: Beside the original resource
http://api.example.com/customer a new one such as, e.g.,
http://api.example.com/v2/customer, is created.

• Avoid new major versions, because multiple major versions need more
support and maintenance.

• Make changes backwards compatible to reduce needed changes.

• Provide documentation of the new version changes to have as much
information as possible needed by API consumers.

Discussion

The mentioned papers do not provide full solution how to manage API versioning,
but they give instructions how to reduce and prevent possible problems during
the development process.

7.2.2 API Documentation Generation

There are various solutions for the REST services management (documentation)
like the API Blueprint [10], RAML, or Swagger. All these frameworks involve
own proposal how to describe the REST API to be provided to consumers in a
comprehensive way. They offer, e.g., own description language, editors for API
creation, documentation, stub (code) generation, etc. But none of them provides
a way how to manage changes between API versions efficiently, e.g., recording of
the changes or generation of the differences between particular versions. Next,
there exist specific solutions for various frameworks like ASP.NET WebApi [23] or

114

Flask [114] which provide generation of REST resource documentation based on
the implementation of a project (source code). But this documentation is specific
for the particular project version (release) and has no relations to the previous
versions. It just describes the resources (methods, parameters, response codes,
response structure, etc.).

Discussion

Papers dealing with API documentation generation provide a way how automat-
ically create a description of the API without manual rewriting. They focus on
various topics and abilities such as simpler testing or team collaboration. But
there is no solution to the problem how to handle changes and relations between
particular API versions.

7.2.3 Comparison of the Related Works

The presented related works do not give a full solution to the problem of API
change management. Papers [22, 97] propose a list of best practises for API
versioning, whereas frameworks [137, 120, 10] provide an API documentation, but
without any (semi)automatic generation of changes between particular versions.

In general, change management is not critical for a small project or during
the first phases of development. But it becomes a big problem in larger projects
and later during the maintenance phases of a software. In this situation, every
change must be done precisely, correctly, and completely to prevent errors. A
(semi)automatic mechanism which helps to identify the affected parts for the
developer or even performs the change automatically is then very important.
This chapter focuses on the following problems which were not solved in the
mentioned papers:

• The the definition of a resource model.

• The relation between a PIM model and a resource model.

• The analysis of changes done in a source PIM model.

• The propagation of changes to preserve compatibility of a PIM and resource
model.

7.3 Resource Model

To be able to solve this problem and to be able to handle the propagation there
must be defined a model representing platform-specific view of the resource ad-
dresses, called the Resource Model. Then, we can model and visualize the resource
structure. Over the model there can also be defined algorithms for, e.g., genera-
tion of the base code structure for particular platforms such as, e.g., AJAX [134]
calls or resource API documentation.

Definition 21. (Resource Model). A resource model G of a resource R is a
directed graph GR = (V,E), where V is a set of resource vertices and E is a set
of resource edges. For the resource model it must hold that it is a tree.

115

Let D be a set of parameters, whereas each d ∈ D has a name and a data
type. Let D′ be a set of results, each having a data type. A resource function
f : 2(D) → D′ provides a particular result d′ ∈ D′ for a particular subset of
parameters from D. Every resource vertex v ∈ V of a resource model GR = (V,E)
has a set of resource functions Fv.

From the MDA perspective, Resource Model Vertex is an extended UML Class
and Resource Model Edge is an extended UML Association. There are defined
no profiles over the model.

An example (and our resulting application screenshot) of the Resource Model
representing a simple e-shop diagram is depicted in Figure 7.2. The green rectan-
gles represent vertices, the black arrows represent edges of the Resource Model.
The red arrows represent a mapping to the sample REST resource. This model
represents the following REST resource: Every word represents a vertex in the
Resource Model or a vertex function (displayed as green rectangle). A word in
the curly brackets represents a parameter. This parameter is applied as a func-
tion parameter or as a selector of an item from the collection. Particular usage
and implementation depends on the author. A slash denotes an edge having the
direction from the left to the right.

Note that the same resources (e.g., shop/user) can be combined with different
HTTP methods (e.g., GET, POST, PUT or DELETE) for different purposes. A
list for the example from Figure 7.2 is as follows:

From this model we can generate REST resources, such as, e.g.:

• shop combined with GET, PUT, DELETE methods.

• shop/user combined with POST method.

• shop/user/{:uid} combined with GET, PUT, DELETE methods.

• shop/user/{:uid}/address combined with POST method.

• shop/user/{:uid}/address/{:aid} combined with GET, PUT, DELETE
methods.

• shop/user/{:uid}/order combined with POST method.

• shop/user/{:uid}/order/{:oid} combined with GET, PUT, DELETE
methods.

• shop/user/{:uid}/order/{:oid}/item/ combined with POST method.

• shop/user/{:uid}/order/{:oid}/item/{:iid} combined with GET, PUT,
DELETE method.

• shop/user/{:uid}/order/{:oid}/item/{:iid}
/setcount/{count} combined with POST method.

116

Figure 7.2: An example of the Resource Model of a simple e-shop

The full list of the REST resources generated from this simple example has
20 items (for every vertex there is a resource plus operations over it) and thus
any future update of the model (e.g., renaming of class User to Customer) can
trigger many necessary changes which is a difficult and error-prone task. For this
purpose, an ability to (semi)automatically propagate changes from the PIM to
the corresponding Resource Model is essential. In the following section we will
show how this problem can be solved fully, correctly, and efficiently.

7.4 Mapping and Evolution

First, we will describe the relatively straightforward mapping of the models. Next,
we will focus on the operations over the models and their propagation which is a
natural consequence of the mapping.

7.4.1 Model Mapping

Thanks to the definition of the Resource Model, the mapping between the PIM
and the Resource Model is relatively straightforward:

• PIM Class→ Resource Model Vertex: A PIM Class is mapped directly
to a Resource Model Vertex.

• PIM Class Function → Resource Model Vertex Function: A PIM
Class Function is mapped to a Resource Model Vertex Function. Resource
Model Vertex Function represents an operation over the PIM Class instance.

• PIM Association → Resource Model Edge: A PIM Association is
mapped to a Resource Model Edge. As in PIM Association in PIM, Re-
source Model Edge represents a relation between Resource Model Vertices.

• PIM Attribute → Resource Model Vertex Attribute: A PIM At-
tribute is mapped to a Resource Model Vertex Attribute.

An example of a mapping between a PIM and a Resource Model is depicted
in Figure 7.3. All classes of the PIM are mapped to the corresponding Resource
Model vertices (the mapping is represented with black dashed lines). The only
PIM class function is mapped to the corresponding Resource Model vertex func-
tion (marked with a green dashed line). PIM associations are mapped to edges
in Resource Model (marked with blue dashed lines).

117

Figure 7.3: An example of the PIM-Resource Model mapping

For both the models we first need to define atomic operations. Atomic or
composite operations in the PIM (source) which have an impact on the related
Resource Model (target) are then translated to the corresponding atomic or com-
posite operations in the Resource Model such as, e.g., PIM Class renaming →
Resource Model Vertex renaming. This translation is called change propagation.

7.5 Atomic PIM Model Operations

Let MS = (CS, IS) be a PIM. CS is a set of classes, IS is a set of connections,
where Ik(Cl, Cm), k ∈ [1, n] is a connection between classes Cl and Cm and has
name IkN . Each class Ci ∈ CS, i ∈ [1, v] has a name CiN , a set of attributes CiP

and a set of functions CiF . Every attribute Pj, j ∈ [0, s] has a name PjN and a
type PjT . Every function Fo, o ∈ [0, t] has a name FoN , a return type FoT , and
a set of parameters FoR . Each function parameter Rq, q ∈ [0, u] has a name RqN

and a type RqT .

PIM atomic operations of attributes are defined as follows:

• Class Creating (γC : (MS, Ci) → M ′
S): The operation creates class Ci

in model MS = (CS, IS). It returns model M ′
S = (C ′

S, IS), where C
′
S =

CS ∪ {Ci}.

Precondition: Class name CiN must be set (it can be a default value).
(Note that there is no restriction for unique class names – the operation
depends on the instances, not names.)

• Class Renaming (αC : (Ci, m) → C ′
i): The operation returns class C ′

i,
where C ′

iN
= m, C ′

iP
= CiP , and C

′
iF

= CiF .

Precondition: Class Ci must exist in model MS = (CS, IS).

• Class Removing (δC : (MS, Ci) → M ′
S): The operation removes class

Ci ∈ CS from model MS = (CS, IS). It returns model M ′
S = (C ′

S, IS),
where C ′

S = CS\{Ci}.

118

Precondition: Class Ci must exist in model MS = (CS, IS) and there
must not exist connections to Ci.

• Property Creating (γP : (Ci, Pj) → C ′
i): The operation adds property

Pj to class Ci. It returns class C ′
i, where C ′

iN
= CiN , C

′
iF

= CiF , and
C ′

iP
= CiP ∪ {Pj}.

Precondition: Property Pj must have name PjN and type PjT . Class Ci

must exist in model MS = (CS, IS). The name of the property PjN must
not be present among the names of properties in CiP .

• Property Renaming (αP : (Pj, m) → P ′
j): The operation returns prop-

erty P ′
j, where P

′
jN

= m, P ′
jT

= PjT .

Precondition: Property Pj must exist in some set CiP of class Ci in model
MS = (CS, IS). Namemmust not be present among the names of properties
in CiP .

• Property Type Changing (βP : (Pj , t) → P ′
j): The operation returns

property P ′
j, where P

′
jT

= t and P ′
jN

= PjN .

Precondition: Property Pj must exist in some set CiP of class Ci in model
MS = (CS, IS).

• Property Removing (δP : (Ci, Pj)→ C ′
i): The operation removes proper-

ty Pj ∈ CiP from class Ci. It returns class C
′
i, where C

′
iN

= CiN , C
′
iF

= CiF

and C ′
iP

= CiP \{Pj}.

Precondition: Class Ci with property Pj must exist in model MS =
(CS, IS).

• Connection Creating (γI : (MS, Ik) → M ′
S): The operation creates con-

nection Ik(Ci, Cj) between classes Ci, Cj ∈ CS in model MS = (CS, IS). It
returns model M ′

S = (CS, I
′
S), where I

′
S = IS ∪ {Ik}.

Precondition: Classes Ci and Cj must exist in model MS = (CS, IS).
(Note that connection name IkN does not have to be set – a default value
can be applied – and the name does not have to be unique.)

• Connection Renaming (αI : (Ik, m) → I ′k): The operation returns con-
nection I ′k, where I

′
kN

= m.

Precondition: Connection Ik must exist in model MS = (CS, IS).

• Connection Removing (δI : (MS , Ik) → M ′
S): The operation removes

connection Ik from model MS = (CS, IS). It returns model M ′
S = (CS, I

′
S),

where I ′S = IS\{Ik}.

Precondition: Connection Ik must exist in model MS = (CS, IS).

• Function Creating (γF : (Ci, Fj) → C ′
i): The operation adds function

Fj to class Ci. It returns class C ′
i, where C ′

iN
= CiN , C

′
iP

= CiP , and
C ′

iF
= CiF ∪ {Fj}.

Precondition: Class Ci must exist in model MS = (CS, IS). Function
name FjN and return type FjT must be set.

119

Postcondition: There must not exist a function Fk ∈ C
′
iF
, Fk 6= Fj , s.t.

FkN = FjN (i.e., having an identical name) and FkR = FjR (i.e., having an
identical set of parameters). Otherwise we say that there exists function Fk

with the same signature as Fj .

• Function Renaming (αF : (Fi, m)→ F ′
i): The operation returns function

F ′
i , where F

′
iN

= m, F ′
iR

= FiR , and F
′
iT

= FiT .

Precondition: Function Fi must exist in some set CjF of class Cj in model
MS = (CS, IS).

Postcondition: There must not exist a function Fk ∈ CjF , Fk 6= F ′
i having

the same signature as F ′
i .

• Function Removing (δF : (Ci, Fj) → C ′
i): The operation removes func-

tion Fj from class Ci. It returns class C
′
i, where C

′
iN

= CiN , C
′
iP

= CiP and
C ′

iF
= CiF \{Fj}.

Precondition: Class Ci with function Fj must exist in model MS =
(CS, IS).

• Function Return Type Changing (βF : (Fi, t) → F ′
i): The operation

returns function F ′
i , where F

′
iT

= t, F ′
iN

= FiN , and F
′
iR

= FiR .

Precondition: Function Fi must exist in some set CjF of class Cj in model
MS = (CS, IS).

• Function Parameter Creating (γR : (Fi, Rj) → F ′
i): The operation

adds parameter Rj to function Fi. It returns function F
′
i , where F

′
iN

= FiN ,
F ′
iT

= FiT and F ′
iR

= FiR ∪ {Rj}.

Precondition: Function Fi must exist in some set CkF of class Ck in model
MS = (CS, IS). Parameter Rj must have name RjN and type RjT . Name
RjN must not be present in the set of names of parameters in FiR .

Postcondition: There must not exist a function Fl ∈ CkF , Fl 6= F ′
i having

the same signature as F ′
i .

• Function Parameter Renaming (αR : (Rj , m) → R′
j): The operation

returns parameter R′
j , where R

′
jN

= m and R′
jT

= RjT .

Precondition: Parameter Rj must exist in some set FiR of function Fi

from set CkF of class Ck in model MS = (CS, IS). Name m must not be
present in the set of names of FiR\{Rj}.

Postcondition: Let F ′
i be the modified function. There must not exist a

function Fl ∈ CkF , Fl 6= F ′
i having the same signature as F ′

i .

• Function Parameter Type Changing (βR : (Rj, t) → R′
j): The opera-

tion returns parameter R′
j , where R

′
jT

= t and R′
jN

= RjN .

Precondition: Parameter Rj must exist in some set FiR of function Fi

from set CkF of class Ck in model MS = (CS, IS).

Postcondition: Let F ′
i be the modified function. There must not exist a

function Fl ∈ CkF , Fl 6= F ′
i having the same signature as F ′

i .

120

• Function Parameter Removing (δR : (Fi, Rj) → F ′
i): The operation

removes parameter Rj ∈ FiR from function Fi. It returns function F ′
i ,

where F ′
iN

= FiN , F
′
iT

= FiT and F ′
iR

= FiR\{Rj}.

Precondition: Function Fi with parameter Rj must exist in some set CkF

of class Ck in model MS = (CS, IS).

Postcondition: There must not exist a function Fl ∈ CkF , Fl 6= F ′
i having

the same signature as F ′
i .

• Attribute Creating (γP : (Ci, Pj) → C ′
i): The operation adds attribute

Pj to class Ci. It returns class C ′
i, where C ′

iN
= CiN , C

′
iF

= CiF , and
C ′

iP
= CiP ∪{Pj}, e.g., only the set of attributes is changed. Precondition:

Attribute Pj must have name PjN and type PjT . Class Ci must exist. There
must not exists attribute Pl, Pl ∈ Ci, Pl 6= Pj where PlN = PjN .

• Attribute Renaming (αP : (Pj , m) → P ′
j): The operation returns at-

tribute P ′
j, where P

′
jN

= m, P ′
jT

= PjT . Precondition: Attribute Pj must
exist. There must not exists attribute Pl, Pl ∈ Ci, Pj ∈ Ci, Pl 6= Pj where
PlN = m.

• Attribute Type Changing (βP : (Pj , t) → P ′
j): The operation returns

attribute P ′
j , where P

′
jT

= t, P ′
jN

= PjN . Precondition: Attribute Pj must
exist.

• Attribute Removing (δP : (Ci, Pj) → C ′
i): The operation removes at-

tribute Pj ∈ CiP from class Ci. It returns class C ′
i, where C ′

iN
= CiN ,

C ′
iP

= CiP , C
′
iF

= CiF , and C
′
iP

= CiP \{Pj}. Precondition: Class Ci and
attribute Pj must exist.

• Attribute Moving (ǫP : (Ci, Cj, Pk) → (C ′
i, C

′
j)): The operation moves

attribute Pk ∈ CiP from class Ci to class Cj . It returns class C ′
i, where

C ′
iN

= CiN , C
′
iF

= CiF , and C
′
iP

= CiP \{Pk} and class C ′
j, where C

′
jN

= CjN ,
C ′

jF
= CjF , and C ′

jP
= CjP ∪ {Pk}. Precondition: Classes Ci, Cj and

attribute Pk must exist. There must not exist attribute Pl, Pl ∈ Cj, Pl 6= Pk

where PlN = PkN .

7.6 Atomic Resource Model Operations

Let MR = (VR, ER) be a Resource Model. Each vertex Vi ∈ VR, i ∈ [1, n] has a
name ViN and a set of functions ViF . Every function Fj , j ∈ [0, o] has a name
FjN , a return type FjT , and a set of parameters FjR. Each function parameter Rk,
k ∈ [0, m] has a name RkN and a type RkT . ER is a set of edges, where El(Vp, Vq),
l ∈ [1, s], El ∈ ER is an ordered edge between vertices Vp and Vq, s.t. Vp, Vq ∈ VR.

The Resource Model atomic operations are defined as follows:

• Vertex Creating (γV : (MR, Vi) → M ′
R): The operation creates vertex

Vi in model MR = (VR, ER). It returns model M ′
R = (V ′

R, ER), where
V ′
R = VR ∪ {Vi}. In addition, if VR 6= ∅, then Vi is subsequently connected

to a Vj ∈ VR via edge Ek(Vj, Vi). So, then the operation returns model
M ′

R = (V ′
R, E

′
R), where V

′
R = VR ∪ {Vi} and E

′
R = ER ∪ {Ek}.

Precondition: Vertex name ViN must be set (eventually to a default val-
ue).

121

• Vertex Renaming (αV : (Vi, m)→ V ′
i): The operation returns vertex V ′

i ,
where V ′

iN
= m, V ′

iF
= ViF .

Precondition: Vertex Vi must exist in model MR = (VR, ER). (Note that
there is no restriction on unique vertex names – the operation depends on
the instances, not names.)

• Vertex Removing (δV : (MR, Vi) → M ′
R): The operation removes vertex

Vi ∈ VR from model MR = (VR, ER). It returns model M ′
R = (V ′

R, ER),
where V ′

R = VR\{Vi}. If there exists an edge Ek(Vj, Vi) ∈ ER for a Vj ∈ VR,
it is first removed. So, then the operation returns model M ′

R = (V ′
R, E

′
R),

where V ′
R = VR\{Vi} and E

′
R = ER\{Ek}.

Precondition: Vertex Vi must exist in modelMR = (VR, ER). There must
not exist an edge Ek(Vi, Vj) ∈ ER for any Vj ∈ VR, i.e., Vi must be a leaf
node.

Next, if there exists a subtree in the model, where Vi is its root, the whole
subtree must be removed. This is done by calling operations edge removing
and vertex removing recursively. An example of this situation is depicted
in Figure 7.4.

Figure 7.4: An example of removal of vertex C from a Resource Model

• Edge Creating (γE : (MR, Ek) → M ′
R): The operation creates edge

Ek(Vi, Vj) between vertices Vi and Vj in model MR = (VR, ER). It returns
model M ′

R = (VR, E
′
R), where E

′
R = ER ∪ {Ek}.

Precondition: Vertices Vi and Vj must exist in model MR = (VR, ER).

Postcondition: M ′
R must have a tree structure.

• Edge Removing (δE : (MR, Ek) → M ′
R): The operation removes edge

Ek from model MR = (VR, ER). It returns model M ′
R = (VR, E

′
R), where

E ′
R = ER\{Ek}.

Precondition: Edge Ek(Vi, Vj) must exist in model MR = (VR, ER). Ei-
ther Vi or Vj must be a leaf node, i.e., there must not exist an edge outgoing
from Vi or Vj.

Postcondition: M ′
R must have a tree structure.

• Function Creating (γF : (Vi, Fj)→ V ′
i): The operation adds function Fj

to vertex Vi. It returns vertex V
′
i , where V

′
iN

= ViN and V ′
iF

= ViF ∪ {Fj}.

Precondition: Vertex Vi must exist in model MR = (VR, ER). Function
name FjN and return type FjT must be set.

Postcondition: There must not exist a function Fl in V
′
iF
, Fl 6= Fj with

the same signature as Fj .

122

• Function Renaming (αF : (Fi, m)→ F ′
i): The operation returns function

F ′
i , where F

′
iN

= m, F ′
iR

= FiR, F
′
iT

= FiT .

Precondition: Function Fi must exist in some set VjF of node Vj in model
MR = (VR, ER).

Postcondition: There must not exist a function Fl in VjF \{F
′
i} with the

same signature as F ′
i .

• Function Removing (δF : (Vi, Fj)→ V ′
i): The operation removes function

Fj ∈ ViF from vertex Vi. It returns vertex V ′
i , where V

′
iN

= ViN and V ′
iF

=
ViF \{Fj}.

Precondition: Vertex Vi with function Fj must exist in model MR =
(VR, ER).

• Function Return Type Changing (βF : (Fi, t) → F ′
i): The operation

returns function F ′
i , where F

′
iT

= t, F ′
iN

= FiN , and F
′
iR

= FiR.

Precondition: Function Fi must exist in model MR = (VR, ER).

• Function Parameter Creating (γR : (Fi, Rj) → F ′
i): The operation

adds parameter Rj to function Fi. It returns function F
′
i , where F

′
iN

= FiN ,
F ′
iT

= FiT and F ′
iR

= FiR ∪ {Rj}.

Precondition: Function Fi must exist in some set VkF of node Vk in model
MR = (VR, ER). Parameter Rj must have name RjN and type RjT . Name
RjN must not be present is the set of names of FiR.

Postcondition: There must not exist a function Fl in VkF \{F
′
i} with the

same signature as F ′
i .

• Function Parameter Renaming (αR : (Rj , m) → R′
j): The operation

returns parameter R′
j , where R

′
jN

= m, R′
jT

= RjT .

Precondition: Parameter Rj must exist in some set FiR of function Fi

from set VkF of node Vk in model MR = (VR, ER). Name m must not be
present is the set of names of FiR\{Rj}.

Postcondition: Let F ′
i be the modified function. There must not exist a

function Fl in VkF \{F
′
i} with the same signature as F ′

i .

• Function Parameter Type Changing (βR : (Rj , t) → R′
j): The opera-

tion returns parameter R′
j , where R

′
jT

= t, R′
jN

= RjN .

Precondition: Parameter Rj must exist in some set FiR of function Fi

from set VkF of node Vk in model MR = (VR, ER).

Postcondition: Let F ′
i be the modified function. There must not exist a

function Fl in VkF \{F
′
i} with the same signature as F ′

i .

• Function Parameter Removing (δR : (Fi, Rj) → F ′
i): The operation

removes parameter Rj ∈ FiR from function Fi. It returns function F ′
i ,

where F ′
iN

= FiN , F
′
iT

= FiT , and F
′
iR

= FiR\{Rj}.

Precondition: Function Fi with parameter Rj must exist in model MR =
(VR, ER).

Postcondition: There must not exist a function Fl in VkF \{Fi} with the
same signature as F ′

i .

123

• Attribute Creating (γP : (Vi, Pl) → V ′
i): The operation adds parameter

Pl to vertex Vi. It returns vertex V
′
i , where V

′
iN

= ViN and V ′
iP

= ViP ∪{Pl}.
Precondition: Vertex Vi must exist. Attribute name PlN and type PlT

must be set. There must not exists attribute Pj, Pj ∈ Vi, Pj 6= Pl where
PlN = PjN .

• Attribute Removing (δP : (Vi, Pl) → V ′
i): The operation removes at-

tribute Pl ∈ ViP from vertex Vi. It returns vertex V
′
i , where V

′
iN

= ViN and
V ′
iP

= ViP \{Pl}. Precondition: Vertex Vi and attribute Pl must exist.

• Attribute Renaming (αP : (Pl, m) → P ′
l): The operation returns at-

tribute P ′
t , where P

′
lN

= m, P ′
lT

= P ′
iT
, and P ′

lB
= PlB . Precondition:

Attribute Pl must exist. Postcondition: There must not exists attribute
Pj, Pj ∈ Ci, Pl ∈ Vi, Pl 6= Pj where PjN = m.

• Attribute Type Changing (βP : (Pl, u) → P ′
t): The operation returns

attribute P ′
l , where P

′
lT

= u, P ′
lN

= PlN , and P ′
lB

= PlB . Precondition:

Attribute Pt must exist.

• Attribute Moving (ǫP : (Vi, Vj, Pk) → (V ′
i , V

′
j)): The operation moves

attribute Pk ∈ ViP from vertex Vi to vertex Vj. It returns class V ′
i , where

V ′
iN

= ViN , v
′
iF

= ViF , and V
′
iP

= viP \{Pk} and vertex V ′
j , where V

′
jN

= VjN ,
V ′
jF

= VjF , and V ′
jP

= VjP ∪ {Pk}. Precondition: Vertices Vi, Vj and
attribute Pk must exist. There must not exists attribute Pl, Pl ∈ Vj , Pl 6= Pk

where PlN = PkN .

Note that other functions, like, e.g., deleting a whole subtree, moving a whole
subtree, etc. are not atomic, but composite. Also note that we do not have
atomic functions for adding/deleting of an edge, because they would require
adding/deleting of other parts of the tree so they would not be atomic, but
can be defined as composite operations.

7.7 Operation Propagation Policies

Before we focus on the propagation algorithms, let us note that although the
propagation operations are defined on the models, sometimes the propagation
of the changes is not required. The designer can decide to suppress them. For
this purpose we propose so-called propagation policies, which can affect the final
result of the propagation:

• Propagate: This policy allows to perform the change directly. This is the
default value.

• Omit: This policy does not perform the change. The subsequent propaga-
tion is omitted.

• Prompt: The system asks the user to propagate or omit the propagation
if there occurs any.

The policies can be applied before every propagation from the source to the
target model.

124

7.8 Propagation Algorithms

In this section we describe the algorithms of propagation of changes from the
source PIM to the target Resource Model. Algorithms describe propagation of
atomic operations from PIM to Resource Model. As we will see, we will call
multiple atomic operations in the algorithms, so in fact the algorithms correspond
to composite operations.

Getting Related Resource Model Items from PIM Items In the follow-
ing algorithms we will need a helper function GetRelationsOf() to get related
items of a PIM item from the Resource Model having a specified Resource Mod-
el type. For example, calling of GetRelationsOf(C,′ V ertexType′) returns all
related Resource Model items of PIM class C whose type is VertexType.

Algorithm 2 GetRelationsOfType

Require: PIM item P , Resource Model item type T
Ensure: Returns collection of Resource Model items related on P of type T

Class Renaming Algorithm 3 gets as parameters the class to be renamed and
a new name of the class. First, it changes the name of the PIM class. Next, the
algorithm finds all related resource vertices of class C and changes their names.
An example is depicted in Figure 7.5.

Algorithm 3 ClassRenaming

Require: Class C, new name N of the class
Ensure: Renaming of the related vertex
1: C.Name← N
2: relatedV ertices← GetRelationsOf(C,′ V ertexType′)
3: for all rv ∈ relatedV ertices do
4: rv.Name← N
5: end for

Figure 7.5: An example of renaming class A to B

Class Creating Algorithm for creating class adds a new class to the PIM. It
has no impact on the target Resource Model, because the new class is added
separately and has no association with the existing model (if any).

Connection Creating Algorithm 4 is the key algorithm. Adding a new con-
nection between two classes C and D in the PIM can absolutely change the
structure of the Resource Model. The algorithm has two parameters – classes C
and D – between which the connection will be created. First, it checks that there

125

does not exist a connection between classes C and D. If yes, the algorithm ends.
Otherwise, the algorithm gets the related vertices from the Resource Model for
both classes C and D. The algorithm iterates over both collections of vertices.
If one of the vertices is an ancestor of the second one (line 9), then the ancestor
vertex is set to variable rc and a copy of the subtree of rd is created and set
as a new child of rc. Else, if rc and rd are not in sibling relation (they have
no common ancestor), vertex rd is set as a child of vertex rc. This situation is
depicted in Figure 7.6. In this case, the user has to decide which vertex will be set
as a parent and a child respectively to match the tree hierarchy of the Resource
Model. Finally, if rc and rd are neither in ancestor-descendant relation, nor in
sibling relation, the algorithm copies subtrees of both vertices and sets them as
the child of the other vertex. This situation is depicted in Figure 7.7.

Helper method CheckIfConnectionBetweenClassesExists (Class1, Class2)
returns true if there exists a connection (association) between the classes, other-
wise it returns false. Method CreateConnectionBetweenClasses(Class1, Class2)
creates a connection between the two classes. Helper method IsV ertexAncestor-
OfOther(V ertex1, V ertex2) returns true if one of the vertices is the ancestor
of the other, otherwise it returns false. Method AreV erticesSiblings(V ertex1,
V ertex2) returns true if the vertices have a common ancestor, otherwise it returns
false. Helper method CreateCopyOfSubtree(V ertex) creates a copy of the tree
rooted at V ertex and returns the vertex which is the root of the tree copy. And,
finally, method AddChildToV ertex(V ertex1, V ertex2) creates a connection be-
tween the vertices, where the first parameter will be the parent of the second
one. During copying of the parts in the Resource Model, the relations between
items from the PIM and the Resource Model are copied too, where the relation
between class C and the newly created vertex exists.

Figure 7.6: An example of connection creating when classes A and B are not
siblings

126

Algorithm 4 CreatingConnectionBetweenClasses

Require: Existing classes C and D
Ensure: Creation of connection CO between C and D
1: if CheckIfConnectionBetweenClassesExists(C,D) then
2: return
3: end if
4: CreateConnectionBetweenClasses(C,D)
5: relatedV ertexecOfC ← GetRelations(C)
6: relatedV ertexecOfD ← GetRelations(D)
7: for all rc ∈ relatedV ertexecOfC do
8: for all rd ∈ relatedV ertexecOfD do
9: if IsV ertexAncestorOfOther(rc, rd) then

10: // if true, rc is set as parent
11: treeRootrd← CreateCopyOfSubtree(rd)
12: AddChildToV ertex(rc, treeRootrd)
13: else if not AreV erticesSiblings(rc, rd) then
14: AddChildToV ertex(rc, rd)
15: else
16: treeRootrc ← CreateCopyOfSubtree(rc) // creates references be-

tween models too
17: AddChildToV ertex(rd, treeRootrc)
18: treeRootrd← CreateCopyOfSubtree(rd)
19: AddChildToV ertex(rc, treeRootrd)
20: end if
21: end for
22: end for

127

Figure 7.7: An example of connection creating when classes B and C are in a
siblings relation. The algorithm first creates copies of both subtrees of vertices B
and C and then adds them as children of the opposite ones.

Class Removing Algorithm 5 removes an existing class C from the PIM di-
agram. Subsequently it removes all corresponding vertices of class C in the Re-
source Model. It removes corresponding connections between vertices too. An
example is shown in Figure 7.8.

Algorithm 5 ClassRemoving

Require: Class C to be removed
Ensure: Removing of class C and related vertices in Resource Model
1: relatedV ertices← GetRelationsOf(C,′ V ertexType′)
2: RemoveClass(C)
3: for all rv ∈ relatedV ertices do
4: RemoveSubtree(rv)
5: end for

128

Figure 7.8: An example of removing a class B

Figure 7.9: An example of removing a connection (association) between classes
A and B

Connection Removing Algorithm 6 removes connection C between two class-
es. Removing of a connection must be propagated to the target Resource Model.
An example is depicted in Figure 7.9. There is defined no operation to remove a
connection in the Resource Model. So, the whole subtree of the vertices related
to class C must be removed. For this purpose we have defined a helper function
RemoveSubtree(V ertex) that recursively removes a subtree represented by the
vertex and all relations to the corresponding PIM items by calling RemoveV ertex
function via the depth-first search algorithm.

Algorithm 6 ConnectionRemoving

Require: Connection CO to be removed
Ensure: Removing of connection CO and related connections in Resource Model

1: relatedConnections← GetRelationsOf(CO,′ConnectionType′)
2: RemoveConnection(CO)
3: for all rv ∈ relatedConnections do
4: RemoveSubtree(rv.ConnectionEnd)
5: end for

Attribute Renaming, Adding, Renaming These operations are not prop-
agated, because there are no attributes defined in the Resource Model.

Function Creating Algorithm 7 for adding a new function to a PIM class first
adds a new function F to class C. Next, it adds newly created functions to all
related vertices of class C in the Resource Model. Finally, it creates relations
between function F and functions created in the Resource Model by function

129

CreateRelation(PIMModelItem, ResourceModelItem). An example is depict-
ed in Figure 7.10.

Algorithm 7 FunctionCreating

Require: Function F to be added to class C
Ensure: Creating of the functions in related vertices of the class
1: CreateFunctionClass(C, F)
2: relatedV ertices← GetRelationsOf(C,′ V ertexType′)
3: for all rv ∈ relatedV ertices do
4: f ← newFunction()
5: CreateFunction(rv, f)
6: CreateRelation(F, f)
7: end for

Figure 7.10: An example of creating function Get

Function Renaming Function renaming in Algorithm 8 has as parameters
function F and the new name N . As in Algorithm 3 it sets the new name of
function F and all related functions in the target Resource Model. An example
is depicted in Figure 7.11.

Algorithm 8 FunctionRenaming

Require: Function F , new name N of the function
Ensure: Renaming of the function and its related functions in Resource Model
1: F.Name← N
2: relatedFunctions← GetRelationsOf(F,′ FuntionType′)
3: for all rf ∈ relatedFunctions do
4: rf.Name← N
5: end for

Figure 7.11: An example of renaming function Get to Remove

Function Return Type Updating As described in Algorithm 9, it first
changes the return type T of function F . Next, it changes the type of all related
functions in the target Resource Model. An example is depicted in Figure 7.12.

130

Algorithm 9 FunctionReturnTypeUpdating

Require: Function F , new return type T of the function
Ensure: Update of the function’s return type and its related functions in Re-

source Model
1: F.ReturnType← T
2: relatedFunctions← GetRelationsOf(F,′ FuntionType′)
3: for all rf ∈ relatedFunctions do
4: rf.ReturnType← T
5: end for

Figure 7.12: An example of updating function return type int to long

Function Removing Algorithm 10 removes a given function F from its class.
Additionally it removes all related functions the in the Resource Model and re-
lations by function RemoveFunction(ResourceModelFunction). An example is
depicted in Figure 7.13.

Algorithm 10 FunctionRemoving

Require: Function F to be removed
Ensure: Removing of function F and related functions in Resource Model
1: relatedFunctions← GetRelationsOf(F,′ FuntionType′)
2: RemoveFunction(F)
3: for all rf ∈ relatedFunctions do
4: RemoveFunction(rf)
5: end for

Figure 7.13: An example of removing function Get from class A

Function Parameter Adding Algorithm 11 adds a new parameter P to func-
tion F . Subsequently it adds this parameter to all related functions in the target
Resource Model. An example is depicted in Figure 7.14.

131

Algorithm 11 FunctionParameterAdding

Require: Parameter P to be added to function F
Ensure: Adding parameter P to function F and related functions in Resource

Model
1: AddParameter(F, P)
2: relatedFunctions← GetRelationsOf(F,′ FuntionType′)
3: for all rf ∈ relatedFunctions do
4: p← newParameter()
5: AddParameter(rf, p)
6: CreateRelation(P, p)
7: end for

Figure 7.14: An example of adding function parameter surname to function Set-
Name

Function Parameter Type Updating As described in Algorithm 12, it first
changes type T of function parameter F . Next, it changes the type of all related
parameters in the target Resource Model.

Algorithm 12 FunctionParameterTypeUpdating

Require: Function parameter P , new type T of the parameter
Ensure: Update of the parameters’s return type and its related parameters in

Resource Model
1: P.ReturnType← T
2: relatedParameters←
3: GetRelationsOf(F,′ FuntionParameterType′)
4: for all rp ∈ relatedParameters do
5: rp.Type← T
6: end for

Function Parameter Renaming Algorithm 13 changes the name of param-
eter P to a new value N . Next, it changes the name of all related parameters in
the target Resource Model. An example is depicted in Figure 7.15.

132

Algorithm 13 FunctionParameterRenaming

Require: Function parameter P , new name N of the parameter
Ensure: Update of the parameters’s name and its related parameters in Resource

Model
1: P.Name← N
2: relatedParameters←
3: GetRelationsOf(F,′ FuntionParameterType′)
4: for all rp ∈ relatedParameters do
5: rp.Name← N
6: end for

Figure 7.15: An example of renaming parameter name of function SetName to
fullName

Function Parameter Removing Algorithm 14 removes parameter P from
the PIM and next removes all related parameters in the Resource Model and
their relations. An example is depicted in Figure 7.16.

Algorithm 14 FunctionParameterRemoving

Require: Parameter P to be removed
Ensure: Removing of parameter P and related parameters in Resource Model
1: relatedParameters←
2: GetRelationsOf(F,′ FuntionParameterType′)
3: RemoveParameter(P)
4: for all rp ∈ relatedParameters do
5: RemoveParameter(rp)
6: end for

Figure 7.16: An example of removing parameter surname from function SetName

Attribute Creating Algorithm 15 adds new attribute P to PIM class C. Next,
it tries to add the newly created attributes to all related vertices of class C in the
Resource Model. There must be done a check if there already exists an attribute
with the same name by method ExistsAnotherAttributeWithSetName(Attri-
bute, TargetClass). If so, an exception is raised and the algorithm ends. Finally,
the algorithm creates relations between attribute P and attributes created in
the Resource Model using function CreateRelation(PIMModelItem,Resource-
ModelItem).

133

Algorithm 15 AttributeCreating

Require: Attribute P to be added to class C
Ensure: Creating of the attributes in related vertices of the class
1: CreateAttributeClass(C, P)
2: relatedV ertices← GetRelationsOf(C,′ V ertexType′)
3: for all rv ∈ relatedV ertices do
4: if ExistsAnotherAttributeWithSetName(rv, P.Name) then
5: // raise a warning
6: raiseAttributeWithNameAlreadyExists(N)
7: else
8: p← newAttribute(P.Name)
9: CreateAttribute(rv, p)
10: CreateRelation(P, p)
11: end if
12: end for

Attribute Removing Algorithm 16 removes a given attribute P from its class.
Additionally it removes all related attributes in the Resource Model and relations
by function RemoveAttribute(ResourceModelAttribute).

Algorithm 16 AttributeRemoving

Require: Attribute P to be removed
Ensure: Removing of the attribute P and related attributes in Resource Model
1: relatedAttributes← GetRelationsOf(P,′AttributeType′)
2: RemoveAttribute(P)
3: for all rp ∈ relatedAttributes do
4: RemoveAttribute(rp)
5: end for

Attribute Type Updating As described in Algorithm 17, the algorithm first
changes type T of attribute P . Next, it changes the type of all related attributes
in the Resource Model.

Algorithm 17 AttributeTypeUpdating

Require: Attribute P , new type T of the function
Ensure: Update of the attribute type and its related attributes in Resource

Model
1: P.Type← T
2: relatedAttributes← GetRelationsOf(P,′AttributeType′)
3: for all rp ∈ relatedAttributes do
4: rp.Type← T
5: end for

Attribute Renaming Algorithm 18 gets as parameters the attribute and a
new name of the attribute. First, it changes the name of the PIM attribute. Next,
it finds all related attributes of attribute P . For every attribute in the Resource

134

Model, there must be checked that there is not an attribute with the same name
(by method ExistsAnotherAttributeWithSetName()). If so, an error is raised.

Algorithm 18 AttributeRenaming

Require: Attribute P , new name N of the attribute
Ensure: Renaming of the related attribute in vertex
1: P.Name← N
2: relatedAttributes← GetRelationsOf(P,′AttributeType′)
3: for all rp ∈ relatedAttributes do
4: if ExistsAnotherAttributeWithSetName(rp,N) then
5: // raise a warning
6: raiseAttributeWithNameAlreadyExists(N)
7: else
8: rp.Name← N
9: end if

10: end for

Figure 7.17: An example of moving attribute assemblyYear from class Product
to class ProductVersion

Attribute Moving Algorithm 19 gets as parameters the attribute to be moved,
the class where the attribute is and the class to which the attribute should be
moved. First, the algorithm checks if there exists an attribute with the same name

135

in the target class using method ExistsAnotherAttributeWithSetName(Attri-
bute, TargetClass). If so, the algorithm raises an exception AttributeWith-
NameAlreadyExistsInClass(Attribute, TargetClass) and ends. If not, the at-
tribute is moved. Next, the algorithm tries to move all related Resource Model
attributes to the Resource Model classes related to target PIM class. If there
is no collision with the attribute name, the Resource Model attribute is moved.
Otherwise the algorithm raises an error.

An example of the moving propagation is depicted in Figure 7.17. Attribute
assemblyYear is moved from PIM class Product to class ProductVersion and sub-
sequently moved in Resource Model.

Algorithm 19 AttributeMoving

Require: Attribute P , target class Ct

Ensure: Moving of attribute P from class Cs to class Ct

1: Cs ← P.parent
2: if ExistsAnotherAttributeWithSetName(Ct, P.Name) then
3: // raise a warning
4: raiseAttributeWithNameAlreadyExistsInClass(P,Ct)
5: else
6: move attribute P from Cs to Ct

7: end if
8: relatedAttributes← GetRelationsOf(P,′AttributeType′)
9: relatedtargetClasses← GetRelationsOf(Ct,

′ClassType′)
10: for all rp ∈ relatedAttributes do
11: for all rtc ∈ relatedtargetClasses do
12: if ExistsAnotherAttributeWithSetName(rtc, rp.Name) then
13: // raise a warning
14: raiseAttributeWithNameAlreadyExistsInClass(rp, rtc)
15: else
16: move attribute rp from rp.parent to rtc
17: end if
18: end for
19: end for

7.8.1 Cardinalities

Cardinalities are used when there must be defined a (strict) relation between
objects. Cardinalities can be expressed over the PIM too (see Figure 7.3) and
they can be used for specific evolution process of the related models. However,
cardinalities are not defined in the Resource Model. Since the model itself follows
the tree structure, a cardinality has no significance here.

One situation where the cardinality can be used is during generation of re-
source addresses from the model because the cardinalities can reduce number of
generated addresses when there is relation [1..1].

136

7.8.2 API Versioning

Thanks to the defined algorithms, it is possible to record or generate operations
done during the evolution process. These operations can be expressed, e.g., in
textual or graphical form or a diff, comprehensible for the API consumer. Since
all changes are tracked, the situation when a change in the new API version is
not documented should be avoided.

Suppose adding of the new class Comment and its connection to the class
User in the PIM model. These two operations are propagated to the related
Resource Model. Except for the transformation of the target model, they can
generate the following description:

• New class Comment added.

• New resource shop/user/{:uid}/comment:cid combined with methods
POST, GET added.

These descriptions can be included in the new API version next to the data
structure models.

7.8.3 View Model

In real-world applications it is common that models defined in PIM do not fully
correspond to the models defined in PSM. For instance, there can be different
attributes in two corresponding classes, there may be a relation between classes in
PIM not represented in PSM, or some classes from PIM might not be represented
in the PSM. Due to this feature, it is common that in PIM a special class is
created and this class projects only selected attributes or even attributes having
different types than in the original class. These classes are usually called View
Model Classes. For instance, suppose there exists PIM class User with attributes
Name, Id, Email, Created and its corresponding PSM view model User only with
attributes Name and Email – PIM attributes Id and Created are hidden from
user view.

Thanks to the above defined extension of the Resource Model with attributes,
it is possible to handle this requirement – the Resource Model in fact represents
a view of the PIM.

7.8.4 Model Nesting

Another situation can be a combination of several PIM classes into one Resource
Model class – so-called nesting. An example of the nesting is depicted in Fig-
ure 7.18, where PIM classes Product and ProductVersion are nested into one
Resource Model class Product. This situation is very common, because the inter-
nal architecture and the structures of the system do not have to correspond to
the structures offered by the API to the consumers.

To be able to provide changes in the PIM classes and their related PSM
classes, we need to define algorithms which solve potential problems, such as,
e.g., attribute name collision. Figure 7.19 depicts a situation when attribute year
is added to PIM class Product and this change is correctly propagated to Resource
Model class Product. Figure 7.20 illustrates a situation of invalid propagation.

137

Figure 7.18: An example of nesting PIM classes Product and ProductVersion into
Resource Model class Product

Attribute name is added to PIM class Product and cannot be propagated to
Resource Model class Product, because there already exists attribute name.

Figure 7.19: An example of correct propagation of adding attribute year to class
Product

7.8.5 Resource Parameters Evolution

In the REST resource, particular data can be specified by its unique identifier
(e.g., ID or hash). This identifier is specified after the particular data item. For
example, in the resource shop/user/{:uid}/order/{:oid}, identifier {:uid}
specifies ID of the user and {:oid} specifies id of the order. It is possible to specify
more attributes as identifiers (or keys). In most cases names of these identifiers
are mapped directly to the class attributes. So a change of the attribute name
influences the resource and correct change propagation must be provided as well.

7.8.6 Applying the Solution on Existing Clients

There can already exist clients before the adoption of this proposal. So the ability
to apply or incorporate the proposed solution is an important task. There are
no strict contracts in the REST API between server and client like while using
web services (e.g., WSDL). It is sufficient to have a list of resource addresses,
a description of structures, or JSON schemas. The full list of possible resource
addresses can be generated from the particular Resource Model by traversing the
model using the depth-first search algorithm (see Section 7.3 for an example).
The particular format of the parameters in the address, e.g., of the id, can be

138

Figure 7.20: An example of invalid propagation of adding attribute name to class
Product

specified for the particular programming language or the framework of the existing
client. Next, the implementation can be extended with generating of basic JSON
schemas of the resources that can be generated directly from the PIM models.

7.9 Implementation and Experiments

As we have mentioned, since there are no existing solutions providing similar
functionality, it is not possible to compare our approach to the competitors. So
instead we provide a proof of the concept using real user experience and tests. The
presented solution was implemented as an extension of the DaemonX . Figures 7.2,
7.21, 7.24, 7.25 are screenshots of the application.

As the source model we use the existing PIM plug-in. For the purpose of
this thesis, there were implemented two additional plug-ins. The first one is
called ResourceModel and it represents the model of the REST resource, which
is described in Section 7.3. The second one is an evolution plug-in providing
propagation of changes done in the source PIM to the target Resource Model
that implements algorithms described in Section 7.4.

7.9.1 Experimental Data

As testing data we used an existing real-world REST API1 provided by the
GitHub and API2 provided by Twitter [125].

1https://developer.github.com/v3/pulls/
2https://dev.twitter.com/overview/api

139

https://developer.github.com/v3/pulls/
https://dev.twitter.com/overview/api

Figure 7.21: An example of the PIM model and its corresponding Resource Model
used for experiments

These APIs were selected because they are well-defined, documented, and
commonly used. Data structures used for sending request and especially response
messages are complex which is convenient for our experiments too. The model
representing one of GitHub API responses consists of 5 classes, 7 associations
between these classes, and 48 class attributes. There are no functions except for
GET, POST, PATCH, and PUT methods. In addition, for the purpose of the
tests, we have added multiple functions with various parameters to be able to
test all operations defined over our models.

In Figure 7.21 there is depicted the PIM model used for experiments and
corresponding Resource Model after transformation from the JSON definition

140

taken from the GitHub API description. Due to mapping complexity, instead of
dashed lines, mapping is represented with red numbers – the same numbers in
PIM and Resource Model mean that there exists a mapping between these items.
As we can see, PIM class User is mapped in the Resource Model to multiple
vertices, namely User, Assignee, and Creator. Other PIM classes are mapped to
the corresponding Resource Model vertices.

7.9.2 Experiments

As we have mentioned, the provided resource API was analyzed and the corre-
sponding PIM and Resource Model were created. Next, these two models were
mutually mapped. And, finally, all PIM operations were applied as described
later in this section. Thanks to the implemented algorithms, all changes were
propagated to the target Resource Model and then checked by the following sce-
nario:

1. Make a change in the source PIM.

2. Let the changes propagate to the target Resource Model.

3. Let the resource API generate from the evolved Resource Model.

4. Validate the new resource API.

In particular, the following changes were done in the PIM:

• Class Creating: Impact of creating of a new class in PIM does not have
an impact on the Resource Model because it is does not related to it.

• Class Removing: This operation when propagated to the Resource Model
class has an impact on resource address, because a part of tree will be
removed.

• Class Renaming: This change, when propagated to the Resource Model
class, has an impact on the resource address, because the name of the class
must be replaced by the new one in the resource addresses.
This propagation example is depicted in Figure 7.22. Class Label is re-
named into DetailInformation. This class is mapped to two vertices Label
in the Resource Model. After the propagation, both vertices are renamed
to DetailInformation (see Figure 7.23).

• Connection Creating: Adding of an association between PIM classes
impacts the target model only if the propagation is permitted. In this
case, the target model changes its structure and a new resource address
containing this newly added class will be generated.
An example of this case is depicted in Figure 7.24 where a connection is
added between classes Label and Milestone. The result of the propagation
to the Resource Model is depicted in Figure 7.25). The algorithm added a
vertex Label as a child of vertex Milestone and vertex Milestone with child
Creator as a child of vertex Label. In this example we can see that the
added relation Milestone → Label makes sense, but the second one does
not. In this situation, the prompt policy can be applied to propagate only
the reasonable subset.

141

Figure 7.22: An example of renaming class Label to DetailInformation

Figure 7.23: An example of propagation of class renaming from Figure 7.22 to
the Resource Model

• Connection Removing: Association removal affects the target model in
the way that it removes a part of the diagram which causes that there will
be generated less resource addresses from the model.

• Function Creating: Adding of a new function to the PIM class will cause
creation of new resource addresses in the Resource Model.
This situation is depicted in Figure 7.26. Function SetUrl is added to PIM

142

Figure 7.24: An example of adding a connection between classes Label and Mile-
stone

class User. This class is mapped to vertices User, Assignee, and Creator
in the Resource Model. After the propagation, SetUrl is added to these
vertices (see Figure 7.27).

• Function Removing: Removing a function in the PIM class will cause
removal of the respective addresses from the Resource Model.

• Function Renaming: A change of a function in the PIM class will cause
a change of the respective addresses in the Resource Model.

• Function Return Type Changing: A change of a function return type
does not have any impact on the resource address, because it is not present
there.

• Function Parameter Adding: Adding of a new parameter has an im-
pact on all related functions in the Resource Model and changes resource
addresses everywhere, where the function is used.

• Function Parameter Removing: As in the previous case, this operation
has an impact on all related functions in the Resource Model.

• Function Return Type Changing: A change of the function return type
does not have any impact on the resource address, because it is not present
there.

• Function Parameter Renaming: This operation changes a part of the
resource address, because of a new parameter name.

143

Figure 7.25: An example of propagation of adding a connection from Figure 7.24
to the Resource Model

Figure 7.26: An example of adding a function SetUrl to a PIM class User

• Function Parameter Type Changing: This operation does not have an
impact on the resource address, because it is not present in the resource
address.

• Attribute Creating: Adding of a new attribute to the PIM class will
cause creation of a new attribute in the Resource Model. To be able to
perform this operation, all preconditions must be satisfied. We have added
new attribute alias of type String to PIM class User (see Figure 7.21).
Since this class is mapped to Resource Model vertices User, Creator, and
Assignee, attribute creation was propagated to these vertices. Since there

144

Figure 7.27: An example of propagation of adding function SetUrl from Fig-
ure 7.26 to the Resource Model

were no attributes with the same name, name collision did not occur.

• Attribute Removing: Removing an attribute from a PIM class will cause
removal of the related attributes from the Resource Model. As in the previ-
ous case, we focused on PIM class User. First we removed attribute login.
Since this attribute is mapped to attributes in Resource Model vertices Us-
er, Creator, and Assignee, they were removed from these classes too. Next,
we removed attribute type. Since this attribute has no relations in the
Resource Model, no operation was propagated.

• Attribute Renaming: A change of an attribute in the PIM class will
cause a change of the respective attributes in the Resource Model. To be
able to perform this operation, preconditions must be satisfied. In this case
we renamed attribute state of PIM class Milestone into status. Due to the
relation to the attribute state in Resource Model vertex Milestone and since
there is no attribute with the same name in the class or vertex, this change
was successfully propagated. Subsequently we renamed attribute html url
in PIM class User into name url. Since an attribute with the same name
already existed, the operation was canceled.

• Attribute Type Changing: A change of an attribute data type does not
have any impact on the generated resources, because attribute type is not
present in the resource. In this case we changed the data type of attribute
state in class Milestone from String to enum MilestoneStateEnum. Since
there is no restriction on the type change, this change was propagated
successfully.

• Attribute Moving: Moving an attribute from one PIM class to another
will cause moving of all related attributes in the Resource Model. To be
able to perform this operation, preconditions must be again satisfied. The
algorithm checks all possible collisions of the attribute names. E.g., moving
an attribute to a class where there already exists an attribute with the
same name or moving multiple attributes to one class represent the same
evolution process. Suppose moving of attribute url from PIM class User
to PIM class Issue. Since there already exists an attribute with the same
name, the operation was canceled. Next, suppose moving of attribute title

145

from PIM class Issue to PIM class Label. Since there is no attribute with
the same name in the target class, the operation can be propagated to all
related Resource Model vertices. Again, there exists no attribute title in
Resource Model vertex Label, the attribute moving can be propagated.

The presented experiment uses a PIM model with 5 classes and 7 associations.
Related Resource Model contains of 7 vertices and 6 edges. From the Resource
Model 7 resources can be generated (and multiplied by particular HTTP meth-
ods). All operations defined over PIM model were applied and caused 25 changes
in the Resource Model. This lead to 100 changes in related resources, depend-
ing on used HTTP methods. From the experiment we can observe the following
results:

• The number of changes depends on the Resource model and relations to the
PIM model.

• During the experiments, 17 operations over PIM model caused 25 changes
in Resource Model and 100 in the resources.

• Attribute operations have no impact on the generated resources.

• Removing of a PIM class can significantly change the Resource Model, e.g.,
removing of PIM class that is related to the root vertex of the Resource
model.

We can conclude with the finding that all the changes were propagated correct-
ly and completely, whereas we saved lots of manual effort and avoided possible
errors. An interested reader may download the implementation as well as the
sample models from this resource3.

7.10 Conclusion

The main aim and contribution of this chapter is to provide the ability of main-
taining REST resources during time and their continuous development during
evolution of the system. Our target is to reduce the possibility of errors during
manual update and to reduce the amount of work which must be done because
of a change of the resource related to the change of the PIM. For this purpose
we provide algorithms to propagate changes again based on the MDA approach.
As the source model, we use the well-known PIM and as the target model we de-
fined new PSM model representing a REST service resource, called the Resource
Model. The Resource Model representing the REST service can be subsequent-
ly used for generating a stub for a particular client and server implementation
or a programming language. Next, the model can be combined with existing
solutions like RAML or Swagger which would then provide a full MDA man-
aged and documented evolution of the REST API. Finally, this proposal can be
integrated together with other PSM models (e.g., database, XML, object etc.)
to provide a complex MDA solution, exactly like we implement it in our evolu-
tion and change-management framework DaemonX. But there is no limitation to
implement presented algorithms in transformation languages such as QVT [48].

3http://www.ksi.mff.cuni.cz/~polak/daemonx/

146

http://www.ksi.mff.cuni.cz/~polak/daemonx/

7.10.1 Future Work

Even though the approach is complex and robust, there still exists issues that
can be solved:

• Enlarge set of operations : Even the model supports set of all commonly
used operations for its update, there can be defined and analyzed shortcut
operations, such as Connection moving or Property moving.

• Query evolution: Current model can be used as a source for a query model
over REST API and subsequent definition of transformation between these
two models. This solution can be further intercorporated with existing
solutions.

147

148

8. Schema Mapping

In this chapter we explore the application of XML schema similarity mapping
in the area of conceptual modeling of XML schemas. This approach extends the
DaemonX framework and the approaches from the previous chapters with the fol-
lowing idea: We have a system with multiple models and schemas and we need to
integrate an existing schema from an external source into our system. We expand
upon our previous efforts to map XML schemas to a common PIM schema using
similarity evaluation based on exploitation of a decision tree. In particular, in this
approach a more versatile method is implemented and the decision tree is trained
using a large set of user-annotated mapping decision samples. Several variations
of training that could improve the mapping results are proposed. The approach is
implemented within a modeling and evolution management framework called eX-
olutio [71], a predecessor of DaemonX devoted purely to XML technologies, and
its variations are evaluated using a wide range of experiments. The approach was
presented in [66].

8.1 Introduction

The XML has become one of the leading formats for data representation and data
exchange in the recent years. Due to its extensive usage, large amounts of XML
data from various sources are available. Since it is common that sooner or later
user requirements change, it is very useful to adapt independently created XML
schemas that represent the same reality for common processing. However, such
schemas may differ in structure or terminology. This leads us to the problem of
XML schema matching that maps elements of XML schemas that correspond to
each other. Schema matching is extensively researched and there exists a large
amount of applications, such as data integration, e-business, schema integration,
schema evolution and migration, data warehousing, database design and con-
solidation, web site creation and management, biochemistry and bioinformatics,
etc.

Matching a schema manually is a tedious, error-prone and expensive work.
Therefore, automatic schema matching brings significant savings of manual effort
and resources. But it is a difficult task because of the heterogeneity and impreci-
sion of input data, as well as high subjectivity of matching decisions. Sometimes
the correct matches have to be marked only by a domain expert. As a com-
promise, in (semi)automatic schema matching the amount of user intervention
is significantly minimized. For example, the user can provide information before
matching/mapping, during the learning phase. Or, after creation of a mapping
the user can accept or refuse suggested mapping decisions which could be later
reused for improvement of further matching.

In our case schema matching is used as the key step during the schema integra-
tion process. In particular, we match elements from independent XML schemas
against elements in the common PIM schema to establish the respective PSM-
to-PIM mapping. In particular, this work uses a (semi)automatic approach to
schema matching. We explore the applicability of decision trees for this specif-
ic use case. A decision tree is constructed from a large set of training samples

149

and it is used for identification of correct mapping. For our target application
various modifications of the training process are proposed and experimentally
evaluated on the basis of several common hypotheses. The proposed approach
extends previous work [116] and it was implemented and experimentally tested
in the modeling and evolution management tool eXolutio which is a predecessor
of DaemonX focussing purely on XML data.

8.2 Related Works

In this section existing schema matching approaches are described. As we have
mentioned, since the number of the approaches is high, we have selected only the
key classical and the most popular representatives. Next, we present works that
analyze and compare various existing approaches and their characteristics.

8.2.1 COMA

COMA matcher [31] is an example of a composite approach. Individual match-
ers are selected from an extensible library of match algorithms. The process of
matching is interactive and iterative. A match iteration has the following three
phases: (1) User feedback and selection of the match strategy, (2) Execution of
individual matchers, and (3) Combination of the individual match results.

Interactive mode The first step in the iteration is optional. The user is able
to provide feedback (to confirm or reject previously proposed match candidates
or to add new matches) and to define a match strategy (selection of matchers,
strategies to combine individual match results). In automatic mode there is only
one iteration and the match strategy is specified by input parameters.

Reuse of match results Since many schemas to be matched are very similar
to the previously matched schemas, match results (intermediate similarity results
of individual matchers and user-confirmed results) are stored for later reuse.

Aggregation of individual matcher results Similarity values from individ-
ual matchers are aggregated to a combined similarity value. Several aggregate
functions are available, for example Min, Max or Average.

Selection of match candidates For each schema element its best match can-
didate from another schema is selected, i.e., the ones with the highest similarity
value according to criteria like MaxN (n elements from schema S with maximal
similarity are selected as match candidates), MaxDelta (an element from schema
S with maximal similarity is determined as match candidate plus all S elements
with a similarity differing at most by a tolerance value d which can be specified
either as an absolute or relative value), or Threshold (all S elements showing a
similarity exceeding a given threshold value t are selected).

The COMA++ [6], an extension of COMA, supports a number of other fea-
tures like merging, saving and aggregating match results of two schemas.

150

8.2.2 Similarity Flooding

Similarity Flooding [86] can be used to match various data structures – data
schemas, data instances or a combination of both. The algorithm is based on
the idea that the similarity of an element is propagated to its neighbors. The
input data is converted into directed labeled graphs. Every edge in the graphs is
represented as a triple (s, l, t), where s is a source node, t is a target node, and
l is a label of the edge. The algorithm has the following steps: (1) Conversion
of input schemas to internal graph representation, (2) Creation of auxiliary data
structures, (3) Computation of initial mapping, (4) Iterative fix-point computation
and (5) Selection of relevant match candidates. The accuracy of the algorithm is
calculated as the number of needed adjustments. Output mapping of elements is
checked and if necessary, corrected by the user.

Matcher The main matcher is structural and is used in a hybrid combination
with a simple name matcher that compares common affixes for initial mapping.
The matcher is iterative and based on fixpoint computation with initial mapping
as a starting point.

Fixpoint computation The similarity flooding algorithm is based on an iter-
ative computation of σ-values. The computation of the σ-values for a map pair
(x, y) is performed iteratively until the Euclidean length of the residual vector
∆(σn, σn − 1) becomes less than ǫ for some n > 0 (i.e. the similarities stabilize):

σi+1(x, y) = σi(x, y) +
∑

(a,l,x)∈EA

(b,l,y)∈EB

σi(a, b)w((a, b), (x, y)) +
∑

(x,l,c)∈EA

(y,l,d)∈EB

σi(c, d)w((x, y), (c, d)) (8.1)

where σi(x, y) is the similarity value in i-th iteration of nodes x and y and σ0 is
the value computed in the initial mapping.

Similarity Flooding can be further improved for example by usage of another
matcher for initial mapping or auxiliary source of information – e.g. dictionary.

8.2.3 Decision Tree

In [36] a new method of combining independent matchers was introduced. It is
based on the term decision tree.

Definition 22. A decision tree is a tree G = (V,E), where Vi is the set of internal
nodes (independent match algorithms), Vl is the set of leaf nodes (output decision
whether elements do or do not match), V = Vi ∪ Vl is the set of all nodes, E is
the set of edges (conditions that decide to which child node the computation will
continue).

The decision tree approach does not have the following disadvantages of ag-
gregation of result of independent matchers used, e.g., in COMA:

• Performance: In the composite approach with an aggregate function, all
of the match algorithms have to run. The time required is worse than with
a decision tree.

151

• Quality: Aggregation can lower the match quality, e.g., if we give higher
weights to several matchers of the same type that falsely return a high
similarity value.

• Extendability is worse, because adding a new matcher means updating
the aggregation function.

• Flexibility is limited, because an aggregation function needs manual tun-
ing of weights and thresholds.

• Common Threshold: Each match algorithm has its own value distribu-
tion, thus it should have own threshold.

On the other hand, the main disadvantage of Decision Trees is the need of a
set of training data.

8.2.4 XML Schema Clustering with Semantic and Hier-
archical Similarity Measures

Paper [89] presents a schema clustering process by organising the heterogeneous
XML schemas into various groups. The methodology considers not only the
linguistic and the context of the elements but also the hierarchical structural
similarity. The authors present the XMine methodology that quantitatively de-
termines the similarity between the heterogeneous XML schemas by considering
the semantic, as well as the hierarchical structural similarity of elements. Similar
schemas are clustered into the separate meaningful classes.

Whilst there are several XML documents and schema clustering techniques
available, the paper enhances this task by adding the hierarchical similarity in
clustering by addressing the element level hierarchical positions. The XMine
methodology can deal with the varying structures of schemas and with the varying
aspects of semantic differences in the schema elements.

The XMine Methodology

The XMine methology consists of three phases:

1. Preprocessing: In this phase, common and similar features between vari-
ous schemas are analyzed. It consists of four subphases, based on different
analyzers that are run – structure analyzer (it analyzes the structure of a
schema and transforms it into a labelled and directed acyclic tree graph),
element analyzer (it measures the similarity between arbitrary elements in
different schemas primarily based on element names), maximally similar
paths finder (it determines the common and similar hierarchical structure
of elements defined in the schema). At the end, an overall degree of simi-
larity between schemas is computed by taking the element and structural
similarity into consideration.

2. Data Mining: The schemas similar in structure and semantics are grouped
together to form a hierarchy of schema classes using an agglomerative clus-
tering algorithm. The reasons to use the hierarchical method are as follows:

152

Firstly, similarity of the clusters is based on the number of common ele-
ments that the schemas share. Secondly, the algorithm repeatedly merges
the clusters to form a final solution. Therefore this clustering process can be
analyzed in the post-processing phase to form a hierarchy of schema classes.
Thirdly, the used algorithm should be resistant to noise and outliers. Since
the data collection can have a schema that may not be related to other
schemas, outliers may be present. This algorithm uses a k-nearest neigh-
bour graph in the partitioning phase that ensures reducing of the effects
of noise and outliers. Fourthly, the used algorithm should not require the
number of clusters to be pre-determined because the relationships between
data are unknown. Finally, because the volume of query data can be very
large, the algorithm should be scalable.

3. Postprocessing: In this phase, the discovered schema patterns are visu-
alized as a tree of clusters called dendogram. The dendogram shows the
clusters that are merged together and the distance between these merged
clusters. This facilitates the generalization and specialization processes of
the clusters to develop an appropriate schema class hierarchy. Each cluster,
that contains a set of similar schemas, forms a node in the hierarchy, where
all nodes (or clusters) are at the same conceptual level.

For the experiments the authors use data from different domains that have
structural and semantic differences. The validity and quality of the XMine clus-
tering solution are verified using two common evaluation methods: (1) the intra-
cluster and inter-cluster quality and (2) the FScore measure.

The authors claim that XMine comes closer to schema only approaches such
as COMA. However, the main difference between these approaches and XMine is
that the structural similarity is derived from the maximal similar paths obtained
by using the adapted sequential pattern mining algorithm.

Conclusion

The paper presents the XMine methodology that accurately clusters the schemas
by considering both structural and semantic information of elements. XMine in-
cludes structural information in the similarity measurement by finding the max-
imal similar paths between schemas.

The evaluation shows the effectiveness of XMine in categorizing a set of het-
erogeneous schemas into relevant classes that facilitate the generalization of an
appropriate schema class hierarchy. The authors declare that this schema clus-
tering approach can also easily be applicable on the document instances after
representing each document as a tree. Moreover, the methodology is applica-
ble to general web documents after performing XHTML conversion, and then
representing the documents as the trees.

8.2.5 Minimizing User Effort in XML Grammar Matching

In paper [122] the authors address the XML grammar matching/comparison prob-
lem, i.e., the comparison of DTDs and/or XML Schemas based on their most com-
mon characteristics. The goal is to develop an effective XML grammar matching

153

method minimizing the amount of manual work needed to perform the match
task that requires:

1. Considering various characteristics and constraints of the XML grammars
being matched, in comparison with existing ‘grammar simplifying’ approach-
es.

2. Allowing a flexible and extensible combination of different matching crite-
ria, adaptable to various application scenarios, in comparison with existing
static methods.

3. Effectively considering the semi-structured nature of XML, as the most
prominent and distinctive feature of an XML grammar [4], in comparison
with existing heuristic or generic approaches.

XML Grammar Tree Representation

The authors provide a XML grammar tree model representation that accurately
captures the structural properties of XML grammars and considers their most
common characteristics. To reduce time complexity of the algorithms, e.g., for
edit distance computing, the tree grammar is transformed to a fully ordered tree.

Another problem that must be solved is recursion and references. The authors
solve this problem by creation of a new leaf node n′ of each recursive node n, such
as n′ has the same components as n and data-type set to Recursive.

The XML grammar matching approach consists of four components:

1. The XML Grammar Tree Comparison component for computing the
distance (and consequently the similarity) between two XML grammar
trees.

2. The Extensible Matchers component encompassing several independent
matching algorithms exploited via the Edit Distance component to capture
the similarities between XML grammar nodes based on their characteristics
(label, data-type, cardinality constraints, alternativeness constraints, and
node ordering).

3. The Mapping Identification component, interacting with the Tree Edit
Distance component to identify the edit script, and consequently the edit
distance mappings, between the compared XML grammar trees.

4. The UserFeed component to consider user predefined mappings and user
feedback in producing matching results. Where UserFeed is an operation
that transforms an XML grammar tree A into A′, such as in the destination
tree A0, nodes corresponding to predefined matches are eliminated, along
with their corresponding sub-trees.

The authors also present an XML grammar matching framework in the ex-
perimental XML Structural and Semantic Similarity (XS3) prototype. The main
criterion used to assess the effectiveness of automatic schema matching methods
is the amount of manual work and user effort required to perform the match-
ing task. In this context, most existing approaches propose to first manually

154

solve the match task, in order to exploit the obtained results as a reference to
evaluate the quality of the matches produced by the system. Thus, similarly to
information retrieval, the Precision and Recall metrics can be utilized in com-
paring real-world and system generated matches. The results of the experiments
were compared with well-known solutions, such as Cupid [81], Similarity flooding,
COMA, XClust [76] or Relaxation Labeling [138].

Discussion

In this paper, the authors propose a framework for XML grammar matching and
comparison based on the concept of edit distance. They claim that this is the
first attempt to exploit tree edit distance in an XML grammar matching context.
The presented method aims at minimizing the amount of manual work needed to
perform the match task.

8.2.6 XML Matchers: Approaches and Challenges

In paper [2] the authors provide a detailed description and classification of existing
XML Matchers. They present an XML Matcher template which describes the
main components of an XML Matcher and discuss how each of these components
has been implemented in some popular XML Matcher. This helps to describe
how XML Matchers work in practise and to compare them. Next, they discuss
selected commercial prototypes designed to find matchings between DTDs/XSDs.

Schema Matchers and Algorithms

The authors divide matchers into various groups, e.g., Schema matchers vs. In-
stance matchers and Simple matchers vs. Complex matchers (these terms are
describer later in Section 8.3) and describe differences between them and men-
tion representatives of particular types.

DTD and XSD in XML Matchers

The authors discuss how features of DTDs/XSDs may impact the semantics of
schemas encoded by means of these language. They compare them with oth-
er representations, e.g., Entity-Relational (E/R), and analyze specific feature of
DTD/XSD, such as hierarchical structure. Next, they compare DTD and XSD
directly and mention abilities of XSD not presented in DTD that can improve
matching results.

A Template to Classify XML Matchers

The main contribution of the approach is a template to classify XML Matchers.
The authors mention that there is no official definition of the XML Matcher
at all. Different researches and papers present own definitions of matchers and
they use different methodologies and tools to find semantic matching between
DTD/XSD. The authors present an abstract model which plays the role of a
template whose structure is applicable to all existing XML Matchers. It consists
of several components – for instance, a component could specify the strategy
adopted for representing input DTDs/XSDs. Once these components have been

155

defined, they can represent each existing approach as a set of them. Such a
template acts as universal container which is generally sufficient to describe the
main features of most of the existing XML Matchers.

Definition 23. A XML Matcher template is a tuple
T =< IFD, IRD,M, k, σ, λ, φ > where: IFD and IRD are the Input Format
and the Internal Representation domains, respectively. M : IFD → IRD(pre−
processingfunction) is a function which receives an element of IFD and returns
an element of IRD. For each S ∈ IFD, we denote as M(S) the corresponding
element in IRD. k is an integer greater than or equal to 1. σ = [σ1, ..., σk] is
a group of k functions. For each i = 1...k and for each S ∈ IFD, σi : M(S) ×
M(S) → [0, 1] is called similarity function. λ : [0, 1]k → [0, 1] is an aggregating
function; [0, 1]k k denotes the hypercube in R

k, i.e., a k-th dimensional array
whose components range from 0 to 1. φ : IFD × IFD → R

+ is a schema
similarity function ; R+ is the set of non-negative real numbers.

Challenges for XML Matchers

The authors refer that even there was done a huge amount of work at both aca-
demic and industrial levels in schema matching area, there are still open problems
and gaps that should be solved and present some examples of interesting and
problematic topics:

• Schema Clustering and Data Integration on Web: The traditional
integration techniques generally assume that sources belong to the same
domain, which is not true at all, especially on the web. An example can
be integration of government services from various sectors into one portal.
A better solution is to first classify the related schemas into homogenous
domains to obtain a DTD/XSD representing the domain as a whole. Then
to cluster the DTDs/XSDs of the detected domains to obtain more abstract
domains, each represented by a unique DTD/XSD. This process could be re-
peated until a unique abstract DTD/XSD representing all services is found.

• Uncertainty Management in XML Matchers: The output generated
by a matcher is often uncertain and additional evaluation is needed. The
authors mention an example with possible information loss because of in-
valid matching. The solution of this problem can be a human advice. In
order to manage uncertainty in the schema matching process, the authors
refer to concept of probabilistic mapping, i.e., they suggested to associate a
score with each discovered matching, stating its probability of being correct.

Discussion

The authors provide a detailed analysis of approaches explicitly designed to
find matches between DTDs/XSDs. They discuss data representations different
from DTD/XSD, such as E/R. The approach introduces a template, called XML
Matcher Template, to describe the main components of an XML Matcher, their
role and their interactions. They use this template to characterize and compare
a set of XML Matchers that gained a large popularity in the literature. Next,
the paper contains an analysis of the existing tools for handling schema matching

156

tasks (for the comparison the XML Matcher template is used too). Finally, they
present two important challenges related to XML Matchers, namely the cluster-
ing of large collections of DTDs/XSDs and the uncertainty management in XML
Matchers.

8.2.7 Comparison of the Related Works

In the first three papers [31, 86, 36] we discuss various matchers, namely COMA,
Similarity flooding and Decision tree approaches. The approach [89] presents the
XMine methodology that quantitatively determines the similarity between het-
erogeneous XML schemas by considering the semantic, as well as the hierarchical
structural similarity of elements. Similar schemas are clustered into the separate
meaningful classes. Whilst there are several XML documents and schema cluster-
ing techniques available, this paper enhances this task by adding the hierarchical
similarity in clustering via addressing the element level hierarchical positions. The
authors claim that the XMine methodology can deal with varying structures of
schemas and with varying aspects of semantic differences in the schema elements.
The approach [122] focuses on minimizing user effort during the matching pro-
cess. The paper analyzes various types of matchers and presents a XML Matchers
template that should help during the comparison of various matchers. The last
paper [2] introduces a template, called XML Matcher Template, to describe the
main components of an XML Matcher, their role and their interactions. They
use this template to characterize and compare a set of various commonly used
XML Matchers which gained a large popularity in the literature.

A general comparison of the first three discussed methods is introduced in
Table 8.1. The decision tree approach seems to be the most promising for our
application – it is dynamic and versatile. Furthermore it has desirable values of
compared properties – it is highly extensible, quick and has a low level of user
intervention and a low level of required auxiliary information. As continuing
work, the authors currently investigate the extension of our method to deal with
user derived data-types.

Extensibility Speed User intervention Auxiliary info

COMA Low Low High Low

Similarity Flooding None High None None

Decision Tree High High Low Low

Table 8.1: A comparison of the selected existing solutions

Based on existing works, we have explored various approaches to schema
matching and selected the most promising possible approach for our applica-
tion – schema matching using a decision tree. The main motivation of this work
was to define a dynamic, versatile, highly extensible solution that requires a low
level of user intervention and a low level of required auxiliary information.

8.3 Schema Matching

The (semi)automatic or automatic process of finding correspondences between
elements of two schemas is called schema matching. In this thesis the term

157

schema matching is used for simplicity in a general way, but there are various
specific types.

• Schema-to-schema matching has as an input two XML schemas.

• Instance-to-instance matching has as an input two XML documents.

• Schema-to-instance matching has as an input an XML document and an
XML schema.

Similarity is a measure that expresses the level of correspondence. Its value is
from interval [0, 1], where 0 means no similarity and 1 means that the compared
items are equal in the selected measured aspects. A Matcher is an algorithm that
evaluates similarity of schemas according to particular criteria.

8.3.1 Applications of Schema Matching

Schema matching is extensively researched and has a lot of applications [113] in
various sectors like data integration, e-business, biochemistry and bioinformatics,
ontology matching or data warehousing.

Data Integration In this area the task is to create a single mediated schema
from a set of independently designed schemas that allows a uniform access to it.
The independently developed schemas have often different structure and termi-
nology, but they describe the same real-world model. Schema matching is the first
step in the data integration process. It is used, e.g., in [124]. Conceptual mod-
eling enables a slight variation of schema integration. Independently developed
schemas are integrated using a given conceptual schema.

E-business In business transactions messages with different format are often
exchanged and they have to be transformed – we need a conversion between differ-
ent names, data types, ranges of values and structure. Schema matching is used
for integration of different representations of the same concept developed by dif-
ferent parties involved in the business transactions. Examples of this application
are [59, 63].

XML schemas are used in business transactions among enterprises that ex-
change business documents with their partners. Many enterprises and organiza-
tions have defined their own XML schemas to describe the structure and content
of their business documents (i.e., XML instances) to be used in the transactions.
Some organizations have also published standard XML schemas to be shared
in the transactions within specific industry domains (e.g., e-manufacturing, e-
government, or e-health industries). The popularity of XML leads to an integra-
tion problem. Different enterprises or organizations often choose different XML
representations for the same or similar concepts. One of the most critical steps to
achieving the seamless exchange of information between heterogeneous e-business
systems is schema matching.

158

Biochemistry and Bio-informatics Data management in bio-informatics and
biochemistry is used for genome research, network analysis of molecular interac-
tions, interaction maps of proteins. Information systems contain usually very
large data sets. The volume of data grows exponentially as new types of data
emerge. In addition, the semantics of biological data is very rich. Schema match-
ing enables to share and reuse huge amount of data from previous experiments
from heterogenous sources. It is studied, e.g., in [32, 117, 69].

Ontology Matching An ontology is a representation of knowledge about a
certain domain. It uses concepts, attributes and relations to express this knowl-
edge. The concepts are entities and relations express relationships among them.
Ontologies are organized into a taxonomy tree and can be specified by languages
such as OIL [37], RDF, OWL [126] or SHOE [53]. Ontology matching is the
problem of finding semantic mapping between elements of ontologies. Ontology
matching is explored, e.g., in GLUE [33], GOMMA [46] and LogMap [67].

Data Warehousing Data warehousing is mainly used for reporting and data
analysis. Data is extracted from a set of data sources and has to be transformed
into the warehouse format. Schema matching is used to find semantic correspon-
dences between elements of source and warehouse schemas.

8.4 Proposed Solution

First, we will briefly describe the algorithm for construction of decision tree pro-
posed in previous work [116] which was used for PSM-to-PIM mapping in our pre-
liminary implementation called eXolutio [71] (as described later in Section 8.5).
Then we will follow with the description of the C5.0 algorithm [111] that we
utilized for better training of the decision tree. As we will show, it solves several
problems of the original algorithm.

8.4.1 Original Decision Tree Construction

Definition 24. (Decision tree). A decision tree is a graph G = (V,E), where
Vi is a set of internal nodes – independent match algorithms. Vl is a set of leaf
nodes – output decision whether elements do or do not match. V = Vi ∪ Vl is a
set of all nodes. E is a set of edges – conditions that decide to which child node
the computation will continue.

Example 10. An example of a decision tree is depicted in Figure 8.1. It has
the following sets of nodes: Vi = {Leaf Comparator, 3-grams, Jaccard} and Vl =
{mismatch, match, match, mismatch}.

During the traversal of this tree we are for example at the root node where
Leaf Comparator matcher can return the following similarity values:

• 0: the computation will continue to its left child that is leaf and mapping
pair is identified as mismatch,

• 1: the computation will continue to its right child that is internal node and
the traversal of tree will continue.

159

Figure 8.1: Sample decision tree

The decision tree in [116] is constructed as follows: The matchers are split
into three groups (called feature groups) according to the main feature that they
compare: class name (if the matcher compares names of the model classes), data
type (if the matcher compares similarity of data types of the given elements)
and structural similarity (if the similarity is measured by the analysis of the
models structures – relations of the nodes). In each feature group the matchers
are assigned with a priority according to their efficiency. Then the matchers are
sorted in ascending order according to importance of the group (where for example
in our case the class name group is the most important one) and their priority
within the group. Finally, the decision tree is built as follows: The first matcher
is selected as the root of the tree and other matchers are taken in sequence and
added to the tree. If we want to add matcher M to the actual node n (i.e., use
function addMatcherToTree(M,n)), there are the following possible situations:

• If node n has no child, method M is added as a child of n.

• If node n has children c1, ..., cn from the same feature group thatM belongs
to and it has the same priority, then matcher M is added as the next child
of node n.

• If node n has children c1, ..., cn from the different feature group that M
belongs to or it has a different priority, then for each node ci; i ∈ (1, n) we
call addMatcherToTree(M, ci).

Though we have used this algorithm as the preliminary approach in our im-
plementation, it has several drawbacks. First, it does not propose a method for
automatic determination of conditions on edges and thresholds for continuous
matchers. They have to be either set by the user or the default values are used.
Furthermore, the decision tree does not suggest mapping results automatically.
It computes an aggregated similarity score. During the traversal of the decision
tree for each of the feature groups the maximum similarity value returned by
the matcher from this group is stored. Then the aggregated similarity score is
computed as an average of the maximal similarity value for each of the feature

160

groups. For each PSM element it returns possible match candidates – PIM ele-
ments evaluated by the aggregate similarity score sorted in the descending order.
This helps to find matches, but it is not done automatically – the user has to
evaluate each mapping.

Thus we decided to generate the decision tree using machine learning tech-
niques. This approach solves the above mentioned problems, and thus enables
to use the advantages of the decision tree approach and minimize the previous
disadvantages.

8.4.2 Decision Tree Training via C5.0

Currently, there are several algorithms for the induction of a decision tree from
training data, such as ID3 [109], CLS [60], CART [13], C4.5 [110], or SLIQ [85],
to name just a few. The C5.0 algorithm is exploited and utilized in this thesis
because this algorithm and its predecessors are widely used and implemented in
various tools such as, e.g., Weka [56]. First, we introduce a notation that is used
in the rest of the section:

S – a set of training samples.
S(v,M) – a set of examples from S that have value v for matcher M .
S((i1, i2),M) – a set of examples from S that have value from interval

(i1, i2) for matcher M .
S = {C1, C2} – the decision tree algorithm classifies S into two subsets with

possible outcomes C1 = match and C2 = mismatch.
Info(S) – entropy of the set S.
freq(Ci, S) – the number of examples in S that belong to class Ci.
|S| – the number of samples in the set S.
Gain(M,S) – the value of information gain for matcher M and set of

samples S.
InfoM(S) – entropy for matcher M .

The entropy of the set of training samples S is computed as follows:

Info(S) = −
2

∑

i=1

(

freq(Ci, S)

|S|
log2

(

freq(Ci, S)

|S|

))

(8.2)

Set S has to be partitioned in accordance with the outcome of matcherM . There
are two possibilities:

1. Matcher M has n discrete values. In that case the entropy for matcher M
and set S is computed as follows (using the above defined notation):

InfoM(S) =
n

∑

i=1

(

|S(i,M)|

|S|
Info(S(i,M))

)

(8.3)

2. Matcher M has values from continuous interval [a, b], that is why threshold
t ∈ [a, b] that brings the most information gain has to be selected by Algo-
rithm 20. Entropy for matcher M and set S is then computed according to
the following formulae:

161

InfoM(S) =

(

|S([a, t],M)|

|S|
Info([a, t],M)

)

+

(

|S((t, b],M)|

|S|
Info((t, b],M)

) (8.4)

The gain value for a set of samples S and matcher M is computed as follows:

Gain(M,S) = Info(S)− InfoM(S) (8.5)

Then the decision tree is constructed by Algorithm 21 (which, as we have men-
tioned, differs from the already described algorithm described in Section 8.4.1).

Algorithm 20 Selection of threshold for continuous values v1, ..., vn for matcher
M and set of samples S

Require: list of values (v1, ..., vn), matcher M , set of samples S
1: (u1, ..., um)← SortAscDistinct(v1, ..., vn)
2: for i← 1, m− 1 do
3: A[i]← AvgU [i], U [i+ 1]
4: L[i]← U [i]
5: H [i]← U [i + 1]
6: end for
7: for i← 1, m− 1 do
8: gaini ← GainM,S([u1, A[I]], (A[I], um],M)
9: end for
10: maxGain← maxm−1

i=1 gaini

11: max← i|gaini = maxGain
12: t← L[max]
13: threshCost← cost of splitting interval into two subintervals [u1, t] and
14: (t, um]
15: result.gain← maxGain − threshCost
16: result.threshold← t
17: return result

There are the following possibilities for the content of the set of training
samples S in the given node parent of the decision tree:

1. If S is empty, then the decision tree is a leaf identifying class Ci – the most
frequent class at the parent of the given node parent. This leaf is added as
a child to node parent.

2. If S contains only examples from one class Ci, then the decision tree is a
leaf identifying class Ci. This leaf is added as a child to node parent.

3. If S contains examples from different classes, then S has to be divided into
subsets. Matcher M with the highest value of information gain is selected.
There are two possibilities:

162

(a) If matcher M has n discrete mutually exclusive values v1, ..., vn, then
set S is partitioned into subsets Si where Si contains samples with
value vi for matcher M .

(b) If matcher M has values (v1, ..., vn) from continuous interval [a, b],
then threshold t ∈ [a, b] has to be determined. Subsets S1, S2 contain
samples with values from interval [a, t], [t, b], respectively, for matcher
M .

Matcher M is added as a child to node parent. For all the subsets Si

subtrees are constructed and added to node M as children.

Algorithm 21 Construction of a decision tree T from a set S of user-evaluated
training samples

Require: set of samples S, parent, condition
1: T empty tree
2: if S is empty then
3: c← the most frequent class at the parent of the given node parent
4: AddLeaf parent, c, condition
5: else if S contains only results from one class Ci then
6: c← Ci

7: AddLeaf parent, c, condition
8: else
9: M ← matcher with the highest value of information gain Gain(M,S)

10: AddNodeparent, M , condition
11: if M has n discrete mutually exclusive values v1, ..., vn then
12: S ′ ← {S1, ..., Sn}|Si = S(vi,M)
13: ci ← vi
14: else if M has values (v1, ..., vn) from continuous interval [a, b] then
15: t← ComputeThreshold(v1, ..., vn),M, S
16: S1 ← S([a, t],M)
17: c1 ← [a, t]
18: S2 ← S((t, b],M)
19: c2 ← (t, b]
20: S ′ ← {S1, S2}
21: end if
22: for all Si ∈ S

′ do
23: Ti ← BuildTreeSi, M , ci
24: end for
25: end if
26: return T

The threshold for matcher M with values (v1, ..., vn) from continuous interval
[a, b] is selected as follows:

• Values are sorted in the ascending order, duplicates are removed. Let us
denote them u1, ..., um.

• All possible thresholds Ai ∈ [ui, ui+1] have to be explored.

163

• For each interval [ui, ui+1] the midpoint Ai is chosen as a split to two subsets
[u1, Ai] and (Ai, um].

• For each midpoint the information gain is computed and the midpoint Amax

with the highest value of information gain is selected.

• The threshold is then returned as a lower bound of interval [umax, umax+1].

Example 11. For simplicity only three matchers are used: Matched Thesauri

(which uses previous confirmed matching results for the evaluation), Levenshtein
Distance (which computes the shortest edit distance from one string to anoth-
er for operations insert, update and delete of a character) and N-gram (which
computes the number of the same N-grams in two string where an N-gram is a
sequence of N characters in a given string). The C5.0 algorithm works in the
following steps:

• In the beginning, the training set S contains 14 samples (see Table 8.2).
Matched Thesauri has discrete values 0 and 1. Levenshtein Distance

and N-gram have values from continuous interval [0, 1]. The gain values
are computed for all matchers. Matched Thesauri has the highest gain
value of 0.371, that is why Matched Thesauri is selected as the root of
the constructed decision tree. Set S is divided into two parts S(0, Matched
Thesauri) and S(1, Matched Thesauri).

• Set SMT1 = S(1, Matched Thesauri) (see Table 8.3) contains samples that
have value 1 for matcher Matched Thesauri and it contains only samples
from the same match class. New leaf match is added as a child to node
Matched Thesauri.

• Set SMT0 = S(0, Matched Thesauri) (Table 8.4) consists of samples with
value 0 for matcher Matched Thesauri and results from various classes,
so this set has to be further divided. Gain values are computed and matcher
with the highest gain value, i.e., N-gram, is added as a child of node Matched
Thesauri. The threshold value for N-gram matcher with continuous range
is 0.071 and set SMT0 is divided into two subsets SN1 = S([0, 0.071], N-gram)
(see Table 8.6) and SN2 = S((0.071, 1], N-gram) (see Table 8.5).

• There are only mismatch results in set SN1, so leaf mismatch is added as
a child to node N-gram.

• Set SN2 also contains results from one class – match. Another leaf match

is added to node N-gram.

164

Matched Thesauri Levenshtein Distance N-gram
Discrete Continuous Continuous

1 0 0 match

0 0.167 0 misc

0 0.1 0 misc

1 0.2 0.063 match

1 0 0 match

0 0 0 misc

0 0.1 0 misc

0 0.5 0.25 match

0 0 0 misc

0 0 0 misc

0 0.429 0.25 match

0 0.125 0.071 misc

0 0.6 0.385 match

1 0.2 0.067 match

match misc 0.183 match misc 0.032 match misc
0 3 7 ≤ 2 7 ≤ 2 6
1 4 0 > 5 0 > 5 1

0.371 0.324 0.115

Table 8.2: Base training set S of Example 11

The final trained decision tree is displayed in Figure 8.2.

Matched Thesauri Levenshtein Distance N-gram
Discrete Continuous Continuous

1 0 0 match

1 0.2 0.063 match

1 0 0 match

1 0.2 0.067 match

Table 8.3: Base training set SMT1 of Example 11 when Matched Thesauri = 1

Matched Thesauri Levenshtein Distance N-gram
Discrete Continuous Continuous

0 0.167 0 misc

0 0.1 0 misc

0 0 0 misc

0 0.1 0 misc

0 0.5 0.25 match

0 0 0 misc

0 0 0 misc

0 0.429 0.25 match

0 0.125 0.071 misc

0 0.6 0.385 match

match misc 0.298 match misc 0.161 match misc
0 3 7 ≤ 0 7 ≤ 0 7
1 0 0 > 3 0 > 3 0

0 0.762 0.781

Table 8.4: Base training set SMT0 of Example 11 when Matched Thesauri = 0

165

Matched Thesauri Levenshtein Distance N-gram
Discrete Continuous Continuous

0 0.5 0.25 match

0 0.429 0.25 match

0 0.6 0.385 match

Table 8.5: Base training set SN2 of Example 11 when N-Gram > 0.071

Matched Thesauri Levenshtein Distance N-gram
Discrete Continuous Continuous

0 0.167 0 misc

0 0.1 0 misc

0 0 0 misc

0 0.1 0 misc

0 0 0 misc

0 0 0 misc

Table 8.6: Base training set SN1 of Example 11 when N-Gram ≤ 0.071

Figure 8.2: Final decision tree

8.5 Implementation and Experiments

For the purpose of evaluation of the described approach we have performed an
extensive set of experiments. This section contains description of only one of
the experiments and a discussion of its results. The complete set of experiments
can be found in [65]. Particular experiments differ in used sets of matchers,
training sets, etc. The proposed approach was implemented in the eXolutio tool
and replaces the original approach [116] (whose disadvantages were described in
Section 8.4.1). eXolutio, as a predecessor of DaemonX focussing purely on XML
technologies, is based on the MDA approach too and models XML schemas at two
levels – PIM and PSM. eXolutio allows the user to manually design a common
PIM schema and multiple PSM schemas with interpretations against the PIM
schema. Mapping between the two levels allows to propagate a change to all the
related schemas.

All experiments were run on a standard personal computer with the following
configuration: Intel(R) Core(TM) i5-3470 3.20 GHz processor, 8 GB RAM,

OS 64-bit Windows 7 Home Premium SP1.

The following sets of XML schemas have been used for training of the decision
tree:

166

• BMEcat is a standard for exchange of electronic product catalogues1.

• OpenTransAll is a standard for business documents2.

• OTA focuses on the creation of electronic message structures for communi-
cation between the various systems in the global travel industry3.

A PIM schema used for experiments describes a common interface for planning
various types of holidays. It can be found in [65].

For evaluation the following XML schemas were used:

• Artificial XML schema 01 Hotel designed for the purpose of this work. It
describes basic information about hotels.

• Realistic XML schemas: 02 HotelReservation4, 03 HotelAvailabilityRQ5

The domain thesaurus contains sets of words that are related semantically –
for example they are synonyms or abbreviations common for the given domain.
The user is enabled to expand the following one or create a completely new
thesaurus. The thesauri are used during matching by Dictionary matcher. The
domain thesaurus for the domain of hotels is as follows (related words are marked
by ∼):

• address ∼ location,

• accommodation ∼ hotel,

• boarding ∼ meal,

• count ∼ amount,

• lengthOfStay ∼ numberOfNights.

The presented experiment results from the following observation: Efficiency
of methods used to measure similarity between elements depends on the type of
elements – if they are classes or if they are attributes. In this experiment two
sets of decision tree are used: two separate trees for classes and for attributes and
one common tree for classes and attributes.

Experiment Setup

• Used schemas: 01 Hotel, 02 HotelReservation, 03 HotelAvailabilityRQ

• Decision tree:

– Separate decision tree for classes (in Figure 8.3) and for attributes (in
Figure 8.4)

– Common decision tree (in Figure 8.5)

• Decision tree training set:

– Set of XSD Schemas: OTA

1www.bmecat.org
2www.opentrans.de
3www.opentravel.org
4http://kusakd5am.mff.cuni.cz/hb/schema/reservation
5http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/schemaSi

mple/HotelAvailabilityRQ.xsd

167

www.bmecat.org
www.opentrans.de
www.opentravel.org
http://kusakd5am.mff.cuni.cz/hb/schema/reservation
http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/ schemaSimple/HotelAvailabilityRQ.xsd
http://itins4.madisoncollege.edu/IT/152121advweb/XMLExamples/unit3/ schemaSimple/HotelAvailabilityRQ.xsd

– Sample count:

∗ Separate decision tree for attributes: 27,942 match pairs
∗ Separate decision tree for classes: 27,793 match pairs
∗ Common decision tree: 55,815 match pairs

• Thesaurus for Dictionary: None

• Thesaurus for Matched Thesauri: None

• Matchers: Children (which compares the structural similarity of child
nodes or neighboring nodes of classes), DataType (which compares data
types), Dictionary (that looks for synonyms of the input string), Length
Ratio (which computes the ratio of lengths of two input strings), Levenshtein
Distance, Matched Thesauri, Prefix (which compares whether the string
s1 is a prefix of the string s2 or the other way around)

Figure 8.3: Separate decision tree for classes for experiment SeparateTrees

Both sets of decision trees are induced from the same set of training samples
OTA, particularly match pairs of XML schema
OTA_HotelAvailGetRQ.xsd and XML schema OTA_HotelAvailGetRS.xsd. A

168

separate decision tree for classes and attributes is trained only from match pairs
of classes and attributes respectively. The common tree is trained from both sets
together. The final decision trees are shown in Figures 8.4, 8.3 and 8.5.

Figure 8.4: Separate decision tree for attributes for experiment SeparateTrees

The root of the separate decision tree for attributes is Matched Thesauri, all
the other trees in this experiment have Levenshtein Distance. The matcher at
the second level is the same for both branches and they have the same threshold.
Especially the subtree for mapping pairs that are contained in Matched Thesauri

is interesting. We would assume that this subtree should be smaller or even a

169

leaf with the value ‘match‘. This could be explained by errors in user annotation
of mapping results – the same match pair is annotated with different matching
decision than the previous one or some mapping pairs have different meaning in
different context.

Figure 8.5: Common decision tree for experiment SeparateTrees

The separate decision tree for classes is relatively simple. It contains only
matchers Levenshtein Distance, Matched Thesauri and Length Ratio, other
matchers are not used. It corresponds with the original observation that some
methods are more effective for certain types of elements. Matchers whose sim-

170

ilarity values do not distinguish mapping pairs enough are not included. Pairs
that are contained in the thesaurus are directly suggested as matches.

The threshold value for Matched Thesauri matcher in the root of the common
tree and the separate tree for classes is nearly similar. The common decision tree is
the most complex one from the above mentioned. The common tree also contains
two subtrees for Matched Thesauri. The first one is at the second level and it
contains two full subtrees for both the values.

The right subtree for pairs that are contained in thesauri is more complex
than the tree in the separate tree for attributes. This could be caused by a larger
number of training samples that allows for more detail resolution. The second
one, i.e., Matched Thesauri, is directly a parent of the leaves.

In Figures 8.6, 8.7, 8.8 and 8.9 there are displayed the histograms of the match
quality measures – Precision, Recall, F-Measure and Overall respectively. All the
measures are at first computed for both types of elements together and then
separately for attribute and class elements.

In Figure 8.6 Precision is high for classes in all schemas and for both types
of trees. The quality of mapping decision differs significantly with the type of
element, but the training set contains a similar number of match pairs for classes
(27,793 match pairs) and attributes (27,942 match pairs).

The separate tree for classes did not suggest any mapping pair as a match
for schema 03_HotelAvailabilityRQ, just as the separate tree for attributes for
schema 02_HotelReservation. Attributes in schema 03_HotelAvailabilityRQ

are difficult to identify for all the decision trees. All Precision values are from
the interval [0.545, 0.769] – they identified almost the same number of relevant
results as irrelevant.

Figure 8.6: Precision for experiment SeparateTrees

171

Figure 8.7: Recall for experiment SeparateTrees

Recall is lower than Precision in all the cases except for schema 01_Hotel

and the separate tree for attributes in Figure 8.7. There were no true positives
attributes for schema 02_HotelReservation for both trees and no true positives
classes for schema 03_HotelAvailabilityRQ for separate tree. Values of Recall
are lower for attributes than Recall for classes.

Figure 8.8: F-Measure for experiment SeparateTrees

172

Figure 8.9: Overall for experiment SeparateTrees

In Figure 8.8 the values for F-Measure are equal for schema 02 HotelReserva-

tion for classes for both trees. Post-match effort for adding false negatives (FN)
and removing false positives (FP) is quite high in all cases in Figure 8.9. The
highest value of Overall is 0.6.

The hypothesis was not confirmed, all similarity measures are higher for the
common decision tree that is trained from a bigger set of training examples, the
quality of the decision tree seems to depend more on the size of the set of training
samples. The best score was achieved for Precision. Both trees in this experiment
had a larger number of FN than FP. They miss a match suggestion more than
they incorrectly suggest it as a match pair. It could be improved by adding an
auxiliary source of information or a new matcher.

Examples of matching results from this experiment are shown in Table 8.7.
Match pair numberOfNights – LengthOfStay is difficult to identify without
an auxiliary source of information for both sets of decision tree. Match pairs
CheckOutDate – CheckOut, ContactInfo – Contact and BedType – Reservation-
Type were identified correctly by the common tree and incorrectly by separate
decision trees.

Further experiments with various hypotheses, e.g., training with sets of differ-
ent sizes, with different sets of matchers, or with usage of auxiliary information,
can be found in [65].

8.6 Conclusion

Schema matching, i.e., the problem of finding correspondences, relations or map-
pings between elements of two schemas, has been extensively researched and has
a lot of different applications. In this chapter a particular application of schema
matching in MDA is explored. We have implemented our approach within a

173

XSD PIM DT type DT User Result

C ContactInfo Contact Separate Mismatch Match FN

C ContactInfo Contact Common Match Match TP

A Fax FaxNumber Separate Match Match TP

A Fax FaxNumber Common Match Match TP

A numberOfNights LengthOfStay Separate Mismatch Match FN

A numberOfNights LengthOfStay Common Mismatch Match FN

A CheckOutDate CheckOut Separate Mismatch Match FN

A CheckOutDate CheckOut Common Match Match TP

A BedType ReservationType Separate Match Mismatch FP

A BedType ReservationType Common Mismatch Mismatch TN

Table 8.7: Examples of mapping results for experiment SeparateTrees

modeling and evolution management tool eXolutio which is based on the idea
of MDA. The mapping is necessary, because changes in one place can be then
propagated to all the related schemas. The presented schema matching approach
is used to identify mappings between PIM and PSM level of MDA, representing
an interpretation of a PSM element against a PIM element.

Since there exists a huge set of existing works, we have explored various ap-
proaches to schema matching and selected the most promising possible approach
for our application – schema matching using a decision tree. This solution is dy-
namic, versatile, highly extensible, quick and has a low level of user intervention
and a low level of required auxiliary information. We have extended the previ-
ous work by utilization of the C5.0 algorithm for training of decision tree from
a large set of user-annotated schema pairs. Our approach is now more versatile,
extensible and reusable. Further we evaluated our approach on a wide range of
experiments and implemented a module that is easily extensible. We also im-
plemented a user-friendly interface for evaluation of mappings suggested by the
decision tree, i.e., a solid background for further experiments.

8.6.1 Future Work

In this chapter we focused on schema matching issue. Even we analyzed multiple
approaches, presented a complex solution based on decisions tree and evaluated
the approach on multiple tests, there are still open issues that can be solved:

• Expand set of available matchers : There exists matchers with more pow-
erful functions, e.g., with a matcher that uses the WordNet6 thesaurus for
synonyms. Further possibilities are for example string matchers7 and the
Soundex matcher8

• User interface improvements : We could add an interface for evaluation of
matches during the preparation phase of decision tree training or dynamic
editing of trained decision tree – remove, move, add matcher node, change
results in leaves or threshold on edges.

6http://wordnet.princeton.edu/
7http://secondstring.sourceforge.net/
8http://www.archives.gov/research/census/soundex.html

174

http://wordnet.princeton.edu/
http://secondstring.sourceforge.net/
http://www.archives.gov/research/census/soundex.html

• Definition of general algorithms for arbitrary schemas and their incorpo-
ration into DaemonX : This enables a possibility to generate models from
existing schemas and their (semi)automatic mapping to PIM models.

175

176

9. Experiments

In the previous chapters we focused on models representing various technologies
and languages for data management and data storage and on algorithms for mod-
el transformation. In this chapter we present a complex example of evolution
process of an IS. We model complex situations that, starting from a single point,
influence the whole system, e.g., change the database schema, change the pro-
ducer resource or producer data structures, etc. Using the described situations
we present and measure how each task can be accomplished by our algorithms
(semi)automatically. The approach was accepted for [83].

9.1 Description of Experiments

During our research of particular models and algorithms we used various data
for experiments related to the specific technologies, e.g., a complex database
schema [1] or a benchmark for XPath query evaluation [42]. For these data we
created sets or distinct scenarios, situations and queries of various complexity to
provide correctness and ability of our algorithms.

The main aim of experiments in this chapter is to evaluate how the algorithms
work on real-world data and scenarios instead of synthetic situations and to mea-
sure how they can reduce the need for manual check and update while evolving
an application model. We also created a set of hypotheses that can be confirmed
or rejected based on experiments results:

• Complexity of the change propagation depends on the type of change (op-
eration).

• Complexity of the change propagation depends on the number of relations
of changed models.

• An initial change causes at least one change in the related model(s) or
informs the user about a situation that must be resolved.

9.1.1 Experimental Data

For the experiments we selected a real-world framework that covers our assump-
tions for target applications. We used various parts of the MediaWiki [84] (also
known as WikiMedia Foundation) project – an open-source web framework with
the best known representative Wikipedia, a world-wide popular collaborative en-
cyclopedia. We chose this project for several reasons:

• It is a well-known project used by an immense number of users, especially
in the case of the popular Wikipedia site.

• It provides source codes in GitHub and a good documentation of versions
of its releases with a description of changes and migrations.

• It provides a database schema, API description and various formats, e.g.,
XML, JSON, etc.

177

• It was used in various papers and evaluations as a real-world use case,
e.g., [29].

In particular, we used MediaWiki database schema1 and XML export schema2.
From these schemas and resources we created models for the experiments. As
the source of our process we used a PIM model instead of a database model
because of the MDA approach (the model itself was, however, transformed from
the mentioned database schema).

A simple relation diagram of particular models and their interconnections
is depicted in Figure 9.1. Each box represents a model and an arrowhead line
represents the direction of the change propagation. (Although the presented
diagram forms a tree, there is no restriction, e.g., for Directed Acyclic Graphs
(DAGs) or other types of graphs). The case of a possible infinite loop or multiple
updates of a single model must be handled by the particular manager of the
transformation process and it depends on the initial model of the transformation.

PIM DB SCHEMA

XPATH

SQL

XML QUERY

REST
QUERY

OVER REST
XSEM

Figure 9.1: A diagram of the models

The model for the REST API was inspired by the MediaWiki API docu-
mentation3 4. Since MediaWiki API uses an API based on querying via query
parameters, it is not sufficient for REST and for the experiments, so we created
a set of test resources based on the database schema.

An XML schema model was created from the MediaWiki description5. Next
we created a set of XPath queries over this schema to be able to test evolution of
XML query models.

We also inspected the project’s version control history6 and selected multiple
database schema changes and migration scripts for our experiments. We applied
changes described in migration scripts to our source PIM model and analyzed
changes of related models. Finally, we compared results of the transformations
with results of the migration in the MediaWiki repository.

9.1.2 Experimental Evaluation

The assessment of our experiments is a statistics of the number of manual updates
compared to the number of executed operations and a comparison of transforma-
tion results and changes in the MediaWiki repository. Every change was analyzed

1https://www.mediawiki.org/wiki/Manual:Database_layout
2https://www.mediawiki.org/wiki/Help:Export
3https://www.mediawiki.org/api/rest_v1/
4https://www.mediawiki.org/wiki/API:Main_page
5https://www.mediawiki.org/wiki/Help:Export
6https://github.com/wikimedia/mediawiki

178

https://www.mediawiki.org/wiki/Manual:Database_layout
https://www.mediawiki.org/wiki/Help:Export
https://www.mediawiki.org/api/rest_v1/
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/Help:Export
https://github.com/wikimedia/mediawiki

for the number of expected manual changes and subsequent updates of related
parts needed for evolution. As an evaluation tool we use DaemonX that auto-
matically records (and counts) all executed operations needed for the evolution
management process (transformation).

9.1.3 Database Model

The schema of the database consists of 48 tables divided into 13 logically sep-
arated parts. As mentioned before, a PIM model representing this schema was
created and so was the database schema and the model of SQL queries. From the
PIM model we generated the XSEM model and created queries in XPath model
over this model. Finally we created a model representing REST resources based
on the PIM model. We have selected 30 various migration scripts of database
schema for our evaluation. We present the key findings in the rest of this chapter.

9.2 Particular Experiments

Every experiment in this section contains a respective description, a database
script from MediaWiki repository with a URL to particular commit in repository
describing the change, and a table with changes in particular models, operations
executed in models and evaluation of the number of manual changes in the models.
The results of the experiments are discussed at the end of this section.

Adding PIM Class page restrictions The respective initial SQL query of
adding a new class page restrictions is depicted in Listing 9.1. As was men-
tioned before, we used SQL scripts as an initial change in the source PIM diagram
that triggers the evolution process.

Listing 9.1: Adding class page restrictions

CREATE TABLE p a g e r e s t r i c t i o n s (
pr page INTEGER NULL

REFERENCES page (page id) ON DELETE CASCADE,
pr type TEXT NOT NULL,
p r l e v e l TEXT NOT NULL,
p r ca s cade SMALLINT NOT NULL,
p r u s e r INTEGER NULL,
p r exp i r y TIMESTAMPTZ NULL)

Adding a new class has basically no impact on the system. A newly added
class has no relations to other classes and no propagation is needed. However,
automation that can be provided to the user is propagation of creation of a class
to other models, e.g., the database model, the XML schema model, or the resource
model and creation of relations between these newly created objects. To provide
this option, the user should be notified about this possibility with respective
actions. The results with the particular operation in every related model and the
number of required manual updates are provided in Table 9.1. GitHub repository
commits of the particular change can be found here 7 8.

7https://github.com/wikimedia/mediawiki/blob/bbfad4fc598c2b46cb97566012d8534

b4af05697/maintenance/postgres/archives/patch-page_restrictions.sql
8https://github.com/wikimedia/mediawiki/search?l=PHP&q=page_restrictions&typ

179

https://github.com/wikimedia/mediawiki/blob/bbfad4fc598c2b46cb97566012d8534b4af05697/maintenance/postgres/archives/patch-page_restrictions.sql
https://github.com/wikimedia/mediawiki/blob/bbfad4fc598c2b46cb97566012d8534b4af05697/maintenance/postgres/archives/patch-page_restrictions.sql
https://github.com/wikimedia/mediawiki/search?l=PHP&q=page_restrictions&type=&utf8=%E2%9C%93

Direction Operation Number of operations

PIM → DB Adding of a table 1

DB → SQL Possible generation of a query, that re-
turns all columns of the table e.g., SELECT
* FROM table name

1

PIM → XML Adding of an element 1

XML → XQ Generation of a query, that returns
particular element from XML, e.g.,
/path to element/element

1

PIM → REST Adding of a new resource 1

Total 5

Table 9.1: Adding class page restrictions

Adding PIM Property job.job token Adding of a new property into a class
differs from adding of a class. A new property is added into a class that can have
references to other models. So all related models must be inspected and updated
alternatively. But, in some situations, this propagation can be unwanted, e.g.,
adding of a private attribute that should not be returned in a query, such as
password.

A sample SQL command which adds property job.job token is depicted in
Listing 9.2 (we omit other newly added columns from the migration) and the
respective results are provided in Table 9.2. In this situation, all models related
to class job must be inspected and updated. As was mentioned, adding can be
unwanted in all related models and the user must decide if the respective model
should be updated or not. In our situation we propagated the new property to
all respective models. GitHub repository commits of the particular change can
be found here 9 10.

Listing 9.2: Adding property job.job token

ALTER TABLE /∗ ∗/ job
ADDCOLUMN job token varb inary (32)
NOT NULL default ’ ’ ;

Direction Operation Number of operations

PIM → DB Adding of a column 1

DB → SQL Update of queries – notification to user 11

PIM → XML Adding an element / attribute 1

XML → XQ Update of queries 1

PIM → REST Adding of resources 0

Total 14

Table 9.2: Adding property job.job token

Adding PIM Property job.job token timestamp This example presents
another case of adding a property into the same class job. It differs from the

e=&utf8=%E2%9C%93
9https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/archives/patch-job_token.sql
10https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0

189b43ac2/includes/jobqueue/JobQueueDB.php

180

https://github.com/wikimedia/mediawiki/search?l=PHP&q=page_restrictions&type=&utf8=%E2%9C%93
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-job_token.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-job_token.sql
https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0189b43ac2/includes/jobqueue/JobQueueDB.php
https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0189b43ac2/includes/jobqueue/JobQueueDB.php

previous example in propagation to related models – in this situation we did not
propagate the new property to all of them because it was not required. The
sample SQL command is depicted in Listing 9.3 and the respective results in Ta-
ble 9.3. GitHub repository commits of the particular change can be found here
11 12.

Listing 9.3: Adding property job.job token timestamp

ALTER TABLE /∗ ∗/ job
ADDCOLUMN job token timestamp varb inary (14)
NULL default NULL;

Direction Operation Number of operations

PIM → DB Adding of a column 1

DB → SQL Update of queries – notification to user 7

PIM → XML Adding of an element/attribute 1

XML → XQ Update of queries 1

PIM → REST Adding of a resource 0

Total 10

Table 9.3: Adding property job.job token timestamp

Adding of a PIM Relation Between Classes – Adding a Foreign Key
Constraint ufg user on Column user former groups

.user former groups fk1 A situation very similar to adding a new property
is adding of a relation between two classes. Its impact on related models can
be extensive, depending on the type of the relation and its cardinality. After
adding of a particular relation, the user can be asked if this change should be
propagated to other models. An example can be adding of relation between
classes mwuser and user former groups with cardinality [1, ∗] and propagation
to the XML schema model. It must be decided how this relation should be
represented – if as a nesting of element mwuser in element user former groups or
if this relation should be represented using key/keyref relation. This decision can
have a significant impact on the schema model structure and can cause multiple
related updates such as update of the queries over the schema. The respective
SQL command is depicted in Listing 9.4 and the results in Table 9.4. GitHub
repository commits of the particular change can be found here 13 14.

Listing 9.4: Adding of a relation between classes – adding of a foreign key con-
straint on column user former groups.user former groups fk1

ALTER TABLE &mw prefix . u s e r fo rmer g roups
ADDCONSTRAINT &mw prefix . u s e r f o rme r g r oup s f k 1
FOREIGN KEY (u f g u s e r)
REFERENCES &mw prefix . mwuser (u s e r i d)

11https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/archives/patch-job_token.sql
12https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0

189b43ac2/includes/jobqueue/JobQueueDB.php
13https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/oracle/archives/patch-user_former_groups.sql
14https://github.com/wikimedia/mediawiki/commit/0c5301a0d1dfc82088c6787355350

6411e2943e6

181

https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-job_token.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-job_token.sql
https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0189b43ac2/includes/jobqueue/JobQueueDB.php
https://github.com/wikimedia/mediawiki/blob/69ae945e8d39972a07bea89ddb64bc0189b43ac2/includes/jobqueue/JobQueueDB.php
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/oracle/archives/patch-user_former_groups.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/oracle/archives/patch-user_former_groups.sql
https://github.com/wikimedia/mediawiki/commit/0c5301a0d1dfc82088c67873553506411e2943e6
https://github.com/wikimedia/mediawiki/commit/0c5301a0d1dfc82088c67873553506411e2943e6

ON DELETE CASCADEDEFERRABLE

INITIALLY DEFERRED;

Direction Operation Number of operations

PIM → DB Adding of a relation 1

DB → SQL No update needed 0

PIM → XML Adding of a relation 1

XML → XQ No update needed 0

PIM → REST No update needed 0

Total 2

Table 9.4: Adding of a relation between classes – adding of a foreign key constraint
on column user former groups.user former groups fk1

Removing PIM Class user newtalk Removing of a class can have a signif-
icant impact on the model, especially if it is in relation with other classes of
the model, e.g., in a hierarchy. On the other hand, it is common that a class is
removed in situations when it is not used in other parts of the application and
can be removed without any related updates. A sample command is depicted in
Listing 9.5 and respective results in Table 9.5. In the presented example except
for the SQL model the class had only one relation in the related models. GitHub
repository commits of the particular change can be found here 15 16.

Listing 9.5: Removing class user newtalk

DROP TABLE /∗ $wgDBprefix ∗/ user newta lk ;

Direction Operation Number of operations

PIM → DB Removing a table 1

DB → SQL Removing from queries 2

PIM → XML Removing of an element 1

XML → XQ Removing from queries 1

PIM → REST Removing of a resource 1

Total 6

Table 9.5: Removing of class user newtalk

Removing PIM Property user.user options Property removing is similar
to class removing, especially when it is used as a key in other classes. In our
example property options had a relation to a column in DB model that had
three relations in the SQL model (i.e., it was used in three queries) that had
to be updated respectively. In other models there was only one reference. The
respective sample SQL command is depicted in Listing 9.6 and the results in
Table 9.6. GitHub repository commits of the particular change can be found here

15https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/archives/patch-drop-user_newtalk.sql
16https://github.com/wikimedia/mediawiki/search?p=3&q=user_newtalk&type=Code&

utf8=%E2%9C%93

182

https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-drop-user_newtalk.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-drop-user_newtalk.sql
https://github.com/wikimedia/mediawiki/search?p=3&q=user_newtalk&type=Code&utf8=%E2%9C%93
https://github.com/wikimedia/mediawiki/search?p=3&q=user_newtalk&type=Code&utf8=%E2%9C%93

17 18 19.

Listing 9.6: Removing property user.user options

ALTER TABLE /∗ $wgDBprefix ∗/ user
DROPCOLUMN u s e r op t i o n s

Direction Operation Number of operations

PIM → DB Removing of a column 1

DB → SQL Removing from queries 3

PIM → XML Removing of an element / attribute 1

XML → XQ Removing from queries 1

PIM → REST Removing of a resource 0

Total 6

Table 9.6: Removing property user.user options

Renaming PIM Class watchlist to oldwatchlist Renaming of a class in
model definition seems like an easy task – we just replace the name. But it can
have multiple consequences in other parts of the system. Every occurrence of a
particular class must be checked and updated. Next, depending on the particular
model, there must be a check that the new name of the class does not collide with
an already existing class. A sample SQL command is depicted in Listing 9.7 and
the respective results in Table 9.7. GitHub repository commits of the particular
change can be found here20.

Listing 9.7: Renaming class watchlist to oldwatchlist

ALTER TABLE wa t ch l i s t RENAME TO o ldwa t ch l i s t ;

Direction Operation Number of operations

PIM → DB Renaming of a table 1

DB → SQL Renaming of a table in queries 2

PIM → XML Renaming of an element 1

XML → XQ Renaming of an element in queries 2

PIM → REST Renaming of a class 1

Total 0

Table 9.7: Renaming class watchlist to oldwatchlist

Renaming PIM Property revision.rev id

to revision.revision rev id seq Renaming of a property is similar to class
renaming. All related models of the property must be analyzed and updated re-
spectively. Except for renaming there must be done an inspection and validation

17https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/archives/patch-rc_moved.sql
18https://github.com/wikimedia/mediawiki/search?p=7&q=recentchanges&type=Code

&utf8=%E2%9C%93
19https://github.com/wikimedia/mediawiki/commit/eda06e8593c12b4359a46cf3b428c

1a1a88e40c4
20https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/archives/patch-watchlist.sql

183

https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-rc_moved.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-rc_moved.sql
https://github.com/wikimedia/mediawiki/search?p=7&q=recentchanges&type=Code&utf8=%E2%9C%93
https://github.com/wikimedia/mediawiki/search?p=7&q=recentchanges&type=Code&utf8=%E2%9C%93
https://github.com/wikimedia/mediawiki/commit/eda06e8593c12b4359a46cf3b428c1a1a88e40c4
https://github.com/wikimedia/mediawiki/commit/eda06e8593c12b4359a46cf3b428c1a1a88e40c4
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-watchlist.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/archives/patch-watchlist.sql

of the affected models, because there can occur situations such as duplicate prop-
erty names, name collisions in query aliases, etc. If such a situation occurs, the
user must be informed and decide how to handle it. A sample SQL command is
depicted in Listing 9.8 and the respective results in Table 9.8. GitHub repository
commits of he particular change can be found here 21 22.

Listing 9.8: Renaming property revision.rev id to
revision.revision rev id seq

ALTER TABLE r e v i s i o n
RENAME r e v r e v i d v a l TO r e v i s i o n r e v i d s e q ;

Direction Operation Number of operations

PIM → DB Update of a name 1

DB → SQL Update of queries 2

PIM → XML Renaming of an element 1

XML → XQ Update of queries 2

PIM → REST User notification – adding of a resource 0

Total 5

Table 9.8: Renaming property revision.rev id to
revision.revision rev id seq

9.2.1 Experimental Results

From the results of the described experiments we can conclude with the following
observations:

• Complexity of Propagation and Changes : Complexity of propagation strong-
ly depends on the particular changes. Operations such as adding a class or
a property do not require a complex analysis or related models – the newly
added item is not used and based on user decision it can be propagated to
other selected models as a new item without any other relations. On the
other hand, updates such as renaming, removing, or adding a relation can
have an impact on the whole system and in some situations the propagation
cannot be processed automatically, because there are multiple possibilities
or handling conflicts. Thus the user has to decide what should be the result
of change propagation.

• Results of the Propagation: The result of the propagation depends on the
defined algorithms. In most cases the algorithms provide the change di-
rectly, i.e., by predefined rules. But in some cases the result can depend
on multiple events such as, e.g., whether the newly added property should
be propagated as an XML attribute or as an XML element. This situa-
tion must be explicitly determined by the user. Additionally, there can be
defined so-called policies for particular situations to reduce the number of
explicit user decisions.

21https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572

a6da2ba65/maintenance/postgres/archives/patch-update_sequences.sql
22https://github.com/wikimedia/mediawiki/blob/0958f53373671e212f01bf3987e405c

6121a2d70/includes/Revision.php

184

https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/postgres/archives/patch-update_sequences.sql
https://github.com/wikimedia/mediawiki/blob/aeedfb8526e9d221553e430437a7572a6da2ba65/maintenance/postgres/archives/patch-update_sequences.sql
https://github.com/wikimedia/mediawiki/blob/0958f53373671e212f01bf3987e405c6121a2d70/includes/Revision.php
https://github.com/wikimedia/mediawiki/blob/0958f53373671e212f01bf3987e405c6121a2d70/includes/Revision.php

• Algorithm Complexity : We did not evaluate complexity of our algorithms.
All algorithms work with a limited number of items in the model, the worst
time and space complexity of the algorithms is however polynomial. Next,
the number of related models is limited and cyclic propagation is forbidden.
This implies that the complexity of the evolution process is polynomial too.

• Analysis of the Change Impact : Thanks to relations between the models
the solution brings another benefit – a possibility to analyze the impact of
a change in all related models instead of manual inspection done by user.
This analysis can save a significant amount of user’s time.

As mentioned before we selected 30 SQL migrations from the project reposito-
ry which we applied on the source PIM model to propagate changes to all related
models as is depicted in Figure 9.1. From Table 9.9 we can see that changes in
the PIM model caused exactly 30 changes in the DB model because the PIM
model was initially generated from the DB model. 32 updates were done in the
XML schema model based on relation between PIM and XML models. Only 25
changes were propagated into the REST model. This is because the REST model
did not cover the whole PIM model. Much more interesting is that 94 changes
were propagated from the DB model to the SQL model. We can explain this
result by the common use of SQL – one DB table and/or column can occur in
multiple SQL queries so an update of a single table/column can cause multiple
updates in the SQL model. The same statement holds for the XML query model
– in this case 54 updates were done.

Direction Number of operations

PIM → DB 30

DB → SQL 94

PIM → XML 32

XML → XQ 54

PIM → REST 25

Total 235

Table 9.9: Evaluation of all experiments

Totally, from initial 30 various changes in PIM model that were propagated to
related models were generated 235 changes that were done automatically without
manual user inspection. The only user interaction was to decide in situation of
multiple possibilities resolved by algorithms.

9.3 Conclusion

The main aim of this chapter is to sum up our previous work and present the ben-
efits it brings to various segments of software development process in comparison
with other tools with similar aims. In particular, the key advantages are:

• Analysis of evolution changes and their (semi-)automatic propagation to
related models based on the defined algorithms that significantly reduce
manual inspection of application code.

185

• Analysis of changes and notification of the user in indecisive situations, such
as when removal of an item in one model can cause necessary updates in
related system parts.

• Logging of the model’s changes for possible manual analysis and/or update.

• Generation of adaptation code/scripts, e.g., SQL queries, XPath scripts, or
REST requests, for models to be updated.

Even though a manual update is possible, in more complex systems it is a
highly error-prone task that can bring multiple manual changes and hidden is-
sues that can be overseen and thus cause problems during the application run.
Especially it is significant in popular micro-service systems with multiple services
that communicate with each other and have to share and accept the same mes-
sage structures to work properly. These services are typically written in various
programming languages and technologies where it is hard to share a common
model definition or a contract, e.g., in JSON schema or XML schema. Moreover,
non strictly typed languages such as JavaScript can accept messages with a new
structure until the changes cause a code exception, e.g., by calling an undefined
property or a different data type.

We evaluated the algorithms using the well-known MediaWiki project that
provides SQL schemas, SQL queries, XML schemas, and REST API as well as
a rich version control history with updates and migrations that we used in our
experiments. The main aim of these experiments was to verify that our algorithms
work correctly in various real-world scenarios and to measure how they reduce
user effort needed for manual update.

186

10. Conclusion

Software development and information systems become more and more complex
these days. They consist of various technologies, models and layers of abstrac-
tions. Development and maintenance of such a system can be a very complex and
error-prone task. A solution of this problem can be in usage of the MDA approach
which enables to describe models, design an application and divide it to different
layers of abstraction. Thanks to this design it is possible to use models for design,
visualization and generation of system parts, interconnect particular models and
handle changes in one model which can impact other related models. This enables
to maintain complex systems with mutual relations and dependencies between its
parts.

In this thesis we presented results of our research dealing with definition of
models, operations over these models and algorithms for model transformations.
Next we focused on the schema mapping problem and introduced improved algo-
rithms. All these topics cover publications [108, 107, 20, 75, 106, 105, 66, 83].

Our goal is to analyze and define models of widely used standards and tech-
nologies used in software development these days such as, e.g., XML Schema,
XPath, SQL, BPMN, REST, etc. Subsequently we define operations over these
models to be able to apply changes on them. Finally, we define relations between
particular models and transformation algorithms over these interconnected mod-
els. Thanks to all these features it is possible to reduce the necessity to check the
whole system for possible inconsistencies caused by the changes. All changes are
analyzed, and propagated (semi)automatically:

• From the changes (list of generated operations) the user can see to what ex-
tent the change influences the whole system. This can be used for appraisal
of the work, business calculations, etc.

• If an operation cannot be proceeded, e.g., because of multiple possible re-
sults or transformation options, the user is notified and inquired for a de-
cision from the offered possibilities. An example can be removing of some
parts which can cause that relations between a removed item and all its
related items will be lost.

• If an operation cannot be proceeded even (semi)automatically, the user is
notified that a manual update must be done. Another option is that there
can be predefined different options and the user just selects one of them.

• From operations proceeded during the evolution process a log can be gener-
ated. This can be used in situations when there exist other related systems
not contained in the project, e.g., a third party system using our service or
API. The generated log can be send to system administrators as a change
log and does not have to be written manually. In DaemonX a log is rep-
resented by a list of executed operations (commands) which are stored in
so-called command stack – because a stack is a straight-forward data struc-
ture that can be used for this purpose. If any command is executed, it is put
on the top and if an action (command) should be reverted, all commands

187

above it must be taken from the stack (reverted) first before the required
operation itself is reverted.

• Except for operations for changing models, it is possible to define opera-
tions for generation of (migration) scripts from the models. An example
can be generation of XPath or SQL queries from particular models after
transformation and their application, e.g., for database migration.

• Since MDA is based on models, it is natural to visualize these models. This
is useful to users and especially developers to be able to design and work
with models via a graphical interface to have better overview of the whole
model, relations or domain. Since all presented models were experimentally
implemented as an extension of the DaemonX framework, it is possible to
use this feature.

Last but not least, we focused on the problem of similarity of XML schemas
(PSMs) which can refer to the same PIM. We present extended algorithms to
bring more precise analysis of similar documents. This ability is important in
situations when we are not developing or designing platform specific models or
schemas from scratch, but we have existing schemas that have to be integrated
into our IS. The straightforward solution is to transform the input schema (ex-
pressed, e.g., in XML Schema language) into PSM and map it manually. The
solution that we presented is to use algorithms that analyze similarity between
PIM and PSM models that can facilitate the mapping process.

All mentioned approaches were described in the following chapters:

• In Chapter 4 we defined a novel model representing an XPath query. The
approach contains definition of algorithms for model update and trans-
formation. The main contribution is the ability to recognize and analyze
changes in XML schema and to update related queries respectively thanks
to the defined model representing an XPath query. If the revalidation of
the query is not possible, this situation is reported to the designer.

• In Chapter 5 we describe a model of SQL that enables possibility to react
on changes done in a relational schema and its propagation to SQL queries.
The main contribution is the ability to model SQL queries concurrently with
the respective schema, to analyze changes performed in the database model
and to update the queries to preserve their compatibility and correctness.
Changes in the database schema model are propagated immediately to the
SQL query using mutual mapping.

• The business processes evolution management strategy described in Chap-
ter 6 presents an approach to generation of service interfaces in business
process models and to analyze the influence of user’s changes on the de-
rived XML schema. The main contribution of our approach is the ability
to create a conceptual model of the exchanged data as a partial view of
the whole problem domain and automatic derivation of an optimal com-
munication XML schema based on the defined metrics. It also involves
a (semi)automatic algorithm for updating already derived communication
XML schema according to user-specified changes of business rules which
reduces possible errors during manual schema update.

188

• In Chapter 7 we present an approach for maintaining REST resources dur-
ing time and their continuous development during evolution of the system.
We provide algorithms to propagate changes based on the MDA approach.
As the source model, we used the PIM and as the target model we de-
fined a new PSM model representing a REST service resource, called the
Resource Model. The Resource Model representing the REST service can
be subsequently used for generating a stub for a particular client and serv-
er implementation or a programming language. Next, the model can be
combined with existing solutions like Swagger or RAML which would then
provide a full MDA managed and documented evolution of the REST API.

• In Chapter 8 we deal with schema matching, i.e., the problem of finding
correspondences, relations or mappings between elements of two schemas,
which has been extensively researched and has a lot of different applications.
We focused on particular application of schema matching in MDA. A correct
mapping is critical in case of a change, because changes in one place are
propagated to all the related schemas. The presented schema matching
approach is used to identify mappings between PIM and XML PSM level
of MDA, representing an interpretation of a PSM element against a PIM
element. We have explored various approaches to schema matching and
selected the most promising approach for our application – schema matching
using a decision tree. This solution is dynamic, versatile, highly extensible,
efficient and has a low level of user intervention and a low level of required
auxiliary information.

• In Chapter 9 we experimentally evaluate the transformation algorithms
presented in the previous chapters using well-known MediaWiki project
that provides SQL schemas, SQL queries, XML schemas, and REST API
as well as a rich version control history with updates and migrations that
we used in our experiments. The purpose of these experiments is to verify
that our algorithms work correctly in various real-world scenarios and to
measure how they reduce user effort needed for manual update.

• Finally, all the presented models were experimentally implemented in the
DaemonX framework to verify the algorithms. Its first release was devel-
oped as a software project. From the beginning, it was designed as a general
framework that supports extensibility by user-defined model and evolution
plug-ins. This core feature was used for mentioned experimental implemen-
tations that helped to test and verify the proposed algorithms. Moreover,
further implemented plug-ins contain additional features, like generation of
the particular queries from the models, e.g., XPath, SQL or REST end-
points (resources). Next, thanks to architecture it was possible to change
the part implementing basic undo/redo functionality with more advance
solution. We briefly describe the framework in Chapter 3.

To conclude, though there are still several open questions and possible exten-
sions of the approaches, we allege that our models and algorithms can be imple-
mented and used in practise. As a future work, there can be defined more complex
algorithms for presented models, model transformations and especially for model
evolution. An example is splitting of a property into multiple properties, that

189

is a complex operation composed from multiple atomic operations. Next, there
exist other technologies that can be described as models with theirs operations
and that can be incorporated into current solution, e.g., RELAX NG [21], JSON
Schema [40], etc.

All the presented approaches were supported by several grants and projects,
namely by the Charles University Grant Agency (SVV-2013-267312, SVV-2014-
260100, SVV-2015-260222, SVV-2017-260451, GAUK-1416213) and the Czech
Science Foundation (P202/10/0573).

190

Bibliography

[1] Adventure Works team. Adventure Works 2014, January 2016. https://

msftdbprodsamples.codeplex.com/.

[2] Santa Agreste, Pasquale De Meo, Emilio Ferrara, and Domenico Ursino.
{XML} matchers: Approaches and challenges. Knowledge-Based Systems,
66:190 – 209, 2014.

[3] Lina Al-Jadir and Fatmé El-Moukaddem. Once Upon a Time a DTD
Evolved into Another DTD... In Object-Oriented Information Systems, vol-
ume 2817 of Lecture Notes in Computer Science, pages 3–17. Springer Berlin
Heidelberg, 2003.

[4] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Improving {XML}
schema matching performance using prüfer sequences. Data & Knowledge
Engineering, 68(8):728 – 747, 2009.

[5] Amazon. Amazon Web Services. http://amazonpayments.s3.amazonaws
.com/documents/order.xsd.

[6] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm.
Schema and Ontology Matching with COMA++. Proceeding SIGMOD
’05 Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 1:906–908, 2005.

[7] John Backus. Can programming be liberated from the von neumann style?:
A functional style and its algebra of programs. Commun. ACM, 21(8):613–
641, August 1978.

[8] Douglas K. Barry and Torsten Stanienda. Solving the Java Object Storage
Problem. IEEE Computer, 31(11):33–40, 1998.

[9] Linda Bird, Andrew Goodchild, and Terry Halpin. Object role mod-
elling and xml-schema. In Proceedings of the 19th International Conference
on Conceptual Modeling, ER’00, pages 309–322, Berlin, Heidelberg, 2000.
Springer-Verlag.

[10] API Blueprint. API Blueprint. http://apiblueprint.org/, January 2016.

[11] Scott. Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérome Siméon. XQuery 1.0: An XML Query Lan-
guage. W3C, 2007.

[12] Béatrice Bouchou, Denio Duarte, Mı́rian Halfeld Ferrari Alves, Dominique
Laurent, and Martin A. Musicante. Schema Evolution for XML: A
Consistency-Preserving Approach. In Jǐŕı Fiala, Václav Koubek, and Jan
Kratochv́ıl, editors, Mathematical Foundations of Computer Science 2004,
volume 3153 of Lecture Notes in Computer Science, pages 876–888. Springer
Berlin Heidelberg, 2004.

191

https://msftdbprodsamples.codeplex.com/
https://msftdbprodsamples.codeplex.com/
http://amazonpayments.s3.amazonaws.com/documents/order.xsd
http://amazonpayments.s3.amazonaws.com/documents/order.xsd
http://apiblueprint.org/

[13] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classi-
fication and Regression Trees. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984.

[14] K. Selçuk Candan, Huan Liu, and Reshma Suvarna. Resource Descrip-
tion Framework: Metadata and Its Applications. SIGKDD Explor. Newsl.,
3(1):6–19, July 2001.

[15] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. Synchroniza-
tion of queries and views upon schema evolutions: A survey. ACM Trans.
Database Syst., 41(2):9:1–9:41, May 2016.

[16] Balder Cate and Maarten Marx. Axiomatizing the Logical Core of XPath
2.0. Theor. Comp. Sys., 44:561–589, April 2009.

[17] Peter Pin-Shan Chen. The Entity-relationship Model – Toward a Unified
View of Data. ACM Trans. Database Syst., 1(1):9–36, March 1976.

[18] J. Choobineh, M. V. Mannino, J. F. Nunamaker, and B. R. Konsynski. An
expert database design system based on analysis of forms. IEEE Transac-
tions on Software Engineering, 14(2):242–253, Feb 1988.

[19] Martin Chytil. Adaptation of Relational Database Schema. Master’s thesis,
Charles University in Prague, 2012. http://www.ksi.mff.cuni.cz/~hol

ubova/dp/Chytil.pdf.

[20] Martin Chytil, Marek Polák, Martin Nečaský, and Irena Holubová. Evolu-
tion of a Relational Schema and Its Impact on SQL Queries. In Intelligent
Distributed Computing VII - Proceedings of the 7th International Sympo-
sium on Intelligent Distributed Computing, IDC 2013, Prague, Czech Re-
public, September 2013, pages 5–15, 2013.

[21] James Clark and Murata Makoto. RELAX NG Specification. https://www
.oasis-open.org/committees/relax-ng/spec-20011203.html, Decem-
ber 2001. OASIS Committee Specification and ISO/IEC 19757-2.

[22] Robbie Clutton. API versioning. http://pivotallabs.com/api-version
ing/, May 2013. Pivotal Labs.

[23] Microsoft Corporation. ASP.NET Web API. http://www.asp.net/web-a
pi, February 2015.

[24] Microsoft Corporation. Visual Studio 2015. https://www.visualstudio.
com/en-us/products/vs-2015-product-editions.aspx, August 2015.

[25] SAP Corporation. SAP Corporation.

[26] Douglas Crockford. JavaScript Object Notation. http://www.json.org/.

[27] Alcino Cunha and Joost Visser. Transformation of structure-shy programs
with application to xpath queries and strategic functions. Science of Com-
puter Programming, 76(6):516 – 539, 2011.

192

http://www.ksi.mff.cuni.cz/~holubova/dp/Chytil.pdf
http://www.ksi.mff.cuni.cz/~holubova/dp/Chytil.pdf
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
https://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://pivotallabs.com/api-versioning/
http://pivotallabs.com/api-versioning/
http://www.asp.net/web-api
http://www.asp.net/web-api
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx
https://www.visualstudio.com/en-us/products/vs-2015-product-editions.aspx
http://www.json.org/

[28] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automat-
ing the database schema evolution process. The VLDB Journal, 22(1):73–
98, February 2013.

[29] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database
schema evolution: The prism workbench. Proc. VLDB Endow., 1(1):761–
772, August 2008.

[30] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence,
constraints, and optimization with universal plans. In Proceedings of the
25th International Conference on Very Large Data Bases, VLDB ’99, pages
459–470, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[31] Hong Hai Do and Erhard Rahm. COMA – A system for flexible combina-
tion of schema matching approaches. Proceedings of the 28th international
conference on Very Large Data Bases, 1:610–621, 2002.

[32] Hong Hai Do and Erhard Rahm. Flexible Integration of Molecular-
biological Annotation Data: The GenMapper Approach. 9th International
Conference on Extending Database Technology, 1:811–822, 2004.

[33] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learn-
ing to Map between Ontologies on the Semantic Web. Proceeding WWW
’02 Proceedings of the 11th international conference on World Wide Web,
1:662–673, 2002.

[34] Eladio Domı́nguez, Jorge Lloret, Ángel L. Rubio, and Maŕıa A. Zapata.
Evolving XML Schemas and Documents Using UML Class Diagrams, pages
343–352. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[35] Christian Drumm, Matthias Schmitt, and Erhard Rahm. Quickmig - au-
tomatic schema matching for data migration projects. In Proc. of the
Sixteenth Conference on Information and Knowledge Management (CIKM,
2007.

[36] Fabien Duchateau, Zohra Bellahsene, and Remi Coletta. A Flexible Ap-
proach for Planning Schema Matching Algorithms. On the Move to Mean-
ingful Internet Systems: OTM 2008, 1:249–264, 2008.

[37] Dieter Fensel, Ian Horrocks, Frank Harmelen, Deborah McGuinness, and
Peter Patel-Schneider. OIL: Ontology Infrastructure to Enable the Seman-
tic Web. IEEE Intelligent Systems, 16:200–201, 2001.

[38] Flávio Ferreira and Hugo Pacheco. Xpto an xpath preprocessor with type-
aware optimization, 2007.

[39] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California, 2000.
AAI9980887.

[40] Internet Engineering Task Force. JSON Schema: core definitions and ter-
minology. Internet Engineering Task Force, January 2013.

193

[41] The Eclipse Foundation. Eclipse. https://eclipse.org/.

[42] Massiomo Franceschet. XPath Functional Test. http://sole.dimi.uniu

d.it/~massimo.franceschet/xpathmark/FT.html, 2011.

[43] Pierre Genevès, Nabil Layäıda, and Vincent Quint. Identifying query in-
compatibilities with evolving xml schemas. SIGPLAN Not., 44:221–230,
August 2009.

[44] Pierre Genevès, Nabil Layäıda, and Alan Schmitt. Efficient static analysis
of xml paths and types. SIGPLAN Not., 42:342–351, June 2007.

[45] GitHub. GitHub. https://github.com/, December 2014. A web-based
Git repository hosting service.

[46] Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm. GOM-
MA Results for OAEI 2012. In Proceedings of the 7th International Confer-
ence on Ontology Matching - Volume 946, OM’12, pages 133–140, Aachen,
Germany, Germany, 2012. CEUR-WS.org.

[47] Object Modeling Group. MDA Guide Version 1.0.1. http://www.omg.org
/cgi-bin/doc?omg/03-06-01.pdf, June 2003. MDA Guide Version 1.0.1.

[48] Object Modeling Group. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. http://www.omg.org/spec/QVT/, April
2008.

[49] Object Modeling Group. Business Process Model And Notation (BPMN)
Version 2.0. http://www.omg.org/spec/BPMN/2.0/PDF, January 2011.

[50] Object Modeling Group. Unified Modeling Language (OMG UML), Super-
structure, V2.4.1. Object Modeling Group, November 2011. http://www.
omg.org/spec/UML/2.1.2/Superstructure/PDF.

[51] Object Modeling Group. Object Constraint Language (OCL), Version 2.3.1.
http://www.omg.org/spec/OCL/2.3.1/PDF, January 2012.

[52] Object Modeling Group. The Meta Object Facility Specification. http://
www.omg.org/mof/, August 2015.

[53] Parallel Understanding Systems Group. Simple HTML Onthology Exten-
sion. Department of Computer Science University of Maryland at College
Park.

[54] The Open Group. SOA Reference Architecture. The Open Group, 2011.
1-937218-01-0.

[55] Hong Hai, Do. Schema Matching and Mapping-based Data Integration:
Architecture, Approaches and Evaluation. VDMVerlag, Saarbrücken,
Germany, Germany, 2007.

[56] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA Data Mining Software: An
Update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009.

194

https://eclipse.org/
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/FT.html
http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/FT.html
https://github.com/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://www.omg.org/spec/OCL/2.3.1/PDF
http://www.omg.org/mof/
http://www.omg.org/mof/

[57] Terry Halpin. ORM/NIAM Object-Role Modeling, pages 81–101. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998.

[58] Pieter H. Hartel. A Trace Semantics for Positive Core XPath. In TIME
’05, pages 103–112, Washington, DC, USA, 2005. IEEE.

[59] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Automatic integra-
tion of Web search interfaces with WISE-Integrator. The VLDB Journal,
13(3):256–273, 2004.

[60] Earl B. Hunt, Janet Marin, and Philip J. Stone. Experiments in Induction.
Artificial intelligence, 1966.

[61] ISO. ISO/IEC 9075-14:2003 Part 14: XML-Related Specifications
(SQL/XML). ISO, 2006.

[62] ISO/IEC 9075-1:2008. Part 1: Framework (SQL/Framework). Int. Orga-
nization for Standardization, 2008.

[63] Kim Jaewook, Yun Peng, Nenad Ivezic, and Junho Shin. An Optimiza-
tion Approach for Semantic-based XML Schema Matching. International
Journal of Trade, Economics, and Finance, pages 78–86, 2011.

[64] Karel Jakubec, Marek Polák, Martin Nečaský, and Irena Holubová. Un-
do/Redo Operations in Complex Environments. In Proceedings of the 5th
International Conference on Ambient Systems, Networks and Technologies
(ANT 2014), the 4th International Conference on Sustainable Energy Infor-
mation Technology (SEIT-2014), Hasselt, Belgium, June 2-5, 2014, pages
561–570, 2014.

[65] Eva J́ılková. Adaptive Similarity of XML Data. Master’s thesis, Charles
University in Prague, Prague, 2013. http://www.ksi.mff.cuni.cz/~hol

ubova/dp/Jilkova.pdf.

[66] Eva J́ılková, Marek Polák, and Irena Holubová. Adaptive Similarity of XML
Data. In On the Move to Meaningful Internet Systems: OTM 2014 Con-
ferences - Confederated International Conferences: CoopIS, and ODBASE
2014, Amantea, Italy, October 27-31, 2014, Proceedings, pages 535–552,
2014.

[67] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. The Semantic Web –
ISWC 2011: 10th International Semantic Web Conference, Bonn, Ger-
many, October 23-27, 2011, Proceedings, Part I, chapter LogMap: Logic-
Based and Scalable Ontology Matching, pages 273–288. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[68] Mike Kelly. Hypertext Application Language. http://stateless.co/hal
_specification.html, September 2013.

[69] Toralf Kirsten, Hong-Hai Do, Christine Körner, and Erhard Rahm. Da-
ta Integration in the Life Sciences: Second International Workshop, DILS

195

http://www.ksi.mff.cuni.cz/~holubova/dp/Jilkova.pdf
http://www.ksi.mff.cuni.cz/~holubova/dp/Jilkova.pdf
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

2005, San Diego, CA, USA, July 20-22, 2005. Proceedings, chapter Hy-
brid Integration of Molecular-Biological Annotation Data, pages 208–223.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[70] Meike Klettke. Conceptual XML Schema Evolution - the CoDEX Approach
for Design and Redesign. In BTW Workshops, pages 53–63, 2007.

[71] Jakub Kĺımek, Irena Mlýnková, and Martin Nečaský. eXolutio: Tool for
XML and Data Management. In CEUR Workshop Proceedings, pages 69–
80, 2012.

[72] Jakub Kĺımek, Martin Nečaský, and Irena Mlýnková. Evolution and
Change Management of XML Applications. (submitted), 0:0–0, 2011.

[73] Konstantin Korovin. CNF and Clausal Form. In Logic in Computer Science,
lecture notes, 2006.

[74] Vladimı́r Kudelas. Adapting Service Interfaces when Business Processes
Evolve. Master’s thesis, Charles University in Prague, Prague, 2012. http
s://is.cuni.cz/webapps/zzp/detail/89552/?lang=en.

[75] Vladimı́r Kudelas, Marek Polák, Martin Nečaský, and Irena Holubová.
Adapting Service Interfaces when Business Processes Evolve. In IEEE 8th
International Conference on Research Challenges in Information Science,
RCIS 2014, Marrakech, Morocco, May 28-30, 2014, pages 1–12, 2014.

[76] Mong Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. Xclust: Cluster-
ing xml schemas for effective integration. In Proceedings of the Eleventh In-
ternational Conference on Information and Knowledge Management, CIKM
’02, pages 292–299, New York, NY, USA, 2002. ACM.

[77] Bernadette Farias Lóscio and Ana Carolina Salgado. Evolution of XML-
Based Mediation Queries in a Data Integration System, pages 402–414.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[78] Bernadette Farias Lóscio. Managing the Evolution of XML-based Mediation
Queries. http://repositorio.ufpe.br/handle/123456789/1838?show=

full, 2003. Cin – Centro de Informática, Recife Pernambuco Brazi.

[79] Ivan Luković, Sonja Ristić, Pavle Mogin, and Jelena Pavićević. Database
schema integration process – a methodology and aspects of its applying.
In Sad Journal of Mathematics (Formerly Review of Research, Faculty of
Science, Mathematic Series), Novi Sad, 2006, Accepted for publishing, 2006.

[80] Ondřej Macek and Martin Nečaský. An Extension of Business Process
Model for XML Schema Modeling. 6th World Congress on Services, pages
383–390, July 2010.

[81] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. In Proceedings of the 27th International Conference
on Very Large Data Bases, VLDB ’01, pages 49–58, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

196

https://is.cuni.cz/webapps/zzp/detail/89552/?lang=en
https://is.cuni.cz/webapps/zzp/detail/89552/?lang=en
http://repositorio.ufpe.br/handle/123456789/1838?show=full
http://repositorio.ufpe.br/handle/123456789/1838?show=full

[82] David Maier. Theory of Relational Databases. Computer Science Pr, 1983.

[83] Polák Marek and Irena Holubová. Information system evolution manage-
ment – a complex evaluation. In 5th European Conference on the En-
gineering of Computer Based Systems. Department of Computer Science,
University of Cyprus, August 2017.

[84] MediaWiki. MediaWiki. https://www.mediawiki.org/wiki/MediaWiki.

[85] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. SLIQ: A fast scal-
able classier for data mining. Proceeding EDBT ’96 Proceedings of the 5th
International Conference on Extending Database Technology: Advances in
Database Technology, pages 18–32, 1996.

[86] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flood-
ing: A Versatile Graph Matching Algorithm. Proceeding ICDE ’02 Proceed-
ings of the 18th International Conference on Data Engineering, page 117,
2002.

[87] Marco Mesiti, Roberto Celle, MatteoA. Sorrenti, and Giovanna Guerri-
ni. X-Evolution: A System for XML Schema Evolution and Document
Adaptation. In Yannis Ioannidis, MarcH. Scholl, JoachimW. Schmidt, Flo-
rian Matthes, Mike Hatzopoulos, Klemens Boehm, Alfons Kemper, Torsten
Grust, and Christian Boehm, editors, Advances in Database Technology -
EDBT 2006, volume 3896 of Lecture Notes in Computer Science, pages
1143–1146. Springer Berlin Heidelberg, 2006.

[88] Mirella M. Moro, Susan Malaika, and Lipyeow Lim. Preserving xml queries
during schema evolution. In Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 1341–1342, New York, NY, USA,
2007. ACM.

[89] Richi Nayak and Wina Iryadi. {XML} schema clustering with semantic
and hierarchical similarity measures. Knowledge-Based Systems, 20(4):336
– 349, 2007.

[90] Martin Nečaský. XSEM - A Conceptual Model for XML. Proc. of the fourth
Asia-Pacific conference on Conceptual Modelling, pages 37–48, 2007.

[91] Martin Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations
in Database and Information Systems. IOS Press, Amsterdam, Netherlands,
2009.

[92] Martin Nečaský, Jakub Kĺımek, Jakub Malý, and Irena Mlýnková. Evolu-
tion and Change Management of XML-based Systems. Journal of Systems
and Software, 85(3):683 – 707, 2012. Novel approaches in the design and
implementation of systems/software architecture.

[93] Martin Nečaský, Irena Mlýnková, and Jakub Kĺımek. Model-Driven Ap-
proach to XML Schema Evolution. OTM’11 Proceedings of the 2011th Con-
federated international conference on On the move to meaningful internet
systems, pages 514–523, 2011.

197

[94] Martin Nečaský, Irena Mlýnková, Jakub Kĺımek, and Jakub Malý. When
Conceptual Model Meets Grammar: A Dual Approach to XML Data Mod-
eling. Data and Knowledge Engineering, 72:1 – 30, 2012.

[95] Martin Nečaský and Jaroslav Pokorný. Designing Semantic Web Services
using Conceptual Model. In ACM SAC ’08, pages 2243–2247. ACM, 2008.

[96] Routledge Nicholas, Bird Linda, and Goodchild Andrew. UML and XML
schema. Australian Computer Society, Darlinghurst, Australia, 2002.

[97] Mark Nottingham. API evolution. https://www.mnot.net/blog/2012/1

2/04/api-evolution, December 2012.

[98] OASIS. Web Services Business Process Execution Language (WSBPEL)
TC. OASIS, 2007. http://www.oasis-open.org/committees/tc_home.p
hp?wg_abbrev=wsbpel.

[99] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis, Konstantinos Ag-
gistalis, Fotini Pechlivani, and Yannis Vassiliou. Language Extensions for
the Automation of Database Schema Evolution. In Jose Cordeiro and
Joaquim Filipe, editors, ICEIS (1), pages 74–81, 2008.

[100] George Papastefanatos, Panos Vassiliadis, and Yannis Vassiliou. Adaptive
Query Formulation to Handle Database Evolution. In Proceedings of the
CAiSE Forum, 2006.

[101] Peter Piják. Universal Constraint Language. Master’s thesis, Charles Uni-
versity in Prague, Prague, 2011. https://is.cuni.cz/webapps/zzp/det

ail/96494/?lang=en.

[102] Jaroslav Pokorný. XML in Enterprise Systems: Its Roles and Benefits.
In Peter Bernus, Guy Doumeingts, and Mark Fox, editors, Enterprise Ar-
chitecture, Integration and Interoperability, volume 326 of IFIP Advances
in Information and Communication Technology, pages 128–139. Springer
Berlin Heidelberg, 2010.

[103] Marek Polák. XML Query Adaptation. Master’s thesis, Charles University
in Prague, 2011. http://www.ksi.mff.cuni.cz/~mlynkova/dp/Polak.p

df.

[104] Marek Polák, Martin Chytil, Karel Jakubec, Vladimı́r Kudelas, Peter Piják,
Martin Nečaský, and Irena Holubová. Data and Query Adaptation using
DaemonX. Computing and Informatics, 34(1):99–137, 2015.

[105] Marek Polák and Irena Holubová. Advanced REST API Management and
Evolution Using MDA. In DChanges ’15: Proceedings of the 3rd Inter-
national Workshop on (Document) Changes, DocEng ’15, New York, NY,
USA, 2015. ACM.

[106] Marek Polák and Irena Holubová. REST API Management and Evolution
Using MDA. In Proceedings of the Eighth International C* Conference on
Computer Science & Software Engineering, C3S2E ’15, pages 102–109, New
York, NY, USA, 2015. ACM.

198

https://www.mnot.net/blog/2012/12/04/api-evolution
https://www.mnot.net/blog/2012/12/04/api-evolution
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://is.cuni.cz/webapps/zzp/detail/96494/?lang=en
https://is.cuni.cz/webapps/zzp/detail/96494/?lang=en
http://www.ksi.mff.cuni.cz/~mlynkova/dp/Polak.pdf
http://www.ksi.mff.cuni.cz/~mlynkova/dp/Polak.pdf

[107] Marek Polák, Irena Mlýnková, and Eric Pardede. XML Query Adaptation
as Schema Evolves. In Henry Linger, Julie Fisher, Andrew Barnden, Chris
Barry, Michael Lang, and Christoph Schneider, editors, Building Sustain-
able Information Systems, pages 401–416. Springer US, 2013.

[108] Marek Polák, Martin Nečaský, and Irena Holubová. DaemonX: Design,
Adaptation, Evolution, and Management of Native XML (and More Oth-
er) Formats. In The 15th International Conference on Information Integra-
tion and Web-based Applications & Services, IIWAS ’13, Vienna, Austria,
December 2-4, 2013, page 484, 2013.

[109] J. Ross Quinlan. Induction of Decision Trees. Machine Learning Volume 1
Issue 1, pages 81–106, 1986.

[110] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1993.

[111] J. Ross Quinlan. C5.0: An Informal Tutorial. Rulequest Research, March
2013. Academic Press, New York.

[112] Dave Raggett, Le Arnaud Hors, and Ian Jacobs. HTML 4.01 Specification.
W3C, 1999. http://www.w3.org/TR/html4/.

[113] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal – The International Journal on Very
Large Data Bases Volume 10 Issue 4, pages 334–350, 2001.

[114] Armin Ronacher. Flask microframework. http://flask.pocoo.org, De-
cember 2014.

[115] SAP. PowerDesigner. http://go.sap.com/product/data-mgmt/powerde

signer-data-modeling-tools.html.

[116] Jakub Stárka. Similarity of XML Data. Master’s thesis, Charles University
in Prague, Prague, 2010. http://www.ksi.mff.cuni.cz/ holubova/dp/Star-
ka.pdf.

[117] Robert Stevens, Patricia Baker, Sean Bechhofer, Gary Ng, Alex Jacoby,
Norman W. Paton, Carole A. Goble, and Andy Brass. TAMBIS: Transpar-
ent Access to Multiple Bioinformatics Information Sources. Bioinformatics,
16(2):184–186, 2000.

[118] Sparx Systems. Enterprise Architect. http://www.sparxsystems.com/pr
oducts/ea/, 2015.

[119] DaemonX Team. DaemonX. http://daemonx.codeplex.com/, 2011.

[120] Swagger Team. Swagger. http://swagger.io/, January 2016.

[121] XCase Team. XCase. http://xcase.codeplex.com/.

[122] Joe Tekli and Richard Chbeir. Minimizing user effort in xml grammar
matching. Inf. Sci., 210:1–40, November 2012.

199

http://www.w3.org/TR/html4/
http://flask.pocoo.org
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://daemonx.codeplex.com/
http://swagger.io/
http://xcase.codeplex.com/

[123] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
XML Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/TR/xmlschema-1/.

[124] Andreas Thor and Erhard Rahm. CloudFuice: A flexible Cloud-based Data
Integration System. Web Engineering Lecture Notes in Computer Science
Volume 6757, pages 304–318, 2011.

[125] Twitter. Twitter API. https://dev.twitter.com/overview/api, March
2015.

[126] W3C. OWL Web Ontology Language Overview. W3C Recommendation.
W3C, February 2004. https://www.w3.org/TR/owl-features/.

[127] W3C. SOAP Version 1.2 Part 0: Primer. W3C, 2007.

[128] W3C. Web Services Description Language (WSDL) Version 2.0 Part 0:
Primer. W3C, 2007. http://www.w3.org/TR/wsdl20-primer/.

[129] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C, 2008.
http://www.w3.org/TR/REC-xml.

[130] W3C. SPARQL Query Language for RDF. W3C, 2008. http://www.w3.o
rg/TR/rdf-sparql-query/.

[131] W3C. Web Services Activity. http://www.w3.org/2002/ws/, 2009.

[132] W3C. XML Path Language (XPath) 2.0 (Second Edition). W3C, 12 2010.

[133] W3C. The WebSocket API. https://www.w3.org/TR/2011/WD-websocke
ts-20110929/, 2011.

[134] W3C. AJAX tutorial. http://www.w3schools.com/ajax/default.asp,
December 2014.

[135] W3C. XSL Transformations (XSLT) Version 3.0. W3C, 11 2015.

[136] M. Weisfeld. The Object-Oriented Thought Process. Developer’s Library.
Addison-Wesley, 2009.

[137] Raml Workgroup. RESTful API modeling language. http://raml.org/.

[138] Shanzhen Yi, Bo Huang, and Weng Tat Chan. Xml application schema
matching using similarity measure and relaxation labeling. Inf. Sci., 169(1-
2):27–46, January 2005.

200

https://dev.twitter.com/overview/api
https://www.w3.org/TR/owl-features/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2002/ws/
https://www.w3.org/TR/2011/WD-websockets-20110929/
https://www.w3.org/TR/2011/WD-websockets-20110929/
http://www.w3schools.com/ajax/default.asp
http://raml.org/

List of Tables

3.1 Comparison of the related tools 24
3.2 Comparison of the related tools models 24

4.1 Defined changes . 34
4.2 Tree type expressions . 37

8.1 A comparison of the selected existing solutions 157
8.2 Base training set S of Example 11 165
8.3 Base training set SMT1 of Example 11 when Matched Thesauri = 1165
8.4 Base training set SMT0 of Example 11 when Matched Thesauri = 0165
8.5 Base training set SN2 of Example 11 when N-Gram > 0.071 166
8.6 Base training set SN1 of Example 11 when N-Gram ≤ 0.071 166
8.7 Examples of mapping results for experiment SeparateTrees 174

9.1 Adding class page restrictions 180
9.2 Adding property job.job token 180
9.3 Adding property job.job token timestamp 181
9.4 Adding of a relation between classes – adding of a foreign key con-

straint on column user former groups.user former groups fk1 182
9.5 Removing of class user newtalk 182
9.6 Removing property user.user options 183
9.7 Renaming class watchlist to oldwatchlist 183
9.8 Renaming property revision.rev id to revision.revision rev id seq

184
9.9 Evaluation of all experiments . 185

201

202

List of Figures

1.1 An example of simple IS . 6
1.2 An example of the PIM-to-PSM mapping from one PIM model to

multiple PSM models . 8
1.3 Five-level evolution management framework 10
1.4 Five-level evolution management framework with denoted chapters 16

2.1 PIM model example . 17
2.2 An example of relations between PIM and PSM models 19
2.3 Evolution process diagram . 19
2.4 An example of related models . 20
2.5 An example of propagation from Model 1 20
2.6 An example of propagation from Model 3 20

3.1 Schema of MOF layers and a UML example 26
3.2 A screenshot of DaemonX with PIM and XSEM PSM models . . 28
3.3 A screenshot of DaemonX with BPMN, UML class and relational

models . 29
3.4 An example of evolution process (PIM and XSEM PSM model) –

initial state . 29
3.5 An example of evolution process (PIM and XSEM PSM model) –

propagation . 30
3.6 A screenshot of DaemonX – evolution manager window 31
3.7 A screenshot of DaemonX with command stack for undo/redo

management . 32

4.1 Location of the XPath model and change propagation in the con-
text of the five-level evolution management framework 33

4.2 Sample PSM schema . 42
4.3 XPath axes and nodes . 44
4.4 XPath expression node . 45
4.5 Mapping between XSEM and XPath models 46
4.6 Schema example for adding . 48
4.7 Query example for adding . 48
4.8 Schema example for removing . 50
4.9 Query example for removing . 50
4.10 Schema example for renaming . 51
4.11 XPath example for renaming . 51
4.12 Reordering and following axis . 52
4.13 Example of reconnection problem – following axis 53
4.14 Initial schema part of the Amazon example 56
4.15 Evolved schema part of the Amazon example 57
4.16 Original and evolved query of the Amazon example 57

5.1 Location of the relational database model and related change prop-
agation in the five-level evolution management framework 59

5.2 An example of PSM database model 72
5.3 An example of a simple model of the GROUP BY clause 74

203

5.4 An example of a visual model of a more complex SQL query . . . 76
5.5 An example of a mapping between database model and query model 76

5.6 An example of adding new DataSourceItem to the DataSource and
to the From components . 80

5.7 Model of the complex usage of complex GroupBy query 82
5.8 Updated model of the complex GroupBy query 82

6.1 Location of the business process model and respective change prop-
agation in the five-level evolution management framework 85

6.2 MDA and business process modeling in DaemonX 92

6.3 PIM and PSM example of business process modeling 94

6.4 Architecture of DaemonX models related to business process mod-
eling . 95

6.5 Cardinality examples . 97

6.6 Examples of reducing keys in a PSM schema 99

6.7 Replacement problems for specializations (a) and cardinalities (b) 100

6.8 Examples of replace key operation 101

6.9 An example of a PIM-View schema for metrics evaluation example 104

6.10 Examples of a PSM schemas for metrics evaluation example . . . 105
6.11 Business process model of the experiment 108

6.12 PIM schema of the experiment . 109

6.13 PIM-View schema PIMView CustomersInfo 110

6.14 PSM schema derived from PIMView CustomersInfo 111

7.1 Location of the REST model and related change management in
the context of the five-level evolution management framework . . 113

7.2 An example of the Resource Model of a simple e-shop 117

7.3 An example of the PIM-Resource Model mapping 118

7.4 An example of removal of vertex C from a Resource Model 122

7.5 An example of renaming class A to B 125

7.6 An example of connection creating when classes A and B are not
siblings . 126

7.7 An example of connection creating when classes B and C are in a
siblings relation. The algorithm first creates copies of both subtrees
of vertices B and C and then adds them as children of the opposite
ones. 128

7.8 An example of removing a class B 129

7.9 An example of removing a connection (association) between classes
A and B . 129

7.10 An example of creating function Get 130

7.11 An example of renaming function Get to Remove 130
7.12 An example of updating function return type int to long 131

7.13 An example of removing function Get from class A 131

7.14 An example of adding function parameter surname to function
SetName . 132

7.15 An example of renaming parameter name of function SetName to
fullName . 133

7.16 An example of removing parameter surname from function SetName133

204

7.17 An example of moving attribute assemblyYear from class Product
to class ProductVersion . 135

7.18 An example of nesting PIM classes Product and ProductVersion
into Resource Model class Product 138

7.19 An example of correct propagation of adding attribute year to class
Product . 138

7.20 An example of invalid propagation of adding attribute name to
class Product . 139

7.21 An example of the PIM model and its corresponding Resource
Model used for experiments . 140

7.22 An example of renaming class Label to DetailInformation 142
7.23 An example of propagation of class renaming from Figure 7.22 to

the Resource Model . 142
7.24 An example of adding a connection between classes Label andMile-

stone . 143
7.25 An example of propagation of adding a connection from Figure 7.24

to the Resource Model . 144
7.26 An example of adding a function SetUrl to a PIM class User . . . 144
7.27 An example of propagation of adding function SetUrl from Fig-

ure 7.26 to the Resource Model 145

8.1 Sample decision tree . 160
8.2 Final decision tree . 166
8.3 Separate decision tree for classes for experiment SeparateTrees . . 168
8.4 Separate decision tree for attributes for experiment SeparateTrees 169
8.5 Common decision tree for experiment SeparateTrees 170
8.6 Precision for experiment SeparateTrees 171
8.7 Recall for experiment SeparateTrees 172
8.8 F-Measure for experiment SeparateTrees 172
8.9 Overall for experiment SeparateTrees 173

9.1 A diagram of the models . 178

205

206

	Introduction
	Preliminaries
	Models
	Operations
	Model Relations
	Evolution Process

	DaemonX
	Introduction
	Related Works
	eXolutio
	Enterprise Architect
	Power Designer
	Eclipse
	Visual Studio
	Comparison of the Related Works

	Architecture
	Plug-in Support
	Evolution Process Management
	Undo/Redo Management
	Additional Framework Extensions
	Conclusion
	Future Work

	XML Query Evolution
	Introduction
	Related Works
	Preserving XML Queries During Schema Evolution
	Identifying Query Inconsistencies with Evolving XML Schemas
	Transformation of structure-shy programs with application to XPath queries and strategic functions
	Evolution of XML-Based Mediation Queries in a Data Integration System
	Comparison of the Related Works

	Models for XML Schema and XPath
	Evolution Algorithm
	Operations for the XSEM Model
	Operations for the XPath Model

	Analysis of Propagation of Operations
	Adding
	Removing
	Renaming
	Reordering
	Reconnection

	Implementation and Experiments
	Conclusion
	Future Work

	Relational Schema and SQL Queries Evolution
	Introduction
	Related Works
	Database Schema Integration Process
	QuickMig
	The PRISM Workbench
	Automating the Database Schema Evolution Process
	Adaptive Query Formulation
	Synchronization of Queries and Views Upon Schema Evolutions: A Survey
	Comparison of the Related Works

	Database Model
	Query Model
	SQL Query Visualization Model
	Visualization Model Components
	Mapping to the Database Model
	Mapping of Operations

	Change Propagation in the Graph
	Query Graph Operations

	Implementation and Experiments
	Conclusion
	Future Work

	Service Interfaces and Business Processes Evolution
	Introduction
	Related Works
	UML and XML Schema
	XSEM – A Conceptual Model for XML
	An Extension of Business Process Model for XML Schema Modeling
	Comparison of the Related Works

	Business Processes and Conceptual Modeling
	Proposed Approach
	Derivation Part
	Evolution Part

	Implementation and Experiments
	Conclusion
	Future Work

	REST API Management and Evolution
	Introduction
	Related Works
	API Versioning Best Practises
	API Documentation Generation
	Comparison of the Related Works

	Resource Model
	Mapping and Evolution
	Model Mapping

	Atomic PIM Model Operations
	Atomic Resource Model Operations
	Operation Propagation Policies
	Propagation Algorithms
	Cardinalities
	API Versioning
	View Model
	Model Nesting
	Resource Parameters Evolution
	Applying the Solution on Existing Clients

	Implementation and Experiments
	Experimental Data
	Experiments

	Conclusion
	Future Work

	Schema Mapping
	Introduction
	Related Works
	COMA
	Similarity Flooding
	Decision Tree
	XML Schema Clustering with Semantic and Hierarchical Similarity Measures
	Minimizing User Effort in XML Grammar Matching
	XML Matchers: Approaches and Challenges
	Comparison of the Related Works

	Schema Matching
	Applications of Schema Matching

	Proposed Solution
	Original Decision Tree Construction
	Decision Tree Training via C5.0

	Implementation and Experiments
	Conclusion
	Future Work

	Experiments
	Description of Experiments
	Experimental Data
	Experimental Evaluation
	Database Model

	Particular Experiments
	Experimental Results

	Conclusion

	Conclusion
	Bibliography

