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1. Introduction
Currently, the World Wide Web is used as a primary source of information and users
are sending billions of emails and publishing millions of documents, images and video
clips every day. Moreover, e-shops or online stock exchanges make the Internet one of
the most important business platforms. Thus the amount of data interchanged between
users and corporations is huge and the requirements for fast and efficient processing
and managing of documents rise. Data generated by companies are an important source
of information for future decisions and their analyses can be used to reveal wrong steps
in the past, to predict new trends in the future, or to attract new customers. Not surpris-
ingly, the data become a very expensive commodity and the tools for their acquisition,
manipulation and processing are intensively studied and demanded.

As the need for data increases, the performance requirements for the tools and
databases are higher, so more efficient algorithms are needed. Consequently, there
arises a necessity for examination of common characteristics of a data. For instance,
although XML [1], as a main format for data exchange, offers many constructs for data
representation, only a small subset of them are used in real-world data [2, 3, 4, 5]. The
information about the structure of the most common archetypes can be used to propose
more efficient algorithms and data structures for their storage and efficient querying.
For example, the finding that the depth of XML documents is on average less than
10 [6] is widely exploited in techniques which represent XML documents as a set of
points in a multidimensional space and store them in corresponding structures, e.g.,
R-trees, UB-trees, or BUB-trees [7]. Likewise, similarity of XML schemas is current-
ly exploited in many approaches, typically as a kind of optimization heuristics. The
current approaches [8, 9, 10] are based on the idea of exploitation of various matchers,
i.e., functions which evaluate similarity of selected simple data characteristics (e.g.,
similarity of element names, similarity of number of subelements etc.). Their results
are then aggregated to a resulting composite similarity measure using a kind of weight-
ed sum. The problem is how to set the weights so that the result reflects the reality.
And the solution can be found in statistical analyses of real-world data.

Another research area which widely exploits the knowledge of complexity of real-
world data is inference of XML schemas from a given sample set of XML documents.
Since according to Gold’s theorem [11] regular languages (i.e., those generated by
XML schemas) are not identifiable only from positive examples (i.e., sample XML
documents which should be valid against the resulting schema), the existing methods
need to exploit either heuristics or a restriction to an identifiable subclass of regular
languages. The question is which subclass should be considered. The authors of pa-
pers [12, 13] result from their analysis of real-world XML schemas [5] and define the
classes so that they cover most of the real-world examples. In other words, the identifi-
able subclass corresponds to a realistic situation. These statistics can be also useful for
data format specification, i.e., the new specification is based on the usage of the most
common patterns used over the Internet and their analysis.

On the other hand, despite the importance of the schema the analyses of real-world
XML data show that a significant portion of XML documents [6, 14] still have no
schema at all. Hence, approaches which focus on automatic inference of schema based
on a set of XML documents can be used for efficient integration of these documents
into an existing system [15], for improvement of compression ratio [16, 17], or it can
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be used for further communication with other services.
Considering the problem of structural analysis in more detail, numerous problems

arise when we want to analyze the data. In this case, we have to answer questions like:
“How can we get the data?”, “Are the data correct?”, or “Are the data complete?”. For
example, the government of the Czech Republic publishes data about public contracts
with a price higher than a limit provided by the law, but contracts with a lower price
can be found at the Web sites of the cities, regions, etc. These data contain only the
identification number of suppliers so it has to be connected to a diverse data set from
other publishers. Some countries continue in the trend of publishing governmental
data as open data1, so the data are directly enriched by other available data sets, i.e.,
the data are combined, corrected, or additional information is computed and added to
the data set. Unfortunately, most of the published data are still published in a form of
HTML [18] tables, spreadsheets, or as scanned images which leads to the demand for
automatic extraction tools that are able to extract, clean and enrich the resulting data
sets automatically. Thus we can differentiate the availability of data as follows:

• data are available in a structured format (e.g., RDF [19], XML, relational databas-
es) and we have a full access to them,

• data are available in a structured format, but the source is distributed so we have
to query different sources, download dumps from various locations or use Web
Services [20] to get them,

• data are available in a semi-structured format (e.g., HTML or structured text)
and additional processing is necessary to get the data,

• data are unavailable or hidden in proprietary formats with low chances to extract
valuable fields.

Obviously the first option (i.e., work with structured data like XML) does not need
any preprocessing before we analyze the data (possibly we can validate or correct the
data if they are not from a trustworthy source). However, the others need at least data
acquisition, correction, and in the latter case data extraction, before we can start with
their analysis.

Based on the previous observations we can divide the main requirements for data
processing as follows:

R1 Document acquisition – The easiest situation (but usually uncommon) is to own
the data in a structured form. It means we have the access to the database or
(e.g., XML) files which gives us a simple possibility of data analysis. Despite
having all data, we might still need to get additional data from external sources,
i.e., to download referred documents, to connect to third party systems, etc.

R2 Data extraction – Once we have an access to the data, but not in a structured
form (e.g., simple text documents), a data extraction tool is necessary to get the
hidden information or included links. Although the documents are unstructured
they still can be used as a valuable source of information and we can use user-
defined templates to extract data from semi-structured documents. For example,
official letters have typically a heading, a date, an inside address, a greeting, a

1http://opendatahandbook.org/en/
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subject, a body, and a signature. Or, contracts usually contain information about
a contractor, a supplier, and a subject. Thus it is possible to specify the way
how to extract data from different sources with different formats through various
specialized data extractors (which can use regular expressions or format-specific
selectors).

R3 Static analysis – In general, we want to know how the documents are structured
and to use this information to improve the way we work with them, i.e., the
integration into existing systems, their querying, batch processing or any other
way to analyze the data. A static analysis means that the results are calculated
without respect to the changing data, i.e., snapshot analysis.

R4 Dynamic analysis – On the other hand, a dynamic analysis means that the results
are calculated repeatedly through the time which can be used to follow up trends
and to quickly respond to changes.

R5 Data processing – Apart from statistical analysis, we can use the gathered data to
generate new information. A typical example for XML documents is inferring a
schema. For this reason we can use different formats and sources. We can work
with XML documents to get a sample of data to generate an inferred general
schema. Besides this, the schema inference process can be more efficient with
addition of other types of documents, e.g., an old obsolete schema or commonly
used queries.

1.1 Aims of This Thesis
Requirements R1 – R5 outline the general scope of this thesis. We want to design and
implement a framework which is able to integrate set of tools to allow a user to extract,
analyze, process, and visualize structured or semi-structured data from the Web. In the
following paragraphs we describe the main aims of this thesis in more detail.

1.1.1 Document Acquisition and Analysis

Data (or document) analysis comprises many independent steps which have different
requirements to the user, software and hardware. Namely, the user has to specify the
analyzed data sets, (s)he must configure analytic tools or implement custom processing
tools. For example, let us have a set of documents about public procurements published
on the Web. Firstly, we have to implement a downloader to retrieve the documents from
the Web. Then we have to check their correctness, e.g., whether all required fields are
filled in. In the next step we implement an analytic method, e.g., evaluation of the
average price for each month. Finally, we must create a chart to present our results.
For these purposes many standalone tools are needed. Last but not least, the hardware
has to be prepared to work with a huge amount of data, it has to be able to offer Internet
connection (if the source data are gathered from the Internet), etc. For these reasons
it is necessary to create a sequence of tools which are able to communicate mutually
or, at least, to pass the data to the next tool in the chain. Another possibility is to
offer one framework which performs all the processing steps and implements the main
components of the system.
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In this thesis, we introduce the architecture and functionality of Analyzer (see Sec-
tion 2), a framework that enables automatic repeatable (i.e., dynamic) and extensible
analyses of real-world data. It is a complex tool that supports not only the analytical
part, but also various “supportive” functions, such as document crawling, data correc-
tion, or analytic visualizations.

With regard to the current support of XML, we provide results of statistical analy-
ses of real-world XML data. We describe the common properties of XML documents
from different sources, the commonly used axes in used XQuery [21] queries and we
show the structure of real-world semantic data.

1.1.2 Data Extraction

Although Analyzer is a universal tool for data analysis, it was not designed to store
metadata about documents or to enrich the data, i.e., to combine different sources to
get a more complex data set. For example, we want to create data about the public
procurements. These data are published over several sources and thus it is not possible
to query the whole data set to get the aggregated data. So we need to create a single
centralized database.

In this thesis we describe the way how the data can be extracted from different
HTML sources. Since this topic is very broad, we focus on creation of template-
driven (i.e., user-driven) application working with our designed scraping language (see
Section 5).

1.1.3 Data Processing

There are many possible ways how to utilize the gathered (and eventually enriched)
documents. In this thesis we show a few examples how the data can be extracted and
utilized:

• Structural Analysis – Once the source of the data is selected, we have to decide
what to do with the extracted documents or data fields. One possibility is their
direct processing as far as we know that the data will not change or we will not
add new data sets. Then we can run batch analytic computation to get structural
or semantic information (see Sections 2.6 and 2.7).

• Data Analysis – Other possibility is to follow the semantic meaning of the data
to get information about the data itself (see Section 3).

• Inference – Another utilization of the data comprises the possibility to infer a
schema (or an ontology) to describe the data. This schema can be then used to
validate new documents from the same domain or it can be used as a basis for
information systems to provide specific Web Services. In this thesis we describe
enrichment of commonly used inference methods. For this purpose we do not
use in the inference process only XML documents, but we include other sources
of information like XQuery queries or obsolete schemas (see Section 6).
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1.2 Proposed Approach

From requirements R1 – R5, it is obvious that a complex framework or a set of tools
which would automate the tasks done manually is the most suitable solution. Such a
framework should provide a tool for Web crawling that is able to download documents
recursively, to store the documents, to prepare them for an analysis, to make the com-
putations, and to present the results in a human readable form. As we have already
mentioned, such a framework is proposed in this thesis and it is called Analyzer.

An important part of Analyzer is the crawling module. Our first implementation
downloaded documents from Web pages, i.e., the links were recognized as the content
of attribute href. Soon, we realized that in many cases the documents are hidden
in so-called Deep Web, in other words the documents are accessible via HTML forms
or AJAX2 calls. Deep Web represents a large fraction of the structured data on the
Web [22], so it is important to crawl it effectively. Additionally, we realized that the
crawled Web pages can contain different meta data (e.g., the last modification date, the
author of the document, or various license information), which can be interesting for
further analysis and data publication. Thus we decided to separate the crawling module
into a standalone tool called Strigil which is able to download documents, browse the
Deep Web, and extract specific data based on user-defined templates.

With the results of the Analyzer we confirmed the results of previous papers [14, 5,
6] that most of the XML documents do not contain an XML schema. Based on these
observations we focused on a schema inference process and proposed a tool jInfer for
schema inference.

1.2.1 Document Acquisition and Analysis

Currently there exist several papers that describe the results of an analysis of real-
world XML data. Firstly, there occurred several analyses of the structure of DTDs [2,
3, 4] which analyzed mainly the complexity of content models and usage of various
constructs. With the arrival of XML Schema [23] a natural question arisen: Which
of the extra features of XML Schema not allowed in DTD [1] are used in practice?
Paper [5] is trying to answer it using a statistical analysis. Finally, there exist also
papers that analyze the structure of XML documents [24] regardless an eventually
existing schema.

However, though the amount of existing works is significant and the findings are
important, all the papers have a common disadvantage. Sooner or later each analysis
becomes obsolete and it should be repeated. However, the respective crawlers, data
analyzers and their settings are not available any more or they have limited functional-
ity and cannot be extended with new features easily. From the problems outlined, it is
obvious that a certain tool is needed to automate the tasks. Such a tool should ensure
that the user will be provided with document acquisition, preprocessing, analysis and
visualization. Such a tool would increase the efficiency with the data manipulation
and it would allow the user to focus on metrics instead of common tasks. In other
words, it provides all essential functionality for an easy management of files to be ana-
lyzed, configuration and execution of selected analyses and an advanced graphical user
interface (GUI) for browsing the generated outputs.

2Asynchronous JavaScript calls to insert dynamic content of a Web page
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Thus we designed and implemented a tool called Analyzer, which is described in
Section 2. It is a complete framework for performing statistical analyses of real-world
documents. It provides all essential functionality for an easy management of files to
be analyzed, configuration and execution of selected analyses and an advanced graph-
ical user interface for browsing generated reports. To ensure all the above indicated
features in a user-friendly manner, the key advantage of Analyzer is extensibility. This
not only means the ability to implement own and more suitable kernel components
responsible, e.g., for storing computed analytical data, but primarily the open concept
of plugins. Analyzer provides a general environment, whereas all analytical computa-
tions themselves are defined solely within the implementation of plugins. The user is
therefore expected to first install Analyzer itself and then eventually create his/her own
plugins designed to correspond to the determined research intents.

In particular, Analyzer is a standalone application consisting of:

1. a download engine for automated crawling of documents with link recognition
features (typically in XML or HTML documents),

2. a preprocessing module which is able to correct incomplete or invalid docu-
ments,

3. a set of analytic modules to examine different document features,

4. an aggregation component that assigns documents into collections based on a
common feature, and

5. a visualization module to display or export computed results in a form of charts
or tables.

The overall picture of the analytic process is depicted in Figure 1.1.

Figure 1.1: Analytic process of Analyzer

The subject of analyses are documents, which can be inserted into Analyzer in dif-
ferent ways. Firstly, it is possible to insert documents directly from a local file system.
These documents can be previously manually downloaded by the user or documents
generated by an information system. The second way is to download documents using
one of the supported crawlers. In this thesis we only expect one simple crawler which
is able to start at an initial URL, recognize links and download all documents up to a
user-defined depth.
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As depicted in Figure 1.1 the analytic process can contain preprocessing steps be-
fore the analyses are done. It is the only possibility when a document can be changed
(although the original file is kept and available to the analytic methods if required).
The reason is that the set of automatically or manually downloaded documents from
the Internet can contain incomplete or corrupted documents [14]. So the aim of these
preprocessing modules is to transform the documents into a form which the analytic
methods are able to process. Obviously these methods do not have to be used and the
analyses can be aimed, e.g., to the number of incorrect documents.

The next step is execution of analytic plugins. Analyzer offers a developer kit with
Java interfaces to create new plugins or to extend the existing ones. The available
plugins are listed and the user can select which should be used and what MIME3 type
of documents they should be applied to. Additionally the order of the selected plugins
matters. For example, the user can first analyze the number of unfinished tags, then
apply a correction plugin to create a valid XML document and, finally, compute the
average depth of each document.

Once the analyses are computed, it is possible to create collections. A collection
is a set of documents with a common feature (which is computed by an analysis).
Over these collections we can run aggregation functions to get overall reports, e.g.,
the average depth of XML documents with regard to the document size. The results
of the analytic methods and the reports can be visualized in a form of charts or tables
(Analyzer supports visualization as a table, an HTML page or a chart with usage of
JFreeChart library4). A sample screen shot image is provided in Figure 1.2.

Additionally Analyzer supports multiple versions of the same document. It is nec-
essary if we want to analyze the data characteristics through the time which fulfils
requirement R4, i.e., the dynamic analysis.

In the following paragraphs we describe results of custom modules implemented
as a part of Analyzer and outlined in Figure 1.3.

XML Analyses As a preliminary proof of the concept we prepared and analyzed
a sample of XML data from publicly available sources (e.g., the U.S. federal execu-
tive branch data sets5, the Open Data Euskadi6, or the U.S. congress7). We also used
the OpenTravel specification8 as a sample of XML Schema documents (XSDs) and
compared their versions over last 9 years. We implemented several plugins to cover
basic characteristics of XML, DTD and XML Schema based on previously published
statistics [3, 25], such as:

• XML documents – maximum depth of the document, complexity of recursion of
elements, maximum and average fan-out, usage of XML Schema versus DTD,
etc.

• DTD documents – number of declarations of elements or attributes, used content
types, attribute optionality, or usage of keys, etc.

3Multipurpose Internet Mail Extensions (MIME) is an Internet standard often used to describe con-
tent type.

4http://www.jfree.org/jfreechart/
5http://data.gov
6http://opendata.euskadi.net/
7http://www.govtrack.us/data/rdf/
8http://opentravel.org/
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Figure 1.2: Analyzer – a screen shot of the application

• XML Schema documents – the usage of restrictions and extensions, type speci-
fications, etc.

According to the results we can in general say that a typical XML document is
shallow which corresponds to the previously published results [14]. Additionally, we
can see that, quite naturally, the XML schemas are getting more complex and their
depth is increasing. On the other hand, the usage of XML Schema constructs is stag-
nating. The complete characteristics and especially all interesting results can be found
in Section 2.6.

XQuery Analyses As we have mentioned, there exist several papers dealing with
analyses of XML data. However, currently there exists no paper that focuses on XML
data operations, namely XML queries. The most common tools, i.e., XQuery 1.0 [21]
and XSLT 2.0 [26] are powerful, Turing-complete [27] languages; however, their ap-
plications usually solve relatively simple problems like generating HTML pages or
transforming XML between two schemas. Consequently, it is often believed that most
applications use only small subsets of these languages. This observation is also sup-
ported by the fact that the most popular textbooks on XQuery or XSLT do not cover
the languages exhaustively.

From the perspective of the implementor of an XQuery or XSLT processor, this
observation suggests that a number of language features is rarely used and, therefore,
not worthy of aggressive optimization. For example, the following/preceding axes [28]
are used significantly less frequently than the child/descendant axes; consequently, the
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Figure 1.3: Analyzer – custom modules

majority of indexing and querying techniques like twig joins [29] are limited to the
child/descendant axes.

Note that we introduced the observation with the clause “it is often believed”; in-
deed, it was probably never confirmed by any statistically significant study. Thus we
decided to design and implement a new module for Analyzer which is able to analyze
the queries.

A typical approach of researchers analyzing programming languages is to imple-
ment a simple tool for recognizing words in the target language, summarize these
words and so get the frequency of their usage. Due to extreme context dependency of
XQuery, such simple tools cannot work correctly and they often lead to wrong results.
For example, a short and syntactically correct XQuery program

for $for as for in "for" return <for/>

contains the word “for” five times, each time in a different meaning depending on
its position in the program. The researcher with a simple tool that is probably looking
for the word “for” in the meaning of a for-clause from the FLWOR expression gets
misleading results. That is why a more precise tool needs to be implemented, at least as
strong as a correct lexical scanner of XQuery, which can also recognize the meaning
of the scanned words. This conclusion leads us to an idea of general observation,
i.e., creating a data structure representing the input program together with a meta-
language for querying the structure. A simple and natural way we utilize in this thesis
which enables one to reach this target is to build a syntax tree. It can be then easily
transformed into XML representation and queried using, e.g., XPath [28].

The process of building the internal representation and its querying is described in
Section 4. In Section 2.7.3, we present the analyzed frequency of core elements of
the language associated to the W3C XQuery language specification (the XML Query
Use Cases [30] and the XML Query Test Suite [31]). Note that the axis usage results
correspond to the traditional belief that many axes are extremely rare.

RDF Triples Analyses Last but not least, to demonstrate the versatility of Analyzer
we focused on analysis of highly linked data sets from available dumps of the Linked
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Data Cloud9 (e.g., the ACM proceedings10, the English DBPedia11, etc.). In this part
we designed own metrics for description of the structure and depth of linkage to be
used in the optimization process – issues previously identified as open problems of the
existing approaches from the area of RDF triples storing, indexing and querying [32].
We propose a set of characteristics of RDF triples and provide experimental results
over several selected data sets in Section 3.

First of all, the majority of indexing approaches (e.g., the Hexastore [33] or the
BitMat Index [34]) proposes to store components of RDF triples and triples themselves
separately (even using fairly different structures) in order to reduce space requirements.
Knowledge of string features of these component values could support this practice.

The second group of characteristics worth studying is related to query evaluation
and, in particular, access patterns to individual triple components. In case of full-text
querying, we usually do not care which particular triple component should match the
queried value, but in case of structural querying like SPARQL [35], we need to have
suitable indices allowing us to efficiently access particular components according to
the prompted query. These indices can be built, for example, on nested lists (Hexas-
tore [33]) or B+-trees (RDF-3X [36]).

Finally, we can even attempt to study more complex characteristics based on the
structure of RDF graphs. When using SPARQL with queries based on graph patterns,
we often need to do operations similar to traditional joining in relational databases, on-
ly with the difference that we are working with RDF triples, i.e., graph data. This join-
ing can be supported by appropriate indices as well. Like, for example, pre-computed
paths (RDF-3X [36]) or stars (Structure Index [37]).

Paper [38] describes the analysis of more than 1.5 million FOAF12 documents. In
particular, they inspected the usage of the FOAF namespace, host names and particular
properties, as well as the relationships of a person in a group and other components of
a social network. In general, this work describes several interesting characteristics,
but its impact and context is very restrained. Similarly, the general statistics of the
Linked Data cloud are described in [39]. The authors aimed at characteristics and
link statistics between selected data sets. These data sets were divided by different
thematic domains, for which several ingoing and outgoing statistics were computed.
Provenance, licensing and data set-level metadata published together with these data
sets were also considered. According to the discussed motivation, we proposed several
characteristics that may be useful to know about RDF data we want to store, query or
process in a different way. First of all, the majority of existing approaches for indexing
and storing RDF data attempts to find methods of reducing the space required to store
the triples. For this aim we can exploit an idea that terms often repeat, or at least
their substrings may often repeat across triples in a data set. Secondly, we focus on
characteristics of triple components and their categorization. Suppose that we have a
set of triples. Given a particular term (regardless its type), we may be interested in how
many triples contain this term at a particular component (subject, predicate or object).
Finally, we analyze so-called star patterns i.e., for each node we create a signature
from a set of all ingoing and outgoing predicates and compare the size of star patterns

9http://linkeddata.org/
10http://acm.rkbexplorer.com/models/acm0proceedings.rdf
11http://downloads.dbpedia.org/3.7/en/persondata_en.nt.bz2
12An ontology describing persons, their relations, and activities (http://www.foaf-project.

org/)
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and frequency of their occurrence in analyzed data. Similarly, given a particular path,
we can define its signature as a sequence of predicates connecting distinct nodes in the
RDF graph.

The results show that although the data sets are from different areas, published by
different methods and institutions, some of their characteristics are similar and, thus,
the knowledge of these characteristics can be harnessed to make the management of
RDF data more efficient. The complete metrics and especially all interesting results
can be found in Section 3.

Contributions With Analyzer we fulfilled requirement R1, R3, and R4, i.e., the doc-
ument acquisition, static analysis, and dynamic analysis. As the first use case we
implemented and tested modules for analyses of real-world XML documents, XML
schemas, XQuery queries, and RDF triples. In the first three steps of the analytic pro-
cess we focused in more detail especially on issues of efficient crawling of XML data,
re-validation of invalid XML documents, exploitation of similarity of XML data in
data analysis, and XML query analysis. The main contributions are as follows:

• We introduce the architecture and functionality of Analyzer. To our knowledge
it is a unique application that enables one to perform automatic, repeatable and
extensible analyses of real-world data. Its basic version supports modules for
XML data processing and analyses, however, using plugins it can be extended to
any kind of data.

• Analyzer is a complex tool that supports not only the analytical part, but also
various “supportive” functions, such as data crawling or data correction, as well
as user-related features, such as definition of projects, visualization of results
etc.

• With regard to the current support of XML, we study and describe four related
issues – XML data crawling, XML data correction, structural analysis of XML
data and query analysis of XML queries. In the former three cases we provide
significant extensions to the current approaches, in the latter case we provide a
unique approach which has not been considered in the current papers so far.

• We provide an overview of the current related work, in particular results of statis-
tical analyses of real-world XML data. It enables us to show that all the results
can easily be covered by Analyzer, further extended and repeated so that da-
ta changes and application evolution can be studied. Again, to our knowledge,
such a feature has not been considered in recent literature so far.

• As a proof of the concept in a non-XML domain, we focused on several char-
acteristics of publicly available Linked Data data sets. The results show that
although the data sets are from different areas, published by different methods
and institutions, some of their characteristics are similar and, thus, the knowl-
edge of these characteristics can be harnessed to make the management of RDF
data more efficient.

1.2.2 Data Extraction
As described in the previous sections, Analyzer focuses on documents which are im-
ported by a user or automatically downloaded from the Web. The download module
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detects links in HTML or XML documents and it is not able to fulfill the requirement
R2, i.e., extraction of data (e.g., URL of relevant pages, or related data stored in anoth-
er document). Although it would be possible to implement an improved module with
the ability to extract additional data from the Web and store them in a database, it does
not correspond to the task Analyzer was originally created for. Thus we propose the
following requirements for a new extraction tool:

1. documents are gathered from the Internet,

2. the full control over the extracted data is possible, i.e., the tool should not crawl
the Web and extract data from different servers, but it should extract a high qual-
ity data from strictly specified servers,

3. the documents can be connected to other documents or entities, and

4. we want to share these extracted data (i.e., they should be available to others to
create their own analyses).

For these purposes many different tools can be utilized and they use several ways
to identify and extract the data from documents in various formats. We can categorize
them by the criteria presented in [40]:

1. the level of automation,

2. the object of extraction, and

3. the domain specificity.

For example, the authors of [41] focus on localization of data-rich regions and they
extract the relevant attribute-value pairs of records from Web pages across different
sites, i.e., the method is automated (crawls different sources), the object of extraction
is an HTML table and the results are not connected to a specific domain. On the oth-
er hand the Ontology-Assisted Data Extraction (ODE) [42] is a system for automatic
identifying of lists of data on a Web page. The resulting fragments are then compared
with an ontology and the data and labels are assigned (based on the maximum correla-
tion).

Even though, there are many works focused on various aspects of data extraction,
none of them covers all requirements. So we extended the original download module
of Analyzer with focus on requirement R2, i.e., data extraction from structured or
semi-structured documents. Additionally, we decided to support a concept which was
designed to work with linked entities, i.e., Linked Data. This approach refers to a set
of best practices for exposing, sharing, and connecting structured data on the Web. It
is based on four main principles introduced by Time Berners-Lee [43]:

1. Use URIs13 as names for things (resources).

2. Use HTTP14 URIs in order that data consumers can look up those names.

13A uniform resource identifier (URI) is a string of characters used to identify a name or a Web
resource.

14The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed, collaborative,
hypermedia information systems (http://tools.ietf.org/html/rfc2616)
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3. When someone looks up an URI, provide useful information, using RDF and
SPARQL standards.

4. Include links to other URIs so that data consumers can discover more things
(resources).

Consequently, we designed and implemented Strigil (see Section 5), a template
based tool for data extraction. The templates are written in an XML script language
inspired by XSLT (we decided to use our own language to provide more human read-
ability and more extraction flexibility). The script is responsible for downloading of
input documents, extraction of relevant data, post-processing (e.g., converting to suit-
able format, like date or decimal number), and mapping to ontological classes and
attributes. The result of a processed script is an RDF graph that contains data extracted
from all downloaded documents. Similarly as Analyzer, Strigil works with one initial
URI of a document. In almost every script, it is possible to find more than one template.
For example, we can consider a script, that will extract details about top 250 movies
from the IMDb15. In this script, we need a template that will parse HTML document
with list of those movies (and URL addresses of documents with details about movies),
and a template, which will contain rules for data extraction from the document with
details about the movie. The processing of these templates is depicted in Figure 1.4.

Figure 1.4: Strigil – template processing example

The crawling engine uses common HTTP features like cookies or forms to be able
to get the data from the Deep Web, i.e., the data not available through direct links.

Note that Strigil is a part of a bigger framework (depicted in Figure 1.5) consisting
of:

1. Strigil – a data extraction module extracting data based on an ontology

2. ODCleanStore – a data processing module cleaning, linking and enriching the
data and a query execution module providing simple query end point for the data

3. Payola – a data visualization module allowing different views off the data

An important part of every template driven scraper is the selected template lan-
guage. As mentioned before, in Strigil we decided to propose a script language, in-
spired by XSLT, to transform different documents to data specified by ontologies. The
script language uses selectors to specify data fields in a source document which are

15Internet Movie Database (http://www.imdb.com)
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Figure 1.5: Architecture of framework formed by Strigil, ODCleanStore, and Payola
tools

< s c r : o n t o−elem>
< s c r : v a l u e−of

s e l e c t =" d i v \ # d a t e "
p r o p e r t y =" h t t p : / / p u r l . o rg / p r o c u r e m e n t / p u b l i c−

c o n t r a c t s # t e n d e r D e a d l i n e " / >
< / s c r : o n t o−elem>

Listing 1.1: Strigil scraping language – an example of element onto-elem

directly connected to ontology classes or properties. Currently we work with JSoup
selectors16 for HTML documents and our custom selectors for Excel files (similar to
HTML selectors, extended with some constructs to work with work sheets). For ex-
ample, we have an HTML page fragment depicted in Figure 1.6 with two outlined
elements div with attributes id with values date (outlined in red) and offers (outlined
in blue) respectively.

Figure 1.6: HTML page fragment

A JSoup selector for the red element div could be

div#date.

This selector can be used in the Strigil script language to extract content of the element
and assign its value to a RDF blank node as depicted in Listing 1.1. In particular, the
element scr:onto-elem declares an RDF node with one property represented by
element scr:value-of. The attribute property declares the URI of the property
and the attribute select specifies the used selector.

16http://jsoup.org/cookbook/extracting-data/selector-syntax
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Since, the HTML documents on the Web can change, Strigil offers additional sup-
portive functions like repetitive downloads in user-specified intervals or automatic
checking of validity of used selectors. In other words, Strigil compares the number
of used selectors and the number of returned empty responses and it notifies the user
if the ratio is bellow a user-defined threshold. In addition, although we have described
selectors for HTML documents, the selectors can be used to extract data from other
formats depending on available implementations.

The architecture and the scraping language is described in detail in Section 5.

Contributions In this part of the thesis we addressed mainly the requirement R2,
i.e., extraction of data from different documents. The main contributions we proposed
are as follows:

• We propose the architecture of Strigil. It is a tool for data extraction from semi-
structured documents, e.g., HTML or spreadsheets. Although we mentioned
only these formats, the system is designed to be easily extended to work with
any type of documents with proper implementation of selectors.

• Contrary to other approaches which are universal but not user-friendly, we focus
on simplicity of the user interface which allows a less technically experienced
user to create a scraping script. On the other hand Strigil was designed with
regard to simple extensibility of input formats.

• Additionally, Strigil contains a support for mapping to ontologies describing a
domain or a combination of different domains which allows the user to work
with specified data types without their explicit declaration in the script.

• Strigil is a template driven system (contrary to adaptive approaches which iden-
tify the object of extraction heuristically), i.e., it does not try to adapt extraction
script to new or changed documents. But, since the documents on the Web often
change, we implemented a simple check to allow a user to repair the scraping
script.

1.2.3 Schema Inference
As we have already mentioned, various statistical analyses of real-world XML data
show that a significant portion of XML documents (in particular 52% [6] of random-
ly crawled or 7.4% [14] of semi-automatically collected) still have no schema at all.
What is more, XML Schema definitions (XSDs) are used even less (only for 0.09% [6]
of randomly crawled or 38% [14] of semi-automatically collected XML documents).
Consequently a new research area of automatic construction of an XML schema has
opened. The key aim is to create an XML schema for the given sample set of XML
documents that is neither too general, nor too restrictive. It means that the set of docu-
ment instances of the inferred schema is not too broad in comparison with the sample
data but, also, it is not equivalent to it. Currently, there are several proposals of respec-
tive algorithms, but there is also still a space for further improvements. In particular,
since according to Gold’s theorem [11] regular languages (i.e., general XML schemas)
are not identifiable only from positive examples (i.e., sample XML documents which
should be valid against to the resulting schema), the existing methods need to exploit
either heuristics or a restriction to an identifiable subclass of regular languages.
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On the basis of these observations, in the last part of this thesis we focus on a
schema inference. Currently there are several well-known algorithms, but there is still
a space for further improvements. To enable combining of existing approaches and
their extensions with new features, we proposed and implemented jInfer, a general
tool for XML schema inference. It is an easily extensible tool that enables implemen-
tation, testing and comparison of new modules of the inference process. Note that a
similar system called SchemaScope, was described in [44]; however, its main target
are grammar-inferring approaches, especially those proposed by its author. In jInfer
we focus on a more general view of the problem, involving mainly the heuristic ap-
proaches.

The inference process in jInfer consists of three consecutive steps:

1. Initial grammar (IG) generation converting inputs (i.e., XML documents, and
old obsoleted XML schema, etc.) to IG representation. All documents, schemas
and queries selected as input are evaluated, simple rules are extracted and sent
to the next step. For example, the translation of an XML document fragment to
IG rules is depicted in Figure 1.7.

Figure 1.7: XML fragment converted to initial grammar

Note that in this case the process is very simple. However, complications can
bring new input data, such an obsolete schema, queries etc.

2. Simplification of IG comprising clustering of production rules, building the out-
put grammar, inference of simple data types, or inference of integrity constraints.
For example, the previous rules (clustered according to element name) could be
simplified to a single rule for element person:

person → info?,more{1, 3}

Rules for elements info, more and note after simplification will be:

info → simple_data, note
note → λ

more → λ

3. Export to a selected schema language (e.g., DTD, XML Schema, etc.). The
result of this step is a textual representation of the schema, which is sent back to
the framework (and later displayed, saved etc). For the previous simplified rules,
the resulting DTD would be:
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<!ELEMENT person
(info?, more, more?, more?)>

<!ELEMENT info (#PCDATA | note)*>
<!ELEMENT note EMPTY>
<!ELEMENT more EMPTY>

Note that the process is not so straightforward. For instance, for element person,
when the simplified grammar specifies its occurrence to at least once and at most
3 times, as DTD has no such construct, the export module has to find a suitable
expression.

The overall jInfer architecture is depicted in Figure 1.8.

Figure 1.8: jInfer – initial grammar creation and simplification modules

Like in the previous systems, also in jInfer these steps are implemented as stan-
dalone modules, so it is possible to easily replace and test different approaches. In this
thesis we describe selected improvements of each of these steps.

Initial Grammar Creation Firstly we propose an approach to use an old obsolete
schema combined with XML documents to create an IG (related modules are outlined
in yellow in Figure 1.8). We follow the steps proposed in [45], i.e., positive examples
(element instances from XML documents) are first clustered by element names, con-
text and content. Contrary to existing works, we parse XML schema files into grammar
rules and cluster them by element name together with element instances originating
from XML documents. Since in both XML Schema and DTD the element content
model is basically specified by a regular expression, we consider positive examples as
being generated by a deterministic probabilistic finite automaton (DPFA) and try to
infer this automaton. Then it is modified by merging its states. To select the states to
merge we use two verified state equivalence criteria: sk-strings [46] criterion and k,h-
context [47] criterion. In particular, we implemented four general merging strategies
(the related module is outlined in red in Figure 1.8):

1. Greedy simply merges all candidate states provided by criterion testers.

2. GreedyMDL uses the MDL17 principle [48] to evaluate a DPFA and input strings
encoded by the automaton. While trying to merge candidate alternatives, the

17The minimum description length (MDL) principle is a formalization of Occam’s Razor in which
the best hypothesis for a given set of data is the one that leads to the best compression of the data.
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GreedyMDL strategy always keeps the currently achieved minimum quality val-
ue (and the associated automaton). A space of possible solutions is explored
in a greedy way, but a sort of a complete scanning of continuation possibilities
is done: all candidate alternatives to merge are evaluated. The algorithm stops
when there are no more candidates to merge, or when all alternative candidates
returned by merge criterion testers end up in an automaton with higher quality
value than the one actually achieved.

3. HeuristicMDL works in similar way as GreedyMDL but it holds n best minimal
solutions instead of only one.

4. DefectiveMDL is our original proposed strategy that tries to decide which input
strings are so eccentric that they probably are mistakes and should be repaired in
input documents rather than incorporated into output schema.

The inferred automaton is then converted into an equivalent regular expression
using a state removal algorithm [49] and the regular expression is added to the output
grammar. Our proposed MDL metric and implemented strategies are described in
Section 6.6.

Data Types and Integrity Constraints Secondly we focus on improvement of the
inference process with additional input information, namely XQuery queries to infer
XML data types and keys. The implemented module is outlined in Figure 1.9. The
proposed extension consists of four main steps:

1. Construction of syntax tree of each XML query – We use lexical and syntax
analyses introduced as an Analyzer module and proposed in Section 4 and for
each XQuery on input, we construct a data structure called a syntax tree.

2. Static analysis of expression types – The algorithm searches for particular ex-
pressions in the syntax trees and statically (without query evaluation) determines
their types.

3. Inference of built-in types – When the types of expressions are determined, the
selected forms of expression are utilized to infer types of elements and attributes.

4. Key discovery – The final step is an extension of approach [50] inferring keys
and foreign keys.

As we have mentioned, for the purpose of query analysis, we use syntax tree con-
struction proposed in Section 4. Then the algorithm searches for particular expressions
in the syntax tree to determine their types which are utilized to infer types and occur-
rence modifiers of elements and attributes. For example, if the operator in an expres-
sion is one of +, −, div, mod, ∗, /, one operand is a PathType P = //person/more
and the other operand is one of numeric built-in types T = Integer, i.e.,

//person/more + 5

then the inferred production rule is

//person/more→ Integer.
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Figure 1.9: jInfer – data types and integrity constraints module

Finally, we extend the approach from paper [50]. They suppose that each join is
done via a key/foreign key pair. Thus the query is searched for so-called join patterns.
The algorithm recursively, in pre-order, searches the syntax tree of the XML query,
every node representing a FLWOR expression is processed and classified using appli-
cation of six proposed rules according to used aggregation functions. Based on these
rules the algorithm decides which is the key and which is the foreign key. The details
about the patterns and rules are described in Section 6.7.

Schematron Export The last but not least proposed extension aims at inferring of a
completely new type of output. We describe an approach for inference of a Schema-
tron schema. Schematron [51] uses a completely different strategy for XML schema
definition than the other so-called grammar-based approaches. However, on the other
hand, it probably served as an inspiration for XML Schema assertions. As we can see
in Figure 1.10, each Schematron schema is based on the idea of patterns. A pattern
can be described as a set of rules an XML document must satisfy to be valid against
a Schematron schema. A rule involves either element assert or report depend-
ing on the requirement of satisfaction or not satisfaction of the condition specified in
attribute test.

In the described solution we specify constraints using XPath 1.0 since it is widely
spread. The algorithm was implemented as a module of jInfer (outlined in Figure 1.11).
We divide the transformation process of a production rule into three steps:

1. Generate the correct context for each rule.

2. Check the correct sum of children utilizing child axis and count function.

3. Match the order of children with the XPath axes preceding and following.

The correct context for rules is necessary for the algorithm to work correctly and
it is used for constraints generated by steps 2 and 3. In particular, we use one of the
following methods:

• Trivial solution – In this case, we can create a simple relative XPath expression
for each production rule h of the form A→ aR, where A is a non-terminal, a is
a terminal and R is a regular expression, using only the name of terminal a. For
example, the relative XPath context for non-terminal Person is //person
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Figure 1.10: An example of a Schematron schema

Figure 1.11: jInfer – Schematron export module

• K-ancestors – This method is used for schema inference in [12]. The key idea
is to identify the context based on the element name and the name of K closest
ancestors, whereas according to the authors more than 98% of context matching
could be expressed with this solution and K equal to 2 or 3. For example, for
K = 2 the XPath context for non-terminal Person is //database/person

• Absolute Path without Recursion – A more reliable, less restricted way to iden-
tify the correct context can be specified using the absolute paths. For example,
the XPath context for element Data is /database/person/data

• Simple Recursion in Production Rules – This algorithm creates an XPath expres-
sion that matches continuous sequence (which may not be limited) of elements
in the parent/child relation. Since we have only simple recursion and thus the
repeating sequence consists of only a single terminal, our work is relatively sim-
ple. We can use the descendant-or-self axis with a constraint on the
ancestors.

• Recursion with Deterministic Content – The algorithm creates a complex expres-
sion that matches the correct leading element and checks that there are no other
elements, that no element is missing and that the elements are in correct order.

In the second step we focus on validation using minimum and maximum occur-
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rence checks – boundary rules – of elements from a production rule. We process all
production rules and count the minimal and maximal occurrence of the elements. We
then use the XPath function count to check that there are no illegal children.

The third step ensures the order of the children elements. Since XPath 1.0 does
not support regular expressions, we can construct several rules that use XPath axes
(preceding, following, etc.) and express the regular expression with them. The
basic idea results from [52] and it creates constraints for allowed following siblings. A
more complex regular expression may require more rules to express it.

The complete description of Schematron schema generation is described in Sec-
tion 6.8.

Contributions In this part of the thesis we addressed the requirement R5, i.e., data
processing. The key contributions can be summed up as follows:

• We propose the architecture of jInfer. It represents an easily extensible tool
that enables one to implement, test and compare new modules of the inference
process.

• Since the compulsory parts of the process, such as parsing of XML data, vi-
sualization of automata, transformation of automata to XML schemas etc. are
implemented, the user can focus purely on the research area and the improved
aspect of the inference process.

• We describe and implement a module to use an old schema to generate initial
grammar and described usage of MDL metric in different merging strategies.

• We optimize the inference process with a new type of input (in this case XQuery
queries) and with regard to classical inference approaches completely new output
(in this case simple data types and simple integrity constraints).

• We design and implemented a new module for expressing output grammar in
Schematron language, being probably the first approach of this kind ever pro-
posed.

1.3 Related Papers
The list of author’s publications as follows:

Journal Articles

[53] J. Stárka, M. Svoboda, J. Sochna, J. Schejbal, I. Mlýnková, and D. Bednárek,
“Analyzer: A Complex System for Data Analysis,” The Computer Journal, vol. 55,
pp. 590–615, May 2012. IF: 0.785, 5-Year IF: 0.943

Full Conference Papers

[54] J. Stárka, M. Svoboda, and I. Mlýnková, “Analyses of RDF Triples in Sample
Datasets,” in COLD ’12: Proceedings of the 3rd International Workshop on Con-
suming Linked Data of ISWC ’12: 11th International Semantic Web Conference
(J. Sequeda, A. Harth, and O. Hartig, eds.), vol. 905 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2012
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[55] M. Kozák, J. Stárka, and I. Mlýnková, “Schematron Schema Inference,” in Pro-
ceedings of the 16th International Database Engineering & Applications Sysm-
posium, IDEAS ’12, (New York, NY, USA), pp. 42–50, ACM, 2012

[56] M. Klempa, J. Stárka, and I. Mlýnková, “Optimization and Refinement of XML
Schema Inference Approaches,” in Proceedings of the 3rd International Confer-
ence on Ambient Systems, Networks and Technologies (ANT), vol. 10, (Niagara
Falls, Canada), pp. 120–127, Elsevier, 2012

[57] M. Mikula, J. Stárka, and I. Mlýnková, “Inference of an XML Schema with the
Knowledge of XML Operations,” in Proceedings of the 8th International Confer-
ence on Signal Image Technology and Internet Based Systems (SITIS), pp. 433–
440, IEEE Computer Society Press, 2012

[58] J. Schejbal, J. Stárka, and I. Mlýnková, “XQConverter: A System for XML Query
Analysis,” in Proceedings of the 6th International Workshop on Flexible Database
and Information System Technology of DEXA ’11: 22nd International Confer-
ence on Database and Expert Systems Applications, (Toulouse, France), pp. 129–
133, IEEE Computer Society Press, 2011

[59] J. Stárka, I. Mlýnková, J. Klímek, and M. Nečaský, “Integration of Web Service
Interfaces via Decision Trees,” in Innovations in Information Technology (IIT),
2011 International Conference on, pp. 47 –52, IEEE, april 2011

[60] M. Svoboda, J. Stárka, J. Sochna, J. Schejbal, and I. Mlýnková, “Analyzer: A
Framework for File Analysis,” in Proceedings of the 2nd International Work-
shop on Benchmarking of Database Management Systems and Data-Oriented
Web Technologies of the 15th International Conference on Database Systems
for Advanced Applications, vol. 6193 of LNCS, (Tsukuba, Japan, April 1-4),
pp. 227–238, Springer Berlin / Heidelberg, 2010

Local Conference Papers

[61] M. Svoboda, J. Stárka, and I. Mlýnková, “On Distributed Querying of Linked
Data,” in Proceedings of the 11th Workshop DATESO 2012, pp. 143–150, MAT-
FYZPRESS, 2012

[62] J. Stárka, M. Svoboda, J. Schejbal, I. Mlýnková, and D. Bednárek, “XML Doc-
ument Correction and XQuery Analysis with Analyzer,” in Proceedings of the
10th Workshop DATESO 2011, (Ostrava – Poruba, Czech Republic), pp. 61–72,
VSB – Technical University of Ostrava, 2011

Since the area of document acquisition and processing is wide, we continue in our
research. We have submitted two journal papers which describe related topics in more
detail. Additionally, we have one conference paper under review process presenting
our last related research.
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Submitted Journal Articles

[63] M. Klempa, M. Kozák, M. Mikula, R. Smetana, J. Stárka, M. Švirec, M. Vitásek,
M. Nečaský, and I. Holubová, “jInfer: a Framework for XML Schema Infer-
ence,” The Computer Journal. (Note: paper under review process)

[64] M. Nečaský, J. Klímek, T. Knap, J. Mynarz, J. Stárka, and V. Svátek, “Linked
Data Support for Filing Public Contracts,” Computers in Industry, Special issue
on New trends on E-Procurement applying Semantic Technologies, 2013. (Note:
paper under review process)

Submitted Conference Papers

[65] J. Stárka and I. Holubová, “Strigil: A Framework for Data Extraction,” ODBASE
2013, 2013. (Note: paper under review process)

1.4 Road Map
The rest of the thesis is structured into chapters according to individual contributions
as published in our research papers. The order of the papers is based on the problems
described earlier.

• In Section 2 we propose Analyzer, the framework for document analysis. We
describe its architecture, main modules and we present the results computed
over real-world XML data sets.

• Section 5 describes Strigil, a system for data extraction. We show the main
advantages of the system and propose a scraping language used to select data
from different types of documents.

• In Section 3 we provide characteristics that appropriately capture and describe
features of RDF triples and experimental results over a few selected real-world
RDF data sets.

• In Section 4 we focus on static analysis of XQuery programs and their usage in
the inference process.

• In Section 6 we describe jInfer, the framework for automatic schema inference
with different approaches across all aspects of the inference process.

Table 1.1 summarizes the research topics. Every research topic is supplemented
with the related requirement, the section of the thesis where the topic is targeted, and
relevant author’s publications introduced in Section 1.3.

Note that not all author’s publications mentioned in Section 1.3 are relevant to
this thesis. In paper [59], we utilize similarity metrics to find an automatic mapping
of XML formats to a conceptual XSEM model [67]. In paper [61], we describe a
querying system for Linked Data.
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Relevant topic Requirement Section Author’s Publications
Document Acquisition and Analysis R1, R3, R4 2 [60], [53]
Data Extraction R2 5 [65], [64]
Static Analysis R3
– XML documents and schemas 2.6 [53], [62]
– XQuery 2.7.3, 4 [58]
– Linked Data 3 [54]
Data Inference R4 6 [56], [55], [66], [57]

Table 1.1: Topics summary
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2. Document Extraction and Analysis
In this section we introduce Analyzer – a complex framework for performing statistical
analyses of real-world documents. Exploitation of results of these analyses is a clas-
sical way how data processing can be optimized in many areas. Although this intent
is legitimate, ad hoc and dedicated, analyses soon become obsolete, they are usually
built on insufficiently extensive collections and are difficult to repeat. Analyzer repre-
sents an easily extensible framework, which helps the user with gathering documents,
managing analyses and browsing computed reports.

The contents of this section was published as a journal paper Analyzer: A Com-
plex System for Data Analysis [53] in the Computer Journal (IF: 0.785, 5-Year IF:
0.943) and it extends our previous conference papers Analyzer: A Framework for File
Analysis [60] and XML Document Correction and XQuery Analysis with Analyz-
er [62].

2.1 Introduction

The eXtensible Markup Language (XML) [1] is currently a de-facto standard for data
representation. Its popularity is given by the fact that it is well-defined, easy-to-use
and, at the same time, enough powerful. Firstly, XML was only exploited as a syn-
tax for parametrization files. However, with the growing popularity of advanced XML
technologies (such as XML Schema [23, 68], XPath [28], XQuery [21], XSLT [69]
etc.) there appeared also true XML applications that exploit the whole family of XML
standards for managing, processing, exchanging, querying, updating, and compress-
ing XML data that mutually compete in speed, efficiency, and minimum space and/or
memory requirements. Similarly, there occurred a huge amount of standards based on
XML technologies, such as WSDL [70], SVG [71], RDF [72], OpenOffice [73] etc.,
that exploit the advantages of XML for specific purposes. Unfortunately, for major-
ity of these techniques and applications there can be found a number of drawbacks
concerning their efficiency.

Under a closer investigation we can distinguish two situations. On the one hand,
there is a group of general techniques that take into account all possible features of
input XML data. This idea is obviously correct, but the problem is that the XML
standards were proposed in full possible generality so that future users can choose
what suits them most. Nevertheless, the real-world XML data are usually not so “rich”,
thus the effort spent on every possible feature is mostly useless. From the point of
view of structural or space efficiency, it can even be harmful. On the other hand,
there are techniques that somehow do restrict features of the given input XML data.
For them it is natural to expect inefficiencies to occur only when the given data do
not correspond to these restrictions. (In extreme cases, selected approaches even do
not support any other data than those that they can process efficiently.) The problem
is that such restrictions do not result from features of real-world XML applications
and requirements, but they are often caused by limitations of a particular technique,
complexity of such a solution, irregularities etc. Consequently, the restrictions are not
natural and do not reflect user requirements.

We can naturally pose two apparent questions:
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1. Is it necessary to take into account a feature that will be used minimally or will
not be used at all?

2. If so, what are these features?

The answer for the first question obviously depends on the particular situation, i.e.,
application. The second question can be answered only using a detailed analysis of a
sample set of real-world XML documents. However, working with real-world data is
not simple, since they can often change, are not precise, or even involve a number of
errors. In our approach, we have addressed the following four problems:

• Data crawling – there exists a huge number of Web crawlers; however, their
filters and crawling strategies must be retargeted from HTML to the XML family
of documents.

• Processing of incorrect data – since the data are usually human-written, they
contain a number of errors. In this case we can either discard the incorrect data,
and, hence, loose a significant portion of them, or provide a kind of corrector.

• Structural analysis – a number of features like size, depth, or fan-out may be
statistically examined in a collection of XML documents; similar analysis may
also be applied to XML schemas in any form.

• Query analysis – a collection of XQuery, XSLT, or XPath queries may be exam-
ined for the presence of certain query language constructs or their combinations.
Because of the complexity of the query languages and the large variety of moti-
vations for such examination, the analytical tool must be as generic as possible.

In addition, we have to cope with the fact that the data can change and, hence, the
analytical phase must be repeatable and extensible. And, finally, having obtained the
results of the statistics, we need to be able to visualize and analyze the huge amount of
information efficiently and mutually compare the results.

In this section we describe a proposal background, architecture outline, implemen-
tation aspects and usage scenarios of a general framework called Analyzer that aims
to cope with all the previously named requirements. In other words, it provides all
essential functionality for an easy management of files to be analyzed, configuration
and execution of selected analyses and an advanced graphical user interface (GUI) for
browsing generated reports. The key advantage of Analyzer is extensibility. This not
only means the ability to implement own and more suitable kernel components re-
sponsible, e.g., for storing computed analytical data, but primarily the open concept
of plugins. Analyzer provides a general environment, whereas all analytical compu-
tations themselves are defined solely within the implementation of plugins. The user
is therefore expected to first install Analyzer itself and then create his/her own plu-
gins designed to correspond to the determined research intents. Although our initial
motivations were related to XML data, Analyzer usage is not limited only to this area.

Contributions The key contributions of this section can be summed up as follows:

• We introduce the architecture and functionality of Analyzer. To our knowledge
it is a unique application that enables one to perform automatic, repeatable and
extensible analyses of real-world data. It currently supports modules for XML
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data processing and analyses, however, using plugins it can be extended to any
kind of data.

• Analyzer is a complex tool that supports not only the analytical part, but also
various “supportive” functions, such as data crawling or data correction, as well
as user-related features, such as definition of projects, visualization of results
etc.

• With regard to the current support of XML, we study and describe four related
issues – XML data crawling, XML data correction, structural analysis of XML
data and query analysis of XML queries. In the former three cases we provide
significant extensions to the current approaches, in the latter case we provide a
unique approach which has not been considered in the current papers so far.

• We provide an overview of the current related work, in particular results of statis-
tical analyses of real-world XML data. It enables us to show that all the results
can easily be covered by Analyzer, further extended and repeated so that da-
ta changes and application evolution can be studied. Again, to our knowledge,
such a feature has not been considered in recent literature so far.

Relation to Previous Work In this paper we partially exploit, combine and, in par-
ticular, extend our several previous results. Motivated by a successful and interesting
statistical analysis of real-world XML data [14], Analyzer was implemented as a SW
project of Master students of the Department of Software Engineering of the Charles
University in Prague. Its installation package as well as documentation and source files
can be found at its official Web site [74]. Its first release 1.0 involved only basic func-
tionality to demonstrate its key features and advantages and it was briefly introduced
in paper [60]. Its four key parts were then extended in four master theses of its authors
supervised by Irena Mlýnková and David Bednárek. In particular, Jan Sochna [75]
focussed on the primary aspect of Analyzer – efficient crawling of XML data. Mar-
tin Svoboda [76] proposed several improvements of algorithms for correction of XML
data. Jakub Stárka [77] focussed on an important aspect of the structural analysis of
XML data, i.e., XML similarity. And, finally, Jiří Schejbal [78] dealt in his thesis in
current most open topic of analysis of XML operations, i.e., XQuery queries. In the
following text we will describe and put into context the key results of the four theses
and, in particular, show their close connection and resulting advantages and contri-
butions they bring. Our aim is to provide a throughout description of all aspects of
Analyzer as well as data analysis in general, useful for both future users of Analyzer
and researchers dealing with related issues.

2.2 Motivation
The idea of exploitation of the knowledge of real-world data is not new and currently
we can find several applications and use cases, where it is successfully applied. From
the general point of view we are interested in the subset of constructs and structures
allowed by a particular language that is commonly used in practice. In this section we
provide several examples, where the knowledge of real-world data has been success-
fully exploited.
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Incorrect Assumptions on Real-World Data One of the most important advan-
tages of statistical analyses of real-world data is refutation of incorrect assumptions
on typical use cases, features of the data, their complexity etc. As an example we can
consider two distinct cases – schema-driven XML-to-relational storage strategies and
exploitation of recursion.

Schema-driven XML-to-relational mapping methods [79, 80] are based on an ex-
isting schema S1 of stored XML documents which is mapped to an (object-)relational
database schema S2. The data from XML documents valid against S1 are then stored
into relations of S2. The purpose of these methods is to create an optimal schema S2,
which consists of reasonable amount of relations and whose structure corresponds to
the structure of S1 as much as possible. Naturally, such approaches require a presence
of an XML schema. But, statistical analyses of real-world XML data show that a sig-
nificant portion of XML documents (52% [6] of randomly crawled or 7.4% [14] of
semi-automatically collected) still have no schema at all. What is more, XML Schema
definitions (XSDs) are used even less (only for 0.09% [6] of randomly crawled or
38% [14] of semi-automatically collected XML documents) and even if they are used,
they often (in 85% of cases [5]) define so-called local tree grammars [81], i.e., gram-
mars that can be defined using DTD as well. Hence, these methods need to be ac-
companied with approaches for inference of an XML schema for a given set of XML
documents [45, 82].

Conversely, the support for recursion is often neglected and it is considered as a
side/auxiliary construct. However, analyses show that in selected types of XML data
it is used quite often (in 58% of all DTDs [2], or in 43% of document-centric and 64%
of exchange documents [14]) and, hence, its efficient, or at least any support is very
important. On the other hand, the number of distinct recursive elements is typically
low (for each category less than 5) and that the type of recursion commonly used is
very simple.

Efficient Processing of XML Data with Limited Complexity Another important
observation common to all the current papers describing results of statistical analyses
of real-world data is that the data is usually much simpler than the respective stan-
dard allows. Such feature opens a wide range of optimization strategies that do not
have to consider the full generality of the standard, but can count on some limitations.
One of the most surprising observations of this kind is that the average depth of XML
documents is less than 10, mostly around 5. This information is already widely ex-
ploited in techniques [7, 83] which represent XML documents as a set of points in
multidimensional space and store them in corresponding data structures, e.g., R-trees,
UB-trees [84], or BUB-trees [85], for the purpose of efficient querying. The dimension
of the space is given by the depth of the data, so the lower, the better.

Restriction to Real-World Data Structures A situation similar to the previous one
occurs in cases when we can restrict a particular approach only to cases which occur
in real-world data and, hence, have a reasonable basis. A research area which widely
exploits the knowledge of complexity of real-world data is inference of XML schemas
from a given sample set of XML documents. Since according to Gold’s theorem [11]
regular languages (i.e., those generated by XML schemas) are not identifiable only
from positive examples (i.e., sample XML documents which should be valid against
the resulting schema), the existing methods need to exploit either heuristics or a restric-
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tion to an identifiable subclass of regular languages. The question is which subclass
should be considered. The authors of papers [12, 13] result from their analysis of real-
world XML schemas [5] and define the classes so that they cover most of the real-world
examples. So the identifiable subclass corresponds to a realistic situation.

Tuning of Weights and Parameters Last but not least typical example of exploita-
tion of characteristics of real-world XML data can be found in reasonable and realistic
setting of various weights, parameters and characteristics of different approaches. As
an example we can consider two XML applications – evaluation of similarity of XML
schemas and adaptive XML-to-relational storage strategies.

Similarity of XML schemas is currently exploited in many approaches, typically
as a kind of optimization heuristics. The current approaches [8, 9, 10] are based on
the idea of exploitation of various matchers, i.e., functions which evaluate similarity
of selected simple data characteristics (e.g., similarity of element names, similarity of
number of subelements etc.). Their results are then aggregated to a resulting compos-
ite similarity measure using a kind of weighted sum. The problem is how to set the
weights so that the result reflects the reality. And the solution can be found in statistical
analyses of real-world data.

In case of adaptive XML-to-relational storage strategies we need to solve a simi-
lar problem. The approaches [86, 87] focus on the idea that each application requires
a different storage strategy to achieve optimal efficiency. So, before they provide the
resulting mapping, they analyze a given set of sample data and operations which repre-
sent the target application and adapt the resulting mapping accordingly. Hence, again,
an analysis of real-world data is crucial so that the algorithm works correctly and effi-
ciently.

Apparently, in all the described examples we need to know the structure and complexi-
ty of the real-world data as precisely as possible. What is more, since user requirements
often change and new applications occur every day, we also need to know whether and
how the data characteristics evolve and adapt the approaches and optimizations respec-
tively.

2.3 Framework Architecture
This section concerns with the architecture of Analyzer, proposed analytical model and
basic implementation aspects.

2.3.1 Framework Architecture
The implementation of Analyzer allows the user to work with multiple opened projects
at once, each representing one analytical research intent. Thus, we can divide the
framework architecture into two separate levels, as it is depicted in Figure 2.1. The
first one contains components, which are shared by all the projects. The second one
represents components exclusively used and created in each opened project separately.

Project Components Components at the project level involve particularly reposito-
ries, storages and crawlers. They are exclusively owned by each project, but this does
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Figure 2.1: Architecture of Analyzer

not mean that, e.g., a real relational database server behind a repository cannot be used
by multiple projects. This is allowed and a given component only has to ensure the
required isolation between individual projects (which can be done easily in the given
example using different databases).

First, each project must have a single repository. It serves for storing all computed
analytical data and the majority of project configuration metadata. Although the de-
sign of Analyzer does not require it, all provided repository implementations are based
on standard relational databases. Second, storages are used for storing document con-
tents, i.e., binary contents of analyzed files. The only stable implementation is based
on a native file system, but experiments were taken with native storages for XML doc-
uments, too. Third, there are two ways how we can insert files to be analyzed into
a created project. First, we are able to import them from a specified storage, or we
can use crawlers to download them from the Web. The download process may involve
accessing of explicitly required files, or the crawler itself may be able to attempt to
find other referenced files using link traversal, limited only by a maximum allowed
searching depth.

An essential design feature of all these three components is extensibility. Although
a typical user would probably not need it, new components can be implemented and
added relatively easily into the entire system.

The project layer also contains a set of managers, which are responsible for creat-
ing, editing and processing of all entities such as documents, collections or reports. As
all computed analytical data are stored permanently in a repository, in order to increase
efficiency, the managers are able to cache loaded data and release them, if they are no
longer required at runtime. Some managers are also able to postpone and aggregate
update operations, but the consistency of computed data is still guaranteed.

Shared Components Shared components are instantiated only once in a running An-
alyzer application and are used by all opened projects together. Passing over auxiliary
components, the most important one is a launcher, which is responsible for executing
tasks over all such projects. Tasks represent small units of analytical or other actions
and computations. For example, each download of a selected file or computation over
a given document is internally encapsulated and processed in a form of a task. Once
it is decided that some work should be done, a new task is created, scheduled and lat-
er on prepared for execution, if no blocking dependencies exist. The execution itself
is invoked by the launcher, maintaining a parallel environment with worker threads
prepared in a pool. If a given task could not be successfully finished (for whatever
reasons), launcher attempts to execute it repeatedly with a defined number of attempts.
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Clearly, this model is a compromise, since it decreases the efficiency, but enables
nearly full control over project processing. The user is able to attach/detach a partic-
ular project to/from the launcher and, thus, say whether tasks from the project should
be executed at the moment, or not. As a consequence, the user can pause started com-
putations and resume them later.

Graphical User Interface The GUI is based on possibilities of the NetBeans plat-
form [88]. It brings the complete and robust environment for creating and managing
projects and performing analyses from their configuration to browsing of the computed
reports .

The browser itself contains adjustable windows through which the user is able
to monitor the progress of computations and browse all existing entities in opened
projects. The data are provided mainly in a form of interactive trees or listings. More
complicated project actions, like creation of new components or configuration of anal-
yses, are implemented using wizards.

2.3.2 Analysis Model
In this section, we describe the life cycle of a typical analysis. As an example, sup-
pose we want to develop an indexing service over Linked Data [89] and we want to
know their basic characteristics, e.g., maximum and average depth or average number
of child elements, to optimize our service. We choose DBpedia1 as a source of data,
create a project and set up all components described in the previous section. Doc-
uments are stored locally and the computed results in a MySQL database. For this
analysis, we discard all documents except for RDF ones. Additionally, we add plugins
to get expected results which have to be able to identify the RDF files, repair them and
compute expected characteristics. When Analyzer downloads the files the analyzed
measures are computed and stored in the repository. Then, we create a collection with
all documents, Analyzer computes aggregated results and we can use the results for the
optimization.

Later on, we decide to extend the service to index over another domain, e.g.,
data.gov.uk. We can use our old project and download and analyze new version
of the documents from DBpedia and data.gov.uk. We add a new collection with
newly added files from DBpedia to get the changes and a collection with all actually
downloaded files to get an actual characteristics of the examined domains.

From the previous example, we can derive the following list that represents a stan-
dard life cycle of each project:

1. Creation of a new project and configuration of repository, storages and crawlers,

2. Selection and configuration of analyses using available plugins,

3. Insertion of documents to be analyzed through import or download sessions,

4. Computation of analytical results over documents of a given relative age,

5. Selection and configuration of clusters and collections,

6. Document classification and assignment into collections, and
1http://dbpedia.org
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7. Computation of final statistical reports over particular collections.

Projects encapsulate inserted documents, configuration of analyses and computed
data and represent a single research intent. During creation of a new project, the user
can (besides other configuration) optionally select document types the project should
be dedicated for. This selection is defined by a set of regular expression patterns over
types.

The next step is a selection of analyses to be used in a given project (Figure 2.2).
This selection is based on a list of all currently available plugins, but the user can only
instantiate a particular plugin once, if such plugin is not configurable. As it will be
explained later, plugins offer their functionality through methods. An integral part of
configuration of analyses is also the definition of desired ordering of such methods.

Next, the user can import or download required documents. If a project involves
type filtering, a given document is removed, if it does not match any of the provided
patterns. The following step is creation of new clusters with sets of collections. Once
a new collection is created, the classification of all existing documents satisfying other
filtering criteria is automatically initiated. The final step is closing of clusters which
invokes aggregation of results into reports. The reports are stored permanently and the
user can browse them any time later.

Figure 2.2: Analysis model diagram

Model of Documents Each document to be analyzed is characterized by a pair of
physical and logical resources (Figure 2.4). The first one is the URL address from
which the file was really imported, downloaded or sought from. The second one rep-
resents an address Analyzer “thinks” the original file should be located at. However,
the guessing heuristic is not currently completely implemented and is a subject of our
future work which will exploit and combine the crawling module (Section 2.4) and the
query analysis (Section 2.7). Analyzer itself is able to maintain multiple versions of
the same file. Several consecutive import or download sessions are always grouped
together into chains, defining a relative age for all documents in them (Figure 2.3). It
is not allowed to have more than one document of the same logical resource and the
same relative age in a project.

The document entity itself is only an abstraction of a file – data content of a given
file is treated independently and maintained using storages. Once a new document
is inserted into a project, the corresponding file content is bound with this document
entity. When generating content corrections, a new content version is always created
and the previous one is thrown away, unless the previous one is the original one.
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Figure 2.3: Session model diagram

Figure 2.4: Document model diagram

During the first steps of document processing, document types are recognized. Be-
cause this detection is realized by plugins, the typing concept is not limited and de-
velopers are allowed to work with their own typing namespace. However, we have
proposed to harness standardized MIME types. The most important fact about types is
that each document is described by a set of recognized types, not only a single type.
The idea behind types is simple: plugins recognize types, plugins analyze only docu-
ments of selected known types and, finally, projects can be restricted to processing of
selected types only.

Analyzer also supports detection and processing of links between documents. A
link is a typed reference from a source document to a target document, e.g., schema
declarations in XML documents or image source files definitions in HTML [18] pages.
The system is able to automatically delay processing of a given document until all
required and accessible target documents are present in a project too.

Model of Collections After all documents with the same relative age are inserted into
a project, the phase of computation of results is initiated. Each result is a small piece of
information computed by a configured plugin over a particular document (Figure 2.6).
It is assumed that results are not the goal of analyses, they are created in order to be
aggregated over multiple documents later on, in a form of reports over collections.

Collections are introduced in order to allow grouping of documents, i.e., creating
named sets of documents (Figure 2.5). The process of particular document classifi-

33



Figure 2.5: Collection model diagram

cation is, once again, semantically defined by a configured plugin itself. Despite this
fact, the user is also able to filter documents using general criteria like, e.g., resource
addresses or relative age restrictions. Since some collections can be mutually related
(e.g., they classify documents into multiple categories using a shared set of criteria),
Analyzer requires grouping of collections into clusters.

When the classification of all documents is done, computed results can be aggregat-
ed as previously outlined (Figure 2.6). This is done separately in each collection and,
thus, the generated reports are always derived only from documents that are mem-
bers of a given collection. However, not all documents may be provided with required
results and, therefore, involved in this aggregation.

Figure 2.6: Result and Report model diagram

2.3.3 Model of Plugins

Analyzer itself provides a general environment for performing analyses over docu-
ments and collections of documents, but the actual analytical logic is not a part of it.
All analytical computations and mechanisms are implemented in plugins. The current
distribution of Analyzer includes a few basic plugins for processing general files and
XML related files (see Sections 2.6 and 2.7), but the user is the one who is expected
to create and use own extended plugins. It is also expected, but not required, that each
plugin is determined for processing files of specific types. In other words, a plugin
publishes its functionality and Analyzer makes it usable for analyses in projects.
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Plugin Methods Disregarding the ability of a plugin to be configured (and thus, e.g.,
adjusted to particular analytical intents), each plugin specifies a set of document types
that can be processed by it. This restriction is defined by regular expression patterns.
The plugin functionality is provided through implemented methods (Figure 2.7). They
are of eight predefined types listed in the following enumeration. Although these meth-
ods are not Java methods but classes, we can omit this fact for simplicity.

• detector recognizes types of a processed document,

• racer looks for outgoing links in a given document,

• corrector attempts to repair a content of a given document,

• analyzer produces results over a given document,

• collector classifies documents into collections of a given cluster,

• provider creates reports by aggregating results of documents in a collection,

• viewer serves for browsing computed results over a document, and

• performer serves for browsing computed reports over a collection.

Figure 2.7: Plugin model diagram

After the user selects and configures all required analyses (plugins the user wants
to use), the selection of particular available detectors, tracers, correctors and analyzers
must be managed. This comprises not only the selection, but also the order of these
methods. Despite different aims of these four method types, all of them may produce
results. Collectors are methods that are responsible for classifying documents into col-
lections. In other words, they make the decision, whether a given document belongs
to a given related collection, or not. Once the user closes a cluster, Analyzer invokes
provider methods over all its collections in order to aggregate results into reports. Fi-
nally, viewer and performer methods are used for presenting computed results over
documents and computed reports over collections respectively.
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Execution of Methods The execution of tasks representing plugin methods is similar
to the execution of other tasks, Analyzer only wraps the code written by the plugin
programmer, invokes the computation and handles potentially raised errors or other
forms of incorrect processing.

All plugin methods share the way how they access the functionality of Analyzer
and how they acquire data about documents or other entities they are processing or
generating. These requests are processed by mediators, objects with well known in-
terface and contract. Each method type works with own specialized mediator, which
allows only for relevant operations.

The mediator itself in fact only pretends processing of all these requests, internally
simulates required actions and the real execution is postponed until the very end of
a given task execution. As a consequence, we are able to reveal several forms of
inconsistent behavior based on the violation of a published plugin contract.

Implemented Plugins The implementation of Analyzer comes with a few created
plugins, which are ready for use. If we omit sample plugins demonstrating only frame-
work possibilities, there are three main groups of plugins: a universal plugin for basic
analyses of documents regardless their types, a plugin for XML documents and their
schema analyses (see Section 2.6) and, finally, a plugin for XQuery and XPath analyses
(see Section 2.7).

2.3.4 Implementation of Analyzer
Analyzer is implemented in Java 6 language [90] as a desktop application with a robust
GUI. It is built on top of NetBeans 6.8 platform [88] and capable of the cross-platform
usage.

The GUI of Analyzer is based on the possibilities of the NetBeans platform. It
brings the complete environment for creating and managing projects and performing
analyses from their configuration to browsing of computed reports. A sample screen-
shot image can be found in Figure 2.8.

The default Analyzer distribution contains implementation of three repositories
(MySQL server database through MySQL Connector 5.1.7 [91], embedded Apache
Derby 10.5.1.1 database [92] and embedded H2 Database 1.1.117 [93]), two crawlers
(simple built-in crawler and flooding Egothor 1.0 crawler [94]) and two storages (filesys-
tem storage and dedicated Egothor storage).

2.3.5 Performance Experiments
Apparently, the key performance role is represented by repositories and, therefore, the
main impact brings primarily the number of analyzed documents. We configured two
simple analyses with four methods for generating results in total. The documents were
inserted into a project using import without copying of physical files. Finally, a single
cluster was created and all processed documents were classified into its two of six
collections.

Table 2.1 shows results of performed experiments over three different sets of doc-
uments. All tests were executed using a PC with Intel Core 2 Quad Q9550 2.83 GHz
processor, 4 GB RAM and Gentoo Linux 10.1 operating system. The analyzed doc-
uments were stored on a local hard drive and also all three repositories stored their
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Figure 2.8: Sample screenshot of Analyzer

Set
Document Repository Document Results Collections Reports

count & size database import computation filling computation

A
1,000 Derby 7 s 60 s 14 s 12 s

x H2 DB 2 s 12 s 6 s 1 s
100 kB MySQL 3 s 19 s 9 s < 1 s

B
10,000 Derby 45 s 13 min 5 min 11 min

x H2 DB 10 s 100 s 90 s 60 s
10 kB MySQL 15 s 135 s 70 s 10 s

C
100,000 H2 DB 1 min 150 min 150 min 16 h
x 1kB MySQL 3 min 22 min 14 min 1 min

Table 2.1: Performance characteristics

internal data locally on the same drive. MySQL Community Server 5.0.84 was in-
stalled locally and used through JDBC connector 3.0. Both filling of collections and
computation of reports phases are based only on querying of repository (document
contents are never read).

It is worth noting that the purpose of these experiments was to show capabilities
of the framework itself and not particular plugins, e.g., for XML documents analyses.
Therefore, we used special plugins with methods of constant time complexity only. As
we can see, there is a significant difference especially between H2 and MySQL. This
can be explained by the inability of H2 to work with defined auxiliary index structures
during selection queries.

As we have mentioned, there are four key aspects of the analytical process performed
by Analyzer – data crawling, data correction, structural analysis and query analysis.
In the following four sections we discuss them in detail. For each of the four topics
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we briefly describe the state of the art of the respective area and then we provide a
description of the particular decisions and especially contributions applied in Analyzer.

2.4 Data Crawling
The first key aspect of every data analysis is data gathering. As we have mentioned,
Analyzer supports several types of input of the analyzed data, whereas the interesting
one is the possibility of data crawling. The development of XML is closely tied to
the Web; therefore, the Web is expected to contain vast amounts of XML-related data.
Nevertheless, collecting the data is surprisingly difficult. While there is a number of
crawlers used to collect data from the Web, most of them are limited to HTML and
widespread text-document formats like PDF [95].

XML-related data, which we consider in the broadest sense in this section, include
all XML-based formats (including, e.g., XML Schema and XSLT) and related non-
XML languages (like DTD or XQuery). When crawling the Web, some documents
of these types may be found linked from HTML pages; however, others are refer-
enced from the primary documents, like their schemas or included documents. Thus,
the secondary documents cannot be located using HTML-based crawling – instead
an XML-aware crawler must be able to parse both XML documents and the related
formats (DTD etc.) to extract the links to the secondary documents.

Crawling the Web correctly is a difficult task, entangled within performance bot-
tlenecks and surrounded by ethics and copyright rules. Creating a new crawler from
the scratch is apparently a senseless effort. Thus, we have opted to adapt and extend
an existing HTML-oriented crawler. For our purposes we have evaluated the following
systems:

• Xyleme/Larbin [96, 97] was included in our list due to its ability to handle XML-
to-DTD links. However, since Xyleme is not an open-source software, it might
not be extended in our project.

• Egothor [94] was a system developed at the Charles University in Prague and,
therefore, it was the first candidate for extension. Unfortunately, the community
of Egothor developers is too small to ensure the required long life of the system.

• Apache Nutch [98] is an open-source project from the Apache family. Thanks to
its system of extension points, it originally seemed that the extension for XML-
related data might be completely implemented using plugins.

• Bixo [99] is a topical crawler focused on mining data from selected locations,
thus using a strategy different from traditional crawlers. However, it is tightly
coupled with the mining methods.

• Google and Google Web APIs [100] is included in our list as a kind of a bench-
mark because Google allows the to search specific file types (like DTD) in its
huge collection. Unfortunately, the exact method which Google uses for locat-
ing the specific documents is unknown.

As the previous list suggests, we selected the Apache Nutch system. We extended
the system with a number of plugins and tuned its configuration towards the search
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for XML-related data. In addition, we had to modify the source code of Nutch at few
places. Our modifications and extensions together realized the following alterations to
the original behavior of the crawler:

• Improved address filtration – avoiding unwanted protocols (mailto, javascript)
and formats (PDF, MP3 etc.).

• Altered document filtration – cutting-out excessively large HTML documents,
assuming that they would unlikely contain any XML-related links.

• Whitelisting apparently XML-related documents based on their reported MIME-
type and (a part of) contents.

• Blacklisting unwanted documents. (Due to widespread errors in the Web content,
we found blacklisting more efficient than whitelisting.)

• Altered scoring mechanism – favorizing XML-related data in the download queue.

• Parsing XML-based documents and locating external references in them.

Our XML parser, based on a SAX implementation from the Xerces [101] family,
is used to locate the following kinds of links in XML-based documents:

• schemaLocation and noNamespaceSchemaLocation attributes in any
XML document,

• import, include, and redefine elements in XSDs,

• import and include elements in XSLT programs,

• processing instructions in XML Style Sheets, and

• include and externalRef elements in RELAX NG [102].

Another important fact is that many Web documents are malformed but still usable
in crawling. Therefore, we made our parser robust with respect to non-well-formed
data.

To depict the features of our modifications Figure 2.9(a) shows the percentage of
document types encountered and downloaded during a testing run of unmodified Nutch
system. The small non-XML part of these data is shown in detail in Figure 2.9(b) –
the left column corresponds to the behavior of the original Nutch system, the right
column displays the results of the system after our modification. The figures are based
on medium-scale tests – approximately 1 million documents of which 3.62% were
XML-related.

2.5 Processing of Incorrect Data
Documents gathered by automatic crawler as described in the previous section, or im-
ported manually from different sources (e.g., filesystem), can contain several types of
structural or semantic errors, which has to be solved. In Analyzer, we include error
processing as the optional part of document processing. During this phase, corrector
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Figure 2.9: Results of experiments with data crawler

methods of available plugins are able to modify data contents of the documents, or
discard the document from analyzed set. Therefore, a plugin developer may propose
methods for document correction and, thus, other methods can be assured they are
working only with correct data.

In the scope of XML documents, which we aim at, we can witness rather surpris-
ingly high number of documents involving various forms of errors [14]. These errors
can cause that documents are not well-formed, they do not conform to the required
structure or have inconsistencies in data values. Anyway, the presence of errors causes
at least obstructions and may completely prevent successful processing. Generally, we
can modify existing algorithms to deal with errors, or we can attempt to modify invalid
documents themselves.

We particularly focus on the problem of structural invalidity of XML documents.
In other words, we assume the inspected documents are well-formed and constitute
trees, however, these trees do not conform to a schema in DTD or XML Schema,
i.e., a regular tree grammar with the expressive power at the level of single-type tree
grammars [81]. Having a potentially invalid XML document, we process it from its
root node towards leaves and propose minimum corrections of elements in order to
achieve a valid document close to the original one. In each node of a tree we attempt
to statically investigate all suitable sequences of its child nodes with respect to a con-
tent model and once we detect a local invalidity, we propose modifications based on
operations capable to insert new minimum subtrees, delete existing ones or recursively
repair them.

The remaining parts of this section present basic ideas of our correction model and
proposed algorithms for finding structural repairs of invalid XML documents. Details
of this proposal are presented in [76, 103].

2.5.1 Existing Approaches
The proposed correction model is based primarily on ideas from [104] and [105]. Au-
thors of the former paper dynamically inspect the state space of a finite automaton
for recognizing regular expressions in order to find valid sequences of child nodes
with minimum distance. However, this traversal is not effective, requires a threshold
pruning to cope with potentially infinite trees, repeatedly computes the same repairs
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and acts efficiently only in the context of incremental validation. Although these dis-
advantages are partially handled in the latter paper, its authors focused on document
querying, but not repairing.

Next, we can mention an approximate validation and correction approach [106]
based on testers and correctors from the theory of program verification. Repairs of
data inconsistencies like functional dependencies, keys and multivalued dependencies
are the subject of [107, 108].

Contrary to all existing approaches, we consider single type tree grammars instead
only local tree grammars. Thus, we work both with DTD and XML Schema. Ap-
proaches in [104, 106] are not able to find repairs of more damaged documents, we
are able to always find all minimum repairs and even without any threshold pruning
to handle potentially infinite XML trees. Next, we have proposed much more efficient
algorithm following only perspective ways of the correction and without any repeat-
ed repair computations. Finally, we have a prototype implementation [109] and per-
formed experiments show a linear time complexity depending on a number of nodes in
documents.

2.5.2 Proposed Solution
Our correction framework is capable to generate local structural repairs for locally in-
valid elements. These repairs are motivated by the classic Levenshtein metric [110]
for strings. For each node in a given XML tree and its sequence of child nodes we
attempt to efficiently inspect new sequences that are allowed by the corresponding
content model and that can be derived using the extended concept of measuring dis-
tances between strings. However, in our case we do not handle ordinary strings, but
sequences of nodes, which, in fact, are not only labels, but also entire subtrees.

The correction algorithm starts processing at the root node and recursively moves
towards leaf nodes. We assume that we have the complete data tree loaded into the
system memory and, therefore, we have a direct access to all its parts. Under all condi-
tions the algorithm is able to find all minimum repairs, i.e., repairs with the minimum
distance to the grammar and the original data tree according to the introduced cost
function.

In order to illustrate the correction process throughout the following paragraphs,
we will use a sample XML document based on a fragment:

<a><x><d/></x><d><d/><d/></d></a>.

The derived data tree T is depicted in Figure 2.10(a). Its underlying tree has nodes
{ε, 0, 0.0, 1, 1.0, 1.1} and element labels are inscribed in nodes.

We want this document to conform to a simple local tree grammar G, which re-
quires that the label of the root node can only be a or b, child nodes of element a
should match a regular expression c.d∗, elements b and d may contain an unlimited
number of elements d, and, finally, element c should always be empty. Obviously,
the sample data tree T is not valid against G, since element x is not allowed by the
grammar at all.

Edit Operations Edit operations are elementary transformations that are used for
altering invalid data trees into valid ones. They behave as deterministically defined
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(a) Original tree (b) Insert-Rename (c) Rename-Delete

(d) Rename-Rename

Figure 2.10: Sample XML tree with its three repairs

functions, performing small local modifications with a provided data tree. Though the
correction algorithm does not directly generate sequences of these edit operations, we
can, in the end, acquire them using a translation of generated repairs, as it will be
explained later.

We have proposed and implemented the following edit operations:

• insert a new leaf node,

• delete an existing leaf node,

• rename a label of a node,

• push a group of adjacent sibling nodes lower under a newly inserted internal
node, and

• pull all sibling nodes one level higher deleting their original parent node.

Moreover, we have also formally studied other node and attribute operations. However,
these operations were not yet fully implemented and, therefore, will be omitted in the
rest of this section.

Update Operations Edit operations can be composed together into sequences. And
if these sequences fulfil certain qualities, they can be classified as update operations.
We have proposed

• insertion of a new minimal subtree,

• deletion of an existing subtree, and

• a recursive repair of a subtree with an option of changing a label of its root node.
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Anyway, the purpose of each update operation is to correct a local part of a data
tree in order to achieve its local validity. Unfortunately the correction algorithm does
not generate these operations. The algorithm generates repairs based on repairing in-
structions, which are subsequently translated into sequences of edit operations. And
this is the reason, why update operations are not defined deterministically similarly to
edit operations. Having a particular sequence of edit operations, we can inspect its
subsequences and if all required conditions are satisfied, a given subsequence can be
viewed as an update operation of a corresponding type.

Assume that we have edit sequences

• X1 = 〈addLeaf(0, c), renameLabel(1, d)〉,

• X2 = 〈renameLabel(0, c), removeLeaf(0.0)〉 and

• X3 = 〈renameLabel(ε, b), renameLabel(0, d)〉.

Applying these sequences separately to data tree T from our example, we obtain data
trees depicted in Figures 2.10(b), 2.10(c) and 2.10(d) respectively. If we use a unit cost
function, these three data trees represent all minimal repairs of the original tree with
the cost 2.

Repairing Instructions Assume that we are in a particular node in a data tree and
our goal is to locally correct this node, which, passing over attributes, especially in-
volves the correction of the sequence of its child nodes. Since the introduced model
for measuring distances uses only non-negative values for the cost function, in order
to acquire the global optimum, we can simply find minimum combinations of local
optimums, meaning minimum repairs for all subtrees of original child nodes of the
inspected one.

However, we need to find all minimum repairs, and since edit operations require
particular positions in a current data tree to be specified, we cannot use them to describe
all repairs. Assume, for example, that we have several options how to correct the first
child node. If we delete it, all positions of nodes to the right must be shifted by one to
the left, but if we accept the first child node, the original positions preserve. Thus, we
are not able to use edit operations for describing multiple different repairing sequences.

The problem with the continuously changing numbers of positions is solved by
the model of repairing instructions. We have exactly one instruction for each edit
operation and these instructions represent the same transforming ideas, however, do
not include particular positions to be applied on. Having a particular sequence of
repairing instructions, we can easily translate it into the corresponding sequence of
edit operations later on.

Correction Intents Being in a particular node and repairing its sequence of child
nodes, the correction algorithm generally has many ways to achieve the local validi-
ty proposing repairs for all these involved nodes. As already outlined, these actions
follow the model for measuring distances between ordinary strings. The Levenshtein
metric is defined as the minimum number of required elementary operations to trans-
form one string into another. These operations are insertion of one new symbol, dele-
tion of an existing one and also replacement of an existing symbol with a new one.
We follow the same model, however, we have edit and update operations respectively
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and sequences of nodes. The given sequence can be viewed as an ordinary string over
labels of its nodes. For example, insertion of a new subtree at a given position stands
for insertion of its label into the corresponding string of labels and, of course, recursive
processing of such new subtree.

The algorithm attempts to examine all suitable new words that are in the language
of the provided regular expression restraining the content model of the inspected parent
node. We do not generate word by word, but we attempt to inspect all these words
statically using a notion of a correction and derived multigraphs.

Anyway, suppose that the algorithm has already processed first few nodes from the
inspected sequence of sibling nodes, thus all nodes from the corresponding prefix of
the original sequence are already involved in corrections. Now, the algorithm must
consider all possible actions that can be selected in order to involve at least one next
node from the original sequence. The possibilities are modeled using the notion of
correction intents.

In other words, the correction algorithm in each parent node has a variety of options
how to achieve its validity and particular steps performed with its child nodes are
called correction intents, because we always examine one possible action from more
permitted ones.

Correction Multigraphs All existing correction intents in a context of a given node
can be modelled using a correction multigraph. Suppose that we need to process a
sequence of child nodes with n nodes. This means that the graph will have n+1 strata,
numbered from 0 to n. Being on a stratum with number i, we have already processed
right i first nodes from this sequence.

Each stratum is constructed from the Glushkov automaton for recognising the pro-
vided regular expression restricting the given sequence. This means that there are
vertices corresponding to states of the automaton and directed edges reflecting the
transition function in each stratum. Each such edge represents a new tree insertion
operation. Similarly, we can define edges between strata to represent other allowed
operations.

In other words, the correction multigraph represents all correction intents that can
be derived for this sequence. And more precisely, each intent is represented by some
edge in this multigraph. However, there can be intents that are represented by more
edges at once.

In order to find best repairs for a provided sequence of nodes, we need to find all
shortest paths in this multigraph, assuming that every edge is rated with an overall
cost of corresponding nested correction intent associated with such edge. However, to
resolve these costs, we need to fully evaluate associated intents. And this represents
nontrivial nested recursive computations. Anyway, we require that each edge can be
evaluated in a finite time, otherwise we would obviously not be able to find required
shortest paths.

If we return to our sample data tree T , we can represent all nested correction intents
derived for a root node a and a sequence 〈x, d〉 of its child nodes with respect to a
regular expression c.d∗ by a correction multigraph in Figure 2.11(a). For simplicity,
edges are described only by abbreviated intent types (I for insert, D for delete, R
for repair and N for rename), supplemented by a repairing instruction parameter if
relevant and, finally, the complete cost of assigned intent repair. Names of vertices are
concatenations of a stratum number and an automaton state.
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(a) Sample correction multigraph (b) Sample repairing multigraph

Our goal is to find all shortest paths from the source vertex 00 to any of the target
vertices 21 or 22 in the last stratum. Having found them, we can represent them in a
form of the repairing multigraph in Figure 2.11(b).

Repairs Construction Each correction intent can essentially be viewed as an assign-
ment to the nested recursive processing. This model, in fact, has a transparent relation
with a structure of an underlying tree itself and its processing from the root node to-
wards leaves. The entire correction of a provided data tree is initiated as a special
starting correction intent for root node and processing of every intent always involves
the construction of at least the required part of the introduced multigraph with other
nested intents. Therefore, we continuously invoke recursive computations of nested
intents. When we reach the bottom of the recursion, we start backtracking, which in-
volves gathering of found repairs. This means that after we have found the desired
shortest paths at a given level, we encapsulate them in a form of a compact repair
structure and pass it one level up, towards the starting correction intent.

Having found the shortest paths in the repairing multigraph for the starting intent,
we have found repairs for the entire data tree. Each intent repair contains encoded
shortest paths and related repairing instructions. Now we need to generate all particular
sequences of repairing instructions and translate them into standard sequences of edit
operations. Having one such edit sequence, we can apply it on the original data tree
and we obtain its valid correction with a minimum distance.

Correction Algorithms Now we have completely outlined the model of the pro-
posed correction framework. However, there are several related efficiency problems
that would cause significantly slow behaviour, if we would strictly follow this mod-
el. Therefore, we have introduced two particular correction algorithms. They both
produce the same repairs, but there are key differences in their efficiency.

The first algorithm is able to directly search for the shortest paths inside each intent
computation and, therefore, does not need the entire multigraphs to be constructed.
The next improvement is based on caching already computed repairs using signatures
distinguishing different correction intents, but intents with the same resulting repair
structure. This causes that this algorithm never computes the same repair twice. The
second algorithm is able to compute lazily even to the depth of the recursion. We
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have achieved this behaviour by scattering all nested intents invocation and multigraph
edges evaluation into small tasks, which are executed by a simple scheduler.

2.6 Structural Analysis

Having crawled and corrected the data, we can start with their analysis. In this section,
we discuss several metrics, we implemented in current version of Analyzer. We have to
note that the implemented methods cover only basic characteristics of XML, DTD and
XML Schema, and they are based on previously published statistics of XML formats
(see Section 2.8).

The implemented methods cover XML documents and the related schemas ex-
pressed in DTD and XML Schema. We created one plugin for each of the document
types and one universal plugin to determine basic file attributes. The plugin for XML
documents is applied to XML Schema documents, but beside the basic statistics, the
usage of some specific constructs is measured.

We expected that the analyzed documents can be very large, so we based the imple-
mentation of plugins on Simple API for XML (SAX) [111]. SAX allows for efficient
work with large files, but, on the other hand, it complicates some analytic methods,
e.g., XPath fragment search.

2.6.1 Common Properties

Although, we focused on three different formats, they have many common aspects
which can be analyzed in a similar way. Firstly, we analyze the number of entities used
in the document, e.g., elements, attributes, declarations, etc. Secondly, we analyze the
structural complexity of the used model. To define the structural characteristics of the
document, we first need to define the XML document and XML schema. We will
use the definitions as presented in [3] and [25]. The XML documents are expressed
as ordered trees and XML schemas are expressed as regular expressions over element
names.

Definition 1. An XML document is a finite ordered tree T = (Σ, N, E, r), where Σ is
a finite alphabet, N is a set of nodes of the tree, E is a set of edges of the tree, and r ∈
N denotes a root element of the tree. Each node ∈ N is associated with a type of the
node which can be one the following: element, attribute, text, processing instruction,
or comment. Nodes with element or attribute type are also associated with a node
label l ∈ Σ called an element name or an attribute name respectively. The tree T is
called Σ-tree

Definition 2. A DTD is a collection of element declarations of the form e→ α, where
e ∈ Σ is an element name and α is its content model, i.e., regular expression over Σ.
The content model α is defined as α = ε | pcdata | f | (α1, α2, ..., αn) | (α1| α2| ...|
αn) | β∗ | β+ | β?, where ε denotes the empty content model, pcdata denotes the text
content, f denotes a single element name, "," and "|" stand for concatenation and union
(of content models α1, α2, ..., αn), and "*", "+", and "?" stand for zero or more, one
or more, and optional occurrence(s) (of content model β) respectively.

One of the element names s ∈ Σ is called a start symbol.
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In the following definitions we will focus on the key characteristics of XML data.
Due to space limitations and similarity, we will provide definitions for XML schemas,
in particular DTDs and assume that their modifications for XSDs and XML documents
are simple and apparent.

The complexity of the content model can be described by its depth.

Definition 3. A depth of a content model α is inductively defined as follows:

• depth(ε) = 0;

• depth(pcdata) = depth(f) = 1;

• depth(α1, α2, ..., αn) = depth(α1| α2| ...| αn) = max(depth(αi)) + 1; 1 ≤ i ≤ n

• depth(β*) = depth(β+) = depth(β?) = depth(β) + 1.

Another important characteristic of the structure of whole schemas/documents are
fan-out and fan-in.

Definition 4. A fan-out of an element e is the cardinality of the set { f | e’ is the element
name of element e, e’→ α and the element name f’ of element f occurs in α }.

Definition 5. A fan-in of an element e is the cardinality of the set { f | f→ α’ and the
element name e’ of element e occurs in α’ }.

Other metric of complexity of both documents and schemas is the usage of different
types of content of an element. Generally, we can distinguish three types of content:
empty, text, element and mixed. The former two are trivial; the latter two are defined
as follows.

Definition 6. A content model α is element, if ∃e ∈ Σ, such that e occurs in α.

Definition 7. A content model α is mixed, if α= (α1|...|αn|pcdata)*|(α1|...|αn|pcdata)+,
where n ≥ 1 and ∀ i, such that 1 ≤ i ≤ n, content model αi 6= ε ∧ αi 6= pcdata. An
element e is called mixed-content element if its content model α is mixed.

Last but not least important characteristic is the usage of specific structures. As
mentioned in Section 2.2, a controversial characteristic are recursive elements.

Definition 8. An element e is recursive if there exists at least one element d in the same
document, such that d is a descendant of e and d has the same element name as e.

2.6.2 XML Documents
We created plugins to measure the following properties on XML documents:

• The size of the XML document, e.g., in bytes, the number of elements or the
number of attributes

• Maximum depth of the document

• Distribution of various types of content model over different levels

• Recursion of elements
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• Maximum and average fanout

• Usage of XML Schema versus DTD

• Distinct element/attribute name usage

• Namespace usage

2.6.3 DTD Analysis

For the DTDs, the system contains methods to compute the following statistics:

• The size of the DTD, e.g., number of declarations of elements, attributes, nota-
tions, entities etc.

• Number of DTD specific declarations of elements content type (empty, any,
“|”, “,”)

• Number of DTD specific declarations of attribute optionality (#REQUIRED,
#IMPLIED, #FIXED)

• Usage of keys (i.e., attribute data types ID and IDREFS(S))

• Maximum, minimum and average depth

• Average and maximum fan-outs and fan-ins

2.6.4 XML Schema Analysis

The complexity of XSDs is basically measured in the same way as XML documents,
since each XSD is at the same time an XML document. Beside these properties, we
created a plugin for measurement of the usage of specific constructs as follows:

• Type specification (simpleType and complexType)

• Restriction and extension of existing types

• Content model of the elements (sequence, choice, all)

• Element groups and attribute groups (group, attributeGroup)

2.6.5 Results

Due to space limitations, we prepared a small sample of data to show the capabilities of
the framework. A complete throughout analysis, together with analysis of related op-
erations (see Section 2.7) will be a subject of our very next future work and a separate
paper. We used the current implementation of Analyzer with the basic implemented set
of plugins. We run the application on a common dual-core processor with 2 GB RAM.
The projects was created with the H2 DB repository and the filesystem storage.
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(c) Size distribution of types (d) Type distribution

(e) Size distribution

Figure 2.11: Document distribution

Data Sources For the experiments we used several data sources to get a variable
sample of the real-world data. As the open data became more popular, the methods for
their processing are more required. Despite widespread usage of XML, we can expect
that the part of the data will be simple conversions from other formats like XLS2 or
CSV3, so we used also a small sample of public available data to get some basic infor-
mation about their structure. Firstly, the XML documents are gathered mostly from the
U.S. federal executive branch data sets on data.gov. Some data was downloaded
from open data server of the Government of Catalonia4 and the rest of the documents
from U.S. congress5 and Open Data Euskadi6. The data sets generally contain financial
reports or geographical information of a government related information. Secondly, we
used the OpenTravel specification7 as a sample of XSD documents and compared their
versions over last 9 years.

XML Documents Statistics In the first phase we took all data from all open data
sources and computed global statistics over them. The results are show in Figure 2.11.
The document type distribution by size is depicted in Figure 2.11(c) and the type dis-
tribution by number in Figure 2.11(d). Since we gathered the XML documents, as we
can see they are the main part of the data. On the other hand, the chart shows big
average size of RDF documents. Only 161 RDF documents takes almost 40% of the
total size. The distribution by size is illustrated in Figure 2.11(e) and shows that the
majority of this sample are documents between 10kB and 10MB.

2Microsoft Excel format
3Comma Separated Values
4http://opendata.gencat.cat/en/dades-obertes.html
5http://www.govtrack.us/data/rdf/
6http://opendata.euskadi.net/
7http://opentravel.org/
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(a) Distinct element names (b) Average depth

(c) Average number of elements (d) Usage of sequences

(e) Usage of extensions (f) Usage of simple types

Figure 2.12: Results of XSD analysis
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Source Total Maximum Average Document
size size size count

open.gov 2.5 GB 67 MB 2.3 MB 1156
gencat.cat 58.3 MB 40 MB 7.4 MB 8
govtrack.us 1.93 GB 77 MB 12.8 MB 253
euskadi.net 3.4 MB 1.7 MB 27 kB 124

All 4.5 GB 77 MB 2956 kB 1541
Source Maximum Average Used Used

depth depth DTD XSD
open.gov 15 10.2 0.2 % 88.6 %
gencat.cat 11 6 0 % 0 %
govtrack.us 5 4.8 0 % 0 %
euskadi.net 9 6.2 41.93 % 0 %

All 15 8.87 7.4 % 63.3 %

Table 2.2: Results of XML document analysis

To get a more precise picture of the examined sample, we computed the basic
statistics over the documents. We focused on the number of the used elements and
attributes, depth and used schemas. The basic attributes of the examined files divided
by the source are depicted in Table 2.2. The results show that the documents are
generally flat, the average depth of open.gov sample exceeded depth of 10 with
maximum depth 15. We can also see that XSDs are used only in the sample from
open.gov. DTDs are partially used in documents from euskadi.net.

open.gov gencat.cat govtrack.us euskadi.net
According to the results we can say that a typical open data document is shallow

and its size is up to 5 MB. Anyway, due to the sample size and the limitations of space
we cannot make a general conclusion. We will focus on a detailed analysis over various
large data sets in our future work.

XML Schema Statistics In the second experiment we focused on XSDs used in
the OpenTravel specification. The data set contains 4,637 documents with total size of
194MB. The data set consist of several versions of the specification. In our experiment,
we tried to show the evolution of the specification in terms of the size of the documents
and the complexity of used constructs. The results of the analysis are shown in Fig-
ure 2.12. In particular, we focused on global characteristics like the number of distinct
element names (see Figure 2.12(a)), the average depth (see Figure 2.12(b)), or the av-
erage number of elements (see Figure 2.12(c)). The second group of the examined
values are XSD specific keywords. As an example, we show the evolution of the usage
of sequences (see Figure 2.12(d)), extensions (see Figure 2.12(e)) and simple types
(see Figure 2.12(f)).

According to the results, we can see that, quite naturally, the specification is getting
more complex and its depth is increasing. The largest change came between versions
2007A and 2007B. On the other hand, the usage of XSD constructs is stagnating,
only the usage of extension keyword is rising which reflects the general strategy of
preserving backward compatibility.
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2.7 Query Analysis

Besides XML data and/or schemas, whose analysis was described in the previous sec-
tion, analysis of queries over XML data may also give some insight into the way how
XML is used. Such analysis will be useful for implementers of query engines or stor-
age systems; in addition, the queries may also reveal useful facts on the data themselves
(e.g., the presence of recursion). There is a number of languages designed for pro-
cessing and/or generating XML data. While the scientific community focuses on the
XML Query (XQuery) language [21], real-world applications often use the XSLT [69].
These two languages, supported by their W3C standards, are currently the most wide-
ly used ones, although challenged by a number of more or less exotic languages like
XDuce [112] etc.

XQuery 1.0 and XSLT 2.0 are powerful, Turing-complete [27] languages; howev-
er, their applications usually solve relatively simple problems like generating HTML
pages or transforming XML between two schemas. Consequently, it is often believed
that most applications use only small subsets of these languages. This observation is
also supported by the fact that the most popular textbooks on XQuery or XSLT do not
cover the languages exhaustively.

From the perspective of the implementor of an XQuery or XSLT processor, this
observation suggests that a number of language features is rarely used and, therefore,
not worthy of aggressive optimization. For example, the following/preceding axes [28]
are used significantly less frequently than the child/descendant axes; consequently, the
majority of indexing and querying techniques like twig joins [29] are limited to the
child/descendant axes.

Note that we introduced the observation with the clause “it is often believed”; in-
deed, it was probably never confirmed by any statistically significant study. Such a
study was among our goals in this project. However, some of the tools required by this
study showed at least as interesting as the study itself. So, due to space limitations,
similarly to the case of structural analysis we have decided to involve only an example
of the query analysis, leaving a throughout version to the future work and a separate
paper.

In this section, we describe XQAnalyzer – a tool designed to support studies that
include analysis of a collection of XQuery programs. Since it is a novel and unique
part of the framework assumed to be widely used by the researchers, it can be used
both as a standalone application and a plugin of Analyzer. XQAnalyzer consumes a
set of XQuery programs, converts them into a kind of intermediate code, and stores
this internal representation in a repository (see Section 2.7.2). Subsequently, various
analytical queries (see Section 2.7.1) may be placed on the repository to determine the
presence or frequency of various language constructs in the collection, including com-
plex queries focused on particular combinations of constructs or classes of constructs.

The architecture of the XQAnalyzer is shown in Figure 2.13. Each document from
a given collection of XQuery programs is parsed and converted to the internal rep-
resentation by the XQConverter component. The XQEvaluator component evaluates
analytical queries and returns statistical results.
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Figure 2.13: The architecture of the XQAnalyzer

2.7.1 Analytical Queries
In the XQAnalyzer, the term analytical query denotes a pattern or a condition placed
on an XQuery program, usually a search for a feature. Each XQuery program in the
collection is evaluated independently, producing either a boolean value or a hit count
representing the presence or number of occurrences in the program, respectively. The
XQEvaluator then returns various statistical results like the percentage of programs
which contain the searched feature or the histogram of hit counts over the repository.

The language in which analytical queries are placed shall be powerful enough to al-
low sophisticated patterns like “call to a user-defined function placed inside a FLWOR
statement whose arguments are independent of the FLWOR control variable”. At the
same time, the potential users of the system must be able to learn the language quickly.

Given the fact that the tool is designed for research in the area of XML and, in
particular, XQuery, the best choice would be a query language derived from XPath.
XPath is naturally well-known in the community and it is designed to place pattern-
like queries on tree structures – in our case, a tree is a typical representation of a
program during early stages of its analysis.

With the choice of XPath, the only remaining question in the design of the query
language is the structure of the tree representing an XQuery program and its mapping
to XML. In this representation, an analytical query is just an XPath query over the
XML representation of query programs. The XML representation is discussed in the
following section.

2.7.2 Internal Representation of XQuery Programs
The key issue in the design of XQAnalyzer is the internal representation of XQuery
programs. In our approach, we do not want to limit the nature of the analytical queries;
therefore, the internal representation must store any XQuery program without loss of
any feature (perhaps except for comments). Furthermore, the internal representation
is exposed to the user via the query interface; therefore, it should be as simple as pos-
sible. Finally, the internal representation affects the performance of the XQEvaluator.
Since we already decided to use a tree-based representation queried through XPath,
our freedom of choice is in the following issues:

• The depth of the analysis performed before generating the internal representa-
tion.
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• The “information density” of the tree, i.e., the number and the degrees of nodes
assigned to an individual language feature and, consequently, the size of the tree
assigned to an input program.

• The representation of repeated components – either by recursion or by nodes
with unlimited number of children.

• The names and attributes of nodes, including technical details regarding their
mapping to the XML.

The W3C standards related to XQuery define at least the following two formalisms
that might be used as a basis for our internal representation:

• The XQuery Grammar defined in [21] using Extended Backus-Naur Form [113].

• The Normalized XQuery Core Grammar defined in [114] (also using EBNF).

Note that the XQuery formal semantics [114] is defined in terms of static/dynamic
evaluation rules that may be considered as a kind of internal representation too. How-
ever, their application in our analytical environment would be impractically difficult.

There is also a number of formalisms defined in scientific literature. Among them,
algebraic systems like XAT [115] might be easily adapted for our tree-based internal
representation. However, these systems are always skewed towards a particular evalu-
ation strategy (usually relational) and their use for other strategies would be difficult.
For the same reason, we did not try to use twig patterns [29] in our representation.

Finally, it was proven [116] that each XQuery program may be translated to XSLT
2.0 [26]. Since each XSLT program is technically an XML document, the result of
the translation may be used as internal representation of the input XQuery program.
Unfortunately, the conversion from XQuery to XSLT is not straightforward due to
minor differences in the semantics of similar constructs (FLWOR vs. <xsl:for>).
Furthermore, only a part of XSLT syntax is expressed in terms of XML; the rest is
hidden as XPath expressions inside the text of some XML attributes.

Among the existing formalisms mentioned so far, we have chosen the Normalized
XQuery Core Grammar. There are the following reasons behind this decision:

• It is a part of the standard, therefore well known and not skewed towards any
evaluation strategy.

• It is smaller than the full XQuery Grammar and it hides the redundant features
of the XQuery language.

With respect to the depth of the analysis, the Normalized XQuery Core Grammar
requires only parsing and normalization. In the canonical XQuery-processing chain,
it would be followed by the optional static type analysis and the dynamic evaluation
phase. Since static type analysis produces only additional information to augment the
existing tree, it does not influence our selection of internal representation.

Of course, in real-world XQuery processors, normalization is followed by conver-
sion to an algebra or other representation. As we have discussed above, these repre-
sentations, if ever published, are hardly suitable for a strategy-independent tool.

The Normalized XQuery Core Grammar defines the concrete syntax of the XQuery
Core. Therefore, it must define syntactic properties like priority and associativity of
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<Path initial-step="root">
<Step>
<Axis abbreviated="true" direction="forward"

kind="descendant-or-self">
<KindTest kind="any-kind"/>

</Axis>
</Step>
<Step>
<Axis abbreviated="true" direction="forward" kind="child">

<NameTest name="car"/>
</Axis>
<Predicates>

<Operator class="comparison" name="equals"
subclass="general">

<Path initial-step="context">
<Step>

<Axis abbreviated="true" direction="forward"
kind="attribute">

<NameTest name="type"/>
</Axis>

</Step>
</Path>
<Literal type="string" value="SUV"/>

</Operator>
</Predicates>

</Step>
</Path>

Figure 2.14: Internal representation of an XPath expression

operators. Consequently, derivation trees constructed from this grammar have long
branches containing semantically useless levels.

For analytical purposes, a more abstract representation is required, in a form of
an abstract syntax tree (AST) [117]. An AST is present in almost every compil-
er; however, the corresponding abstract syntax grammar is rarely published or even
standardized. In our case, we need an abstract grammar as close to the Normalized
XQuery Core Grammar as possible. Therefore, we decided to start with the Normal-
ized XQuery Core Grammar and to remove a part of the non-terminals corresponding
to semantically useless levels that served only to define concrete syntax, collapsing
the surrounding rules together. In few cases, we renamed the remaining nontermi-
nals to more appropriate names (like Operator). The final set of nonterminals is listed
in Table 2.3. When our internal representation is presented in the form of an XML
document, these nonterminals become XML elements.

The rest of the semantic information is enclosed in XML attributes attached to
the elements. These attributes contain either data extracted from the source text (like
names of variables or contents of literals) or additional semantic information (like the
axis used in an XPath axis step). In addition to these data required to preserve the
semantics, we also added attributes that may help recovering the original syntax before
the normalization to XQuery Core (e.g., whether the abbreviated or the full syntax was
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used in axis step).
For example, the XPath/XQuery expression

//car[@type="SUV"]

is normalized to the following XQuery Core expression

/descendant-or-self::*/child::car
[attribute::type="SUV"]

and then converted to the internal representation shown (in the XML form) in Fig-
ure 2.14.

The original form before normalization is described using the attribute

abbreviated="true"

in the Axis elements. The internal representation then may be queried using XPath
expression like

//Step[Axis[@kind="child"] and
Predicates/Operator[@name="equals" and Path and Literal]]

which finds any child-axis step combined with a predicate based on equality between
a path expression and a literal.

2.7.3 Results
Since there is no standardized collection of real-world XQuery programs yet (except
for small benchmarks like XMark [118]), we have chosen two artificial collections
associated to the W3C XQuery language specification: the XQuery Use Cases [30]
and the XQuery Test Suite [31]. The Use Cases collection consists of 85 “text-book”
XQuery programs prepared to demonstrate the most important features of the lan-
guage, the Test Suite collection contains 14,869 small XQuery programs created to
cover all features (the remaining 252 files in the original collection contain intentional
parse errors). Although the Test Suite collection is more than 100 times larger in terms
of the number of files, the real ratio of sizes (in terms of the number of AST nodes) is
31:1 because the Use Cases files are larger.

In Table 2.3 we show the frequency of core elements of the language, named ac-
cording to the abstract grammar nonterminals derived from the Normalized XQuery
Core Grammar. The percentages are defined by the number of occurrences divided by
the total number of abstract syntax tree nodes in the collection (which was 4,469 for
the Use Cases and 138,949 for the Test Suite).

Besides the obvious difference between the two collections, corresponding to their
purpose, there are the following noticeable observations: The frequency of quanti-
fied expressions (some or every) is about eight times smaller than the frequency
of for-expression. The if-expression is quite rare – once per 30 for-expressions
or 50 operators. The number of features like ordered/unordered-expressions are
omitted in the Use Cases. While frequent in the Test Suite, the comma operator is
surprisingly rare in the Use Cases.

Table 2.4 shows the use of the twelve XPath axes. The percentages represent the
frequency of individual axes among all axis step operators in the collection (which was
638 for the Use Cases and 6,623 for the Test Suite). Notice that the results correspond
to the traditional belief that many axes are extremely rare.
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Element Use Test
Cases Suite

AtomicType 0.27% 2.49%
Axis 14.28% 4.79%
BaseURIDecl — 0.04%
BindingSequence 3.62% 1.11%
BoundarySpaceDecl — 0.07%
CData — 0.01%
CaseClauses 0.02% 0.03%
CharRef — 0.02%
CommaOperator 0.04% 2.04%
ConstructionDecl — 0.04%
Constructor 3.36% 2.07%
Content 4.03% 2.11%
ContextItem 0.22% 0.11%
CopyNamespacesDecl — 0.02%
DefaultCase 0.02% 0.03%
DefaultCollationDecl — 0.01%
DefaultNamespaceDecl — 0.12%
ElseExpression 0.07% 0.08%
EmptyOrderDecl — 0.03%
EmptySequence 0.02% 0.63%
EntityRef — 0.01%
Extension — 0.03%
FLWOR 1.97% 0.79%
ForClause 2.10% 0.59%
FunctionBody 0.40% 0.16%
FunctionCall 5.77% 17.11%
FunctionDecl 0.40% 0.16%
Hint 0.38% 0.01%
IfExpr 0.07% 0.08%
InClauses 0.27% 0.15%

Element Use Test
Cases Suite

KindTest 4.83% 0.80%
LetClause 1.25% 0.32%
Literal 4.61% 20.32%
ModuleDecl 0.07% 0.00%
ModuleImport 0.07% 0.03%
Name 4.21% 2.14%
NameTest 10.14% 4.08%
NamespaceDecl 0.20% 0.18%
OperandExpression 0.02% 0.03%
Operator 3.85% 8.43%
OptionDecl — 0.01%
OrderedExpr — 0.01%
OrderingModeDecl — 0.02%
Path 10.02% 2.51%
PragmaList — 0.03%
QuantifiedExpr 0.27% 0.15%
QueryBody 1.83% 10.70%
ReturnClause 2.04% 0.90%
SchemaImport 0.38% 0.17%
String 6.82% 2.12%
TestExpression 0.34% 0.23%
ThenExpression 0.07% 0.08%
TupleStream 1.97% 0.79%
Type 0.98% 2.62%
Typeswitch 0.02% 0.03%
UnorderedExpr — 0.01%
ValidateExpr — 0.02%
VarDecl — 2.42%
VarRef 8.68% 3.47%
VarValue — 2.42%

Table 2.3: The elements of the internal representation

Element Use Test
Cases Suite

child 71.63% 82.67%
descendant — 0.21%
attribute 5.33% 3.70%
self — 0.36%
descendant-or-self 23.04% 10.40%
following-sibling — —

Element Use Test
Cases Suite

following — 0.44%
parent — 0.50%
ancestor — 0.44%
preceding-sibling — 0.42%
preceding — 0.42%
ancestor-or-self — 0.44%

Table 2.4: Axis usage
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2.8 Related Work
As we have mentioned in the introduction, Analyzer is a quite a unique tool in the area
of analyses of both XML data and general data types. Not to mention the area of query
analyses, where there currently exists neither such a framework, not even results of a
respective analysis.

Considering the area of XML data analysis, we can find several papers which in-
volve the results of various types of statistical data analyses. However, in all the cases
the respective tool (or a set of tools) is not available, so the analyses are neither exten-
sible, nor repeatable. The papers analyze either the structure of DTDs, the structure of
XSDs, the structure of XML documents (regardless their schema), or the structure of
XML documents in comparison with XML schemas. The sample data usually differ,
whereas, since the authors did not use an advanced crawler, the set is usually quite
small and unnatural.

DTD Analyses For the first time an analysis of the structure of DTDs, in particu-
lar 12 real-world DTDs, probably occurred in paper [2] and it was further extended
in papers [3] (60 DTDs) and [4] (2 DTDs). They focused especially on the number
of (root) elements and attributes, the depth of content models, the usage of mixed
content, IDs/IDREFs, and attribute optionality (i.e., #IMPLIED, #REQUIRED, and
#FIXED), non-determinism and ambiguity. A side aim of the papers was a discussion
of shortcomings of DTDs, since the XML Schema was only in the status of a prelim-
inary working draft. The most important findings are that real-world content models
are quite simple (the depth is always less than 10), the number of non-linear recursive
elements is high (they occur in 58% of all DTDs), the number of shared elements is
significant, and that IDs/IDREFs are not used frequently.

XML Schema Analyses With the arrival of XML Schema, as the extension of DTD,
a natural question has arisen: Which of the extra features of XML Schema not allowed
in DTD are used in practice? Paper [5] is trying to answer it using statistical analysis of
real-world XML schemas, in particular 109 DTDs and 93 XSDs. The most exploited
features seem to be restriction of simple types (found in 73% of schemas), extension
of complex types (37%), and namespaces (22%). The first finding reflects the lack of
types in DTD, the second one confirms the naturalness of object-oriented approach,
whereas the last one probably results from mutual modular usage of XSDs. The other
features are used minimally or are not used at all. The concluding finding is that 85%
of XSDs define local-tree languages that can be defined by DTD as well. Paper [25],
that also focuses directly on structural analysis of XSDs, defines 11 metrics of XSDs
and two formulae that use the metrics to compute complexity and quality indices of
XSDs. Unfortunately, there is only a single XSD example for which the statistics were
computed.

XML Data Analyses Paper [6] (and its extension [119]) analyzes the structure of
about 200,000 XML documents directly, regardless eventually existing schema. The
statistics are divided into two groups – statistics about the XML Web (e.g., clustering
of the source Web sites by zones and geographical regions, the number and volume of
documents per zone, the number of DTD/XSD references etc.) and statistics about the
XML documents (e.g., the size and depth, the amount of markup and mixed-content
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elements, fan-out, recursion etc.). The most interesting findings of the research are that
the structural information always dominates the size of documents, both mixed-content
elements (found in 72% of documents) and recursion (found in 15% of documents) are
important, and that documents are quite shallow (they have always fewer than 8 levels
in average).

A much simpler document analysis performed in paper [24] consists of two parts
– a discussion of different techniques for XML processing and an analysis of real-
world XML documents. The sample data consists of 601 XHTML [120] Web pages,
3 documents in the DocBook format8, an XML version of Shakespeare’s plays9 (i.e.,
37 XML documents with a common simple DTD) and documents from the XML Data
Repository project10. The analyzed properties are the maximum depth, the average
depth, the number of simple paths, and the number of unique simple paths; the results
are similar to the previous cases.

XML Data vs. XML Schema Analyses The work initiated in the previously men-
tioned articles is taken up by probably the latest paper in this field [14]. It enhances the
preceding analyses and defines several new constructs for describing the structure of
XML data (e.g., so-called DNA or relational patterns) and analyzes XML documents
together with their eventual DTDs/XSDs that were collected semi-automatically, i.e.,
with interference of human operator. The reason is that automatic crawling of XML
documents generates a set of documents that are unnatural and often contain only triv-
ial data which cause misleading results. The collected data consist of about 16,500
XML documents of more than 20GB in size divided into 133 collections, whereas on-
ly 7.4% have neither a DTD nor an XSD. Such a low ratio is probably caused by the
semi-automatic gathering.

The data were divided into five categories – data-centric, document-centric, ex-
change, report, and research. The first two categories correspond to classical cat-
egories [121], the other three are introduced to enable finer division. The statistics
described in the paper are also divided into several categories – global (e.g., number
of various constructs), level (i.e., distribution of various constructs per level), fan-out
(i.e., branching), recursive (i.e., types and complexity of recursion), mixed-content
(i.e., types and complexity of mixed contents), DNA (i.e., types and complexity of
DNA patterns), and relational (i.e., types and complexity of relational patterns). They
were computed for each document category and, if possible, also for both XML docu-
ments and XML schemas and the results were compared.

Most interesting findings and conclusions for all categories of statistics are partly
expectable (e.g., that tagging usually dominates the size of document or that mixed-
content elements are used in 77% of document-centric documents) and partly similar
to the previous results (e.g., that the average depth of XML documents is about 5).
However, there are also some very interesting observations and conclusions. For ex-
ample, recursion statistics show that despite the typical assumptions recursion occurs
quite often, especially, in document-centric (43%) and exchange (64%) documents, the
number of distinct recursive elements is typically low (for each category less than 5)
and that the type of recursion commonly used is very simple.

8http://www.docbook.org/
9http://www.ibiblio.org/xml/examples/shakespeare/

10http://www.cs.washington.edu/research/xmldatasets/
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As we can see, the performed analyses reflect the development of XML technologies
and usage of XML data in various applications. The problem is, that all the papers are
relatively old (the first paper is from 2001, the last one is from 2006), so the results
are obsolete. At the same time, there occur new XML technologies, data types and
applications, whose analysis would be very useful. And, a similar study would be even
more useful in the area of XML operations.

2.9 Open Problems

Even though the current version of Analyzer is a fully functional system that can be
applied on analyses of real-world XML data (as partially shown in Sections 2.6.5
and 2.7.3), there are naturally various open problems to be focussed on.

Advanced Crawling Apart from classical crawling strategies on the basis of URLs
used in HTML or XHTML linking constructs, detection of file types using file exten-
sions or MIME types etc., we can exploit properties of the particular type of data more
deeply. For instance, XML documents involve references to respective XML schemas
they are supposed to be valid against, XQuery queries refer to the the documents they
are posed over, whereas XSDs can refer to other schemas they consist of using con-
structs such as import, include or redefine. Also more advanced linking XML
technologies, such as XPointer [122] or XLink [123] can be used to mutually refer the
data.

Even more advanced crawler can deal with typical situations when the referenced
data are not present directly in the given address, but “close” to it, i.e., in a neighboring
directory, in a file with a slightly modified name etc. In this case the search strategy
cannot be exact, but some kind of fuzzy searching and “guessing” must be incorporat-
ed. A similar situation occurs in case of, e.g., XQuery queries, where we usually know
the exact name of the queried document, but not the path.

Last but not least situation to be solved occurs in situations when a given file type
(e.g., a script with XPath queries) does not have a specific extension or a user does
not know and use it. So the crawler cannot rely on the extensions and/or other simple
types of identification and must analyze directly the content of the file. Naturally,
such analysis cannot be detailed since it would highly worsen efficiency of crawling,
but a kind of reasonable heuristics for particular file types must be proposed and, in
particular, tested.

Improvements of Analytical Plugins The current analytical plugins are able to an-
alyze basic structural aspects of XML documents and XML schemas. Naturally, they
can be further extended so that they cover most of the statistics used in the related
work (see Section 2.8). However, since the current approaches are relatively old, we
can go even further and analyze new, not considered or advanced features. An exam-
ple can be new constructs of XML Schema 1.1 [124, 125] such as, e.g., assert and
report that enable one to express advanced integrity constraints using XPath, XSLT
scripts and their constructs, complexity and expressive power, or advanced schema
languages, such as Schematron [51] or RELAX NG [102].
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Detailed Analysis of Current Real-World Data Having such a robust tool for anal-
ysis of real-world data, a natural next step is to perform a detailed analysis of the cur-
rent real-world data. Considering the XML data, we have focussed on in our first use
case implemented in the plugins, we can proceed in several steps. Firstly, a detailed
analysis that would cover all the metrics and observations from the existing papers
on data analyses (as described in Section 2.8) can be performed, whereas the found
differences would bear highly useful and interesting information.

In the second step, and in combination with the previous open issue of advanced
crawling, we can focus on analysis of real-world XML operations, in particular XPath
and XQuery queries. To our knowledge, there exist no such results, while, on the
other hand, the knowledge of typical queries used in the real-world applications would
highly help in the respective optimization strategies. An interesting target analysis
would be also usage of the queries within other XML technologies, e.g., XPath queries
in XSLT scripts or XSDs, XSDs in Web Services [70] etc.

And, last but not least, an important aspect of statistical analyses of real-world
data, not only XML one, is analysis of their evolution. A periodical, e.g., monthly,
report of results and their aggregation would bear even more important information
on evolution and tendencies of XML applications and, hence, could be used for more
advanced optimization purposes.

Analysis of Other Kinds of Data Despite the fact that XML data still keep a lead-
ing role in data representation and the related XML technologies are robust and ma-
ture, there exist other important formats and data types that become more and popu-
lar. A classical example are data types related to Semantic Web [126], such as RDF
triples [72], ontologies [127], Linked Data [89] etc. In this case we need to solve
similar issues, i.e., crawling, correction, and analyses, whereas other aspects, namely
evolution are even more important.

2.10 Conclusion
The main aim of this paper was to introduce a complex, open and extensible system
called Analyzer and describe several related research problems we have focussed on.
Analyzer allows for performing the full process of data analysis that consists of the
following steps:

1. data crawling,

2. data correction,

3. application of analyses, and

4. aggregation and visualization of results.

As a first use case we implemented and tested modules for analyses of real-world
XML documents, XML schemas and XQuery queries. In the first three steps of the
process we focussed in more detail especially on issues of efficient crawling of XML
data, re-validation of invalid XML documents, exploitation of similarity of XML data
in data analysis, and XML query analysis.
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Despite our original motivations related to XML technologies, we finally imple-
mented an application that is completely capable of performing analyses over docu-
ments of whatever types. Analyzer represents a framework, that gives a user an en-
vironment for gathering documents, configuring analyses, managing and scheduling
computations, permanent storage for files and computed data, and a browser for pre-
senting generated reports. The key advantages of Analyzer are as follows:

• Multiple versions of the same document are supported,

• Documents can be described by multiple types concurrently,

• Automatic attempts to download referenced documents are performed,

• Projects can be forced to process only documents of selected types,

• All analytical logic is implemented separately in plugins,

• Executing scheduled tasks in multi-threaded environment is exploited,

• Started computations can be interrupted and resumed later, and

• Computed data are permanently stored and available for browsing.

Our future plans will primarily be targeted to issues discussed in Section 2.9. First-
ly, we will focus on further improvements of existing plugins related to XML data
analyses and their exploitation in throughout analysis of both current state of real-
world XML documents and evolution of XML data in the following months. We plan
to repeat the analysis monthly and publish the new as well as aggregated results on
the Web. We believe that such a unique analysis will provide the research community
with important results useful for both optimization purposes as well as development of
brand new approaches. Concurrently, we will shift our target area to the new types of
data such as RDF triples, Linked Data, ontologies etc.

62



3. Linked Data Analysis
To demonstrate the versatility of Analyzer we focused on analysis of highly linked
data sets from available dumps of the Linked Data Cloud. In this section we describe
a statistical analysis of existing real-world RDF triples, in particular the linkage of
sample data sets and a structure of triples. We design own metrics for description
of structure and depth of linkage to be used in the tuning process of a distributed
linked data query engine [61]. The analysis proposes different characteristics that
appropriately capture and describe structural features of RDF triples, and provides
experimental results over 5 independent data sets with more than 21 millions of RDF
triples.

The contents of this section was published as a conference paper Analyses of RDF
Triples in Sample Datasets [54] at the 3rd International Workshop on Consuming
Linked Data (COLD 2012) held in conjunction with the 11th International Semantic
Web Conference (ISWC 2012).

3.1 Introduction
Linked Data [89] is not any particular standard, it is just a set of common practices and
general rules using which we can contribute to the Web of Data that emerged recently
to enrich the traditional Web of Documents. So, what are these rules? First of all, each
real-world entity should be assigned a unique URL identifier; these identifiers should
be dereferenceable by HTTP to obtain information about these entities; and, finally,
these entity representations should be interlinked together to form a global Linked
Data cloud.

Nevertheless, despite there are also other ways how to follow the mentioned Linked
Data principles, the most promising is obviously the RDF standard [19]. It assumes
data modelled as triples with three components: subject, predicate and object. These
triples can also be viewed as graphs, where vertices correspond to subjects and objects,
while labelled edges represent the triples themselves.

One of our ongoing research efforts should result into a proposal of a new querying
system dealing with large amounts of distributed and dynamic RDF data – issues we
previously identified as open problems of the existing approaches from the area of RDF
triples storing, indexing and querying [32]. It is apparent that, having the knowledge
about structural and other features of data we want to process, we are able to manage
such data more efficiently.

In fact, this idea predetermines the aim of this paper – we propose a set of char-
acteristics of RDF triples and provide experimental results over several selected data
sets. These characteristics capture features of individual triple components, triples
themselves and also structural features of RDF graphs, while performed experiments
attempt to outline the nature of real-world RDF data.

3.2 Motivation
If we knew characteristics about data we want to process, we would have better chances
to propose algorithms and data structures that could be more efficient with respect to
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our expectations. In other words, this idea justifies the aim of this paper. Having
understood RDF triples we want to store, index and query, we can, hopefully, achieve
better results. Moreover, we can also come across approaches that require sort of a
configuration (e.g., Structure Index by Tran and Ladwig [37] or Summary Index by
Harth et al. [128]). But how can we provide required parameters, if we do not know
enough about data or queries?

Therefore, we have proposed several characteristics we find interesting to study.
First of all, the majority of indexing approaches (e.g., Hexastore by Weiss et al. [33]
or BitMat Index by Atre et al. [34]) proposes to store components of RDF triples and
triples themselves separately (even using fairly different structures) in order to reduce
space requirements. Knowledge of string features of these component values could
support this practice.

The second group of characteristics worth of studying is related to query evaluation
and, in particular, access patterns to individual triple components. In case of full-text
querying, we usually do not care which particular triple component should match the
queried value, but in case of structural querying like SPARQL [35], we need to have
suitable indices allowing us to efficiently access particular components according to
the prompted query. These indices can be built, for example, on nested lists (Hexas-
tore [33]) or B+-trees (RDF-3X by Neumann and Weikum [36]).

Finally, we can even attempt to study more complex characteristics based on struc-
ture of RDF graphs. When using SPARQL with queries based on graph patterns, we
often need to do operations similar to traditional joining in relational databases, only
with the difference that we are working with RDF triples, i.e., graph data. This joining
can be supported by appropriate indices as well. Like, for example, precomputed paths
(RDF-3X [36]) or stars (Structure Index [37]).

It is apparent that this paper cannot encompass all possible features of RDF data
that influence possibilities of their processing. So, as we will see in the following
section, we have proposed at least several of them (those we treat as the most important
ones with respect to our research intent) and attempted to compute them over particular
selected real-world data sets.

3.3 Analyses

Having described our motivation, we can move forward to the core part of this paper.
First, we provide some essential definitions in order to describe basic knowledge and
theoretical background we need to understand to correctly introduce characteristics of
RDF triples and data sets we want to study.

3.3.1 Basic Definitions

RDF triples are composed from three components: a subject, a predicate and an object.
Beside literal values, the main building block for components of these triples is based
on URI (uniform resource identifier) references as they are expected by the RDF stan-
dard. However, we assume that these references are always automatically translated to
full URIs.

Thus, we can introduce U as a domain of all possible URI values, i.e., identifiers
of resources. Analogously, assume that B is a domain for blank nodes and L a domain
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for literals. We do not need to study the content of these domains, we only use them to
restrain the allowed values of individual triple components.

Definition 9 (RDF Triple). We say that t = (s, p, o) is an RDF triple (or just a triple),
if s ∈ U∪B is a subject, p ∈ U is a predicate, and o ∈ U∪B∪L is an object. We say
that t is a data triple if o ∈ L.

All values (we call them terms) from domains U, B and L are seen as ordinary
strings. This allows us to get deeper insight into the internal structure of URIs, gener-
ally conforming to SchemeName : HierarchicalPart [? Query ] [# Fragment ]
scheme (we came across and studied only URLs, thus we could make this simplifica-
tion). First of all, having any term x, length(x) denotes a length of x, i.e., number of
symbols it is composed of.

Now, we describe how to split URI terms into two parts. Assume that x ∈ U and
p is a position of the last # symbol in x. Then we define prefix(x) as a substring of
x before p and suffix(x) as a substring after p. If there is no Fragment part, then
we analogously use the last occurrence of / symbol from the hierarchical part instead.
This approach should capture the way how URI terms are usually used and designed
by creators of data documents and ontologies.

Sets of RDF triples are commonly modelled as RDF graphs.

Definition 10 (RDF Graph). Given a set of triples T , we define G = (V , T ) to be an
RDF graph (or just a graph) as follows:

• V is a set of graph vertices, where V = {x | ∃ t ∈ T , t = (s, p, o) such that
x = s or x = o }, and

• T as a set of directed graph edges corresponds to the underlying set of triples.

Although we use a term graph, RDF graphs are in fact directed multigraphs since
there can be more edges between the same vertices. Next, given a vertex v ∈ V and an
edge e = (s, p, o) ∈ T , we say that e is an ingoing edge to v if v = o, and that e is an
outgoing edge from v if v = s.

3.3.2 Proposed Characteristics
According to the discussed motivation, we are now able to propose several character-
istics that may be useful to know about RDF data we want to store, query or process in
a different way.

Term Features

The first group of proposed characteristics is connected with features of individual
terms in triples. First of all, the majority of existing approaches for indexing and
storing RDF data attempts to find methods of reducing the space required to store the
triples. For this aim we can exploit an idea that terms often repeat, or at least their
substrings may often repeat across triples in a data set.

In other words, we can inspect lengths of particular terms, either with respect to
their type (U, B and L domains), or altogether. Next, we can split terms according
to our definition of their prefix and suffix parts, exploring one suitable way of finding
shared substrings.
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Triple Features

Now, we focus on characteristics of triple components and their categorisation. Sup-
pose that we have a set of triples T . Given a particular term x (regardless its type),
we may be interested how many triples contain this term at a particular component
(subject, predicate or object). In other words, given a suitable term x, we can define
Projections=x(T ) = { t | t ∈ T , t = (s, p, o) and s = x } as a subject projec-
tion (or just S projection) corresponding to the set of all triples in T having the given
fixed subject value equal to x. Analogously, we can define Projectionp=x(T ) and
Projectiono=x(T ) as P projection and O projection respectively. If we model T as a
graph, S and P projections correspond to sets of outgoing and ingoing edges respec-
tively.

Moreover, there is no problem extending this idea to projections on two compo-
nents concurrently. Therefore, we can define SP projection, PO projection and SO
projection analogously. For example, Projections=x,p=y(T ) = { t | t ∈ T , t = (s, p,
o), s = x and p = y } for two suitable terms x and y. In particular, the SP projection
is directly connected with the issue of multivalue properties of RDF triples causing
problems in relational databases.

Star Patterns

Let G = (V , T ) be a graph and v ∈ V a vertex. We define a graph star to be a set of
edges Sv = S in

v ∪ Sout
v , where S in

v = { e | e ∈ T , e= (s, p, o) and v = o } is an ingoing
star around v composed from ingoing edges to v, and, analogously, Sout

v = { e | e ∈ T ,
e = (s, p, o) and v = s } is an outgoing star around v.

Next, we define sig(Sv) as a signature of star Sv (regardless full, ingoing or outgo-
ing) to be a set of all predicates involved in a given star; in other words, sig(Sv) = {x
| t ∈ Sv, t = (s, p, o) and x = p }.

Given a graph G, we can split its vertices V into disjoint sets according to star
signatures. This means that two vertices v1, v2 ∈ V belong to the same set, if sig(Sv1)
= sig(Sv2). Since this classification is an equivalency relation over V , we can call these
sets as star classes. Analogously, we could introduce ingoing/outgoing star classes
considering only ingoing/outgoing edges respectively.

Star classes and their sizes can describe uniformity of graph vertices, thus, we
can base additional characteristics on the notion of stars. Apparently, their idea is
connected (and inspired) by Tran et al. [37] and their Structure Index.

Path Patterns

Let G = (V , T ) be a graph for a set of triples T and vS , vT ∈ V two vertices. We say
that a sequence of edges PvS ,vT = 〈e1, ..., en〉 with length n ∈ N0 is a directed path
from the source vertex vS to the target vertex vT , if the following conditions hold:

• First, let ∀ k ∈ N, 1 ≤ k ≤ n: ek = (sk, pk, ok) and ek ∈ T .

• If n > 0, then s1 = vS and on = vT . If n = 0, then necessarily vS = vT .

• Next, ∀ k ∈ N, 1 ≤ k < n: ok = sk+1, i.e., edges follow each other.

• ¬∃ j, k ∈ N, 1 ≤ j < k ≤ n: sj = sk or oj = ok or sj = oj , in other words,
vertices do not repeat.
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Given a particular path PvS ,vT , we can define its signature as a sequence of predi-
cates of its edges, i.e., sig(PvS ,vT ) = 〈p1, ..., pn〉.

Directed paths can serve as another characteristic that is closely related to the pro-
cess of evaluating queries based on SPARQL graphs patterns.

Features Summary

The following listing provides a simplified overview of all characteristics over RDF
triples we have proposed in this paper:

• Term lengths – length of U and L terms viewed as strings.

• Term prefixes – length of prefixes and suffixes of U terms.

• Data triples – ratio of data and other triples in data sets.

• Triple projections – cardinality of S, P, O and SP, PO, SO projections.

• Star patterns – sizes of graph, ingoing and outgoing star classes.

• Path patterns – path occurrences according to their signatures.

3.4 Experiments
In this section, we first describe publicly available data sets we have chosen for our ex-
periments, then we provide their implementation basics and, finally, we present results
over these data sets together with some general observations.

3.4.1 Data Sets Selection
The selection of appropriate data sets is probably one of the most important issues of
any experiments. The first option could be to download a representative sample of RDF
triples from the entire Linked Data cloud. However, with respect to the planned usage
of our querying framework, we have finally decided to perform the experiments over
a few selected data sets only. They are from different sources, cover different thematic
areas and they contain several millions of triples. Although we cannot omit DBPedia
as one of the most important Linked Data sources, we selected also other interesting
ones. In particular, data sets that are listed in the following summary, including their
abbreviations we will use in the further text:

• ACM (ACM publications1) – ACM proceedings data set with author and publi-
cation information.

• DBCS (Czech DBPedia2) – information extracted from Czech Wikipedia in-
foboxes. This data set contains less clean data, which is actually a common
situation in sources that are automatically derived from non-structured data.

1http://acm.rkbexplorer.com/models/acm-proceedings.rdf
2http://downloads.dbpedia.org/3.7-i18n/cs/infobox_properties_cs.

nt.bz2
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Figure 3.1: Database schema

• DBEN (English DBPedia3) – information about persons (records like date and
place of birth etc.) extracted from English and German Wikipedia, represented
using the FOAF vocabulary.

• GO (Gene Ontology4) – one of the data sets of Bio2RDF project describing
publicly available DNA sequences.

• MDB (Movie Database5) – database containing triples about actors, movies and
their relationships.

3.4.2 Implementation Basics
We downloaded dumps of all the previously described data set in one of these formats:
RDF/XML6, n-triples7 or Notation 38. Then we parsed these dumps using scripts9

implemented in Java and Python.
After necessary data cleaning (some data sets contained syntax errors), we stored

all obtained triples into MySQL database using Percona Server 5.510 running on De-
bian operating system.

Since we wanted to achieve efficient computation of the proposed characteristics,
we designed the database schema so as to be based on three tables: the first table
contains all URI prefixes, the second one full URI values, and, finally, the third one
contains triples themselves. However, instead of URI terms we stored references to the
second table and instead of literals it contains their MD5 hashed values together with
original lengths. The simplified schema is shown in Figure 3.1.

3.4.3 Experiment Results
The majority of proposed characteristics was computed using MySQL scripts11. The
description of the most interesting observations together with detailed experiment re-
sults is the subject of the following text.

3http://downloads.dbpedia.org/3.7/en/persondata_en.nt.bz2
4http://s4.semanticscience.org/bio2rdf_download/rdf/genbank
5http://queens.db.toronto.edu/~oktie/linkedmdb/

linkedmdb-latest-dump.nt
6http://www.w3.org/TR/rdf-syntax-grammar/
7http://www.w3.org/TR/rdf-testcases/
8http://www.w3.org/TeamSubmission/n3/
9http://ksi.mff.cuni.cz/~starka/ld_parsers.zip

10http://www.percona.com/software/percona-server/
11http://ksi.mff.cuni.cz/~starka/ld_mysql.zip
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General Characteristics

Firstly, we present the basic characteristics of the data, the number of unique prefixes,
URIs and triples. These results show the diversity of triples within particular data sets
(see Table 3.1).

Table 3.1: Term and triple characteristics

ACM DBCS DBEN GO MDB Total
Term Counts

Unique prefixes 11 10,157 137 195 5,204 15,704
Unique URIs 810,266 162,625 867,428 1,187,775 1,327,165 4,355,259

Triple Counts
Unique triples 2,715,890 1,426,244 4,502,983 7,411,868 5,291,548 21,348,533
Data triples 840,008 1,019,355 3,006,569 2,418,975 2,418,413 9,703,320

Term Lengths
Term prefixes 31.55 54.52 48.87 57.27 47.66 52.21
Term suffixes 30.07 18.12 16.87 19.03 16.23 19.77

We can see that there are only 11 unique prefixes in ACM data set, whereas there
are 10,157 prefixes in DBCS data set. These numbers suggest that ACM data set is
relatively closed (it contains mainly entities within its own domain – publications and
their authors), while DBCS contains many dirty triples, i.e., triples where the object
component is recognized as a URI but it is not a part of DBPedia (and probably neither
a part of the Linked Data cloud).

The results also show the average lengths of URIs. Although there are no extreme
values, we can see that ACM data set differs. This is because the URIs (in all data
sets) often contain artificial and often automatically generated identifiers combined
with entity types and/or human readable names.

The detailed distribution of both URI and literal term lengths with respect to select-
ed data sets can be seen in Figure 3.2. Since each data set has a different total number
of triples, we normalized the computed lengths by the total number of terms in each
data set.

(a) Literals (b) URIs

Figure 3.2: Distribution of literal and URI term lengths

As we can see, all data sets except ACM use URIs around 40 characters long. This
is because identifiers in ACM data set are padded by numeric values which causes
these URIs are of the same length. On the other hand, the lengths of literals mostly
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range from 1 to 20 characters. This is caused by the usage of common values, i.e.,
person names, dates, numbers, etc. Only ACM data set contains textual literals, in
particular, keywords and concatenated lists of authors.

Triple Projections

Assume that T represents a particular data set, Θ is a comparison operator over N
(e.g., = or >) and c ∈ {s, p, o} stands for particular triple component. Then we can
define sizeΘz,c = |{x : |Projectionc=x| Θ z }| as a shortcut for the number of terms x
whose projections Projectionc=x according to a particular component c have exactly
z triples in case of =, more than z triples in case of > (and analogously for the other
comparison operators).

We can also define sizeΘz,c1,c2 = |{ (x1, x2) : |Projectionc1=x1,c2=x2| Θ z }| for
double projections with both c1, c2 ∈ {s, p, o} and c1 6= c2 as expected.

These two notions help us to present interesting features of the triple projection
characteristics. In other words, we study the distribution of terms (or pairs of terms in
case of double projections) according to their significance inside given data sets. For
example, having the condition Θz equal to = 1 and inspecting the object components,
we are interested in terms x such that there exists right one triple in T with x at com-
ponent o. Then, size=1,o gives us the number of such x in T . Several projection results
are presented in Table 3.2.

Table 3.2: Triple projections

ACM DBCS DBEN GO MDB
Term Counts

Unique subjects 810,248 68,946 790,703 776,698 694,399
Unique predicates 14 5,227 9 22 250
Unique objects 489,912 98,638 76,736 1,171,491 1,049,248

Simple Projections

size=1,o
403,425
(82.3%)

69,886
(70.9%)

45,551
(59.4%)

888,005
(75.8%)

657,484
(62.7%)

size>1,o
86,487
(17.7%)

28,752
(29.1%)

31,185
(40.6%)

283,486
(24,2%)

391,764
(37.3%)

Double Projections

size=1,s,p
2,002,042
(89.1%)

881,317
(86.4%)

246,078
(94.2%)

6,429,816
(98.8%)

4,386,514
(94.5%)

size>1,s,p
245,828
(10.9%)

139,254
(13.6%)

3,964,721
(5.8%)

79,925
(1.2%)

253,471
(5.5%)

size=1,p,o
403,425
(82.3%)

102,127
(79.2%)

56,018
(61.7%)

910,420
(76.2%)

873,643
(74.1%)

size>1,p,o
86,487
(17.7%)

26,761
(30.8%)

34,809
(38.3%)

284,764
(23.8%)

306,150
(25.9%)

size=1,s,o
2,661,787
(99.1%)

381,569
(82.6%)

1,439,886
(64.0%)

4,980,199
(86.4%)

2,857,318
(80.9%)

size>1,s,o
24,297
(0.9%)

80,359
(17.4%)

810,836
(36.0%)

783,039
(13.6%)

673,347
(19.1%)

The results show, that there are usually only few unique predicates which are used

70



in the triples. In DBCS, there are over 270 triples for each predicate, which is the
lowest ratio between all data sets. In other data sets, there are thousands of triples per
predicate. For subjects, the average number varies from 2 to 20.

In the second and third part of the table, we show projections for O and SP, PO,
SO respectively. In each case we split the entire space into two disjoint parts: classes
with size equal to 1 and classes with greater size. It is interesting that in most cases
the projections usually have right one triple. We can also say that a typical data set
contains only a very limited number of predicates. Subjects are used mostly more than
once, but they do not form large hubs.

Star Patterns

Assume that T are triples of a particular data set, then we can split vertices V of
the corresponding graph G = (V , T ) into star classes according to signatures of their
star patterns, as we already know. Figure 3.3 depicts the distribution of star classes
according to their sizes, separately for ingoing and outgoing stars. In other words,
e.g., for ingoing star patterns, the horizontal axis represents different possible sizes
of signatures (different numbers of predicates on ingoing edges) and the vertical axis
represents the overall number of ingoing star classes having the given size.

The values are normalised in the same way as in the term length characteristic, i.e.,
normalised by the total number of distinct star signatures in the particular data set.

(a) Outgoing (b) Ingoing

Figure 3.3: Distribution of ingoing and outgoing star class sizes

We can see that most of the unique outgoing stars have the size (i.e., number of
outgoing predicates) from 10 to 30. Similarly, most of the ingoing stars have the
size from 10 to 30, only except ACM data set where sizes are distributed uniformly.
Moreover, for all data sets except DBCS, the first 10% of star signatures covers more
than 80% of triples.

Path Patterns

Similarly to star patterns, we computed also the path pattern characteristics. In partic-
ular, we considered paths of lengths equal to 2 and 3, since longer paths were out of
our computation possibilities. For each path length we detected the number of unique
path signatures and the overall number of all paths conforming to them, as we can see
in Table 3.3.

Moreover, we also studied another aspect – having a particular number of the most
frequent path signatures, how many paths do these signatures conform to? The number
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of paths with the most frequent signature is presented in the mentioned table, while the
entire dependency is depicted in Figure 3.4.

Table 3.3: Statistics of path classes

Length Property ACM DBCS DBEN GO MDB

2
Unique signatures 7 33,394 14 55 275
Number of paths 3,382,538 1,191,731 178 1,300,120 2,470,993
Greatest class 1,026,874 27,786 38 247,477 248,633

3
Unique signatures 0 67,107 0 206 664
Number of paths 0 1,428,871 0 26,863,416 15,804,941
Greatest class 0 15,531 0 2,754,908 550,887

Finally, according to computed results, the ratio between unique path signatures
and all paths themselves is relatively low. In other words, having a particular frequent
signature, there are many paths conforming to it, which can be exploited in indexing
techniques dealing with precomputed paths.

(a) ACM (b) DBCS (c) DBEN

(d) GO (e) MDB

Figure 3.4: Aggregated number of paths according to the signature frequency

3.5 Related Work
Although there exist several works about analyses of semantic documents and Linked
Data, there are still open questions that could be discussed.

We start this overview with a system proposed in Section 2 where we proposed
a system for automatic document acquisition and analysis. Although we primarily
focused on structural characteristics of XML documents, some basic ideas and insight
into the complexity of exported data sets can be applied also in the context of Linked
Data.

Ding et al. [38] described the analysis of more than 1.5 million FOAF documents.
In particular, they inspected the usage of the FOAF namespace, host names and partic-
ular properties, as well as the relationships of a person in a group and other components
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of a social network. In general, this work describes several interesting characteristics,
but its impact and context is very restrained.

Both the previous works assumed analyses at the document level, whereas Ro-
driguez [129] looked at data sets from the Linked Data cloud in a more complex way
and computed some basic characteristics between them.

The general statistics of the Linked Data cloud are described in Bizer et al. [39].
The authors aimed at characteristics and link statistics between selected data sets.
These data sets were divided by different thematic domains, for which several ingo-
ing and outgoing statistics were computed. Provenance, licensing and data set-level
metadata published together with these data sets were also considered.

3.6 Conclusion
In this paper we focused on several characteristics of publicly available Linked Data
data sets. The results show that although the data sets are from different areas, pub-
lished by different methods and institutions, some of their characteristics are similar
and, thus, the knowledge of these characteristics can be harnessed to make the man-
agement of RDF data more efficient.

We considered only a small sample of the Linked Data cloud as well as only a
limited set of proposed characteristics dealing primarily with RDF triple components
and structure only. On the other hand, we hope that despite this fact some observations
presented in this paper can be generalised, further extended and appropriately exploit-
ed. In our future work, we plan to enrich these characteristics and also encompass a
wider set of data sets and triples themselves.
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4. XML Query Analyses
As we have mentioned, there exist several papers dealing with analyses of XML data.
However, currently there exists no paper that focuses on XML data operations, namely
XML queries. From the perspective of the implementor of an XQuery or XSLT pro-
cessor, such an analysis may discover that a number of language features is rarely
used and, therefore, not worthy of aggressive optimization. For example, the fol-
lowing/preceding axes are supposed to be used significantly less frequently than the
child/descendant axes; consequently, the majority of indexing and querying techniques
like twig joins [29] are limited to the child/descendant axes.

In this section, we describe the design and the implementation of a module for
statistical analyses of XQuery programs, as an extension of our previously described
analytic framework Analyzer (see Section 2). In particular, the XQuery program is
converted to an XML representation which allows the user to formulate analytical
queries in XPath. Preliminary experimental results computed over the XML Query
Use Cases [30] and XML Query Test Suite are described as well.

The contents of this section was published as a conference paper XQConverter: A
System for XML Query Analysis [58] at the 6th International Workshop on Flexible
Database and Information System Technology (FlexDBIST 2011) held in conjunction
with the 22nd International Conference on Database and Expert Systems and Applica-
tion (DEXA 2011).

4.1 Introduction
Since the number of implementations of XQuery [21] evaluators is significantly grow-
ing, the implementers encounter problems of optimization of different XQuery con-
structs. The question is which of them are worth to engage, i.e., which are used in
real-world queries often and which are not. In this paper we describe a system that
will answer the question. The tool is able to count the number of selected constructs
and their combinations over a given XQuery program and, hence, to provide informa-
tion on typical XQuery queries.

A typical approach of researchers analyzing programming languages is to imple-
ment a simple tool for recognizing words in the target language, summarize these
words and so get the frequency of their usage. Due to extreme context dependency
of XQuery, such simple tools cannot work correctly and lead to wrong results. For
example, a short and syntactically correct XQuery program

for $for as for in "for" return <for/>

contains the word “for” five times, each time in a different meaning depending on
its position in the program. The researcher with a simple tool that is probably looking
for the word “for” in the meaning of a for-clause from the FLWOR expression gets
misleading results. That is why a more precise tool needs to be implemented, at least
as strong as a correct lexical scanner of XQuery, which can also recognize the mean-
ing of the scanned words. However, such scanner would be sufficient for calculating
usage frequency of individual words with the given meaning, but not whole language
constructs and their combinations, such as, e.g., the number of multiplicative operators
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within FLWOR expression. Hence, we also need an XQuery parser connected to the
lexical scanner which would be able to recognize the structure of programs according
to XQuery grammar. The selected constructs can be then traced by adding a simple
code for accumulating the number of passes over the given rule representing the se-
lected constructs in the parser. Nevertheless, the disadvantage of this solution is that
tracings of constructs are hard coded and when it is required to add or change the ob-
served construct, the source code of the parser needs to be modified. This conclusion
leads us to an idea of general observation, i.e., creating a data structure representing
the input program together with a meta-language for querying the structure.

A simple and natural way we utilize in this paper which enables one to reach this
target is to build a syntax tree. It can be then easily transformed into XML [1] rep-
resentation and queried using, e.g., XPath [28]. However, this approach expects the
analyzer to know the full and complex XQuery grammar. In addition, a syntax tree
is too big even for small XQuery programs and contains parts that are not interesting
for the analysis. That is why we propose a new and more suitable representation of an
XQuery program that suppresses the unimportant aspects and simplifies further pro-
cessing. In general, we describe the design and implementation of a general system
for the analysis of XQuery programs, XQConverter, as the extension of our previously
described analytic framework Analyzer [60] which, among others, offers friendly user
interface for creating new queries and browsing the results.

Related Work. Although the analysis of the XML data and its related formats is one
of the common optimization strategy (such as [14, 2]), the complex analysis of real
XQuery programs is still missing. Currently, there exist a test suite[31] and several
benchmarks (a short survey described in [130]) allowing to test XQuery engines, but
they do not respond to the question of the used constructs and their distribution in do-
main specific sets. In this paper, we propose the extension of the Analyzer framework
to represent a XQuery program which allows the user to make statistical queries.

4.2 XML Representation
In the following sections there are described the basics for designing the internal XML
representation according to which it is decided how the given construct should be
formed in the XML representation and, hence, what nodes and attributes will be used.
Not all constructs of XQuery are described in detail, but only those which are complex
and interesting and where different possible approaches can be discussed. The pre-
sented constructs are introduced in a natural order. For instance an expressions needs
to be designed before operators, because the operators use the expressions. Due to the
size restrictions the full XQuery grammar, referenced in following text, is defined in
the XQuery grammar1.

4.2.1 Types
Types in XQuery are represented by nonterminals SequenceType and SingleType intro-
duced in rules 117 and 119 in the XQuery grammar. Syntactically and also seman-
tically, SingleType is also SequenceType as it consists of AtomicType and an optional

1http://www.w3.org/TR/xquery/#nt-bnf
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document-node(element(ns:root,ns:RootNodeType?))

<Type cardinality="one">
<KindTest kind="document">
<KindTest kind="element" name="ns:root"

type="ns:RootNodeType" nillable="true"/>
</KindTest>

</Type>

Figure 4.1: Examples of types

occurrence indicator. This allows unification of constructs for these nonterminals into
a single node called Type. For distinguishing these two types in the XML, it has to be
mentioned that SingleType appears only in productions of symbols CastableExpr and
CastExpr in rules 56 and 57. With the exception of an empty sequence, the sequence
type consists of ItemType and an optional cardinality, which express the number of
items in the sequence. When the cardinality is not specified explicitly, it is of one
by default. The fact that the type is an empty sequence can be also expressed as it
has cardinality of zero. So the first information captured in Type node is the attribute
called cardinality and its value can be one of zero (for the empty sequence type), one
(if the cardinality is not explicitly specified), zero-or-one (for the symbol "?"),
zero-or-more ("*") and one-or-more ("+").

As rule 121 exposes, the type of items in the sequence can be either any item
type (terminal "item()"), an atomic type (such as xs:integer), or a node type
(nonterminal KindTest in rule 123). The first two can be easily converted into individ-
ual nodes AnyItem and AtomicType, where AtomicType node holds one attribute name
containing the name of the built-in atomic type. The last rule that needs to be convert-
ed into an XML structure to cover the whole construction of types in rule 123 with
all types of nodes. They can be expressed via a single node called KindTest with a
specified type in a value of attribute kind, i.e., document, element, attribute, schema-
element, schema-attribute, processing-instruction, comment, text or any-kind. Some
of these node types bear additional information, such as the name of an element or an
attribute and its data type, which are not further structured, so they can be expressed
also as attributes name and type.

The Figure 4.1 shows an example how the type is converted into its XML repre-
sentation.

4.2.2 Operators

Operators in XQuery are exposed in production rules from 46 to 58. The order how
the rules are nested describes the operator precedence. In our approach, we express
the precedence in the representation itself, not in the nodes of operators, with the aid
of a LALR2 parser [131]. As the parser shifts over the particular rules in the order of
operator precedence, the XML representation is built. The preceding operations ap-
pear at the lower levels of syntax tree and at the lower levels of XML representation
as well. This fact allows us to use unified node Operator for all operators with the

2Look-ahead LR parser is a parser driven by a parse table in a finite state machine format
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E1 + E2 and E5 <= E6 to E7

<Operator class="logical" name="and">
<Operator class="additive" name="plus">

nodes for $E1$ and $E2$
</Operator>
<Operator class="comparison"

name="less-than-equals" subclass="general">
node for $E5$

<Operator class="range" name="to">
nodes for $E6$ and $E7$

</Operator></Operator></Operator>

Figure 4.2: Operators example

information about operator in attribute name. This requires unique values for each
operator, but there are operators that can be captured with the same value, as this fact
might be interesting for the analysis. For example operator plus actually acts as two
operators, unary or binary. Also comparison expression operators "eq" and "=" both
express equality, but the first one in a value collation and the second one in a general
comparison meaning. This leads to an idea of unification of some operators with ei-
ther same notation or with the similar meaning, leaving the distinguishing information
into attribute class (i.e., unary, binary, etc.). Optionally, when this is not sufficient for
separating the meaning (only in case of comparison operators), the remaining informa-
tion for distinguishing operators is stored in attribute subclass. Usually one (in case of
unary operators) or two (binary operators) nodes with Expr meaning can appear under
Operator node.

The example at the Figure 4.2 shows how a more complex expression with multiple
operators with the different precedence is transformed into the XML representation.

4.2.3 FLWOR Expressions

The FLWOR expression, as the workhorse of XQuery, also deserves a detailed descrip-
tion. Production rule 33 presents FLWOR as a sequence of for and let clauses
(together called a tuple stream), an optional where clause, an optional order by
clause and a mandatory return clause. Hence, the designed FLWOR node will con-
sist of TupleStream node, optional WhereClause and OrderByClause nodes, and Re-
turnClause node.

An interesting situation is in case of OrderByClause node. As rule 39 describes,
the order by clause consists of one or more order specifications. Each order spec-
ification consists of Expr node and optionally of some modifiers introduced in rule
41. All of these modifiers are scalar, so it is preferred to mention them in the form of
attributes. The construction of the order clause can be seen on Figure 4.3.
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stable order by
$book/quality collation "http://www.ex.org/q",

<OrderByClause stable="true">
<OrderSpec collation-uri="http://www.ex.org/q">
node for $book/quality

</OrderSpec>
</OrderByClause>

Figure 4.3: Example of order by clause

4.2.4 Path Expressions

A path expression, captured in rules 68 and 69, consists of one or more steps, optionally
beginning with "/" or "//". The slashes denote the initial step of the path. When
it is not specified, the path begins with the context node, otherwise the root node is
the initial step. This aspect can be easily captured as Path node with a single attribute
called initial-step and its values of root or context.

According to rules 70, 71 and 81, the individual steps are either axis or filter steps
and both of them can be specified with predicates. As rules 82 and 83 show, the
predicates are just lists of expressions. This allows for designing Predicates node in
a very similar way as CommaOperator node and, thus, under this node a list of nodes
with expression meaning can appear. The step itself, either the filter step or the axis
step, is designed as Step node and the filter/axis node with optional Predicates node is
simply appended.

On the other hand, the axis step is a little bit complicated, because of abbreviat-
ed syntax. It is expected to represent the abbreviated and unabbreviated axis step as
similarly as possible. When the axis with abbreviated form is used, it is converted
into its unabbreviated form and then transcribed to the XML representation. All axes
then contain boolean attribute called abbreviated for expressing the used syntax. Ev-
ery axis is then transcribed into the XML representation as Axis node with attribute
kind capturing the kind of axis (child, self, etc.) and an additional attribute for axis
direction called direction that can have two possible values: forward and reverse. Ex-
ample of short path expression //car[@type="SUV"] and its corresponding XML
representation is depicted in the Figure 4.4.

4.2.5 Constructors

The last constructs whose design we describe in detail are constructors. A very similar
approach, as in Section 4.2.2, is used to create a uniform node, called Constructor, for
all constructors. There are two construct types: direct and computed. Each of them
can construct several node types. This information can be easily captured in attributes
kind and type. The child nodes of the Constructor node are: Name (for the computed
and the direct element constructor and the computed attribute constructor), AttrList
(only for the direct element constructor), PITarget (for the direct and the computed
processing instruction constructor) and finally Content (for all constructors). Thus,
each constructor representation consists of some of these four nodes. Name node is at
the place where either a direct name is presented or is built by an expression. AttrList
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<Path initial-step="root">
<Step><Axis abbreviated="true" direction="forward"

kind="descendant-or-self">
<KindTest kind="any-kind"/>

</Axis></Step>
<Step>

<Axis abbreviated="true" direction="forward"
kind="child">

<NameTest name="car"/>
</Axis><Predicates>

<Operator class="comparison" name="equals"
subclass="general">
<Path initial-step="context">
<Step><Axis abbreviated="true"

direction="forward" kind="attribute">
<NameTest name="type"/>

</Axis></Step></Path>
<Literal type="string" value="SUV"/>

</Operator></Predicates>
</Step>

</Path>

Figure 4.4: Path expression examples

node simply consists of the list of Attribute nodes, as rule 97 expresses.
The most interesting part of constructors is Content node, as it can appear in all

possible constructor types.
The example of the element constructor with a mixed content and its XML repre-

sentation is shown in the Figure 4.5.

4.2.6 Querying

As we previously mention, we use XPath as an instrument to query the output XML.
For instance, the XPath expression depicted bellow evaluates the additive operators in
a given XQuery program.

//Operator[@class="additive"]

4.3 Architecture and Implementation

The architecture of XQConverter3 consists of several parts as depicted in Figure 4.6.
It consumes an XQuery program in the form of a character stream. This stream is
transformed into lexical tokens by the XQuery lexical scanner. The tokens form the
input for the XQuery parser which instead of building a syntax tree builds the XML

3http://kenai.com/projects/analyzer/downloads/download/xqa.zip
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<tv>five&gt;<program/>{attribute channel {10}}</tv>

<Constructor kind="direct" type="element">
<Name name="tv"/>
<Content>
<String value="five"/><EntityRef name="gt"/>
<Constructor kind="direct" type="element">
<Name name="program"/>

</Constructor>
<Constructor kind="computed" type="attribute">
<Name name="channel"/>
<Content>
<Literal type="integer" value="10"/>

</Content>
</Constructor>

</Content>
</Constructor>

Figure 4.5: Mixed element content

representation of the given XQuery program. Before this XML document is declared
as an output, it is validated against the respective XML schema4.

Figure 4.6: Architecture of XQConverter

The implementation of the lexical analysis of XQuery is based on technical re-
port [132]. The scanner was implemented using JFlex [133], a lexical scanner genera-
tor for Java [134]. The XQuery parser was created using CUP (Constructor of Useful
Parsers) [135], a LALR parser generator, and the Java modification of Berkeley Yacc
BYacc/J5.

4.4 Proof of the Concept and Correctness
To prove the concept and correctness of XQConverter we tested it using the W3C XML
Query Test Suite [31], version XQTS 1.0.2. The test suite consists of 15,121 test cases,
each testing a single XQuery program. There are four scenarios described in the test

4http://kenai.com/projects/analyzer/downloads/download/xqa.xsd
5http://byaccj.sourceforge.net/
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catalog: standard, parse error, runtime error and trivial. The standard and trivial
scenarios expect the implementation to produce valid results. The parse error scenario
expects raising a parsing/syntax error at the query parse time. Finally, the runtime
error scenario expects raising a runtime error at the query run time.

Since XQConverter does not evaluate the XQuery program, the runtime error sce-
nario is considered as the standard scenario which produces valid results. This ap-
proach divides test cases into two parts: (1) syntactically correct and (2) raising a
parse error. On the other hand, XQConverter considers the test case as correct, when
it successfully builds the XML representation of the given XQuery program. When
XQConverter raises the XQParseException, the result of the test case is considered as
parse error. A single test case is considered as passed when the result (correct or error)
matches the expected test result, failed otherwise.

XQConverter does not guard the balance of node names, so the test cases verifying
this aspect do not take account. It also strips comments from the input character stream
before reaching the lexical scan to avoid mentioned problems with long tokens. Thus,
the programs testing forbidden comments in several constructs (such as in the direct
constructor content) are not considered as well. All the other aspects, such as the extra
grammatical constraints from [21] in Section A.1.2, are tested as usual.

The overall results of the test are listed in Table 4.1. The numbers shows that
99.96% test cases passed, thus we can declare XQConverter as correct for analyzing
XQuery programs.

Status Number Percentage
Total passed 15,115 99.96%
Total failed 6 0.04%

Table 4.1: W3C XML Query Test Suite results

Preliminary experimental results computed over the XML Query Use Cases [30]
and XML Query Test Suite are described in [62]. A throughout analysis of a represen-
tative set of real-world queries is a subject of our current research.

4.5 Conclusion
In this paper we described XQAnalyzer – a unique tool for analysis of collections of
XQuery programs. It works with a set of XQuery programs and translates them into an
intermediate XML code. Subsequently, analytical queries in XPath may be placed over
the translations to study the presence, quantity and context of the specific constructs.
Using a standard test suite we provided a proof of the concept and its correctness.

In our future plans we will focus on further improvements of XQAnalyzer and its
exploitation in throughout analysis of both current state of real-world XQuery queries
and their evolution in the following months. This intent primarily requires a specific
crawler which would enable one to discover the queries efficiently. We also plan to
repeat the analysis monthly and publish the new as well as aggregated results on the
Web. We believe that such a unique analysis will provide the research community
with important results, useful for both optimization purposes as well as development
of brand new approaches.
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5. Data Extraction
As described in Section 2, Analyzer focuses on documents which are imported by a user
or automatically downloaded from the Web. Although the download module detects
links in HTML or XML documents, it is not able to fulfill the requirement R2 stated in
the Introduction, i.e., extraction of data (e.g., URL of relevant pages, or related data
stored in another document). Despite it would be possible to implement an improved
module for Analyzer with the ability to extract additional data from the Web and store
them in a database, it does not correspond to the task Analyzer was originally created
for. Thus we propose a new extraction tool called Strigil.

Strigil is a framework for automated data extraction. It represents an easily con-
figurable tool that enables one to retrieve a data from textual or weak structured docu-
ments. This section contains description of the framework architecture and its impor-
tant components. Additionally, we propose a scraping language inspired by the XSLT
transformations designed to extract data from different kinds of documents. Despite
there are many different approaches focused on various aspects of data scraping, they
are usually very specialized to a concrete domain or a data source. We compare these
solutions and describe their advantages and disadvantages. Our scraping language
is designed to work with an ontology to map scraped data directly to classes and at-
tributes.

The content of this section corresponds to a conference paper Strigil: A Frame-
work for Data Extraction [65] that was submitted to the 12th International Conference
on Ontologies, DataBases, and Applications of Semantics (ODBASE 2013), and it is
currently under a review process.

5.1 Introduction
Currently, the World Wide Web is used as a primary source of information. Data are
stored in different kinds of databases and presented to the user through various static
or dynamic documents, usually queried by HTML [18] forms. The documents are in
different formats, e.g., XML [1], HTML [18], PDF, [95] etc. Some of these formats
keep structural information of the original database, others mix data in different ways
to present them in a more user friendly manner. Although the data are publicly avail-
able via a Web interface, they are not available directly to make custom queries, e.g., to
get new views over the domain or to find new links between independent data sets. To
enable such a functionality, we can simply crawl the data; however, they can be invalid
or corrupted, so a correction or an additional post-processing may be required, which
leads to the demand for automatic extraction tools that are able to extract and process
the resulting data sets automatically (also denoted as screen scraping).

For example, we want to make an analysis of public procurements in the Czech
Republic, but the government publishes the data about public contracts with a price
higher than a limit provided by the law. However, contracts with a lower price can
be found at the Web sites of the cities, regions, etc. Despite the good intention of
these local Web sites, this information is lost in the number of distinct publication
systems, and, for example, it is not possible to ask which supplier won the most public
contracts, or which region has the most overpaid procurements, etc. Thus a union of
these independent databases is required.
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In this paper, we discuss the problems stated in Section 1.1.2, i.e., data extraction
from HTML documents, and we propose a way how to integrate data from different
sources, and return them as a unified set of RDF triples. We propose a system for data
extraction, called Strigil, which is driven by our proposed scraping script language.
We focus on a supervised solution (i.e., driven by a user-defined scraping script) which
aims at data fields in any semi-structured format of a particular domain. Although we
describe data extraction from HTML documents, the script language is designed to
be able to extract data from various document types. The domain is represented by
an ontology, e.g., the Public Contracts Ontology1 (PCO), which is used to map the
extracted data to its classes and attributes in order to capture their semantics.

Contributions The main contributions of our framework are the following:

• Our prototype system can extract semi-structured data from any HTML docu-
ment. Although we mention only this format, the system is designed to work
with any type of document (e.g., MS Excel or text documents). Since the system
is extensible, new selectors for other formats can easily be added.

• We support mapping to ontologies describing a domain or any combination of
different domains. It allows the user to work with specified data types without
the necessity of their explicit declaration in the script.

• The system is self-supervising. Any changes in the document that would cause
usage of invalid selectors is detected by checking the ontology coverage.

• The prototype implementation supports basic distributed crawling, including
multiple independent downloaders, on multiple computers, working with multi-
ple proxy servers.

5.2 Problem Statement
Currently there are several typical problems relevant to speed, efficiency and univer-
sality of the scraping process.

Performance The first group of these problems is related to the performance, i.e.,
the speed of the connection and the speed of the computer. Obviously the faster the
connection is, the more documents are processed. In the context of extraction of data
from HTML documents on the Web the parallelism can highly improve the speed of
downloading.

Accessibility On the other hand, if the scraper is too aggressive, i.e., downloads
multiple documents in parallel and the server is not able to respond to all download re-
quests, the server can block the scraper. To evade this blockage, reasonable politeness
policies are required. These policies are a set of rules which assure polite crawling
of servers, e.g., the policy limits download requests per second. In addition some of

1The Public Contracts Ontology enables one to express structured data about pub-
lic contracts in RDF, in a machine-readable format (https://code.google.com/p/
public-contracts-ontology/)
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the scrapers provide a human interface emulation, which is based on random intervals
between download requests (which reduces the load of the server).

Deep Web Additionally, there are problems related to the structure of the Web. One
of the most problematic (but well examined) part of the Web is called the Deep Web.
It is a part of the Web hidden behind HTML forms, JavaScript or different AJAX2

calls. Extraction systems do not know the context of the page, so they are not able to
send an HTML form with correct values to get the data. Moreover, AJAX calls can be
connected to a specific user action, e.g., mouse move over a menu item, which can be
hardly recognized and simulated by the extraction system. Additionally, some sort of
servers may ask for registration, i.e., advanced work with cookies and POST and GET
parameters is required.

Source Documents One of the basic problems during data retrieval from HTML
documents is validity of the given document. One possibility is to transform the doc-
ument to a valid XHTML [120] form which can be processed by common tools for
XML processing like XPath [28] or XQuery [21] queries. Another possibility is to
use more native tools to work with invalid HTML like OXPath [136] or one of many
CSS3 selector based libraries. These libraries commonly use various extension of the
CSS language to cover larger area of constructs. Although these tools give us a huge
amount of possibilities, sometimes it is necessary to get more concrete data hidden in
one particular HTML field, e.g., element div with several data fields concatenated
into one string. Thus the importance of additional post-processing is high.

For example, we want to extract data about a subcontract from two different frag-
ments of a Web page (depicted in Figures 5.1(a) and 5.1(b)) and connect these data to
the PCO. Both the fragments contain red labeled sections numbered 1 to 4 (related to
PCO ontological properties as depicted in Table 5.1). Figure 5.1(a) depicts a fragment
of TED4 HTML document. Data are stored in elements div combined with additional
textual information, i.e.,

Contract No. 1 Lot No. 2 – Lot title: 2007-2013 m. Test

contains combined information about subcontract id (highlighted in blue), name (high-
lighted in red), and some unimportant labels. Thus it is necessary to extract these fields
from the text, e.g., with the usage of regular expressions. Section 2 contains only one
property:

Number of offers received: 4

with textual label “Number of offers received” which has to be removed. Similarly,
in Sections 3 and 4 the fields are separated by elements br combined with additional
labels, e.g., “E-mail”, “Telephone”, etc. On the other hand the data in ISVZUS5 are
strictly structured by elements input with unique attributes id (see Figure 5.1(b)
for sections 1 to 4), thus it is possible to access the data fields directly without any
additional transformation.

2Asynchronous JavaScript calls to insert dynamic content of a Web page
3Cascading Style Sheets (http://www.w3.org/Style/CSS/)
4Tenders Electronic Daily – European public procurement system (http://ted.europa.eu/)
5Czech national portal of public contracts (http://www.isvzus.cz/)
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(a) Text HTML Document (b) Structured HTML Document

Figure 5.1: Web page fragments

# PCO property # PCO property
1 dc:title + adms:identifier 3 pc:offeredPrice
2 pc:supplier 4 pc:numberOfTenders

Table 5.1: Mapping of PCO properties to HTML fragments from Figure 5.1

5.3 Related Work
Currently there exist several different approaches that use various ways to identify and
extract data from documents in different formats. In this section we categorize them
by the criteria presented in paper [40].

Level of Automation The extraction system can be fully automated with features
to adapt to different aspects of the source documents. Other possible approaches are
based on an input from the user. It can comprise wrappers, scripts or templates to
be used for different documents. These system are based on hard-coded programs, or
simpler scripts which have exact instructions how to process input documents. The
main advantage of these solutions is their wide area of possible targets. The user can
implement any application to gather the data from a source and export them into any
format or send them to any other service. The problem is that the user has to know
the programming or the script language. For example, paper [40] offers a high level of
automation (it generates extracting wrapper for any given HTML document), but it has
several requirements for the page, especially in the sense of a stable layout of the page
and visual availability of query results. In paper [41], the authors focus on localization
of data-rich regions and they extract the relevant attribute-value pairs of records from
Web pages across different sites. The method is based on an observation that labels

86



and values usually occur near each other.

Object of Extraction The object of extraction can be, e.g., a structured part of the
document, simple text data, or any multimedia files, i.e., images. For example, in pa-
per [137] the authors focus on relational data in the form of a list. Firstly, they get a
sample lists from multiple sources and use them to compare column splits. Based on
these comparisons an extraction score that reflects the confidence in the table’s quality,
incorrect splits and bad alignments, is identified. On the other hand, the idea of WebTa-
bles [138] is focused on online table querying and it uses new techniques to search
keywords over a corpus of tables based on hand-written detectors and statistically-
trained classifiers. Similarly, the xCrawl [139] is a method exploiting the navigational
structures of Web sites such as hierarchies, lists, or maps. It was inspired by the re-
quirements of extraction of a product and a services description.

Domain Specific Solutions The scraping method can be either focused on a domain
described by an ontology, or it is a universal method extracting and indexing any kind
of data. The Ontology-Assisted Data Extraction (ODE) [42] is a system for automatic
identifying of lists of data on a Web page. The resulting fragments are then compared
with an ontology and the data and their labels are assigned (based on the maximum
correlation). On the other hand, DIADEM [140] is focused on the low level of Web
pattern recognition, which uses machine-learning methods and linguistic analysis with
basic ontology annotation. Additionally it uses goal-directed domain specific rules in
order to identify the main extraction data structure and to finalize the navigation pro-
cess. The system uses the OXPath [136] as a wrapper language, which is an extension
of XPath with a support for user actions, i.e., simulation of mouse move, mouse clicks,
document loading, etc.

Additional Aspects Another group of data extractors are publicly available or com-
mercial solutions focused on different additional aspects. For example the ScraperWi-
ki [141] is based on the community support. It offers automatic scheduled execution
of the script. Each script is public and it is available for any user. Many of these solu-
tions use nice user interface (e.g., the Visual Web Ripper [142]) and they are more or
less denoted to users without programming skills as they allow the user to specify the
object of scraping only through a simple interface and simple parameters.

Transformational Languages Last but not least, we have to describe transforma-
tional languages which can in composition with any simple crawler offer similar func-
tionality as the scraper itself. One of the most obvious solutions (as far as we are in
the world of Web and the most of the documents we are working with are HTML or
XHTML) are languages like XSLT [69] or XQuery [21]. These languages offer high
possibilities while manipulating with XML based files with possible output in RD-
F/XML [143]. Another possible approach to manipulate with text documents is usage
of regular expressions to simply extract and transform the data.

5.3.1 Work in Context of Our Previous Work
Although the data acquired by Strigil are published in an open format, so that it is pos-
sible to use them in different systems which can work with RDF triples, we designed
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it as a part of three-level framework to extract, transform, and visualize the data. The
overall architecture is depicted in Figure 5.2. The framework consists of three inde-
pendent modules, i.e.,

1. Strigil – The extract core of the framework is used to acquire the data from
different document sources, e.g., HTML, XLS, etc. This framework is described
in the rest of this section.

2. ODCleanStore [144] – In this module, the converted data are cleaned, linked to
other stored data and data in the linked open data cloud6. ODCleanStore pro-
vides aggregated views on the requested data. Furthermore, it accompanies all
the aggregated data with descriptive and provenance metadata (e.g., the creation
date, the process responsible for creating the data, the data license, source of the
data) and information about the quality of the data to help consumers to decide
which data are worth using.

3. Payola7 – This visualization and analytical module simplifies work of applica-
tion developers and users by enabling them to determine which linked data re-
turned by ODCleanStore should be visualized, how, and whether an analysis of
the data should be conducted (e.g., computing the average salary in a company).

Figure 5.2: Linked Data projects architecture

5.4 Architecture of Strigil
From the highest level of perspective Strigil is divided into three logical parts (depicted
in Figure 5.3):

• Web application is responsible for user inputs, i.e., it saves scraping scripts and
various user-defined settings to the database.

• Data application (DA) controls the scraping process and provides the resulting
RDF triples to ODCleanStore or saves them to a file. This process consists of
several components and communicates with other Strigil modules. All the major
components implement given interfaces through which the Data Application can
be easily extended and extra functionality added.

6http://linkeddata.org/
7http://payola.github.io/Payola/
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• Download system (DS) receives download requests from the DA and manages
and plans them in order to keep user-defined politeness policy restrictions.

Figure 5.3: Strigil architecture

All these parts are completely separated components which may even run on dif-
ferent machines as they communicate through JMS8. The DS and DA are divided into
even more separated components, described in the following paragraphs.

5.4.1 Download System (DS)
As mentioned above, the DS is responsible for managing, planning and executing
download requests. It may be scaled based on user’s needs. This scaling is done
by multiplying some components and run them on different machines. It consists of
three main components: the Download Manager (DM), downloader(s) and proxy(ies).
Each of these components may run on a different machine.

The DM receives download requests directly from the DA, which are then planned.
The planning is done dynamically based on the downloaders and proxies available
and it maximizes the performance with respects to the politeness policy defined. The
download requests are planned for one specific downloader through one specific proxy
server. If the number of download requests for one domain exceed the maximum
allowed quota per minute, the download requests are delayed until the quota is freed.
In other words, the DM keeps user-defined politeness policies.

A downloader receives particular download requests for a document and uses a
proxy to download it. It maintains connections to all available proxy servers. These
components may be multiplied to provide the download performance the user requires.
Increasing the number of downloaders directly increases the download throughput of
the whole system. Since Web servers usually have very restrictive limitations of down-
loads per hour or per day, it is useful to provide a way to access the data sources from
more computers (IP addresses). And that is exactly how the proxy servers are used.

5.4.2 Data Application (DA)
The major components ensuring DA functionality are: the scraping manager with a
scheduler, scraping activity and URL request queue controller (URQ). They commu-
nicate mutually and cooperate during the scraping process. The scraping manager

8http://en.wikipedia.org/wiki/Java_Message_Service
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assigns tasks to other components, keeps statistics, and processes results. It creates
scraping activities responsible for parsing actual data from a given source according
to a script and collects their results or requests for additional document downloads.
Download requests are pushed to URQ which sends them to the DS together with
callback to be executed on a successful download or a failure. Finally, the scraping
manager composes the results and returns them to a triple store or saves to a file.

The DA is designed to be easily extended with new features, e.g., parsing other
types of documents, using different sources of data or sending the results to other
consumers. The architecture of DA is depicted in Figure 5.4.

Figure 5.4: Data application architecture

Scraping Manager The scraping manager contains the main logic of the DA. It gets
from the database information about scripts to run and basically starts, controls and
finishes the entire scraping process. It creates and submits scraping activities, provides
them data, stores their partial results, handles their failures, etc. It also calls methods on
the URQ controller to create and push download requests to the DM. Last but not least,
the scraping manager provides results, i.e., writes RDF triples to files of a filesystem
and/or sends them to the ODCleanStore triplestore. Additionally it stores statistics
about scraping process.

The implementation of scraping manager uses the Quartz Scheduler framework9 to
implement scheduling of script execution. This framework works with the concept of
jobs and triggers. Triggers define when or how often the jobs will be executed. One job
can be assigned with many triggers. Quartz allows many properties to be configured
for a scheduler, e.g., the scheduler instance name, the number of threads for executing
jobs, or, one of the most important ones, where the working data is kept – in the RAM
or a database. If a database is used, Quartz is distributed with necessary create-tables
scripts for the majority of database vendors. Note that these structures should never be
accessed directly. It is strongly recommended to always use the provided API.

Strigil uses two instances of Quartz scheduler. Both store working data in a database
and on top of that they are pointed to the same database tables. This allows both in-
stances to share the jobs and triggers. One instance runs in the Web application, where
users can schedule available scripts, but the scheduler is not actually started. In other
words, the Web application just stores the triggers. The second instance is started in
the scraping application where jobs are created and started. The scheduler also keeps
track of misfired triggers (e.g., when the scheduler is stopped, the DA is not running
etc.) and fires them as soon as possible.

9http://quartz-scheduler.org
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Scraping Activity The scraping activity is the part of Strigil that performs data ex-
traction from documents, and afterwards creates the resulting RDF graphs for indi-
vidual documents. In order to do this, the activity needs to have the information how
to download documents, which data to extract from these documents, and it needs to
know about the ontological relations between extracted data. This information is given
to activity in the form of scraping script. In other words, the activity receives a scrap-
ing script as input, and then it executes the script. Every activity runs in its own thread,
so it is possible to run multiple activities in parallel to increase overall performance.
The activity returns the extracted data and a coverage of used selectors, i.e. it com-
pares the number of used selectors and the number of returned empty responses. The
system notifies the user if the ratio is bellow a user-defined threshold (the script could
be wrong or the source documents could have been changed).

5.4.3 Web Application

The Web application provides an administration user interface which allows manage-
ment of scraping scripts, proxy servers, downloaders and overall policies. Addition-
ally, it contains a Web editor for scraping script creation with HTML page inspector,
intelligent selection of CSS selectors and support for intelligent ontology property as-
signment, i.e., a user can import custom ontologies and then the user interface offers
available ontological properties.

This module also provides a Web Service to store scripts from third-party editors.
For example, an implementation of MS Excel selectors can directly communicate with
Strigil from an add-on module.

In Figure 5.5 the main parts of the HTML script editor are depicted. The editor
consists of six panels. Panel 1 shows the tree structure of edited script, i.e., the on-
tological elements, called functions, used selectors, etc. On Panel 2 the properties of
the currently edited script elements are displayed. The selectors can be acquired by
selecting particular elements in Panel 6 which displays a sample script source docu-
ment. Panel 3 displays available ontologies used for intelligent offering of new data
mappings. Panels 4 and 5 are used to browse sample documents in an inline browser.

Figure 5.5: Script editor GUI for HTML documents
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5.5 Scraping Script

The scraping script is basically an XML document, which contains instructions telling
the Strigil system how to obtain input documents. It also describes the way how to
handle them – how to extract relevant data from documents, process them (e.g., convert
to a suitable format, like date or decimal number), and map them to ontological classes
and attributes.

The result of a processed script is an RDF graph or a set of all semantically valid
RDF triples that contain data extracted from all documents, obtained during the script
runtime. Usually that means all “interesting” documents from one specific server for
which the script is written.

Since the script is essentially an XML document, it is possible to create and edit
scripts in any XML or text editor. However, it is possible to use the script editor built-
in Web application interface or an external tool. It is not only more comfortable, but it
also disallows the user to create a script, which is not valid against the script schema10.

In Strigil, we decided to design our own script language, inspired by XSLT [69], to
transform different documents to data specified by ontologies. The script language uses
selectors to specify data fields in a source document. Although we describe selectors
for HTML documents, the selectors can be used to extract data from other formats
depending on available implementations. Currently we work with JSoup selectors11 for
HTML documents and our custom selectors for Excel files (similar to HTML selectors,
extended by some constructs to work with work sheets). Despite our selection, it is
possible to use any other selectors like, e.g., OXPath [136] to get data.

The script has one root element script with four parts – represented by elements
meta, params, template, and call-template – described in the following
paragraphs. All parts, except for element params, are required. The complete struc-
ture of the script is validated against the respective XSD12. A fragment of the schema,
which defines the element script, is provided in Listing 5.1.

Element script has the following attributes:

• prefix (declaration of namespaces of ontologies used within the script),

• id (unique identifier of the script),

• version (number representation of script version), and

• type (type of the script, e.g., HTML, Excel, etc.).

Element meta Element meta is used to store important details about the script, i.e.,
author of the script, date of the last modification, the domain, for which the script is
written and the status of the script (i.e., draft or released). This element has no child
elements.

10http://sourceforge.net/p/strigil/code/HEAD/tree/doc/Scripts/
Schema_27_11_2012/Schema_27-11-2012.xsd

11http://jsoup.org/cookbook/extracting-data/selector-syntax
12http://sourceforge.net/p/strigil/code/HEAD/tree/doc/Scripts/

Schema_27_11_2012/Schema_27-11-2012.xsd
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< x s : e l e m e n t name=" s c r i p t ">
<xs:complexType>

< x s : s e q u e n c e >
< x s : e l e m e n t name=" c a l l−t e m p l a t e " t y p e =" c a l l−

t e m p l a t e T y p e " / >
< x s : e l e m e n t name=" meta " t y p e =" metaType " / >
< x s : e l e m e n t name=" params " t y p e =" paramsType "

minOccurs=" 0 " / >
< x s : e l e m e n t name=" t e m p l a t e " t y p e =" t e m p l a t e T y p e "

maxOccurs=" unbounded " / >
< / x s : s e q u e n c e >
< x s : a t t r i b u t e name=" i d " t y p e =" xs:NCName " use ="

r e q u i r e d " / >
< x s : a t t r i b u t e name=" p r e f i x " t y p e =" l s t _ s t r i n g " use ="

o p t i o n a l " / >
< x s : a t t r i b u t e name=" v e r s i o n " t y p e =" x s : s t r i n g " use ="

o p t i o n a l " / >
< x s : a t t r i b u t e name=" t y p e " t y p e =" document_ type " use ="

r e q u i r e d " / >
< / xs:complexType>

< / x s : e l e m e n t >
Listing 5.1: XML Schema definition of element script

Element params Element params is optional, and it is called script parameters
declaration. In this part, the author of the script can declare parameters which are
available inside the script. Their value is usually specified when the script is called
for execution, but a default value can also be specified during declaration. It allows
customization of script behavior, e.g., it allows the user to run the script only for some
specific URL addresses, which can be different on every run.

Parameters are defined inside element params using element param, one for
each parameter. Names of parameters are defined inside attribute name, default value
can be specified either in attribute default, or inside element‘s body. If both default
values are found, default attribute has a higher priority.

Element template Templates are the main executive part of the script. A template
describes the way document is processed, how useful information is extracted from
source documents, and how this information is mapped to ontology classes and prop-
erties. Each template can contain several ontological elements representing instances
of ontology classes. Each of these classes can contain several properties extracted from
the source document by selectors. The selectors depend on the type of the document.
Currently, we work with HTML documents and work sheet documents (MS Excel).
For the HTML documents we use extended CSS selectors (the JSoup library) which
allow the user to find the elements on the basis of common HTML attributes like id,
name, or class. Additionally, it allows the user to find elements with specified text
content or elements valid against a regular expression.

In case of XLS documents we designed our own set of selectors working with the
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lists and columns in a similar way. The selectors allow the user to select columns based
on their position, their content or their relative position against other located column.

Element call-template In almost every script, it is possible to find more than
one template. For example, we can consider a script, that will extract details about
top 250 movies from the IMDb13 . In this script, we need a template that will parse
an HTML document with the list of movies (and URL addresses of documents with
details about movies) and a template which will contain rules for data extraction from
the document with details about the movie (see Figure 5.6). Then, we need to call
a second template from the first template, to get URL addresses of all movies. The
template call is realized by element call-template. The name of template which
will be called is specified in its attribute name, and the URLs of documents to parse
with this template, are specified in its body using elements value-of.

Figure 5.6: Strigil – template processing example

If we want to call a template on documents downloaded by the HTTP POST
method, we can also specify HTTP POST parameters. This is useful for example
if we want to get a document hidden behind a HTML form. HTTP POST parameters
are added to the call using element http-params, which is a descendant of element
call-template. The parameters are passed in child elements with-param of
element http-param. The name of the parameter is inside attribute name, or, if
the name of parameter is stored in variable, we can specify the name with attribute
namevar. The value is stored inside element‘s content.

Besides the HTTP POST parameters, it is also possible to define cookies for the
HTTP communication with a source server. This is useful, e.g., when server sets the
language of documents based on a user’s choice, and the chosen language is saved
as a cookie. All cookies, used during HTTP communication (and also cookies newly
set by server), are saved in the template context, and they are used for every descen-
dant template called from the current template. cookies are also set inside element
http-params, but element cookie is then used instead of element with-param.

In the following paragraphs we describe parts of the script responsible for ontology
mapping (element onto-elem), data extraction (element value-of), and data pro-
cessing (variables and functions).

13Internet Movie Database (http://www.imdb.com)
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Element onto-elem Element onto-elem is used to create a new RDF resource.
All properties added to an RDF graph in the body of this element will be added as
properties of this resource. Also, all other resources created in the body of this ele-
ment (its direct descendants) must have attribute rel which adds relation between this
element and its descendants. This element can contain the following attributes:

• rel (relation to a parent resource, if the parent of this element is also element
onto-elem),

• typeof (value of property rdf:type of the resource),

• about (URI of the resource).

Element value-of Text values in the script need to be defined using elements
value-of. The value is returned from the element after evaluation of its attributes.
Attributes are evaluated in the following order (an attribute is evaluated, only if the
preceding attribute is not found or empty):

• Text constant – When attribute text is present, its value is directly returned as
a value of the element.

• Variable – When attribute var is present, it resolves the value of the variable
with the name specified in this attribute, and that value is returned as a value of
the element.

• Replacement – When the attributes select, regexp and replace are present,
and attributes select and regexp have a non-empty value, and matching
groups are used in the regular expression, attribute replace is used to build
the resulting string.

• Regular expression – When attributes select and regexp are present, and
attribute select is not null, the value is checked. If it satisfies the regular ex-
pression defined in attribute regexp, the value is returned, otherwise an empty
string is returned.

• Selector value – When attribute select is present, the selector (e.g., CSS) in
the attribute is evaluated against the source document and the selected value is
returned.

In Listing 5.2 the content of a template called Detail is shown. It works with a
tender detail to get a basic information about tender title and tender deadline. For these
purposes element value-of is used to get data with the given selector. Additionally,
function convert-date is used to extract a date in some predefined format from the
string.

Variables Naturally, it is also possible to use variables within templates. They can
hold values, which can be either known to the script author and assigned during the
script creation phase, or they can be assigned with values determined during the script
run, e.g., as a result of a function, or a value extracted from a source document. The
type of a variable is an array of strings. A variable can only be seen in the template,
where it is declared.
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< s c r : o n t o−elem>
< s c r : o n t o−elem

r e l =" h t t p : / /www. w3 . org /1999/02 /22− r d f−syn t ax−ns # t y p e "
a b o u t =" h t t p : / / p u r l . o rg / p r o c u r e m e n t / p u b l i c−c o n t r a c t s #

C o n t r a c t " / >
< s c r : v a l u e−of

s e l e c t =" body # e s f d i v # a r t i c l e h2 "
p r o p e r t y =" h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / t i t l e " / >

< s c r : f u n c t i o n name=" c o n v e r t D a t e "
p r o p e r t y =" h t t p : / / p u r l . o rg / p r o c u r e m e n t / p u b l i c−

c o n t r a c t s # t e n d e r D e a d l i n e ">
< s c r : w i t h−param>

< s c r : v a l u e−of
s e l e c t =" body # e s f d i v # wrapper p : c o n t a i n s ( Example

t e x t ) " / >
< / s c r : w i t h−param>

< / s c r : f u n c t i o n >
< / s c r : o n t o−elem>

Listing 5.2: An example of element onto-elem

To declare a variable we use element variables at the beginning of the tem-
plate definition. Inside this element, we declare all used variables with elements
variable, one element for each variable. Variable name is specified by its attribute
name.

Assigning a value to a variable is done via element assign. This element re-
ceives the name of a variable inside its attribute var. The value, which is assigned to
this variable is evaluated from the descendant elements. If the value is already known,
inside other variable, or can be discovered by simple extraction, we use the descen-
dant value-of. If it is necessary to use function(s) to receive the value, we use the
descendant function.

To get a value from a variable, we use element value-of with attribute var.
Inside this attribute is the name of the variable, whose value we want to receive. If
the element value-of has attribute property, the value of this variable will be
added to the output RDF graph as the object of the predicate specified by attribute
property.

Functions In some cases, there is a need for a modification of (not only) extracted
data, e.g., conversion to a valid data format, concatenating strings to create URLs, etc.
To help with these situations Strigil has a built-in set of implemented functions that can
be called from the script. A function call is created by element function; in attribute
name the name of the function is specified. It is also possible to add parameters to
these functions via the element with-param.

The list of available functions is as follows:

• conc – This function returns the string created by concatenation of the strings
received in the parameters.
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• concatenate – This function returns the array of string created by appending
the value of the first parameter (prefix) to every string from the second parameter
(suffixes).

• convertDate – This function converts the date from formats “DD.MM.YYYY”,
“MM/DD/YYYY”, or “DD. MMMM YYYY” to XML Schema date format (i.e.,
“YYYY-MM-DD”). The name of month must be in English or Czech language,
to convert properly.

• convertSpacesToHtmlEntity – This function takes the input string as an
argument, and converts all white space characters to HTML space representation
(i.e., a sequence of “%20”).

• convertToFloat – This function converts a float string to the valid XML
Schema float type.

• generateUUID – This function returns randomly generated UUID14 which
can be used to create random strings, e.g., unique URIs for elements onto-elem.

• getCurrentUrl – This function returns a URL of the currently processed
document.

• removeSpaces – This function removes white space characters from the input
string.

In some cases, there is a need to execute another script, from the currently executed
script. Let us have a situation, that we are creating a script, which will extract the data
from HTML documents containing information about public contracts. Between these
information, we can find only a name of the winning company, and its identification
number. We want to get as much information about the company, as possible. These
information can be found on the business register Web site. As a solution, we can
prepare two different scripts. One for the Web site containing details about public
contracts, and one for the business register. In the first script (public contracts), we
insert a script call, which will start the business register script, and inside this call we
give the identification number of the company, that won the contract. The business
register script will then extract the information about the company.

Parameters used inside a script call are optional. They are specified using element
with-param. Their name must be declared inside the called script, otherwise the
parameter will be ignored.

The script call is realized using element call-script inside the template.

In Listing 5.3, there are three template calls. The first one is the entry template, called
directly after the script starts. The element contains attributes for its name and the
download method. Additionally it contains element value-ofwhich contains a fixed
value for the input document. The second template called List expects on input a list
of procurements. We want to browse them and for each its detail we want to run the
third template. Thus there is element call-template called on a CSS selector to
get the URL of all list anchors. A part of the result from Listing 5.3 (and Listing 5.2
which describes the content of template Detail) is show in Listing 5.4.

14Universally unique identifier
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< s c r : c a l l −t empla te
name=" L i s t "
t y p e =" h t t p /GET">

< s c r : v a l u e−of
t e x t =" h t t p : / /www. ex . cz / d a t a / l i s t / " / >

< / s c r : c a l l −t empla te >
< s c r : t e m p l a t e

name=" L i s t "
mime=" t e x t / h tml ">

< scr : samplePage
u r l =" h t t p : / /www. ex . cz / d a t a / i s t / " / >
< s c r : c a l l −t empla te

name=" D e t a i l "
t y p e =" h t t p /GET">

< s c r : v a l u e−of
s e l e c t =" body # e s f d i v # main a @href "

/ >
< / s c r : c a l l −t empla te >

< / s c r : t e m p l a t e >
Listing 5.3: call-template example

<rdf:RDF . . . >
< r d f : D e s c r i p t i o n r d f : n o d e I D ="A0">

< d c : t i t l e >Sample t e n d e r < / d c : t i t l e >
< p c : t e n d e r D e a d l i n e

r d f : d a t a t y p e =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#
d a t e ">

2013−03−29
< / p c : t e n d e r D e a d l i n e >
< r d f : t y p e

r d f : r e s o u r c e =" h t t p : / / p u r l . o rg / p r o c u r e m e n t / p u b l i c−
c o n t r a c t s # C o n t r a c t " / >

< / r d f : D e s c r i p t i o n >
< r d f : D e s c r i p t i o n r d f : n o d e I D ="A1">

< d c : t i t l e > Another t e n d e r < / d c : t i t l e >
< p c : t e n d e r D e a d l i n e

r d f : d a t a t y p e =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#
d a t e ">

2013−04−14
< / p c : t e n d e r D e a d l i n e >

. . .
Listing 5.4: Scraping activity output
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Source Documents Triples Average Number of Triples
per Document

TED 5693 21884 3.8
ESFCR 688 23288 33.5

Table 5.2: Experimental data sources

Summary In comparison to other scraping or transformation languages, our ap-
proach provides with following advantages:

• Ontology support – Although many scripts languages are able to generate RDF
triples defining the correct output in the wrapper, Strigil scraping language offers
an explicit support for the classes and properties through element onto-elem
and attribute property. It increases simplicity and readability of the language.

• Download support – The language is designed with regard to the data scrap-
ing, i.e., it supports navigation through the Web pages, usage of HTML forms,
cookies, etc.

• Customizable selectors – The structure of the script is ontology-oriented. It
means that the system can use any implemented selectors to extract data from
different formats with minimal changes to the structure of the script.

5.6 Experiments
To demonstrate the possibilities of Strigil and the proposed scraping language we have
prepared two scripts. Both of them extract data about public procurements and map
them to the PCO. Firstly, we extracted the published data about European procure-
ments from TED from August 30, 2010 to September 8, 2010 to demonstrate usage
of HTML forms. Secondly, we prepared a complex scraping script to get all procure-
ment documents from the European Social Fund in the Czech Republic (ESFCR)15.
The script extracts detailed data about contracts, i.e. title, publication date, estimated
price, location, tender deadline, or address of the contracting authority, and we show
the possibilities of data extraction by CSS selectors combined with regular expressions,
and functions (to convert dates and numbers). Overall information about the number
of documents and extracted triples is shown in Table 5.2. Both scripts are publicly
available on the Web16.

5.7 Conclusion
In this section, we have presented Strigil, a system for automatic data extraction, which
is a part of a framework for data processing and integration. The aim of this system is
to extract data from one domain based on user-defined scripts. We presented the main
components of the framework and their main advantages. We described our scraping

15http://www.esfcr.cz/
16http://ksi.mff.cuni.cz/~starka/strigil_scripts.zip
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language and its main features focused on Web crawling, ontology integration and data
extraction.

Although the work in this research area is wide, there are still several aspects to im-
prove. Firstly, the structure of HTML documents describing the same entity is chang-
ing. Currently most of the Web pages contain content that is dynamically generated
and thus the acquired documents can contain differently rendered parts, such as, e.g.
commercials, included date, last news, etc. This invokes the necessity for scraping
scripts to be general and to allow changes in the structure of the input documents.
Moreover, the server can change the layout entirely, thus it is important to be able to
find out these changes as soon as possible and inform about this change or improve the
script automatically.

In our future work we will focus on automatic script generation and adaptability
to the design changes. Despite having a universal CSS selector, there are still areas of
extraction to improve, e.g., the combined text outputs need complex regular expres-
sions. Additionally, we will focus on extensions of supported formats like CSV, or the
possibility to get the data from different sources, such as, e.g., Web Services, database
dumps, etc.
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6. Schema Inference
One of the main research areas which widely exploits the knowledge of complexity of
real-world data provided by Analyzer is inference of XML schemas from a given sam-
ple set of XML documents. As we already mentioned in Section 1, various statistical
analyses of real-world XML data show that a significant portion of XML documents (in
particular 52% [6] of randomly crawled or 7.4% [14] of semi-automatically collected)
still have no schema at all. What is more, XML Schema definitions (XSDs) are used
even less (only for 0.09% [6] of randomly crawled or 38% [14] of semi-automatically
collected XML documents). Thus a research area of automatic construction of an XML
schema has opened. The key aim is to create an XML schema for the given sample set
of XML documents that is neither too general, nor too restrictive.

In this section we introduce jInfer, a general framework for XML schema inference.
It represents and easily extensible tool that enables one to implement, test and compare
new modules of the inference process. Since the compulsory parts of the process, such
as parsing of XML data, visualization of automata, transformation of automata to XML
schemas etc. are implemented, the user can focus purely on the research area and the
improved aspect of the inference process. We describe not only the framework, but the
area of schema inference in general, including related work and open problems. We
also describe three of our improvements and extensions of the current state of the art.

The content of this section corresponds to a journal paper jInfer: a Framework
for XML Schema Inference [63] that was submitted to the Computer Journal (IF:
0.785, 5-Year IF: 0.943), and it is currently under a review process. This article ex-
tends our previous published papers: Optimization and Refinement of XML Schema
Inference Approaches [56] published at the 3rd International Conference on Ambient
Systems, Networks and Technologies (ANT 2012), Inference of an XML Schema with
the Knowledge of XML Operations [57] published at the 8th International Conference
on Signal Image Technology and Internet Based Systems (SITIS 2012), and Schema-
tron Schema Inference [55] published at the 16th International Database Engineering
& Applications Symposium (IDEAS 2012).

6.1 Introduction
Statistical analyses of real-world XML data show that a significant portion of XML
documents (52% [6] of randomly crawled or 7.4% [14] of semi-automatically col-
lected) still have no schema at all. What is more, XML Schema definitions (XSDs)
are used even less (only for 0.09% [6] of randomly crawled or 38% [14] of semi-
automatically collected XML documents) and even if they are used, they often (in
85% of cases [5]) define so-called local tree grammars [81], i.e., grammars that can be
defined using DTD as well.

Consequently a new research area of automatic construction of an XML schema
has opened. The key aim is to create an XML schema for the given sample set of
XML documents that is neither too general, nor too restrictive. It means that the set
of document instances of the inferred schema is not too broad in comparison with the
sample data but, also, it is not equivalent to it. Currently, there are several proposals
of respective algorithms, but there is also still a space for further improvements. In
particular, since according to Gold’s theorem [11] regular languages are not identifi-
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able only from positive examples (i.e., sample XML documents which should be valid
against to the resulting schema), the existing methods need to exploit either heuristics
or a restriction to an identifiable subclass of regular languages.

Contributions In this paper we introduce jInfer, a general framework for XML
schema inference. It represents an easily extensible tool that enables one to imple-
ment, test and compare new modules of the inference process. Since the compulsory
parts of the process, such as parsing of XML data, visualization of automata, transfor-
mation of automata to XML schemas etc. are implemented, the user can focus purely
on the research area and the improved aspect of the inference process. We describe
not only the framework, but the area of schema inference in general, including related
work and open problems. Note that a similar system, called SchemaScope, was de-
scribed in [44]; however, its main target are grammar-inferring approaches, especially
those proposed by its author. In jInfer we focus on more general view of the problem,
involving mainly the heuristic approaches.

6.2 XML Schema Languages
Nowadays, there exist several languages for description of an XML schema, i.e., the
allowed structure of XML documents. The best known and most commonly used
representatives are DTD, XML Schema, RELAX NG, and Schematron.

DTD The simplest and most popular language for description of the allowed struc-
ture of XML documents is currently the Document Type Definition (DTD) [1]. It en-
ables one to specify allowed elements, attributes and their mutual relationships, order
and number of occurrences of subelements (using operators ‘,’, ‘|’, ‘?’, ‘+’ and ‘*’),
data types (ID, IDREF, IDREFS, CDATA or PCDATA) and allowed occurrences of
attributes (IMPLIED, REQUIRED or FIXED). A simple example of a database of em-
ployees is depicted in Figure 6.1.

At first glance it seems that the specification of the allowed structure is sufficient.
Nevertheless, even in this simple example we can find several problems. For instance,
we are not able to specify the correct structure of an e-mail address. Similarly, we can-
not simply specify that a person can have four e-mail addresses at maximum. And, as
we can see, the fact that the order of elements first and surname is not significant
cannot be expressed simply as well.

XML Schema With regard to the insufficiency of DTD, the W3C1 proposed a more
powerful tool – XML Schema [23, 68] and its instances called XML Schema Definitions
(XSDs). An example of an XSD equivalent to the example of a DTD in Figure 6.1 is
depicted in Figure 6.4. XML Schema involves all the DTD constructs, only the syntax
is different (e.g., element sequence represents operator ‘,’, choice represents ‘|’,
content models are specified using simpleTypes and complexTypes). It also
adds several new constructs that can be divided into “syntactic sugar” and true new
constructs extending the expressive power. The former class involves, e.g., precise
occurrence ranges (i.e., attributes minOccurs and maxOccurs) or globally defined

1http://www.w3.org/
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Figure 6.1: An example of a
DTD

Figure 6.2: An example of a
RELAX NG schema

Figure 6.3: An example of a
Schematron schema

Figure 6.4: An example of an XSD
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items (i.e., simple/complex types, elements/attributes, groups of elements/attributes).
In the latter class we can find a new rich set of simple data types (such as integer
or date), user-defined simple types, derivation of complex data types from existing
ones, advanced identity constraints (i.e., unique, key, keyref) or assertions (i.e.,
assert, report) supported since version 1.1 [124, 125]. In addition, each XSD is
an XML document, hence, for its processing we can exploit any XML technology.

On the other hand, XML Schema has also several disadvantages. Firstly, as we can
see from the examples in Figure 6.1 and 6.4, the description of an XSD is much longer
and less lucid than the respective DTD. In addition, since the language involves a huge
amount of constructs, which are mostly a “syntactic sugar” and hence have the same
or almost the same expressive power, it is not easy for a user to learn all of them and
decide which is better to use.

RELAX NG The authors of RELAX NG [102] tried to propose a language that in-
volves key advantages of both DTD and XML Schema, but avoids their disadvantages.
In particular, as we can see in Figure 6.2 the language has both XML and compact syn-
tax which are equivalent and mutually transferable, hence it exploits the advantages of
both DTD and XML Schema. Contrary to DTD it allows us to specify the structure
of a mixed-content element precisely (i.e., like XML Schema does); contrary to XML
Schema it does not restrict the complexity of unordered sequences only to simple cas-
es. Also, similarly to XML Schema, it supports a wide set of simple data types, both
built-in and user-defined. On the other hand, precise occurrence ranges of elements
or groups of elements are surprisingly not supported – RELAX NG supports the same
operators as DTD (i.e., optional, oneOrMore and zeroOrMore). Last but not
least, contrary to both DTD and XML Schema, the definition of a content model can
combine both elements and attributes, hence the expressive power is much higher than
in case of DTD. XML Schema can express similar restrictions using assertions, but
these were established in version 1.1 and currently are not much supported so far.

Schematron Contrary to the previous languages where we can find numerous sim-
ilarities, Schematron [51] uses a completely different strategy. However, on the other
hand, it probably served as an inspiration for XML Schema assertions. As we can
see in Figure 6.3, each Schematron schema is based on the idea of patterns. A pat-
tern can be described as a set of rules an XML document must satisfy to be valid
against a Schematron schema. A rule involves either element assert or report
depending on the requirement of satisfaction or not satisfaction of the condition speci-
fied in attribute test. Since a Schematron schema can be evaluated by translation to
XSLT [69] and usage of an XSLT parser, it supports the same subset of XPath [28] as
XSLT.

Even though the expressive power of Schematron is apparently higher than in case
of the previous three XML schema languages (if we omit XML Schema assertions),
Schematron has also several disadvantages. As we can see in Figure 6.3, the biggest
problem is complexity of expressing simple rules such as “an element e has an attribute
a”. Hence, Schematron should rather be considered as an extension of the previous lan-
guages that enables one to express complex integrity constraints. Both XML Schema
and RELAX NG support Schematron subschemas.
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6.3 Related Work
The existing solutions to the problem of automatic construction of an XML schema
can be classified according to several criteria such as the type of the result or the way
it is constructed.

Heuristic approaches [145, 146, 147] are based on experience with manual con-
struction of schemas. Their results do not belong to any class of grammars and they
are based on generalization of a trivial schema using a set of predefined heuristic
rules, such as, e.g., “if there are more than three occurrences of an element, it is
probable that it can occur arbitrary times”. These techniques can be further divid-
ed into methods which generalize the trivial schema until a satisfactory solution is
reached [145, 146, 82] and methods which generate a huge number of candidates and
then choose the best one [147]. While in the first case the methods are threatened
by a wrong step which can cause generation of a suboptimal schema, in the latter case
they have to cope with space overhead and specify a reasonable function for evaluation
quality of the candidates. A special type of heuristic methods are so-called merging
state algorithms [146, 82]. They are based on the idea of searching a space of all pos-
sible generalizations, i.e., XML schemas, of the given XML documents represented
using a prefix tree automaton. By merging its states they construct the sub-optimal
solution. In fact, since the space is theoretically infinite, only a reasonable subspace of
possible solutions is searched using various heuristics.

On the other hand, methods based on inferring of a grammar [47, 148, 149, 150,
12, 13, 45] exploit the theory of languages and grammars and thus ensure a certain de-
gree of quality of the result. We can view an XML schema as a grammar and an XML
document valid against the schema as a word generated by the grammar. Although
grammars accepting XML documents are in general context-free [151], the problem
can be reduced to inferring of a set of regular expressions, each for a single element
(and its subelements). But, since according to Gold’s theorem [11] regular languages
are not identifiable only from positive examples (i.e., sample XML documents which
should conform to the resulting schema), the existing methods exploit various other in-
formation such as, e.g., predefined maximum number of nodes of the target automaton,
restriction to an identifiable subclass of regular languages etc.

Almost all of the published approaches focus on inference of DTD content models.
So far we have identified only three approaches which focus directly on true XML
Schema constructs. The first approach was published in [45]. The authors define a
subclass of XSDs which can be learned from positive examples and focus especially on
constructs which are used in real-world XML schemas. The second approach described
in [82] is a sort of heuristic merging state algorithm and it focuses on handling elements
with the same name but different structure and unordered sequences. The last one [152]
focuses on inference of various XML Schema constructs using user interaction.

6.4 Theoretical View of the Problem
In general, we can divide the described schema languages into grammar-based (i.e.,
DTD, XML Schema, RELAX NG) and pattern-based (i.e., Schematron). The majority
of current works deal with basic and most common structural specification of XML
data that can be expressed using the grammar-based languages. In other words they do
not deal with advanced integrity constraints that can be expressed using Schematron

105



or XML Schema assertions. So, if not stated otherwise, we consider the same set.
The grammar-based XML schema languages we consider in the first parts of our

text can be further classified according to their expressive power. We borrow and
slightly modify for our purposes the definitions from [81]. Since the well-formedness
of XML documents [1] ensures that the correct usage of start and end tags forms a
tree structure of XML documents, we usually speak about tree grammars. In addition,
since most of the current approaches do not consider attributes, because their inference
can be considered as a special case of inference of elements having a text content, we
omit them for simplicity too.

Definition 11. An XML tree is a directed labeled tree t = (V , E, Σ, Γ, lab, vroot),
where:

• V is a finite set of nodes,

• E ⊆ V × V is a set of edges,

• Σ is a finite set of element names,

• Γ is a finite set of text values,

• lab : V → Σ ∪ Γ is a surjective function which assigns a label to each v ∈ V ,
and

• vroot ∈ V is a root node of the tree.

A node v ∈ V such that lab(v) ∈ Σ is called element node or simply element. A node
v ∈ V such that lab(v) ∈ Γ is called text node.

Definition 12. A regular tree grammar (RTG) is a 4-tuple G = (N, T, S, P ), where:

• N is a finite set of non-terminals,

• T is a finite set of terminals,

• S is a set of start symbols, where S ⊆ N , and

• P is a finite set of productions of the form A → aR, where A ∈ N , a ∈ T , and
R is a regular expression over N . A is the left-hand side, aR is the right-hand
side, and R is the content model of the production.

Definition 13. Given the alphabet N , a regular expression (RE) over N is inductively
defined as follows:

• ∅ (empty set) and ε (empty string) are REs.

• ∀a ∈ N : a is a RE.

• If r and s are REs over N , then (rs) (concatenation), (r|s) (alternation) and (r∗)
Kleene closure) are REs.

Note that DTD adds two abbreviations: (s|ε) = (s?) and (ss∗) = (s+). Also
the concatenation is expressed using the ‘,’ operator. The XML Schema language
adds (among other extensions) another one, so-called unordered sequence of REs
s1, s2, ..., sk, i.e., an alternation of all possible ordered sequences of s1, s2, ..., sk (i.e.,
operator all, sometimes denoted as & as well).
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Definition 14. An interpretation χ of an XML tree t = (V , E, Σ, Γ, lab, vroot) against
an RTG G = (N, T, S, P ) is a mapping from each node v ∈ V to a non-terminal from
N , denoted χ(v), such that:

• χ(vroot) ∈ S, and

• for each node v ∈ V and its subordinates v0 , v1 , ..., vi, there exists a production
A→ aR ∈ P such that

• χ(v) = A,

• lab(v) = a, and

• χ(v0)χ(v1)...χ(vi) matches R.

Note that we interpret every text value by the value pcdata for convenience.

Definition 15. A tree t is valid against or generated by an RTG G if there exists an
interpretation χ of t against G. A regular tree language is the set of trees generated by
an RTG.

A language generated by a grammar can be accepted by an automaton, in our case
a finite state automaton.

Definition 16. A deterministic finite state automaton (DFSA) is quintuple

A = (Q,Σ, δ, s, F ),

where:

• Q is a finite set of states,

• Σ is a finite set of input symbols (alphabet),

• δ : Q× Σ∗ → Q is the transition function,

• s ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

The language recognized by an automaton A is denoted L(A).

In some approaches the definition of deterministic finite state automaton is extend-
ed to a deterministic probabilistic finite state automaton.

Definition 17. A deterministic probabilistic finite state automaton (DPFSA) is a tuple

A = (Q,Σ, δ, q0, λ, F, P ),

where:

• Q is a finite set of states, such that λ 6∈ Q,

• λ is a dummy state indicating immediate halt,

• Σ is an alphabet (finite set of symbols),
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• δ : (Q× Σ)→ (Q ∪ {λ}) is a transition function,

• q0 ∈ Q is an initial state,

• P : δ → N0 is function returning transition use counts,

• F : Q→ N0 is function returning final state counts.

Definition 18. Let A = (Q,Σ, δ, q0, λ, F, P ) be a DFSA. Let (V,E) be a directed
underlying graph of A, where V = Q is a set of nodes and E ⊆ Q×Q is a set of edges
defined as follows:

(q1, q2) ∈ E iff ∃a ∈ Σ : δ(q1, a) = q2.

A probabilistic prefix tree automaton (PPTA) is a DFSA whose underlying graph is a
tree rooted at state q0.

Note that for each RE we can construct a DFSA and vice versa. Each automaton
A = (Q,Σ, δ, s, F ) can be viewed as a directed labeled graph GA = (VA, EA, labA)
where VA = Q and e = (ex, ey) ∈ EA if ∃s ∈ Σ∗ such that δ(ex, s) = ey. Then
lab(e) = s.

Now, we can define classes of grammars that correspond to particular XML schema
languages. In particular, we borrow from [81] definitions of local-tree grammars that
correspond to DTD and single-type tree grammars that correspond to XML Schema.
Note that RELAX NG corresponds to general regular tree grammars (Definition 12).
Firstly, we define necessary competition of non-terminals.

Definition 19. Let us have an RTG G = (N, T, S, P ). Two non-terminals A,B ∈ N
are competing with each other if there exist two productions A→ aR1 and B → aR2,
where a ∈ T and R1, R2 are REs over N .

Definition 20. A local tree grammar (LTG) is a RTG without competing non-terminals.
A tree language is a local tree language if it is generated by a local tree grammar.

Definition 21. A single-type tree grammar (STTG) is a RTG such that

• for each production, non-terminals in its content model do not compete with each
other, and

• start symbols do not compete with each other.

A tree language is a single type tree language if it is generated by a single type tree
grammar.

The studied problem of XML schema inference can be described as follows: Being
given an input set of XML trees I = {t1, t2, ..., tn}, we search for an XML schema,
i.e., an RTG GI = (NI , TI , PI , SI), such that ∀i ∈ [1, n] : ti is valid against GI . In
particular, we are searching for GI that is enough concise, precise and, at the same
time, general. This requirement indicates, that the optimal result is hard to define
and, in general, there may exist several solutions, i.e., a set of candidate RTGs O =
{G1

I , G
2
I , ...G

m
I }, such that ∀i ∈ [1, n], j ∈ [1,m] : ti is valid against Gj

I , whereas we
are looking for the optimal one Gopt

I ∈ O.
The problem of finding Gopt

I can be viewed as a special kind of optimization prob-
lem [153].
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Definition 22. A model M = (Θ,Ω, σ) of a combinatorial optimization problem
(COP) consists of a search space Θ of possible solutions to the problem (so-called
feasible region), a set Ω of constraints over the solutions and an objective function
σ : Θ→ R+

0 to be minimized.

In our case Θ = O. As it is obvious from Definition 13, Θ is theoretically infinite
and thus, in fact, we can search only for a reasonable suboptimum. Ω is given by the
features of XML schema language we are focussing on, i.e., RTG, LTG or STTG (as
described in Definitions 12, 20 and 21). And finally, to define σ we need to find a crite-
rion that describes the quality of the given RTG, such as, e.g., the MDL principle [48],
user evaluation etc., as we discuss later.

Most of the existing works use the same strategy consisting of the following phases:

• Phase I. Derivation of initial grammar (IG) describing the input data

• Phase II. Clustering of productions of IG

• Phase III. Inference of a RE for each cluster of IG, i.e., building the output gram-
mar (OG)

• Phase IV. Refinement of the inferred REs in OG

• Phase V. Inference of simple data types, i.e., extension of OG

• Phase VI. Inference of integrity constraints, i.e., extension of OG

• Phase VII. Expressing the OG in the target XML schema language

The current approaches usually use simple clustering algorithms in phase II. And
they also omit phase IV., V. and VI., i.e., refining and extending of the OG. The idea
of jInfer is based on the observation, that the existing methods naturally focus on op-
timization of selected phases of the inference process. It models the phases of the
inference process as modules, whereas the user is enabled to implement new ones, re-
place the existing ones and compare the results. In the following text we describe how
this idea is implemented in jInfer and later we will introduce several improvements of
the inference process implemented within jInfer.

6.5 Architecture and Implementation

The description of jInfer [66] architecture is divided into three main views: the data
view, the process view and the platform view. The data view will commence with
describing the data structures, namely representations of REs and XML elements, at-
tributes, and simple data. The process view represents the inference process itself.
Finally, we will look at jInfer as at a NetBeans Platform [154] application consisting
of a number of modules performing their tasks and communicating together through a
set of well-defined interfaces.
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6.5.1 Data View
The basic data structure we need to represent is a RE. RE is implemented as class
Regexp<T> with supporting classes RegexpInterval and RegexpType. Each
Regexp<T> instance has a type (property type) of RegexpType enumeration:

• Lambda (λ) – empty string,

• Token – a letter of the alphabet,

• Concatenation – one or more REs in an ordered sequence, e.g., (a, b, c, d),

• Alternation – a choice between one or more REs, e.g., (a|b|c|d), or

• Permutation – shortcut for all possible permutations of REs (our notation is
(a&b&c&d).

Using Java generics, Regexp<T> can represent RE over any alphabet. RE is in
fact an n-ary tree. For example expression (a, b, ((c|d), e), f) can be viewed as a tree
depicted in Figure 6.5. We implement this tree using a property of Regexp<T> class
called children, which is of type List<Regexp<T>>.

Figure 6.5: A sample tree for RE (a, b, ((c|d), e), f)

The second most important data structures are the XML data. XML data basically
encompasses elements, text nodes and attributes. For maximum generality, we break
apart these objects and we define three basic interfaces:

• NamedNode,

• StructuralNode, and

• ContentNode.

The first one stands for a bare node in XML document tree, it has its name and
context within the tree (a path from root node). The latter two extend NamedNode
interface. StructuralNode is for nodes which form structure of XML document
tree: elements and text nodes. ContentNode is for nodes that have content in XML
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documents: text nodes and attributes. We have three classes: Element for elements,
SimpleData for text nodes, Attribute for attributes. For even more generality in
design, we decided to implement two abstract classes at the mid-level:

• AbstractNamedNode implements methods from NamedNode interface to
handle context, name and metadata.

• AbstractStructuralNode implements only the task of deciding if the in-
stance is Element or SimpleData.

The interface/class model for representing XML data is depicted in Figure 6.6.

Figure 6.6: XML representation in jInfer

6.5.2 Process View
The inference process in jInfer corresponds to the before specified phases; however, as
depicted in Figure 6.7, some of the phases are coupled into one module. Nevertheless,
the modules have further submodules as we will see later.

From the high-level viewpoint, the inference process in jInfer consists of three
consecutive steps carried out by three different modules:

1. IG generation, covering phase I. of the inference process, is done by the Initial
Grammar Generator (IGG) module. This is the process of converting all
of the inputs to IG representation. All documents, schemas and queries selected
as input are evaluated, simple productions are extracted and sent to the next step.
For example, the following XML document fragment:

<person>
<info>
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Figure 6.7: High-level view of the inference process in jInfer

Some text
<note/>

</info>
<more/><more/><more/>

</person>
<more/>
<person>

<more/>
</person>

is translated into the following IG productions:

person → info,more,more,more

info → simple_data, note
note → empty_concatenation
more → empty_concatenation

person → more,more,more

more → empty_concatenation
more → empty_concatenation
more → empty_concatenation

Note that in this case the process is very simple. However, complications can
bring new input data (as we will see later), such an obsolete schema, queries
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etc. Then this module has to process more types of input and prepare respective
productions.

2. Simplification, covering phases II. – VI. of the inference process (in some cases
using empty modules), is done by the Simplifiermodule. This is the process
of simplifying the IG, i.e., describing it using a smaller number of (more complex
and more general) productions. User interaction might be used in this step to
help to achieve better simplification – for instance the user can specify which
states should be merged (see Figure 6.8 representing a screenshot of jInfer). For
example, the previous productions (clustered according to element name) could
be simplified to a single production for element person:

person → info?,more{1, 3}

Productions for elements info, more and note after simplification will be:

info → simple_data, note
note → λ

more → λ

This module represents the key part of the inference process. As we will show
later, it consist of other submodules corresponding to particular phases or their
parts.

3. Schema export, covering phase VII. of the inference process, is performed by the
Schema Generator (SchemaGen) module. This is the process of creat-
ing the resulting schema file from the simplified productions. The result of this
step is a textual representation of the schema, which is sent back to the frame-
work (and later displayed, saved etc). For the previous simplified productions,
the resulting DTD would be:

<!ELEMENT person
(info?, more, more?, more?)>

<!ELEMENT info (#PCDATA | note)*>
<!ELEMENT note EMPTY>
<!ELEMENT more EMPTY>

Note that the process is not so straightforward. For instance, for element person,
when the simplified grammar specifies its occurrence to at least once and at most
3 times, as DTD has no such construct, the export module has to find a suitable
expression. The situation is even worse for elements that contain simple data
within a simplified production. The only way to express mixed content in DTD
is to use (#PCDATA | note)* expression. Even if the RE is complicated,
the export module has to do this “flattening”.

6.5.3 Platform View
Being a NetBeans Platform application, jInfer, is divided into multiple NetBeans mod-
ules [155]. Theoretically, the whole jInfer could be contained in a single NetBeans

113



Figure 6.8: jInfer interface for merging states of automaton

Figure 6.9: jInfer module dependencies

module, because the framework uses lookups2 to locate logical modules. However, for
the sake of organization, jInfer is split into several modules and most of the time there
is a strong correlation between logical units of jInfer and its NetBeans modules.

A short overview of these modules and their functions follows. The dependencies
between all the modules are depicted in Figure 6.9. To get a deeper understanding of
any of them, please, refer to the respective documentation [156].

The basic modules are as follows:

• jInfer: It is not a NetBeans module in fact, but rather a module suite – the
“root” NetBeans project for the whole framework.

• Base: It contains the common data structures, interfaces, and utility logic shared
across all other modules.

The inference modules are as follows:

• Runner: This module encapsulates the three-step inference process described
in Section 6.5.2.

2A part of the NetBeans API which provides a way how to achieve late-binding between code based
on this feature.
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• BasicIGG: This module contains an extensible implementation of IGGenerator.
The basic version handles XML documents, DTDs and XPath queries.

• XSDImport: Demonstrating extensibility of BasicIGG, this is a basic module
for XSD input.

• XSDImportSAX: XSD input handling using SAX parser [111].

• XSDImportDOM: XSD input handling using DOM parser [157].

• TwoStepSimplifier: An implementation of Simplifier. This particu-
lar module implements merging state algorithm from [47] with basic handling
of attributes – see Section 6.5.4.

• BasicDTDExporter: An implementation of SchemaGen with output to
DTD.

• BasicXSDExporter: An implementation of SchemaGen with output to
XSD.

The utility modules are as follows:

• BasicRuleDisplayer: This module is capable of displaying a grammar in
a graphical way.

• TreeRuleDisplayer: This is more advanced version of the former using
JUNG’s graphing capabilities [158].

• JUNG: This is a wrapper module for the JUNG.

• AutoEditor: This is an encapsulation of an interactive finite state automaton
editor (see Figure 6.8).

• Options: A NetBeans specific module which adds a jInfer category into Net-
Beans Options window.

• ProjectType: A NetBeans specific module which defines a jInfer project
type, along with its input and output files, settings etc.

• XPathFileType: An NetBeans specific module which enables NetBeans to
recognize a .xpath file extension.

Last but not least, Figure 6.10 shows default implementation of three modules rep-
resenting the three steps of the inference process.

Figure 6.10: Default inference modules in jInfer
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6.5.4 Default Simplifier TwoStepSimplifier
As mentioned before, TwoStepSimplifier is a sample implementation of Sim-
plifier provided in jInfer as a default. Like any of the jInfer modules, TwoStep-
Simplifier can be replaced with a user-provided module. In addition, its inner
strong modularity ensures that it can be extended easily, i.e., only a part of its imple-
mentation can be modified/extended.

Modular Design

TwoStepSimplifier is inspired by the design described in [82]. The inference
proceeds in two steps:

1. Clustering element instances into clusters of (probably) the same elements.

2. Inferring the RE from examples of element contents taken from all elements in
a cluster.

Clustering is delegated to Clusterer submodule, and the task of RE inference
for each cluster is delegated to ClusterProcessor submodule. There is also a
third submodule called RegularExpressionCleaner. Its purpose is to refine
the output REs. The hierarchy of modules is depicted in Figure 6.11.

Figure 6.11: Submodules of TwoStepSimplifier with their implementations

As we can see, we provide one Clusterer (or ClustererWithAttributes
which is its specialization that enables clustering with additional input information),
four ClusterProcessor implementations and four RegularExpression-
Cleaner implementations (including a null one which just returns the given RE).
The ClusterProcessor implementations are as follows:
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Figure 6.12: Data flow in TwoStepSimplifier

• Alternations processor simply gets all right-hand sides od productions in
the cluster and creates their alternation as the output RE. No generalization or
simplification is done.

• AutomatonMergingState is an implementation of a classical merging state
algorithm from [47].

• Trie takes all productions in a cluster, treats them like strings and builds a
prefix tree (a “trie”) of them. The tree is the final RE.

• PassRepresentant processor returns for each cluster its representative gen-
eral production. This has nothing to do with grammar simplification, it is just a
proof-of-concept submodule.

The RegularExpressionCleaner implementations are as follows:

• EmptyChildren cleaner wipes out REs of type concatenation, alternation,
permutation, which have empty children member, such as, e.g.,

(name, (), (person, id)).

• NestedConcatenation cleaner wipes out unnecessary nesting, such as,
e.g.,
(name, (person, id)).

• Chained cleaner allows the user to chain more cleaners with output from the
first one plugged as input into second one and so on.

Data Flow

The data flow in TwoStepSimplifier, depicted in Figure 6.12, can be summarized
as follows:

1. The input IG is sent to Clusterer to be clustered.

2. Each cluster is sent to submodule ClusterProcessor which returns a RE
for that cluster.
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3. The RE is sent to RegularExpressionCleaner submodule for cleaning.

4. All REs representing all the processed clusters are added to the list of simplified
grammar productions.

5. The list of simplified productions is returned (as the OG).

In the following sections we will show how the default implementation, i.e., an
existing acknowledged solutions to the problem of XML schema inference, can be
further extended. In this area we have already proposed several approaches. However,
we will show three demonstrative examples:

1. General optimization of the inference process (Section 6.6),

2. Exploitation of a new type of input – XML queries (Section 6.7), and

3. Inference of a new type of output – Schematron schema (Section 6.8).

6.6 Inference Optimization
In this section we focus on optimization of the first three phases of the inference pro-
cess. In particular, we will describe the following extensions:

• exploitation of a (possibly existing) obsolete XML schema in phase I.,

• a new (more accurate) measure of quality of intermediate result automaton in
phase III., and

• a possibility to automatically tag the selected input grammar productions as in-
valid in phase II., excluding them from inference (e.g., deviations, misspelled
words, etc.) ensuring generating of a more accurate schema for valid inputs.

The extensions were first proposed and are described in detail in [159]. Here we
provide their overview in the context of jInfer to demonstrate its universality and mod-
ularity.

We follow the inference steps proposed in [82]. In phase II., positive examples
(element instances from input documents) are clustered according to not only element
names, but also similarity of their context and content, grouping the instances corre-
sponding to one element type definition into one cluster. Contrary to existing works,
we modify phase I. and we also parse XML schema files (i.e., the obsolete ones) into
grammar productions. These are then clustered according to the element name together
with element instances originating from XML documents. Each cluster hence contains
at most one production from XML schema input files and zero or more productions
from XML documents, all forming the IG. Since in both XSD and DTD the element
content model is basically specified by a RE, we consider positive examples as be-
ing generated by some DPFSA and try to infer this automaton. If there is a RE from
schema input, then a DPFSA torso is constructed from it (see Figure 6.13 (a)). Starting
with an empty automaton or with a torso (when an obsolete schema is processed), we
run the same algorithm for building DPFSA in the form of PPTA from positive exam-
ples and merge all the productions (see Figure 6.13 (b)). (The numbers after the ‘|’
character represents the transition use counts or the final state counts.)
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(b) After parsing inputs ac and d

Figure 6.13: An example of building DPFSA as PPTA starting from DPFSA torso

In phase III., the automaton is modified by merging its states – in this case we apply
several improvements, as described later. The inferred automaton is then converted into
an equivalent RE using a state removal algorithm [49] and the RE is added to OG.

In other words, similarly to the existing papers, we omit phases IV. – VI. and we do
not modify phase VII. However, thanks to modularity of jInfer, in these cases we can
re-use the existing modules. In addition, since jInfer provides all the necessary “side”
aspects of schema inference, such as parsing of XML data and checking their well-
formedness or visualization of input data, automata, productions,etc., we can focus
purely on the extensions themselves.

6.6.1 Selecting States to Merge
To select states to merge in a reasonable way we employ two verified state equivalence
criteria: sk-strings [46] heuristic criterion and k, h-context [47] criterion. Modules
responsible for providing candidate alternatives for merging are called merge criterion
testers. From the available alternatives a merging state strategy selects which to merge
and which not. In jInfer we have implemented several merging state strategies called:
Greedy, GreedyMDL, HeuristicMDL and DefectiveMDL. The first three are classical
approaches provided with jInfer as a default, the last one is our own new proposal (see
Section 6.6.3).

Greedy The Greedy strategy simply merges all candidate states provided by merge
criterion testers. For example for the k, h-context tester it means, that it simply creates
a k, h-context automaton as defined in [47].

GreedyMDL The GreedyMDL strategy uses the MDL principle to evaluate a DPF-
SA and input strings encoded by the automaton. The precise MDL code (called an
objective quality function) is described in Section 6.6.2. For now, it is sufficient to
assume the existence of an objective function mdl(A, S) which is given an automaton
A and a set of input strings S and returns a non-negative real value, the overall qual-
ity of the solution, where a lower value signifies a better solution, i.e., the quality the
automaton A describes strings in S.

While trying to merge candidate alternatives, the GreedyMDL strategy always keeps
the currently achieved minimum quality value (and the associated automaton). A space
of possible solutions is explored in a greedy way, but some sort of a complete scanning
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of continuation possibilities is done: all candidate alternatives to merge are evaluated.
The algorithm stops when there are no more candidates to merge, or when all alterna-
tive candidates returned by merge criterion testers end up in an automaton with higher
quality value than the one actually achieved.

HeuristicMDL The HeuristicMDL as a simple heuristic strategy works basically the
same way as GreedyMDL, but it holds n best minimal solutions instead of only one.
At each iteration, merge criterion testing for one randomly selected automaton of the
n best automata is done. All the alternatives returned are attempted to be merged and
only the automaton with quality value lower than the current worst solution is stored
in capacity-constrained sorted list (thus, it always holds the best n solutions). The
algorithm stops when it is “staggering” – when the set of the best n solutions is not
modified for a whole iteration.

6.6.2 Objective Quality Function
In the sense of the crude MDL, one has to design a code for a hypothesis and a code
for data compressed using the hypothesis. Since in this work a basic assumption is
that positive examples were generated by some DPFSA, the hypothesis is the DPFSA
itself. And as described in [160, p. 100], if a hypothesis is of probabilistic character,
the best code to use is the complete prefix code with code-lengths equal to−log(p) for
the one option, whose probability of appearance in data equals to p. When generating
strings using the DPFSA A = (Q,Σ, δ, q0, λ, F, P ), in each state of the automaton
the algorithm decides which transition to follow or whether to output a whole word
randomly – driven by a probabilistic density function defined by the probabilities of
each followed transition, and the actual state that it is final. Given a state q, we compute
a unity value:

uq = F (q) +
∑

q′∈Q,a∈Σ

P (q, a, q′) (6.1)

Then, function P ′q : Σ× (Q ∪ {λ})→ [0, 1] is defined as:

P ′q(a, q
′) = P (q,a,q′)

uq
(∀q′ ∈ Q, a ∈ Σ)

= 0 (q′ = λ)
(6.2)

Function P ′q together with the value f ′q = F (q)
uq

forms a probabilistic density function of
a discrete probability random variable Xq i.e., “what is done next, if we are in state q”
defined as:

P [Xq = (a, q′)] = P ′q(a, q
′) (6.3)

P [Xq = terminate] = f ′q (6.4)

Using the set of random variables Xq (one for each state q), encoding input strings
is simple: When the automaton generates a string, the configuration sequence is the
same as if it had the input string which the automaton was accepting. Thus, computing
a code-length can be done as follows: For each input string, traverse automaton while
reading it and record probabilities of transitions along the way. Let us consider input
string s = a1, . . . , an. Let probabilities p1, . . . , pn be recorded transition probabilities,
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and pn+1 the probability f ′q of the state, where reading of the string ended. Code-length
C of string s equals to:

C(s) =
n+1∑
i=1

−log(pi) = −log

(
n+1∏
i=1

pi

)
(6.5)

However, there is no need to traverse the automaton with each input string to get
the total code-length of all input strings. When the DPFSA is built, each input string
incremented the use count value of each transition passed and incremented the final
count value of the state it ended in. When a DPFSA is traversed for each input string,
each transition is passed exactly its use count-times and traversing ends in each state
exactly its final count-times. From this, it is easier to compute the total code-length
of input strings S (encoded with the help of DPFSA A, where {uq|q ∈ Q} are pre-
computed unity values for each state) as:

L(S|A) =
∑

q∈Q,a∈Σ,q′∈Q

 P (q, a, q′)
×

−log
(

P (q,a,q′)
uq

)
 (6.6)

The key problem is how to encode the DPFSA. In general, there is no universal
way, because DPFSA is an ad-hoc model to solve a custom ad-hoc problem and we
propose an ad-hoc code for it. Let us denote the states of an automaton as q1, . . . , q|Q|.
The proposed code is < |Q|, |Σ|, alphabet, 〈q1〉, . . . , 〈q|Q|〉 >, where:

• |Q| is the cardinality of the set of states encoded using standard universal code
for integers (SUCI), and

• |Σ| is the cardinality of Σ encoded using SUCI.

The symbols of an alphabet are named using a uniform code in the table alphabet,
which is a translation table from uniform encoding of each symbol into a prefix code.
The prefix code for alphabet symbols is established using a histogram of symbol occur-
rences over all transitions of the automaton. The probability of an individual symbol a
for this code is therefore:

pa =
occurences of symbol a

occurences of all symbols
(6.7)

Each 〈qi〉 is a code of one state in the automaton 〈|Q′i|, 〈t1〉, . . . , 〈t|Q′
i|〉〉, where Q′i is a

set of all states immediately reachable from the state qi, formallyQ′i = {q; q ∈ Q, ∃a ∈
Σ : δ(qi, a) = q}. Each 〈tj〉 is a code of one out-transition of the state qi, each in a
form 〈q, P (q, a), a〉, where q is a code for a destination state encoded using a uniform
code over all states, P (q, a) is a use count value of the transition encoded using SUCI,
a is a symbol of alphabet encoded using the prefix code for the alphabet established
earlier. Let us denote pa the probability of each symbol a in the alphabet. Then the
code-length of this ad-hoc code of the automaton is:

L(A) = suci(|Q|) + suci(|Σ|) + |Σ| · log(|Σ|)−

log

(∏
a∈Σ

pa

)
+

 |Q|∑
i=1

suci(|Q′i|)

+ (6.8)

|Q|∑
i=1

|Q′
i|∑

j=0

(log(|Q|) + suci(P (q, a))− log(pa))

121



where suci(|Q|) is the SUCI length for state-count, suci(|Σ|) is the SUCI length for
alphabet size, |Σ| · log(|Σ|) is the sum of lengths of each left side in the alphabet
translation table (each symbol with code-length log |Σ|), −log

(∏
a∈Σ pa

)
is the sum

of lengths of each right side in the alphabet translation table (each symbol a with code-
length −log(pa)),

(∑|Q|
i=1 suci(|Q′i|)

)
is the sum of all SUCI lengths for transition

counts of each state, and the last double sum is the sum of the sum of code-length
of each transition, destination state with uniform code-length of log |Q|, SUCI length
for use count and prefix code-length for a symbol a from the alphabet. The whole
code-length function is given as the sum of Equations (6.6) and (6.8):

mdl(A, S) = L(S|A) + L(A) (6.9)

6.6.3 DefectiveMDL Merging State Strategy
In general, using jInfer the user can chain merging state strategies arbitrarily. The
DefectiveMDL strategy should be attached at the end of such a chain, when the au-
tomaton is ready to be converted into a RE. It is based on the idea to decide which
input strings are so eccentric that they probably are “mistakes” and should be repaired
in input documents rather than incorporated into the output schema. In some cases,
input documents are selected to cover all expected constructs and, thus, there is no
use for DefectiveMDL strategy, but in case of automatic inference based on “dirty”
documents, the identification of “mistakes” can be useful.

Let T be the set of input strings we suspect as eccentric. We try to remove T
from the inference process. If the inferred schema is much simpler, we consider T as
eccentric. Apparently, this approach would simply remove all input strings, since no
documents fit the simple EMPTY construct. Here, we exploit MDL again and we try to
remove input strings from set T . If mdl(A, S \ T ) is smaller enough than mdl(A, S),
we consider T as eccentric.

To formalize the “smaller enough” metric, we define a criterion: When the descrip-
tion length of a new automaton and input strings, together with the description length
of the removed input strings, is smaller than the description length of an old automaton
together with all input strings, the strings are considered eccentric. We define an er-
ror code for one input string a1, . . . , an as a sequence of prefix codes for each symbol
(specified the same way as in Equation (6.8)). Thus, the code-length of the error code
for one input string equals to:

Lerror(s) =
n∑

i=1

−log(pai) = −log

(
n∏

i=1

pai

)
(6.10)

where pai is the probability of symbol ai in the established prefix code for the alphabet.
Since by removing input strings it may occur that we also remove some symbol from
the alphabet used in the automaton, the prefix code for the alphabet is established
with a histogram not only over the automaton, but also over removed input strings.
Basically, the prefix code for the alphabet remains the same, since it has to encode all
input strings, no matter if they are used in the automaton or in the error code. So the
code-length of the error code of all removed strings is:

Lerror(S) =
∑
s∈S

Lerror(s) (6.11)
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We denote mdl(A, S, Sr) the MDL code-length of an automaton A, strings S encoded
using the automaton A, and strings Sr removed. Then mdl(A, S, Sr) equals to:

mdl(A, S, Sr) = mdl(A, S) + Lerror(Sr) (6.12)

The idea of MDL comparison can be likened to a compression of a text document using
zip compression: When the length of the zip-file plus the length of some removed
sentences from the document is smaller than the length of the original zip-file with all
sentences, it makes sense to deduce from the phenomena that the removed sentences
are so eccentric that they corrupt underlying data regularity.

The input strings can be removed from the automaton as follows: The automaton is
traversed while reading an input string (remember that the automaton is deterministic)
and each transition gets its use count value decremented along the way. The final state
gets its final count value decremented. Since only strings that previously formed the
automaton are removed, use counts and final counts never reach negative values.

The last question is which input strings to remove. In jInfer, we use a program inter-
face called Suspect, which returns input strings it is suspecting as eccentric. Checking
strings one by one is one simple strategy implemented. If we remove all input strings
that pass one transition, the transition is rendered as unused.

6.6.4 Conclusion
As we can see, the universality and modularity of jInfer enables one to consider any
kind of extension of the classical inference processes used in the current literature.
The author is just expected to determine the submodules (s)he wants to modify or
completely replace. All other parts of the inference process can be re-used without
any necessary intervention. From the opposite point of view, when the jInfer tool is,
e.g., extended with a new, more user-friendly way of visualization of automata, all the
implemented inference modules remain the same and just exploit the new capability.

6.7 Schema Inference with the Knowledge
of XML Queries

In this section we describe an approach which extends the inference process with ad-
ditional input information, namely XML queries, and focuses on the often omitted
phases. We will describe the following extensions:

• adding phase V. (inference of simple data types),

• adding phase VI. (inference of ID/IDREF(S)).

In both the cases we exploit the input XML queries expressed in XQuery [21] and the
proposal is intended to be implemented as an extension of an existing inference method
processing XML documents. Hence, we result from the default inference method of
jInfer, i.e., TwoStepSimplifier, and we add new modules representing the two
phases. In [161] we provide the full description of the approach, including introductory
discussion of many other possible ways of exploitation of information from XQuery
queries in the inference process. From them we select only several most interesting
representatives and we deal with them in this section.

The proposed extension consists of the following four main steps:
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1. Construction of a syntax tree of each XML query. We use lexical and syntax
analyses proposed in [162] and for each XQuery on input, we construct a data
structure called a syntax tree.

2. Static analysis of expression types. The algorithm searches for particular ex-
pressions in the syntax trees and statically (without evaluation) determines their
types.

3. Inference of simple data types. When the target types of expressions are deter-
mined, they are utilized to infer simple data types of elements and attributes.

4. Key discovery. The final step is an extension of approach [50] inferring keys
and foreign keys.

6.7.1 Step 1: Construction of a Syntax Tree
The first step of the algorithm involves lexical and syntax analyses [162] known from
the construction of compilers and produces a syntax tree. Since they are not directly
related to inference, and, thus, they are not directly related to the topic of this paper,
we will not describe them. Nevertheless, they provide us with a helpful processing of
XQuery queries and we can focus on the inference process.

Definition 23. A syntax tree of XQuery query Q is tuple T = (V,E, c,P , o) where

• V ⊂ N is a set of nodes, each node representing a particular XQuery construct
in query Q,

• E is a set of pairs (v, w) where v, w ∈ V and for every a, b ∈ V, a 6= b : (a, b) ∈
E if and only if a construct represented by b is a direct component of a construct
represented by a (b is a child of a) in query Q,

• c : V → C is function assigning each node with its class from set C of all
XQuery language constructs (listed in [162], e.g., LiteralNode,
AttributeNode, Node, ExprNode etc.),

• P is a set of functions specifying additional properties of the nodes and distin-
guishing the nodes of the same classes, and

• o : V → O is a function specifying an order of children of the nodes, where
O = {ov : Ev → N|v ∈ V,Ev = {(v, w)|w ∈ V, (v, w) ∈ E}} is set of
functions specifying the children order for each node. For every v ∈ V, o(v) = ov
so that ov(v, w) is a sequential number of a construct represented by w amongst
constructs represented by children of v in query Q.

Regarding the additional properties, two constructs in Q represented by two nodes
of the same class from C may differ in certain ways, and, therefore, it is necessary
to distinguish them. For instance, two different literal values in Q are represented by
nodes l1, l2 ∈ V and c(l1) = c(l2) = LiteralNode but each has a different value
and type. Therefore P contains functions:

typeLiteralNode : VLiteralNode → Typesliteral
valueLiteralNode : VLiteralNode → V aluesliteral
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where VLiteralNode = {v|v ∈ V, c(v) = LiteralNode}, Typesliteral = {DECIMAL,
INTEGER, DOUBLE, STRING}, and V aluesliteral is a set of all literal values (all valid
XQuery decimal numbers, integers, double numbers and strings).

The set P contains other similar functions but due to their large number, we do not
define them formally. Functions varNameV arRefNode, axisKindAxisNode, or
operatorOperatorNode are examples of commonly used functions from P . Their mean-
ing will be explained in a place of their usage. For details, see [162].

The node classes of the syntax are organized in an is-a hierarchical structure, com-
monly used in the object oriented programming languages, where an object can be of
several types. For example, an instance of the syntax tree cannot directly contain nodes
of Node and ExprNode classes (for every v ∈ V, c(v) 6= Node, c(v) 6= ExprNode),
but it can contain nodes of AttributeNode and LiteralNode classes. Regard-
ing the multiplicity of types, a node of LiteralNode class is also considered to be
of two indirect types: ExprNode and Node.

An important characteristic of the syntax tree is related to definition of local vari-
ables and their scope in the XQuery language. The representation of a definition of a
local variable in the syntax tree is a node of VariableBindingNode class. Nodes
of that class have only two children; a node representing the type of the variable and
a node representing the binding expression (expression defining the value of the vari-
able, and thus, it cannot use the variable). Hence, the entire subtree does not contain
any expressions that use the variable. Therefore, the scope of the new variable is not
the subtree of the VariableBindingNode class node. It depends on the type of
XQuery construct of which the variable binding is an (indirect) component.

For example, a syntax tree constructed from the following query is shown in Fig-
ure 6.14:

declare namespace local =
"http://www.foobar.org";

declare function local:convert
($v as xs:decimal?)

as xs:decimal? {
2.20371 * $v

};

for $i in /site/open_auctions/open_auction
return

local:convert(zero-or-one($i/reserve))

6.7.2 Step 2: Static Analysis of Expression Types
In the second step, we statically (i.e., without evaluation of the queries) determine
types of expressions in the syntax tree. Information on the types of expressions can
be used by consecutive steps of the algorithm. The consecutive steps described in this
paper will not use the determined types of all expressions; however, this step may be
useful in a future extending.

The analysis of expression types can be divided into three substeps: Determination
of return types of functions, determination of types of global variables, and finally
determination of types of expressions.

Firstly, we describe types of expressions we want to capture and their features:
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Figure 6.14: Sample syntax tree (after the static analysis of types)

• XML Schema simple data types [68].

• Types ElementType, AttributeType, NodeType, TextNodeType, CommentType,
ProcessingInstructionType, and DocumentType representing an element, attribute,
node, text node, comment, processing instruction, and document node respec-
tively.

• Type representing a node or a set of nodes selected by a certain path expres-
sion. The path expression is included in this type. Let this type be denoted as
PathType.

• UnknownType representing a type without known details, which does not suit
one of the three previous types. An example is XSD type anyType.

PathType contains additional information. The represented path is contained by a
list of its steps, in particular instances of StepExprNode. If a step is a reference to
a variable whose type is PathType, we also want to include this information. There-
fore, PathType contains an association between the steps and other PathTypes and this
association is defined for the PathType variable steps.

To distinguish between a common PathType selecting a set of nodes and a PathType
bound to a for variable in a FLWOR expression, PathType structure contains a flag
isForBound.

Additionally, PathType contains a list of special functions that were called with an
argument of PathType type. The motivation is that in some cases of function calls,
we want to know that the function call is performed with an instance of PathType be-
cause then, we can determine a type of the function call more precisely. Those special
functions are built-in functions data, min, max, avg, sum, distinct-values,
zero-or-one, exactly-one. And other may be added, when needed.
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In summary, we represent PathType as a structure with the following member vari-
ables:

• steps – A list of PathExprNode instances,

• substeps – An association between variable-referencing steps and instances
of PathType type,

• isForBound – Boolean flag determining if the type was bound to a for vari-
able in a for clause,

• specialFunctionCalls – A list of special functions called with this in-
stance as an argument.

To capture sequences, we assign the first two categories of types (all types except
for PathType and UnknownType) with its cardinality [162]. Each of those types can be
perceived as a sequence. A type representing one value or one item can be perceived
as a sequence of exactly one item. The cardinality expresses one of the following five
sequence types:

• An empty sequence,

• A sequence of exactly one item,

• A sequence containing zero or one item (modifier ?),

• A sequence containing zero or more items (modifier *),

• A sequence containing one or more items (modifier +).

PathType is not assigned with the cardinality since we do not evaluate the queries,
and, therefore, we cannot determine if a certain XQuery path targets zero, one or more
nodes. Alike, UnknownType is neither assigned with the cardinality. Expressions
of UnknownType are not utilized it the inference, therefore, their cardinality is not
needed.

Determination of Function Return Types

Determination of return types of functions is necessary, because function calls can
appear in various expressions. A return type of a function can be determined at the
moment the analysis of expressions encounters a call of the function; however, it in-
volves multiple transitions of the syntax tree in a search for a definition of a particular
function.

Instead, the syntax tree can be searched just once, before the analysis of expres-
sions, and return types of all functions found are stored.

Determination of Global Variable Types

A similar approach as in case of functions can be applied to determine types of global
variables. Alike the functions, the global variables are defined in the prologue sub-
section. A type of a variable can be explicitly specified in its definition, for instance
declare variable $x as xs:byte := 12;. If it is not, it may often be
deducible from the binding expression.
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Determination of Expression Types

To determine types of expressions, we use function analysisOfExpressionTypes.
This function is called upon a binding expression of a global variable which determines
the type of the binding expression, and hence, the type of the variable. The starting
node (its first argument) is the node representing the query body and the variable con-
text is empty as there cannot be any local variable valid in the body node.

We can also determine expression types in functions. To do this for a certain func-
tion, analysisOfExpressionTypes function has to be called with a function
declaration node as the starting node. In this case, the function declaration node con-
tains a subnode specifying function’s formal arguments. These arguments are set as
the variable context for the function body represented by another subnode.

Figure 6.14 shows the syntax tree after the static analysis of expression types. The
types are shown in red color. Note that the node representing zero-or-one function
call is of a PathType type, as well as its argument. It is so, because the function returns
its argument unchanged, and, thus, we included the function in the special functions
list in the PathType definition.

6.7.3 Step 3: Inference of Simple Data Types
In this step, the algorithm traverses the syntax tree to infer types of elements and at-
tributes from expressions using the type information from the previous step. These two
steps could be merged together but for better comprehension we present it separately.

How are the types inferred from the expression types? We do not exploit all expres-
sions. Only expressions of a particular type are exploited. Specifically, an expression
has to contain a subexpression E of PathType type (expression representing a certain
element or attribute or a set of elements or attributes). In the following text, the set rep-
resented by expression E is denoted S. Another requirement is that the expression has
to be either a function call or an arithmetic operation. Also other XQuery constructs
can be utilized to infer simple data types, but, since the principle is similar, we focus
on the two mentioned ones as the proof of the concept.

Likewise the previous step, the syntax tree is recursively searched for expressions
satisfying the conditions for the type inference. A small difference is that the recur-
sion stops at syntax tree node types FunctionsBodyNode and PathExprNode,
because the processing of these nodes requires a different approach, which we do not
deal with in this paper.

The output of this step is a set of statements of the form P → T , where P is an
instance of PathType and T is an XML Schema simple data type.

Function Calls

This case is quite straightforward. The algorithm encounters a function call and one of
the arguments is a set of elements of attributes (subexpression E representing S) rep-
resented by PathType P . To determine the type of S, it is only necessary to determine
the type of the corresponding formal argument from the definition of the function. The
function is either a built-in one so its definition is known, or it is defined in the prologue
subsection.

If the type T of the formal argument is a simple data type or its sequence, then
T is also the inferred type of S. The inferred production is P → T . Otherwise, no
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production is inferred.

Arithmetic Operations

If the operator in an arithmetic operation is one of +, -, div, mod, *, / (the class
of the expression node is Operator and it represents one of PLUS, MINUS, IDIV,
MOD, MUL, DIV) constructs, one operand is of PathType P and the type T of the other
operand is one of numeric simple data types, then the inferred production is P → T .

If the operator is one of <, >, <=, >=, =, != (the class of the expression node
is Operator and it represents one of GEN_LESS_THAN, GEN_GREATER_THAN,
GEN_LESS_THAN_EQUALS, GEN_GREATER_THAN_EQUALS, GEN_EQUALS,
GEN_NOT_EQUALS expressions), one operand is of PathType P and the type T of the
other operand is one of simple data types, then the inferred production is P → T .

6.7.4 Step 4: Key Discovery
In the last but not least step, the algorithm discovers keys of elements. In particular
our approach incorporates and extends the approach from paper [50]. To discover keys
and foreign keys, the method utilizes element/element joins. Assume a query Q that
joins a sequence of elements S1 targeted by a path P1 with a sequence of elements S2

targeted by a path P2 on a condition L1 = L2. The method is based on an assumption
that each join is done via key/foreign key pair. It means it is supposed that L1 is a key
of the elements in S1 and L2 is its respective foreign key or vice versa.

We consider two possible cases:

(O1) L1 is a key of elements in S1, L2 is a respective foreign key and it itself is not a
key of elements in S2.

(O2) L2 is a key of elements in S2, L1 is a respective foreign key and it cannot be
decided whether L1 is a key of elements in S1 or not.

For a particular join, the decision for one of the cases (O1) and (O2) is made by the
form of the join. The query is searched for so-called join patters – a for join pattern
and a let join pattern – provided in Listing 6.1 and 6.2.

Each occurrence of a join pattern is classified by application of the following rules
R1 – R6 in this specific order. The first satisfied rule is applied. The occurrence is
also assigned with a weight determining how sure the method is about the inferred
production.

The pattern occurrence is considered of case (O1)

• if it is the for join pattern (R1, weight = 1),

• if aggregation function avg, min, max or sum is applied on a target return path
(R2, weight = 1), or

• if aggregation function count is applied on a target return path (R3, weight =
0.75),

where the target return paths are paths in CR starting with $e2 (see Listing 6.1). Oth-
erwise, the pattern occurrence is considered of case (O2) and the assigned weight de-
pends on the number of target return paths:
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Listing 6.1: For join pattern.
f o r $e1 i n P1

r e t u r n
f o r $e2 i n P2[L2 = $e1/L1]
r e t u r n CR

Listing 6.2: Let join pattern.
f o r $e1 i n P1

r e t u r n
l e t $e2 : = P2[L2 = $e1/L1]
r e t u r n CR

Listing 6.3: For-for join pattern.
f o r $e1 i n P1

f o r $e2 i n P2

where $e2/L2 = $e1/L1

r e t u r n CR

• If the number is greater than one, the weight is one (R4, weight = 1),

• else (the number equals zero or one) the weight is one half (R5, weight = 0.5).

Last but not least, for the for-for join pattern 3 (see Listing 6.3), we introduce a new
rule, considering the for-for join pattern 3 of case (O1) described above (R6, weight =
0.5). The lower weight is chosen, because there is a lower probability that join of the
join pattern 3 type is done via a key/foreign key pair.

To find the occurrences of the join patterns, the algorithm recursively, in pre-order,
searches the syntax tree and every node representing a FLWOR expression is pro-
cessed. The processing iterates through subnodes of a current node. For each found
join pattern occurrence, the algorithm decides whether it is (O1) or (O2) case. Then
rules R2 and R3 are applied using instances of PathType, while rules R4 and R5 use
instances of PathExprNode. Rules R4 and R5 count target return paths. If they use
instances of PathType, they can count one path more times, and thus, give a wrong
result.

6.7.5 Conclusion

As we can see, jInfer enables optimization of the inference process even with a com-
pletely new type of input (in this case XQuery queries) and with regard to classical
inference approaches completely new output (in this case simple data types and simple
integrity constraints, i.e., keys and foreign keys). Thanks to the modularity, the author
of such an extension can completely reuse the implementation of the inference method
and focus on the extensions related to analysis of XQuery queries. The only modules
that have to be modified (extended) are those responsible for generating OG and its
expression in the target XML schema language.
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6.8 Schematron Schema Inference
last but not least, we will show how the inference process can be extended towards
inferring of a completely new type of output. This part corresponds to phase VII. of
the inference process, although it may influence also the previous phases if the output
schema language enables one to express additional information that need to be in-
ferred first. In particular we will show an approach for inference of a Schematron [51]
schema. Note that from another point of view this may mean also extension of XML
Schema output constructs with assert and report elements that are directly in-
spired by Schematron. However, in this case we will output purely the Schematron
schema and we propose a novel three-step algorithm. Its full description including
technical details can be found in [163].

As we will show, Schematron may not be ideal for expressing general ordered
unranked trees, since the schema may be bigger than the schemas of classical grammar-
based schema languages (e.g., Relax NG, DTD). We divide the transformation process
of a production into three steps:

1. generate the correct context for productions,

2. control the correct sum of children,

3. match the order of children to the RE of the production.

6.8.1 Step 1. Context Generation
The correct context for productions is absolutely necessary for the algorithm to work
correctly. The context is used to match an element in an XML document to a produc-
tion ~h from an OG G. The context is used for constraints generated by steps 2 and
3.

Trivial Solution Let us have a grammar G = (N, T, S, P ) and a production ~h of
the form A → aR where h ∈ P,A ∈ N, a ∈ T and R is a RE over N . The simplest
solution is to generate the context using only the element itself. This method may work
if and only if there exists an inverse function to function trans : N → T that assigns
each non-terminal A ∈ N with terminal a ∈ T on the basis of productions from P . In
that case, we can create a simple XPath expression for each production ~h using only
the name of terminal of the production ~h.

If we want to use relative context, there must not exist two different productions
with the same terminal, i.e., in the whole XML document, we must be able to identify
a production based only on the name of the element. This is, however, satisfied only
by LTGs, i.e., DTDs.

For example, for non-terminal Person the context is //person.

K-ancestors This method is used for schema inference in [12]. The key idea is to
identify the context on the basis of element name and the name of K closest ancestors.
(Note that the trivial solution is a special case where K = 1.) Similarly to trivial
context generation, K-ancestor solution offers fast and comfortable way to identify
the context. On the other hand, K-ancestor solution may not identify some contexts
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correctly. However, the real world data [12] show that more than 98% of context
matching could be expressed with this solution and the K equal to 2 or 3.

For example, for K = 2 and non-terminal Person the context is

//database/person.

Absolute Path without Recursion A more reliable and less restricted way to identi-
fy the correct context can be specified using absolute paths. This approach is sufficient
for general cases of grammars that do not contain recursion or only so-called simple
recursion.

Definition 24. We denote the derivation sequence DA for non-terminal A to be a
sequence of non-terminals produced by productions that transform the starting non-
terminal to the non-terminal A.

Definition 25. We denote derivation sequence of terminals DTA for a non-terminal A
to be a sequence of terminals defined by the formula ∀X ∈ DA : trans(X).

In other words, the derivation sequence of terminals DTA is a derivation sequence
DA “translated” to terminals. Then, when we want to find a context for a produc-
tion ~h of the form A → aR, we can exploit the sequence DTA of terminals. This
sequence contains terminals that match the absolute path from the root element (that
matches the terminal of the starting symbol) to terminal (element) a of the produc-
tion ~h. We join the derivation sequence of terminals with character “/”. For example,
consider the derivation sequences: DData = 〈Database, Person,Data〉 and DTData

= 〈database, person, data〉. Then, the context for non-terminal Data is
/database/person/data.

Note that the derivation sequence is always deterministic. If there is a non-determi-
nistic step (e.g., operator “?” or “|”), we generate all possible deterministic sequences
and merge all their results.

Simple Recursion in Productions There can be situations when the length of a
derivation sequence is not limited. This happens when there is a recursion in pro-
ductions.

Definition 26. We say that the derivation sequence DA contains recursion if there is
at least one non-terminal X ∈ DA that occurs more than once in DA. We say that the
recursion is a simple recursion if there are no other non-terminals between any two
occurrences of X ∈ DA.

In other words, simple recursion is a sequence where the repetition of a single
symbol is not interrupted by any other symbol (which is a common case in real-world
XML data [14]). Multiple derivation sequences may exist for the same non-terminal.
Without loss of generality, we suppose there exists only one such sequence. If more
sequences exist, we can always merge their generated path expressions.

Definition 27. We denote the derivation regular expression DRA for a non-terminal
A ∈ N to be a word over N that represents all derivation sequences of DA.

DRA is able to express several derivation sequences with a single finite word.
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Definition 28. We denote the derivation regular expression for terminals DTRA for
a non-terminal A ∈ N to be a word over terminals T of grammar G converted from
DRA by the formula:

∀X ∈ DRA ∧X ∈ N : trans(X)
∀X ∈ DRA ∧X /∈ N : X

We can now re-define simple recursion using the derivation regular expression.

Definition 29. We say that derivation regular expression DRA contains only simple
recursion if and only if all regular operators + and ∗ in DRA are applied to a single
symbol (and not to a group).

Since x+ can be expressed as xx∗, without loss of generality we can assume that
all simple recursions consist of the form x∗.

Definition 30. Let us have a derivation regular expressionDRA and an XML fragment
F . We denote foreign elements foreign(DRA, F ) to be such elements that have to be
removed from F in order to be matched by the DRA.

Now we introduce the algorithm for XPath context generation for a grammar with
simple production recursion. Since XPath 1.0 does not support REs, we have to use
the descendant-or-self axis with a constraint on the ancestors. We create a
constraint that will ensure that we will find only such descendants that have no other
element than the element from the simple recursion. The input is the DRTA for the
simple recursion.

The constraint is implemented using the count() function, and ancestor and
descendant axes. First, we store into two variables numbers of ancestors, namely
any ancestor (allCount) and ancestors with name x (xCount). We can use the
let construct for creating these variables. We then generate the XPath expression for
context ad folows:

//x[(count(ancestor::x) - $xCount) = (count(ancestor::*) -

$allCount)]

Recursion with Deterministic Content Finally, we will introduce a general ap-
proach that allows us to match recursions with deterministic content. First, we denote
the derivation loop to be a part of a derivation regular expression that is being repeat-
ed. We will extend the algorithm introduced for simple recursion adding several more
constructs and constraints, namely:

• The leading terminal constraint ensures that we match the correct leading ele-
ment. This constraint may not be used every time, but it is important to notice a
situation when there could be multiple elements of the leading symbol.

• The restriction constraint checks that there are no foreign elements.

• The completeness constraint checks that all terminals from derivation terminal
regular expression are matched to elements within the recursion, thus no ele-
ments are missing and all elements are in the correct order.
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Firstly, we have to identify the leading terminal t. We count its ancestors and store
this value to variable leadCnt. The occurrence of t in the recursion loop is stored in
variable leadMod. The variables are used in the generated production as follows:

(count(ancestor::t) - leadCnt)

mod leadMod = 0

Secondly, we have to check the restriction constraint. The algorithm for simple
recursion checks only a single element. We enhance it to support checking of multiple
elements. For each terminal t in DRTA, we compute the occurrence of t in ancestor
nodes. For example the second phase of the algorithm generates for DRTA = (abcb)∗

the following predicate:

//a[(count(ancestor::a) + count(ancestor::b) + count(ancestor::c)) =

count(ancestor::*)]

To check the internal structure of a recursion loop, we use nested predicates with
child axes. We check the child, grandchild, great-grandchild, etc. of the leading
terminal. We denote this condition as the structural check. The generated constraint
will check the number of ancestor leading terminals against the number of elements
found by the structural check:

leading_symbol[child[grand-child[ ...[leading_symbol]]]

The final parent-child check matches the leading symbol of the following recursion
loop. We count the number of occurrences of the leading terminal in the loop (stored
as LeadingSymbolCnt). Since the loop is deterministic, we can check the internal
structure using a single nested XPath condition. For example, if we transform loop
abcad to XPath expression a[b[c[a[d[a]]]]], the generated condition will be
the following:

count(ancestor::a)=LeadingSymbolCnt *
count(ancestor::a[b[c[a[d[a]]]]])

The DRTA for the loop is “abcad”, the leading symbol is thus a and the con-
stant LeadingSymbolCnt expresses the number of symbols of the leading terminal
within the recursion loop. Here it is equal to 2.

6.8.2 Step 2. Boundary Productions
From now, the found context will be denoted as CONTEXT. Within it we can now focus
on validation using minimum and maximum occurrence checks – so-called boundary
productions – of elements from the RE part R of a production ~h of the form A →
aR. We can detect elements that are not present in R and elements with an invalid
occurrence. We process R and for each non-terminal X from set S of non-terminals
in R, we count the minOccurs and maxOccurs. Both functions are defined as
follows:

minOccurs: N → {0, 1, 2, ...}
maxOccurs: N → {0, 1, 2, ...} ∪ {unbounded}
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where N is the set of all non-terminals.
First we check that there are no illegal children with a single production:∑

s∈S

count(trans(s)) = count(child :: ∗)

Next, we generate a production for each non-terminal from S to check the bounds:∨
s∈S count(trans(s)) ≥ minOccurs(s) ∧ count(trans(s)) ≤ maxOccurs(s)

Note that we may skip the maximum bound check, if maxOccurs = unbounded.
The same fact can be applied to minOccurs = 0.

6.8.3 Step 3. Order Check
The basic idea for checking order is taken from [52]. In particular, we have a RER and
element e. We want to create a set of productions to test the order of child elements of
e with regard to R. We process R sequentially from left to right. For each part of R
we create constraints for allowed following siblings.

RE operators, except the grouping operator, can be expressed using conditions on
following siblings. Based on the cardinality of the following (or preceding) siblings,
we may use more than just one condition. For example, the derived assert rules for RE
x+ yz? are as follows:
<rule context="CONTEXT/x">

<assert test=
"(not(preceding-sibling::*)

or
preceding-sibling::*[1][self::x])
and
(following-sibling::*[1][self::x]

or
following-sibling::*[1][self::y])">

...
</assert>

</rule>
<rule context="CONTEXT/y">

<assert test="following-sibling::*[1][self::z]
or
not(following-sibling::*)">

...
</assert>

</rule>
<rule context="CONTEXT/z">

<assert test="not(following-sibling::*)">
...

</assert>
</rule>

6.8.4 Conclusion
The last but not least demonstration of features and advantages of jInfer is related
to another kind of output. In this case the author of such kind of extension can just
implement new module for expressing OG in the target XML schema language. All
the other parts, parsing modules, visualization libraries, etc. can be reused without any
change.
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6.9 Open Problems

As we have shown, jInfer enables one to implement new improvements and extensions
of the inference process. In this section we discuss a number of open problems to be
solved and where jInfer could be successfully applied.

User Interaction In most of the existing papers the approaches focus on purely au-
tomatic inference of an XML schema. The problem is that the resulting schema may
be highly unnatural. Although, e.g., the MDL principle evaluates the quality of the
schema using a realistic assumption that it should tightly represent the data and, at the
same time, be concise and compact, user preferences can be quite different. Hence,
a natural improvement may be exploitation of user interaction. Some of the existing
papers (e.g., [47]) mention the aspect of user interaction, typically in phase IV. of
refinement of the result, but there seems to be no detailed study and, in particular, re-
spective implementation. And, naturally, this problem is closely related to a suitable
user interface which does not require complex operations and decisions.

In paper [152] we have proposed our preliminary attempts towards exploitation
of user interaction; however, we can certainly go even further. For instance, the user
may influence the merging phase by proposing preferred merging operations/target
constructs, clustering similar elements etc. Such approach will not only enable one
to find more concise result, but to find it more efficiently as well. Even though the
solution seems to be simple, its implementation is not, since we cannot expect the user
to make too many decisions or to evaluate too many choices. Hence, such a solution
requires a kind of “recorder” which is able to learn from previous decisions and use
them in similar cases.

Other Input Information In all the existing works the XML schema is inferred
on the basis of a set of positive examples, i.e., XML documents that should be valid
against the inferred schema. As we have mentioned, the Gold’s theorem highly restricts
the existing solutions and, hence, the authors focus on heuristic approaches or limit the
methods to particular identifiable classes of languages. But another natural solution
to the problem is to exploit additional information, such as an XML schema or XML
queries.

In Section 6.6 we have proposed a preliminary solution exploiting an obsolete
schema, but the exploitation strategy can go even further. An inspiration can be found
in the area of schema evolution [164, 165] or correction of XML data [166, 167, 168]
at a much sophisticated level.

In case of exploitation of XML queries the motivation is similar though more ob-
vious. In Section 6.7 we have shown an approach which enables one to extend the in-
ference process with inference of simple data types and XML keys/foreign keys which
results from our previous work [50]. But, in general, the queries restrict parts of the
data structure (those that should appear at output) and this partial information can be
exploited for schema inference.

In addition, there seems to be no approach that would exploit negative examples
(i.e., XML documents that should not conform to the schema). In this case we can find
a real-world motivation again in the area of data evolution and versioning.

136



XML Schema Simple Data Types One of the biggest advantages of the XML Schema
language in comparison to DTD is its wide support of simple data types [68]. It in-
volves 44 built-in simple data data types such as, e.g., string, integer, date etc.,
as well as user-defined data types derived from existing simple types using simpleType
construct. In enables one to derive new data types using restriction of values of an ex-
isting type (e.g., a string value having length greater than two), list of values of an
existing type (e.g., list of integer values) or union of values of existing data types (e.g.,
union of positive and negative integers). Hence, a natural improvement of the existing
approaches is a precise inference of simple data types. Unfortunately, most of the ex-
isting approaches omit the simple data types and consider all the values as strings. Two
exceptions are proposed in [169, 170], but both the algorithms focus only on selected
simple data types.

XML Schema Advanced Constructs The second big advantage of the XML Schema
language are various complex constructs. The language exploits object-oriented fea-
tures, such as user-defined data types, inheritance, polymorphism, i.e., substitutability
of both data types and elements etc. Although most of these constructs do not extend
the expressive power of XML Schema in comparison to DTD [171], they enable one
to specify more user-friendly and, hence, realistic schemas. Naturally, their usage is
closely related to the previously described problem of user-interaction, since the user
can specify which of the constructs are preferred. In [172, 82, 152] we have proposed
several preliminary approaches towards inference of unordered sequences, shared frag-
ments, or type inference. But, the language itself provides much stronger tools.

Integrity Constraints As we have mentioned, both DTD and XML Schema enable
one to specify not only the structure of the data, but also various semantic constraints.
Both involve ID and IDREF(S) data types that specify unique identifiers and ref-
erences to them. The XML Schema language extends this feature using unique,
key and keyref constructs that have the same purpose but enable one to specify
the unique/key values more precisely, i.e., for selected subsets of elements and/or at-
tributes and valid within a specified area. In addition, the assert and report con-
structs enable one to express specific constraints on values using the XPath language.
The current works focus mainly on the ID, IDREF(S) attributes [173, 174] and ex-
ploit various data mining approaches to find the optimal sets of keys and foreign keys.
Unfortunately, all the existing works infer the keys separately, i.e., regardless a possi-
bly existing XML schema or on the basis of an inference approach. Similarly, none
of them focusses on any of the advanced constraints of XML Schema or Schematron.
In addition, there are also more complex XML integrity constraints [175] that could
be inferred, though they cannot be expressed in the existing schema specification lan-
guages so far, functional dependencies [176, 177] or even languages for expressing any
integrity constraint in general, such as, e.g., Object Constraint Language (OCL) [178].
A detailed study of XML integrity constraints can be found in [179], whereas their
inference would extend the optimization of approaches that analyze and exploit infor-
mation on XML data from XML schemas.

Other Schema Definition Languages The DTD and XML Schema are naturally not
the only languages for definition of structure of XML data, though they are undoubted-
ly the most popular ones. The obvious reason is that these two have been proposed by
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the W3C, whereas DTD is even a part of specification of XML. Nevertheless, there are
also other relatively popular schema specification languages. The two most popular
ones, RELAX NG and Schematron, are briefly introduced in Section 6.2. As defined
in Section 6.4, the former language has higher expressive power than XML Schema
and DTD, since it enables one, e.g., to combine elements and attributes in the REs.
The latter one exploits completely different approach (since it is a pattern-based, not
grammar-based language) and, hence, it will require completely different inference ap-
proach. The solution we have introduced in Section 6.8 is probably the first work in
this area indication further possible improvements.

6.10 Conclusion
In general, the XML schema of XML documents is currently exploited mainly for two
purposes – data-exchange and optimization. In the former case we usually need the
inferred schema as a candidate schema further improved by a user using an appropriate
editor or in cases when no schema is available. In the latter case the approaches exploit
the knowledge of the schema, i.e., expected structure of the data, for optimization
purposes such as, e.g., finding the optimal storage [79] or compression [180] strategy.
However, in general, almost any approach that deals with XML data can benefit from
the knowledge of their structure, i.e., XML schema. The only question is to what
extent.

The aim of jInfer project is to provide a “playground”, where researchers can im-
plement and test their optimizations for particular phases of the inference process while
(a) they can exploit the existing unchanged parts and (b) they are provided with all the
related tools such as data parsing, visualization of the automata, transformation of the
automata to XML schema languages etc.

In our future work we will focus mainly on proving the concept of jInfer, i.e., pro-
posal of own optimization approaches to XML schema inference and their verification
using jInfer. Namely we are currently dealing with inference of integrity constraints
and optimization of the inference process using other input information, in our case
XML queries expressed in XPath [28] or XQuery [21]. At the same time we will focus
on further improvements of the implementation of jInfer itself, such as the GUI, sup-
port for other data inputs and outputs, etc. These aspects are less interesting from the
research point of view; however, they will provide the researchers with more robust
and use-friendly tool to test their proposals.
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7. Conclusion
The aim of this thesis was to illustrate various steps of data analysis and processing.
On this account, we have discussed the main problems and the current state of the art
which comprises many different tools for data acquisition, document integration, anal-
ysis, and visualization of the results. In the following paragraphs we discuss the main
contributions corresponding to three general and extensible frameworks – Analyzer,
Strigil, and jInfer – we have proposed in this thesis and implemented in recent years,
remaining open problems, and our future work.

7.1 Document Analysis
In Section 2, we introduced a complex, open and extensible system for document anal-
ysis called Analyzer. We described the advantages and problems of existing solutions
and on the basis of these findings we designed and implemented a universal framework
for batch data analysis. It allows processing of documents from different sources that
consists of the following phases:

• a Web crawling and a document acquisition step,

• a data correction step,

• an analytic processing step,

• an aggregation step and a visualization of results.

We implemented and tested modules for analysis of XML documents, schemas and
XQuery programs and presented the results in Section 2. Although Analyzer was orig-
inally devoted to XML technologies, we implemented an application that is capable of
performing analyses over documents of any type. To confirm this claim, in Section 3,
we presented an analysis of real-world RDF triples. We proposed several complex
metrics to describe linkage between entities and compared the data sets.

Contributions The key contributions of this part of the thesis are as follows:

• We designed and implemented a universal framework which gives a user an en-
vironment for Web crawling, configuring, managing and scheduling analyses,
and browsing the generated results (Section 2).

• As the first use case we implemented and tested modules for analyses of real-
world XML documents and XML schemas (Section 2.6).

• We described a novel analysis of XQuery queries focused on the construct usage
(Section 2.7 and Section 4).

• We proposed new metrics for publicly available Linked Data data sets and im-
plemented an analytic module. We computed results of these characteristics over
more than 20 millions of triples (Section 3).

139



Future Work The current analytical plugins are able to analyze the most common
structural aspects of XML documents and XML schemas. Naturally they can be further
extended so that they cover most of the statistics used in the related work. We can go
even further and analyze new, or advanced features of XML Schema 1.1 such as, e.g.,
constructs assert and report, i.e., integrity constraints over the data.

Having such a robust tool for analysis of real-world data, a natural next step is
to perform an extensive analysis of the current real-world data and especially their
evolution. A detailed analysis that would cover all the metrics and observations from
the existing papers on data analyses (as described in Section 2.8) can be performed,
whereas the found differences would bear highly useful and interesting information.

On the other hand despite the fact that XML data still keep a leading role in data
representation and the related XML technologies are robust and mature, there exist
other important formats and data types that become more popular. A classical exam-
ple are data types related to Semantic Web [126], such as ontologies [127] or Linked
Data [89]. In this case we need to solve similar issues, i.e., crawling, correction, and
analyses, whereas other aspects, namely evolution are even more important.

7.2 Data Extraction
In Section 5 we described a design and an implementation of Strigil, a data extraction
tool which allows the user to specify a set of templates to cover different document
layouts. We proposed our own template language, based on well-known XSLT trans-
formations, which can be used to extract data from HTML or text documents.

Contributions The key contributions of this part of the thesis are as follows:

• We designed and implemented a modular and easily extensible tool for data ex-
traction from the Web, i.e., HTML and text documents (Section 5).

• The framework supports distributed crawling and it is able to recognize changes
in the source documents (Section 5.4), because it could be necessary to change
the scraping script to cover modified structure of the document.

• We proposed a template language to define which data should be extracted. The
data are connected to an ontology, so they can be easily integrated into existing
information systems (Section 5.5).

Future Work As described in Section 5 there are naturally various open problems
to be focussed on. Firstly, we can improve the speed of Web crawling by with the
usage of advanced caching system, i.e., we can keep local copies of all documents for
all scripts in the local cache, monitor the last modified time of cached documents, and
re-download only modified documents. Secondly the scraping module should be able
to download sources linked from the gathered downloads, e.g., construct frames in
HTML or construct import in XML Schema.

There are also remaining problems specific to the source format. For example
in HTML documents, we have to solve problems with dynamic parts of the document,
i.e., the data generated by JavaScript or returned by different AJAX calls. Additionally,
current Web design trends lead to higher visual experience, so an efficient simulation
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of different user interface actions is required (e.g., when a mouse move action shows a
new window with additional data).

7.3 Schema Inference
Last but not least, in Section 6 we proposed jInfer, a modular framework for XML
schema inference. The aim of the framework is to provide a “playground”, where
researchers can implement and test their optimizations for particular phases of the
XML schema inference process while (a) they can exploit the existing unchanged parts
and (b) they are provided with all the related tools such as data parsing, visualization of
the automata, transformation of the automata to XML schema languages etc. We have
also shown that jInfer enables one to implement new improvements and extensions of
the inference process.

Contributions The key contributions of this part of the thesis are as follows:

• We designed and implemented a modular and universal framework that enables
one to implement, test and compare new modules of the inference process (Sec-
tion 6).

• We improved grammar reducing metrics based on the MDL principle (Sec-
tion 6.6).

• We proposed a method which exploits an old obsolete schema as a basis for
inferred grammar (Section 6.6).

• We improved the inference process with usage of new typo of input, XML
queries, to determine data types of inferred elements and attributes and recogni-
tion of keys based on join constructs (Section 6.7).

• We designed and implemented a module which exports output grammar to Schema-
tron schema language (Section 6.8).

Open Problems Despite more than ten years of existence of DTD and XML Schema,
the usage of schemas in real-world XML documents is limited and the topic of schema
inference is still actual. The existing approaches still lack more complex schema con-
structs and usage of advanced data types which could be improved with usage of dif-
ferent heuristics or additional input information, such as XML operations, user inter-
action, etc. Additionally, the inference of integrity constraints could be improved with
usage of commonly used queries. And, last but not least, a novel and interesting im-
provement could be provided by extension of output schema languages (e.g., Relax
NG).

7.4 Exploitation of the Tools and Results
Finally, we will briefly describe current exploitation of all the three tools and their rela-
tion to other projects both within and outside the XML and Web Engineering Research
Group1 where they originated.

1http://www.ksi.mff.cuni.cz/xrg/
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Analyzer was mainly supported by the Czech Science Foundation, GAČR project
no. P202/10/05732 and GAČR project no. 201/09/P3643; within both it was exten-
sively used. The results of analyses of RDF triples are also exploited in paper [61]
to identify important characteristics that can make the management of RDF data more
efficient. The paper was supported by the Grant Agency of the Charles University,
GAUK project no. 4105114.

As described before, Strigil is a part of a more complex framework for linked
data integration (see Section 5.3.1) which was designed with respect to requirements
provided by the EU FP7 ICT project LOD25 Work Package 9a6. The aim of the whole
framework was to provide suitable data for a prototype of matchmaking Web Services
for linked commerce data in the domain of public sector contracts [64]. Currently, a
new ETL7 tool8, which is a follow-up of the framework, is prepared in cooperation with
the Semantic Web Company9, Vienna, Austria. It extends mainly the ODCleanStore
module by direct integration of extraction modules and it improves its data processing
capabilities.

Last but not least, jInfer was also supported by the Czech Science Foundation,
GAČR project no. P202/10/0573 and GAČR project no. 201/09/P364, which is re-
flected by its close relation to Analyzer. It was primarily utilized to compare and
describe different inference methods, as described in paper [181]. Additionally, it is
used in the area of evolution and management of complex XML applications, i.e. prop-
agation of changes from a higher level of abstraction to a lower level. In paper [182]
five levels of the model-driven architecture are utilized, each representing a different
view of a complex application, and its evolution is studied in the paper. The lowest
level, called extensional level, represents the particular instances that form the imple-
mented system such as, e.g., the XML documents. Its parent level, called operational
level, represents operations over the instances, and the level above, called schema lev-
el, represents schemas that describe the structure of the instances, e.g., XML schemas.
The last two levels, platform-independent level and platform-specific level, model the
domain at different levels of abstraction. When a user wants to design a new XML
format (s)he proceeds in the top-down direction from the platform-independent level
to the schema level. Nevertheless, the user can also integrate existing XML documents
into his/her solution in the bottom-up direction, i.e., use jInfer to infer a schema and
map the schema to a model at the platform-specific level [183, 59].

2Handling XML Data in Heterogeneous and Dynamic Environments
3Management of XML Data in (Object-)Relational Databases and Related Issues
4Efficient processing of Linked Data
5http://lod2.eu/
6LOD2 for a Distributed Marketplace for Public Sector Contracts
7Extract, Transform and Load
8https://github.com/mff-uk/intlib
9http://www.semantic-web.at/
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